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Abbreviations 34 

AI: artificial intelligence 35 

AMD: age-related macular degeneration 36 

AUC: area under curve 37 

BCVA: best corrected visual acuity 38 

BM: Bruch’s membrane 39 

CATT trial: Comparison of Age-related Macular Degeneration Treatment Trials: Lucentis-40 

Avastin Trial  41 

CNN: convolutional neural network 42 

CNV: choroidal neovascularization 43 

FA: fluorescein angiography 44 

ILM: inner limiting membrane 45 

IVAN trial: Inhibition of VEGF in Age-related choroidal Neovascularisation trial 46 

GPU: graphics processing unit 47 

LSTM: long short-term memory 48 

M: mean score 49 

nAMD: neovascular age-related macular degeneration 50 

PRN: pro re nata 51 

RC reading centre 52 

RPE: retinal pigment epithelium 53 

ROC: receiver operating characteristic 54 

ReLU: rectified linear unit 55 

SD: standard deviation 56 

SD-OCT: spectral domain optical coherence tomography 57 

tanh: hyperbolic tangent 58 

TNR: true negative rate 59 
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TPR: true positive rate 60 

VEGF: vascular endothelial growth factor  61 
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Abstract 62 

Purpose: Anti-Vascular Endothelial Growth Factor (Anti-VEGF) therapy is currently seen as 63 

the standard for treatment of neovascular AMD (nAMD). However, while treatments are highly 64 

effective, decisions for initial treatment and retreatment are often challenging for non-retina 65 

specialists. The purpose of this study is to develop convolutional neural networks (CNN) that 66 

can differentiate treatment indicated presentations of nAMD for referral to treatment centre 67 

based solely on SD-OCT. This provides the basis for developing an applicable medical decision 68 

support system subsequently. 69 

Methods: SD-OCT volumes of a consecutive real-life cohort of 1503 nAMD patients were 70 

analysed and two experiments were carried out. To differentiate between no treatment class vs. 71 

initial treatment nAMD class and stabilised nAMD vs. active nAMD two novel CNNs, based 72 

on SD-OCT volume scans, were developed and tested for robustness and performance. In a step 73 

towards explainable artificial intelligence (AI), saliency maps of the SD-OCT volume scans of 74 

24 initial indication decisions with a predicted probability of >97.5% were analysed (score 0-2 75 

in respect to staining intensity). An AI benchmark against retina specialists was performed. 76 

Results: At the first experiment the area under curve (AUC) of the receiver operating 77 

characteristic (ROC) for the differentiation of patients for the initial analysis was 0.927 78 

(standard deviation (SD): 0.018), for the second experiment (retreatment analysis) 0.865 (SD: 79 

0.027). The results were robust to downsampling (¼ of the original resolution) and cross-80 

validation (10-fold). In addition, there was a high correlation between the AI analysis and expert 81 

opinion in a sample of 102 cases for differentiation of patients needing treatment (𝜅	= 0.824). 82 

On saliency maps the relevant structures for individual initial indication decisions were the 83 

retina/vitreous interface, subretinal space, intraretinal cysts, subretinal pigment epithelium 84 

space and the choroid. 85 

Conclusion: The developed AI algorithms can define and differentiate presentations of AMD, 86 

which should be referred for treatment or retreatment with anti-VEGF therapy. This may 87 
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support non-retina specialists to interpret SD-OCT on expert opinion level. The individual 88 

decision of the algorithm can be supervised by saliency maps.  89 
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Introduction 90 

Anti-VEGF therapy is currently the standard for the treatment of neovascular age related 91 

macular degeneration (nAMD) [1]. In all prospective studies the minimal inclusion criteria was 92 

“occult (type 1) choroidal neovascularization (CNV) with recent disease progression”. But 93 

analyzing the individual clinical nAMD requiring anti-VEGF therapy using fundus 94 

examination, fluorescein angiography (FA) and spectral domain optical coherence tomography 95 

(SD-OCT) in real-life, a misdiagnosis and disagreement between treating doctors and reading 96 

centres in a range between 5-18% could be identified [2, 3]. Therefore, it is a clinical need to 97 

improve the decision process for anti-VEGF treatment and retreatment of nAMD. 98 

Recent years have seen a rapid implementation of artificial intelligence (AI) in medical image 99 

analytics and potential treatment predictions [4–9]. They have been established in subcortical 100 

vascular cognitive impairment [10] and glaucoma [11]. Also, in medical retina these AI 101 

approaches have been shown reliable to differentiate between different macular diseases [7, 8, 102 

12–14]. In addition, previous AI studies in nAMD have shown an acceptable prediction for 103 

conversion of nAMD in the same eye [9, 15] and the second eye [16]. Also the differentiation 104 

of OCT images between normal vs. pathological findings (AMD) [17] as well as the 105 

characterization of specific OCT biomarkers [15–18] could be achieved using AI algorithms. 106 

In this study, we aimed to develop an AI-based decision support for non-retina specialists in 107 

daily clinical work (see Figure 1). Two experiments were carried out for this purpose. The first 108 

experiment aims to differentiate between nAMD patients who need anti-VEGF therapy from 109 

those AMD patients who do not. The second experiment works on facilitating retreatment 110 

decisions (stabilised vs. active nAMD decision) during follow up. In both situations, referral to 111 

a treatment centre would be recommended. To demonstrate the robustness, the algorithms were 112 

tested via cross-validation and benchmarked against multiple retina specialists. 113 
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The applicability of the approach is underlined by the fact that no specific OCT features were 114 

extracted or annotated, that an end-to-end process was established, that the trained models were 115 

based on image data taken from daily routine treatment, and that special requirements for the 116 

images, such as scan density, were left out and thus the developed AI model can be more easily 117 

used for clinical application.  118 
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Patients and methods 119 

Overview 120 

OCT scans and treatment decisions were collected during daily practice. For a retrospective 121 

cohort of patients without previous selection where at least one eye was treated following a 122 

standardized treatment protocol, this data was used as input data. For experiment 1, the two 123 

classes are fellow eyes without indication for treatment and eyes requiring treatment. For 124 

experiment 2, the two classes consist of the doctor’s assessments of stabilised nAMD or active 125 

nAMD during the course of treatment. Only SD-OCT scans with a standardised resolution made 126 

by Heidelberg Engineering devices were used.  127 

A single data preprocessing pipeline and for each experiment a convolutional neural network 128 

(CNN) applying deep learning were developed. Preprocessing consisted of normalizing image 129 

eye side orientation, downsampling to a quarter of the original resolution, removing areas 130 

outside a defined region of interest (ROI) and contrast enhancement. To increase the amount of 131 

training data, the dataset was augmented by variations of the original images randomly rotated 132 

and shifted. 3D convolutional blocks were used in the CNNs so that the models are trained by 133 

all dimensions of the OCT volume. Experiment 1 uses one OCT scan and its target value in a 134 

single CNN. In experiment 2, two subsequent OCT scans of one eye and the corresponding 135 

decision for the latter image were used. Both inputs were processed by one CNN and their 136 

separate outputs combined using a LSTM to also capture temporal information. 137 

To demonstrate the robustness of the developed algorithms, cross-validation (10-fold) was 138 

used. In addition, we generated saliency maps of the deep learning model to visualize the 139 

relevant characteristics of the individual deep learning analysis and results of the algorithms. 140 

These saliency map characteristics of initial indication decisions were analysed by retina 141 

specialists (H. F., B. H.-B., M. Z.) for corresponding biomarkers. 142 
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To benchmark the AI analysis, the results were compared to gradings made by retina specialists 143 

(B. H.-B., M. Z., M. G.) for differentiation of initial indication of patient eyes. 144 

Data 145 

The Department of Ophthalmology, St. Franziskus-Hospital, Muenster, Germany, has 146 

established a digital platform between local ophthalmologists and its clinical treatment centre 147 

for cooperative anti-VEGF treatment of patients with nAMD. Using this platform all images 148 

and clinically relevant information are exchanged digitally prior to initial treatment and before 149 

every subsequent treatment [19] with intravitreal anti-VEGF therapy. Decisions for treatment 150 

and retreatment were based on reading centre (RC) analysis at the treatment centre (RC: M3 151 

Macula Monitor Muenster GmbH & Co KG, Muenster, Germany). The study used the pro re 152 

nata (PRN) Inhibition of VEGF in Age-related choroidal Neovascularisation (IVAN) [20] trial 153 

protocol (three monthly injections). Treatment and retreatment decision were defined following 154 

the internationally published criteria (Comparison of Age-related Macular Degeneration 155 

Treatments Trials: Lucentis-Avastin Trial [21], IVAN trial [20]). 156 

Using this cooperative analysis and treatment system, a consecutive unfiltered cohort of 1503 157 

nAMD patients with SD-OCT volume scans and clinical information was analysed. Patients 158 

were seen between 2012-2020. Clinical information (best corrected visual acuity (BCVA), FA, 159 

gender) and SD-OCT volume scans (Spectralis SD-OCT 1 or 2, Heidelberg Engineering, 160 

Heidelberg, Germany, 49 B-scans, 20° x 20°) were collected. SD-OCT images of fellow eyes 161 

were also transferred to the RC and were used as a comparative cohort. These eyes 162 

demonstrated most often early/intermediate AMD, but a substantial number of eyes also had 163 

disciform scars with BCVA >1.3 logMAR or additional other pathologies like epiretinal gliosis 164 

(Table 1). The study was conducted in compliance with the Declaration of Helsinki. Ethics 165 

Committee (University of Muenster) approval was obtained. 166 
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Artificial intelligence is based on experience encoded in data. To develop the AI decision 167 

support algorithms, we generated two data sets from this cohort that contain the historical 168 

imaging data from SD-OCT volume scans of AMD-affected patients and their corresponding 169 

treatment decisions from retina specialists. We used these data sets to train and test the 170 

algorithms. 171 

The historical SD-OCT image data and meta data were extracted from Heidelberg Engineering's 172 

HEYEX 2 software, which uses a proprietary data format. These files contain the raw pixel data 173 

of the SD-OCT scans, in our case with 49 B-Scans containing 512 A-Scans with 496 pixels. 174 

Additionally, the file’s meta data contain SD-OCT segmentation lines automatically generated 175 

by the HEYEX 2 software. The historical patient treatment data at every examination date was 176 

extracted from a structured medical record system. The predefined treatment process supported 177 

by the medical record systems ensures treatment process integrity and the use of structured 178 

treatment forms ensures high data quality. 179 

We linked the image and treatment data for each patient based on the image acquisition date 180 

and the medical record date. 181 

Data set for experiment 1: no treatment vs. initial treatment 182 

To develop an AI decision support algorithm that differentiates between no treatment vs. initial 183 

treatment of suspicious nAMD cases, we selected all SD-OCT volumes of initial RC 184 

examinations with a nAMD indication and a succeeding intravitreal anti-VEGF therapy 185 

resulting into 1712 eyes with nAMD that required anti-VEGF treatment. SD-OCT images of 186 

fellow eyes without an indication for anti-VEGF-therapy were used as a comparative cohort to 187 

form the no treatment class. The no treatment class contained 737 eyes. All samples of this 188 

class were evaluated by retina specialists to divide it into six subclasses for different stages of 189 

AMD and other pathologies (early AMD, intermediate AMD, geographic atrophy, disciform 190 

scars, nAMD with BCVA >1.3 logMAR, other pathologies). 191 
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We ensured that only the very first indication of one patient’s eye was included in our data set 192 

since there were patients with multiple AMD indications with treatment gaps of several years. 193 

Overall, this unfiltered data contained 2449 eyes from 1503 patients. 194 

Finally, after filtering for sufficient segmentation lines, 2322 eyes of 1477 patients (1644 eyes 195 

with nAMD that required anti-VEGF treatment and 678 eyes where no treatment was indicated) 196 

were considered in the following experiment. This data underwent the preprocessing steps and 197 

was used for training. 198 

Data set for experiment 2: stabilised nAMD vs. active nAMD 199 

The treatment following the IVAN trial protocol makes ongoing AMD examinations of 200 

activation criteria inevitable. Ophthalmologists decide about retreatment with a new anti-VEGF 201 

injection series. To develop a decision support algorithm that helps differentiating between 202 

stabilised vs. active nAMD we assembled a data set that contains historical SD-OCT volumes 203 

and the corresponding retreatment decision. When following the PRN treatment schema, the 204 

decision can either be retreatment (active nAMD class) resulting into a new anti-VEGF 205 

injection series or follow-up visit resulting in a new examination four weeks later (stabilised 206 

nAMD class). We selected every two consecutive SD-OCT volume scans of one initially treated 207 

unique patient eye’s treatment history and the corresponding retreatment decision. 208 

For example, from the following ordered images for one patient eye SD-OCTt-3, SD-OCTt-2, 209 

SD-OCTt-1, SD-OCTt0 three unique timeseries-samples were generated: 210 

Timeseries sample 1: SD-OCTt-3, SD-OCTt-2, retreatment decision t-2 211 

Timeseries sample 2: SD-OCTt-2, SD-OCTt-1, retreatment decision t-1 212 

Timeseries sample 3: SD-OCTt-1, SD-OCTt0, retreatment decision t0 213 

By providing two consecutive SD-OCTs to the CNN, the network can learn to compare both 214 

volumes to make a decision. 215 

We also run experiments with only one SD-OCT volume but found out that the AI performance 216 

increases by learning from two consecutive SD-OCTs as seen in the Results section. This 217 
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coincides with how retina specialists evaluate the development of activation criteria by 218 

examining the preceding and current SD-OCT scans. 219 

In total 9451 timeseries samples containing two consecutive SD-OCT volumes were built: 5717 220 

SD-OCT volume scan pairs with decision of stabilised CNV were compared with 3734 SD-221 

OCT volume scan pairs with decisions for retreatment. Only patient eyes and their follow-up 222 

appointments which previously had been given an initial diagnosis of nAMD needing treatment 223 

(see data set 1) appeared in this dataset. 224 

Data Preprocessing 225 

To aid model training, we evaluated several, appropriate image preprocessing methods and 226 

chose the most effective for both experiments. The contribution of each preprocessing step to 227 

the model performance for experiment 1 can be found in the result section and in Table 2. Figure 228 

2 shows the steps of the final data preprocessing pipeline with one sample slice. Raw data of 229 

pixel-wise reflectivity of the SD-OCT scans were separated and manually transferred into the 230 

data preprocessing pipeline. For the analysis, SD-OCT scans with 49 B-Scans containing 512 231 

A-Scans with 496 pixels were filtered from the obtained dataset (volumes with the dimensions 232 

512x496x49). Before feeding the images to the deep learning model, the provided images 233 

underwent preprocessing. No SD-OCT scans were excluded due to image quality, only a small 234 

fraction (up to 7 percent) with non-existent or highly discontinuous segmentation lines was 235 

disregarded, as they were used for the next preprocessing step. 236 

A region of interest (ROI) that is considered prognostic of AMD like in Russakoff et al. [9] was 237 

defined so that the CNN focuses on relevant areas only and variance in the dataset is reduced. 238 

For this, the area between the ILM segmentation line and the lower bound of the choroid area 239 

(outer choroidal boundary, OCB) is automatically identified. The areas outside of this ROI (the 240 

vitreous body above the inner limiting membrane (ILM) and the sclera below the choroid) were 241 

replaced with 97% black and 3% low intensity (grey values of 1–64) random noise pixels to 242 
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improve saliency map interpretability. The ILM segmentation line is produced by the SD-OCT 243 

proprietary software. We used the provided retinal pigment epithelium (RPE) segmentation line 244 

and generated the convex hull around RPE as an estimation of the Bruch's Membrane (BM) 245 

[22]. Following to Russakoff et al. [9] we shifted this BM line down in parallel by 390 µm 246 

(empirical mean + 2 SD of the subfoveal choroidal thickness in a population with AMD) to 247 

define a lower bound of the ROI. 248 

In the next step, contrast enhancement was applied to the images by using contrast-limited 249 

adaptive histogram equalization (CLAHE). 250 

Finally, the dimensions of the B-scans were downsampled to 128x124 by using OpenCV's 251 

interpolation method INTER_AREA [23], resulting into a volume of 128x124x49. As the 252 

scaling factor 4 is a common divisor of the original dimensions, each resized pixel intensity 253 

shows the average of 4x4 pixels in the original image. Image downsampling is a common 254 

feature in deep learning for ophthalmic image analysis [9, 24]. Downsampling has been done 255 

in both aspect ratio conserving [24] and non-conserving for both OCT [9] and for fundus image 256 

analysis [24]. Lower resolution images as model input allow for faster model training and 257 

parameter tuning in development and use less hardware resources both in training as well as 258 

inference. In addition, it increases transferability of the model to inputs by other SD-OCT 259 

machines with varying resolutions, vendor-specific differences in texture granularity and visual 260 

artefacts. To verify this downsampling does not significantly affect model performance, we 261 

conducted a ceteris paribus comparison for experiment 1 with an adapted CNN design to 262 

account for the bigger input dimensions. 263 

To have a more uniform dataset, all images were normalized regarding their horizontal 264 

orientation relative to the nose, meaning images from left eyes were flipped to have the same 265 

orientation as right eyes. To generally enlarge the training data, compensate for natural 266 

variations in scan positioning and alleviate overfitting, the training data was augmented by 267 
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random rotation (5-10°), vertical shift (3-15%), and horizontal shift (3-10%). We rescaled all 268 

pixel values of 0–255 to floats of 0.0–1.0 to improve the model training convergence speed. 269 

All models were trained end-to-end, without any prior segmentation or biomarker definition. 270 

Deep Learning 271 

Both algorithms were trained using end-to-end deep learning, without any prior segmentation 272 

or biomarker definition. Two new deep learning architectures were developed. 273 

Architecture experiment 1: no treatment vs. initial treatment 274 

The 3D CNN scheme for experiment 1 consists of three stacked convolutional blocks followed 275 

by a global average pooling and a fully connected dense layers with rectified linear unit (ReLU) 276 

as the activation function. Finally, a softmax layer yields class probabilities for the input 277 

volume. Each convolutional block is composed (of a sequence) of a 3D convolutional layer, 278 

ReLU activation, batch-normalization and a 3D max pooling layer. Table 3 summarizes the 279 

structure and hyper-parameters of the network. 280 

To mitigate overfitting, we applied L2-regularization (lambda = 0.005) in the convolutional 281 

layers and dropout in the fully connected layer with a dropout rate of 0.5. Furthermore, early 282 

stopping policy terminated the training once the monitored validation loss had not improved 283 

for multiple epochs. For the final model the weights of the epoch with best performance (lowest 284 

validation loss) were selected. 285 

Architecture experiment 2: stabilised nAMD vs. active nAMD 286 

In experiment 2 each sample is treated as a timeseries of two SD-OCT scans, containing the 287 

current and the previous scan from a single patient and eye. Since the input contains spatial and 288 

temporal information, a hybrid model involving a CNN and long-short term memory (LSTM) 289 

was implemented. LSTM is a proven class of model in deep learning used to process sequence 290 

of data. In the proposed model CNN is applied to extract the feature vector representation from 291 

each of the SD-OCT scans, passing the resulting feature vectors to the LSTM for the sequence 292 
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learning of the above mentioned timeseries. This model architecture was comprised by the 3D 293 

CNN architecture from experiment 1 (here with lambda = 0.0001) as a time-distributed input 294 

to an LSTM layer with 64 hidden cells outputting only the last hidden cell with activated 295 

internal dropout-rate and a recurrent-dropout-rate both of with 0.1, and hyperbolic tangent 296 

(tanh) as the activation function. The output of the LSTM layer is connected to a fully connected 297 

layer with 64 units, and a dropout layer with a dropout-rate of 0.3 concluding to a final softmax 298 

layer for the two-class prediction problem. 299 

Training 300 

For training, the whole dataset was first randomly shuffled. To get a reliable evaluation of the 301 

model performance, we conducted 10-fold cross validation at patient level. In each of the 10 302 

training iterations a new rotating subset with 10% of all samples was held out for the test set. 303 

This ensured that each sample was classified once as part of a test set. The remaining samples 304 

were randomly divided into training (72% of all samples) and validation set (18%). To address 305 

data leakage in each iteration all data relating to a patient appeared strictly in one subset only. 306 

The validation sets served for early stopping and best model selection in each iteration. For 307 

overall AUC of an experiment, the mean value of the AUCs from all 10 tests sets was 308 

calculated. 309 

Both models were trained by Nadam optimizer [25], with an initial learning rate of 0.001 using 310 

cross entropy as the loss function. In experiment 1 the initial learning rate of 0.001 was adapted 311 

during training to 0.0001 after the 10th epochs and then to 0.00001 after 20th epoch. Similarly, 312 

in experiment 2, after 20th epoch we set the learning rate to 0.005 and to 0.0025 after 30th epoch. 313 

The batch size was set to 4. We assessed the prediction performance based on the area under 314 

receiver operating characteristic curve (AUC) score. An AUC of 1 indicates a perfect classifier, 315 

while 0.5 represents a classifier without discriminative power. The receiver operating 316 

characteristic curve (ROC) itself plots the relation between the true positive and false positive 317 
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rate. In this study we preferred using 3D CNN over 2D CNN topologies, to also capture the 318 

spatial context in the B-scans dimension. 319 

A special platform was created for configuring and validating the model parameters, tracking 320 

the experiments, visualizing the results and evaluating the performance. Keras [26] served as 321 

the deep learning framework using TensorFlow [27] as the backend. The experiments ran on a 322 

dedicated machine running Ubuntu Server 20.04 and equipped with two linked GPUs (Nvidia 323 

GeForce Titan RTX, NVIDIA Corporation, Santa Clara, USA). 324 

Saliency map viewer 325 

In addition, a saliency map viewer was developed to visualize the relevant characteristics of the 326 

individual deep learning analysis and results of the algorithms using colour coding. Saliency 327 

maps are obtained by computing the partial derivatives of the output class score with respect to 328 

each input image pixel. The magnitude of these partial derivatives denotes the contribution of 329 

each pixel to the predicted class [28, 29]. For improved interpretation a gaussian filter with a 330 

standard deviation value of 0.8 is applied to smooth out the resulting/calculated pixel values of 331 

the saliency map. Highly activated areas are highlighted in red to yellow colour. 332 

Grading by retinal specialists 333 

To compare our results with human decision making, we let three retina specialists perform a 334 

grading of 102 randomly chosen samples. Each grader was given the original full resolution 335 

SD-OCT volume scan used in the initial indication without any additional clinical information 336 

to differentiate between treatment and no treatment.  337 
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Results 338 

Experiment 1: no treatment vs. initial treatment 339 

In experiment 1, besides the final scores, we also determined the effects of the different 340 

preprocessing steps to evaluate their usefulness for the model. Without any preprocessing 341 

except resizing each B-scan to 1/4th of the original resolution a model was trained with an AUC 342 

of 0.880 to serve as a baseline for iteratively evaluating the usefulness of further preprocessing 343 

steps. All values were recorded with 10-fold cross validation. By utilizing the ROI enhancement 344 

preprocessing step after resizing the AUC increased to 0.906. Additionally, applying CLAHE, 345 

the mean AUC improved to 0.925. To verify that our downsampling did not significantly affect 346 

model performance, we conducted a ceteris paribus comparison for the preprocessing pipeline 347 

with ROI enhancement and CLAHE applied but using full-sized images with an adapted CNN 348 

design to account for the bigger input dimensions. This showed that using full-sized images and 349 

the resulting bigger variance in samples produced lower AUC of 0.903 (SD: 0.018), indicating 350 

that our sample size did not suffice for the increased number of features in the full-size image. 351 

By extending the preprocessing pipeline of ROI enhancement, CLAHE and downsampling with 352 

augmentation, the final AUC showed a slight improvement: The model for initial indication 353 

achieved a mean AUC of 0.927 (standard deviation (SD): 0.018). Figure 3 depicts the single 354 

ROCs, the mean ROC and the standard deviation of all ten runs. Additionally, an operating 355 

point for the optimal operating threshold according to Zweig and Campbell [30] with equal 356 

costs for all decisions (m = 1, so TPR-TNR is maximized) is given. Also, the frequency of the 357 

prediction value was analysed to evaluate the effectiveness of the network (Figure 4). Among 358 

all instances the model predicts with high confidence the correct class with only small portion 359 

of misclassifications. Especially for true predictions of initial treatment a high frequency of 360 

confidence values close to 1.0 was observed, while most true predictions of no treatment had a 361 
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confidence value of at least 0.8. This validates the model's capacity discriminating no treatment 362 

versus initial treatment decisions with high confidences. 363 

To further understand the model performance, all samples of the no treatment class were 364 

grouped by their respective subclass as described in the Data section. The number of correct 365 

“no treatment” (true negative) and incorrect “initial treatment” (false positive) predictions for 366 

the default decision threshold of 0.5 as well as the true negative rate (TNR or specificity) per 367 

subclass can be seen in Table 1. For samples with no treatment AMD the model showed the 368 

highest subclass TNR of 91% across both classes. Especially eyes with BCVA >1.3 logMAR, 369 

where treatment is generally not considered, leads to a low subclass TNR of 55%. Even with 370 

this irregular real-life dataset, a big majority of patients requiring no treatment were correctly 371 

predicted as such, with a true negative rate (TNR) of 80%. When pruning the no treatment class 372 

by removing all subclasses except early/intermediate AMD, model performance could be 373 

improved significantly to a TNR of 97%. The mean AUC increased from 0.927 with real-life 374 

data to 0.976 with pruned data. This indicates that improvements for real-life applications could 375 

be reached by automatic filtering of known properties (like BCVA) or using a multiclass model 376 

which differentiates between characteristic subclasses. 377 

Experiment 2: stabilised nAMD vs. active nAMD 378 

Using the dataset without augmentation but with the final preprocessing pipeline the model for 379 

differentiation of stabilised vs. active nAMD achieved a mean AUC of 0.842 (SD: 0.022). By 380 

applying augmentation, the performance increased to a mean AUC of 0.865 (SD: 0.027; Figure 381 

5), which is the final AUC for experiment 2. 382 

We were also interested to assess the benefit of utilizing preceding and current SD-OCT as a 383 

timeseries against the case of only using the current SD-OCT as input. For the case of using a 384 

single SD-OCT volume as input, the deep learning model consisted of the 3D-CNN part of our 385 

3D-CNN-LSTM architecture only. For this comparison, datasets without augmentation were 386 

used. The model with the single (current) SD-OCT volume achieved an AUC of only 0.815 387 
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(SD: 0.027), compared to the AUC of 0.842 (SD: 0.022) in the timeseries case using the LSTM 388 

architecture. 389 

Also, the frequency of the prediction value was analysed to evaluate the effectiveness of the 390 

network (Figure 6). For true predictions of stabilised nAMD a high frequency of confidence 391 

values close to 1.0 was observed, while most true predictions of active nAMD had a confidence 392 

value of at least 0.8. This validates the model's capacity discriminating stabilised nAMD versus 393 

active nAMD decisions with high confidences. 394 

Saliency map analysis 395 

Figure 7a shows the saliency map for a single B-scan direction with highly activated areas in 396 

red to yellow colour. Figure 7b is showing the saliency map in direction across all 49 B-scans. 397 

Since the areas, which demonstrated activation, are continuous between adjacent B-scans, it is 398 

indicating the value of using 3D CNN instead of 2D CNN. In the 3D CNN different structures 399 

(interface vitreous/retina, subretinal, intraretinal, sub-RPE space and choroid) could be 400 

differentiated. To define a gradation of the relevant structures, on which the algorithm decided 401 

towards an individual recommendation (red coded structure), the saliency maps of 24 patients 402 

with a predicted probability of ≥97.5% and an active stage of the nAMD were analysed. Scores 403 

from 0-2 (0 = no staining, 1 = slight staining, 2 = intensive staining) were used for each 404 

morphological structure and a mean score (M) was registered. This analysis of colour intensity 405 

on individual saliency maps was applied on complete volume scans by two independent graders 406 

using standard images for classification. The retina/vitreous interface was the most important 407 

structure relevant for the activity decision of the algorithm (M = 2.0; SD ± 0). This is followed 408 

by the subretinal space (M = 1.375; SD ± 0.770), the intraretinal cysts (M = 1.0; SD ± 0.933), 409 

the sub-RPE space (M = 0.667; SD = 0.868) and the choroid (M = 0.625; SD ± 0.824). 410 

Therefore, using the saliency map analysis, the deep learning model could visualize areas in the 411 

SD-OCT images, which are relevant for an individual decision and therefore the results of the 412 

AI algorithm can be correlated with typical corresponding retinal AMD changes. 413 
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Comparison with retinal specialists 414 

The metrics of manual grading can be seen in Table 4. The results for grading with only SD-415 

OCT volume information available show a high interrater reliability with a Fleiss’ Kappa [31] 416 

of 𝜅	= 0.824. As ground truth, the decisions by doctors in our real-life dataset were used and 417 

compared to the majority vote of the three retinal specialists. A Cohen’s Kappa value of 𝜅 = 418 

0.776 was observed. Sensitivity for each grader ranged from 78 to 94% (majority vote: 91%), 419 

specificity from 78 to 91 % (majority vote: 87 %). All false evaluations by majority vote were 420 

looked at manually: the 6 false negatives can be explained by unicus situation and activity 421 

which is only visible in other imaging modalities than SD-OCT images, while the remaining 4 422 

false positives either had BCVA >1.3 logMAR or disciform scars. 423 

The grading performance can be compared to our predictions made in 10-fold cross-validation 424 

for these 102 samples as they are based on the same image data. Again, the doctors’ clinical 425 

decisions were used for comparison. With the default decision threshold of 0.5 a Cohen’s Kappa 426 

of 𝜅 = 0.650 was observed for all model predictions, being close to human performance.  427 
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Discussion 428 

In this study using an unspecified real-life cohort of nAMD patients two new CNNs have been 429 

developed, which can support non-retina specialists to distinguish between AMD cases with no 430 

treatment needed and treatment indicated nAMD as well as between stabilised and retreatment 431 

indicated situations based on SD-OCT raw data. These algorithms can be applied to daily 432 

practice to support the decision of non-retina specialists for referral to treatment centres. The 433 

defining characteristics of these algorithms are end-to-end processing and their independence 434 

of specific OCT feature analysis. In addition, the saliency map viewer could visualize the 435 

relevant characteristics for the algorithms. In previous studies the developed AI algorithms were 436 

predominantly addressing the question of AI-assisted automatically segmentations on SD-OCT 437 

images [32, 33]. In additional AI studies on nAMD the prediction for conversion from 438 

intermediate into nAMD was of major interest [9, 14, 15], but also the analysis for predictive 439 

biomarkers for AMD progression from intermediate AMD into nAMD was in the focus of 440 

interest [18, 34]. Especially the AI analysis of fluid distribution during anti-VEGF therapy of 441 

nAMD could be successfully achieved [35]. This study focuses on developing AI algorithms 442 

differentiating between no treatment and treatment (initially and retreatment) in intravitreal 443 

anti-VEGF therapy in nAMD. 444 

In these and other AMD studies [15, 16, 36] an AUC of >.80 was considered as a clinically 445 

good and meaningful differentiation. The results of the present study with an AUC of 0.927 for 446 

the differentiation between treatment-indicated nAMD and fellow eyes with AMD cases with 447 

no treatment needed can therefore be considered clinically relevant, especially because the 448 

control group of fellow eyes contained beside eyes with early and intermediate AMD, a 449 

considerable number of eyes with late stage nAMD and other pathologies. Also, the AUC of 450 

0.865 for the differentiation between stabilised and retreatment-indicated nAMD are in this 451 

relevant range. The clinical relevance of these results is also highlighted by the fact, that in both 452 
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situations in the IVAN and CATT trial there was also a disagreement between treating retina 453 

specialist and the RC of approximately 20% [20, 21]. Because the developed AI algorithms 454 

were based on unselected real-life treatment data and because they demonstrated robustness 455 

against downsampling, cross-validation and retinal specialist´s opinion, these algorithms 456 

appear to be valid to be tested as a decision aid for referral in clinical practice. 457 

In addition, the developed saliency map viewer could visualize the relevant characteristics of 458 

an individual deep learning analysis using colour coding the prediction of the trained 3D CNN 459 

models. In initial indication decisions with a predicted probability of ≥97.5% and an active 460 

stage of the nAMD, the retina/vitreous interface was the most important structure relevant for 461 

the activity decision of the algorithm, which may be a characteristic for retina thickness. 462 

Furthermore, changes in the subretinal space representing subretinal fluid, intraretinal cysts, 463 

sub-RPE fluid and in some SD-OCT scans analysis changes in the choroid were relevant. 464 

Therefore, using the saliency map analysis, the deep learning model could visualize areas in the 465 

SD-OCT volume scan, which supports the AI decision aid by visualizing the basic structural 466 

correlate for the examining ophthalmologist. 467 

Our downsampling of each of the 49 B-scans of one SD-OCT volume to 1/4th of the original 468 

dimensions might have led to information loss in the related biomarkers, yielding in decreased 469 

model performance. Comparison experiments using the developed model architecture showed 470 

that the full-sized volumes decreased scores against expectation. However, the model was not 471 

fully optimized for full-size volumes and the sample size might be too small for the increased 472 

number of features. In everyday clinical practice retina specialists base their diagnostic decision 473 

also on additional information, such as fundus images, BCVA, patients age and activity criteria 474 

which could be integrated into a clinical decision aid. 475 

The cohorts used in this study were data of unselected case series of the clinical routine in the 476 

Department of Ophthalmology, St. Franziskus-Hospital, Muenster. Therefore, for retreatment 477 

some individual SD-OCT images were considered as stabilised in which the treatment was 478 
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terminated because further anti-VEGF treatment was not considered to improve the situation. 479 

Eliminating these cases and re-evaluating all decisions from the learning cohort as well as 480 

increasing in the number of SD-OCT volume scans by developing automatization method for 481 

SD-OCT-data transfer may result in significant further qualitative improvement of individual 482 

predictions. Even though the saliency map focused clinically relevant areas, they should be 483 

interpreted with caution, since data set was small in relation to the diversity of patterns in the 484 

images. 485 

In summary, the results of our study demonstrate, that the developed AI algorithms can have 486 

great implications for the future development of medical care models between non-retina and 487 

retina specialists in the treatment of patients with nAMD in real-life clinical practice. These 488 

models also offer the possibility of being extended to collaborations between non-physician 489 

providers and retina specialists. The analysis of SD-OCT scans of AMD patients with initial or 490 

repeated indications for anti-VEGF therapy in nAMD using this algorithm may support non-491 

retina specialists in their decision for referral to a treatment centre. In addition, the individual 492 

decision of the algorithm can be supervised by saliency map volume scan visualization. This 493 

algorithm can therefore improve the performance and accuracy of non-retina specialists in real 494 

life to achieve reading centre standard.  495 
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Figure Legends 627 

Figure 1: Treatment procedure for nAMD following the PRN schema with AI decision support 628 

systems for initial indication and retreatment decision 629 

Figure 2: Final preprocessing pipeline with one sample slice from the raw image data 630 

extracted from the SD-OCT machine to the final input used to train the deep learning model 631 

Figure 3: Illustrates the receiver operating characteristic curves (ROC) for experiment 1, the 632 

faint-coloured lines show each of the 10 folds, the thick blue line the mean of all experiments; 633 

area under receiver operating characteristic curve (AUC) 634 

Figure 4: Frequency of the prediction value no treatment and initial treatment of AMD 635 

Figure 5: Illustrates the receiver operating characteristic curves (ROC) for experiment 2, the 636 

faint-coloured lines show each of the 10 folds, the thick blue line the mean of all experiments; 637 

area under receiver operating characteristic curve (AUC) 638 

Figure 6: Frequency of the prediction value stabilised nAMD and active nAMD 639 

Figure 7: Saliency map of one sample OCT for a single B-scan (a) and in z-axis direction 640 

across 49 B-scans (b) 641 



















Tables 

Table 1: Breakdown of “no treatment” class into subclasses for experiment 1 by expert opinion 

TNR = true negative rate 

definition of subclass 
number of predictions class prevalence 

(sum) 
subclass TNR 
(specificity) Initial treatment no treatment 

early AMD 3 137 140 98% 

intermediate AMD 32 211 243 87% 

geographic atrophy 12 52 64 81% 

disciform scar 18 34 52 65% 

other pathologies (e.g. epiretinal 
membrane, pattern dystrophy) 

8 26 34 76% 

nAMD with BCVA > 1.3 logMAR 62 76 138 55% 

not graded (missing or low-quality data) 3 3 6 50% 

totals 138 539 677 80% 

 

Table 2: AUC results for experiment 1 and different preprocessing steps 

Preprocessing CV AUC 

downsampled 0.880 

downsampled, ROI 0.906 

downsampled, ROI, CLAHE 0.925 

downsampled, ROI, CLAHE, 
augmentation (final) 0.927 

fullsize, ROI, CLAHE 0.894 

 

  



Table 3: Parameters of the 3D-CNN architecture in experiment 1 

(L2) = L2-regularization 

(ReLU) = rectified linear unit  

 

Layer Units Kernel Size Activation L2 

3D convolution_1 32 3 x 3 x 3 ReLU 0.005 

Batch normalization_1     

3D Max pooling_1   2 x 2 x 2     

3D convolution_2 32 3 x 3 x 3 ReLU 0.005 

Batch normalization_2     

3D Max pooling_2   2 x 2 x 2     

3D convolution_3 32 3 x 3 x 3 ReLU 0.005 

Batch normalization_3     

3D Max pooling_3   4 x 4 x 4     

Global Average Pooling         

Fully Connected 64    

Dropout (30%)     

Fully Connected 2   Softmax   

 

Table 4: Metrics of clinical experts in grading 

Expert decision based only on SD-OCT 
       

Needing initial 
treatment? 

Grader 1 
 

Grader 2 
 

Grader 3 
 

Majority 

Yes No   Yes No   Yes No   Yes No 

Yes 66 4  65 5  59 11  64 6 

No  7 25   4 28   3 29   4 28 

Cohen’s Kappa 0.743  0.797  0.702  0.776 
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