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Online Appendices of “Peak-hour Pricing under Negative Externality:
Impact of Customer Flexibility and Competitive Asymmetry”

Appendix A: Proofs

Proof of Lemma 1. Recall from (1) that the customer’s utilities from shopping in peak and normal hours

are, respectively,

uA,peak = aVA - ’y[)\TAmeuk} - 5APA, uA,noT‘m = VA - V[ATA,norm] —DPa-

Here, 74 pear € (0,1) represents the “initial belief” about the average percentage of customers who shops
during peak hour. Let ¢; be customer j’s percentage of his shopping trips that takes place during peak hours.
Recall that we had normalized the market size of infinitesimal customers to 1. For clarity, instead of 1, we

let N be the population size so that:

N
TApeak = liM — E q;-
j=1

Now, consider an infinitesimal customer ¢ who wants to maximize his expected utility by randomizing

between peak and normal shopping hours via g;, where his expected utility is:

U; (qz) = qiuA,peak + (1 - qi)uA,norm.
. 1 . 1
=4 (aVA —7A 1\}1310 N (Z%‘ + Qi> —d0apa)+(1—q) (VA - 7/\1\}1310 N (Z(l —q¢)+(1— Qi)> —pA)
JFi e
=4q; ((]/VA - V[ATA,peak} - 5APA) + (1 - qz) (VA - W[ATA7no'r‘m] _pA) .

Because customer i is infinitesimal, customer i’s shopping choice ¢; will not affect the belief or actual
realization of the average T4 pear-

In this case, if aVa — Y[A\ra pear] — 04Pa < Va — Y[A(1 — T4 pear)] — Pa, then ¢; =0 would maximize his
expected utility. In fact, everybody would choose ¢; = 0, and so cannot be a Nash equilibrium, because
players beliefs about others’ strategies are not correct in equilibrium.

On the other hand, if aVa —Y[A"a pear] — Iapa > Va — Y[A(1 = T4 pear)] — Pa, then ¢; = 1 would maximize
his expected utility. Again, for all customer i, ¢; = 1, and this cannot be a Nash equilibrium.

Hence, the only possible Nash equilibrium occurs in a mixed strategy where consumers are indifferent
between shopping in peak hour and normal hour, i.e., Vi —Y[ATa pear] — 0aDa = Va —Y[A1 =74 pear)] — Da-

This implies that 74 ,cqx Solves:
UA,peak = WA norm Aad aVA - ’Y[ATA,peak] - §APA = VA - ’Y[/\(]- - TA,peak)} —DPa
=4 (O[ — 1)VA — (5A — 1)pA = ’YA(TA,pcak — (1 — TA,peak)'
Hence, we get 7 .o = 5 + W. By Assumption 2,

a—1)Vy—(64—1 1
((Jz—l)VA</\’)/:> (G—l)VA—(8A—1)pA<)\’Y =4 < ) A}yiA )pA <§ == T'j"peak<1.

Therefore, 7 .., can be interpreted as a symmetric mixed strategy under which every customer j will

follow so that ¢j =77 ..
To show that this is a Nash mixed equilibriuin strategy, consider customer j deviates from g; by choosing

*

q; = ¢; + ¢. Because customer j is infinitesimal, his expected utility is ¢; - u} peor + (1= G5) * Uk popm = U™
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Hence, any deviation from the this strategy does not lead to an improvement in his expected utility, so he
has no incentive to deviate. Therefore, we can conclude that ¢; is an equilibrium. [J
Proof of Proposition 1. The profit function 7(d) is quadratic. Taking the first order conditions and rear-
ranging the terms,
Oma(04) PR paA +pA(a— DVa p4 0 [5ApA(5A —1)pa
004 2 2y 2y 004 2y

Clearly 6% is increasing in . The same analysis can be applied for firm B. O

A -1V,
] =0 e =1+ Mt(a-DVa
2pa
Proof of Lemma 2. Recall that the customer’s utilities from shopping in peak and normal hours in stores

A and B are, respectively,

uA,pcak = OZVA - ’Y[BTA,peak} - 5APA7 uB,peak = aVB - ’Y[/BTB,pcak] - 53]937
UA norm = VA - fY(]- - ﬁ)’rA,nov‘m —DPa, U’B,no'rm = VB - ’Y(l - /B)TBﬁno'rm —PB.

Here, 74 pear and 74 norm € (0,1) represent the “initial belief” about the average percentage of customers
who shop during peak and normal hour respectively. As customers only have store flexibility, we also have
T'Bpeak = 1 — Ta peak N 7B orm =1 — T4 porm- We will derive the equilibrium for peak-hour customers,
4 pea- Lhe case with normal-hour customers, 77 ..., is omitted to avoid repetition.

Recall that we had normalized the population size to 1. Let ¢; be customer j’s percentage of his shopping

trips that take place in store A. For clarity, instead of 1, we let N be the population size so that:

N N
lim — 3 lim 3 (1-¢,)=1
T = lim — ; T = l1m — —q;)=1—7T
A,peak NS00 N . 1‘];7 B,peak N-oo N = q] A,peak
i= ji=

An infinitesimal customer ¢ wants to maximize his expected utility by randomizing between store A and

B in peak hours via ¢;, where his expected utility is:
ul(Qz) = qiuA,peak + (1 - qi)uB,peak
o1 . 1
=d; (aVA -7 A}gléo N <Z q; +qi) - 5APA> + (1 - (11') (QVR - ’71\}13;0 BN (Z(l - (Ij) + (1 - q1)> - 5BPB>
i i
=4 (aVA - V[BTA’PEUL’C] - 6ApA) + (1 - qz) (aVB - ’Y[BT.B,peak} - 6BpB>
= (Vi =18 a peat] = 64p0) + (1= 0) (Ve = V(B = Tt ear)] 5P ).

where the third equality is because customer i is infinitesimal, and his shopping choice ¢; will not impact
the belief or actual realization of the average 4 peqr-

If aVy — v[87 apear) — 0404 < &V — Y[B(1 — 74 pear)] — 08P5, then ¢; = 0 would maximize his expected
utility. In fact, everybody would choose g; =0, and so cannot be a Nash equilibrium, because players beliefs
about others’ strategies are not correct in equilibrium.

On the other hand, if &V —¥[B7 4 pear] —04Da > &V —7[B(1 =74 pear )] — 5P, then ¢; = 1 would maximize
his expected utility. Again, for all customer 4, ¢; =1, and this cannot be a Nash equilibrium.

Hence, the only possible Nash equilibrium occurs in a mixed strategy where customers are indifferent
between shopping in peak hour and normal hour, i.e., aVa —Y[B7 4 pear] — 0404 = Vi —Y[B(1 — T4 pear)] —

0ppp. This implies that 74 peqr soOlves:

uA,pcak = uB,pcak s aVA - W[/BTA,pcak] - 5APA = aVB - ’Y[ﬁ(l - rApeak)] - 5BpB

1 Vi—Vs)—(d -9
A T.*A,peak(éAséB)zi‘l’a( A B) zé/BApA BpB)~
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By Assumption 3, we have

a(Vy=Vg)— (8 — 1
a(Va—Vp) <48 = a(Va— Vi) — (0apa — ppp) <8 & (Va 2) 27(BAPA =pz) <§ S Thpear < 1.

Hence, 1% ... can be interpreted as a symmetric mixed strategy under which each customer j chooses g}

so that ¢; =77 ,car-

To show that this is a Nash mixed equilibrium strategy, consider customer j deviates from ¢; by choosing
q; = q; + €. Because customer j is infinitesimal, his expected utility is q; - u} .0 + (1 = @) - Up pear = U™
Hence, any deviation from the this strategy does not lead to an improvement in his expected utility, so he
has no incentive to deviate. Therefore, we can conclude that ¢; is an equilibrium. [

Each firm’s best-response (in terms of its peak-hour multiplier) given the competing firm’s peak-hour

multiplier is stated in the following lemma:

LEMMA A.1 (Best-Response Peak-Hour Multipliers — Store Flexibility Only). Suppose that
Assumptions 1 and 8 hold. Then firm A’s and firm B’s best-response peak-hour multipliers satisfy the
following:

By+a(Va—Vg)  ps }
O (0g) =max<{ 1,2 4 2 5 0,
A( B) X{ 2pa 2pa b

—a(Va—Vg)  pa
br _ 1 ﬁ’y CK( A B )
05 (d4) max{ s P + n o
Proof of Lemma A.1. Under Condition 3, the profit function m,(;|6_;) for i € {A, B} is quadratic. We

consider the best response of firm A given firm B’s peak-period rate. We have

B a(Va—Vg)— (baps—0
7TA(5A|5B) = 6ApA/8rZ,1)e(1,k:6ApA <§+ ( A B) 22’ APA BpB)).

Taking the first order condition and rearranging the terms,

Oma(34ld8) _ paB  a(Va—Vg)pa  (0apa—08Ps)Pa+0ap% _
— =0 o+ - =0
004 2 27 2~
Pa

Since the peak period rate cannot be less than 1, we have the maximum operator. The same analysis can be
repeated to find the expressions for 6% (64). O

Proof of Proposition 2. Both best response functions of Lemma A.1 have the form,

8% (6p) =max{l,a+bdz}, 6% (64)=max{l,u+vd,},

— y8—a(Va—-Vp)

_ yB+a(Va—V] _
— y8+a(Va-Vp) b= 2B y=

where a = =
2pa ’ 2pa

The equilibrium fixed point occurs at the intersection between 69 (dp) and inverse of 6% (6,4). Because

Ty ,and v = EPJTAB'
8% (65) has smaller slope than the inverted 6% (d4), as illustrated in Figure A-1, there are four possible fixed
points:

(i) Ifa+b<1and u+wv<1 (upper left panel of Figure A-1), then the fixed point (6%,0%)=(1,1).

(i) f a+b<1and 1 <u+wv <y, where y is the inflection point of 6% (6z) (lower left panel of Figure A-1),
then the fixed point (6%,0%) = (1,u+v).

(ili) If 1 < a+b <2 and u+v < 1, where x is the inflection point of 6% (64) (upper right panel of Figure A-1)
then the fixed point (§%,05) = (a+b,1).

3
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Figure A-1 Four possible fixed points. The solid curve represents 6% (65) and the dotted curve represents the

inverse of 6% (54).

(iv) Otherwise, (lower right panel of Figure A-1), the fixed point (6%, d%) occurs at a non-corner solution,
2pp

PA

pbB

2pa
_ By +a(Va—Vp) + PB By —a(Va—Vg)+6apa
2pa 2pa 2pp
28y +2a(Va— Vi) + By —a(Va—Vp)
) 4p 4

i.e., at the intersection of the solid curve with slope and the dotted curve with slope . Solving for d%,

04 =07 (03)

3

a(Va-Vp)
+—
26, _ *37—3.

Pa

=3 < 04

Plugging in the value for §% into the best response function for firm B,

(5)

The equilibrium peak period multipliers are determined by four curves a4+b=1,a+b=x, u+v=1, and

a(Va—Vp)
3

Pa

_ By —a(Vy—Vg)

Pa
= + _
2ps

2pp

_ 20y — %a(VA *VB) _ 35’Y_04(VA _VB).

8y = 8% (8
B B( A) 217}3 3173

A

u~+ v =1y, which in terms of v = %i and p= 2 , are
B B

—By+aVs —ps N 2pp
aVpg aVpg
- 3By +aVp —3ps
aVp
By +aVs —2pp
+
aVy
L —3py+aVy
aVp

a+b=1< By+alv—1)Vg+pg=2pps & v=

a(v—1)Vp
3

P,

a+b=2 < fy=pp+

I

PB
Vg P
3ps
+ .
OZVB P

utv=1<e By—alv—1)Vz+ppg=2ps & v=

alv—1)Vp
3

ut+v=y & By=ppp—



31

These four lines have four different slopes, and one can verify that they all intersect at

= (221w o).

Moreover, we observe that in case (ii), the condition a +b < 1 is implied by 1 <u+v <y; and in case (iii)

1< a+b<z implies u+v < 1. Thus, we have our result after removing the redundant conditions. [
Proof of Corollary 1. (i) First, from Proof of Propositions 2, the four lines with four different slopes

uniquely intersect at (r,m). If 8y < pg, then both 7 <1 and n <1 and it is not possible for both ¢% > 1

and ¢ > 1. Next, we observe from the condition for (6% > 1,05 >1) — ie., v < W and v >
’35:% + 3”5 SEp that an increase in vy enlarges this region. Slmllarly we observe from the condition for
(05 =1,05= 1) —ie,v< 57"'+§p’3 + 2p Fpand v > w + & p that an increase in 7 shrinks

this region.
(ii) It is clear from the expressions for 6% > 1 and 03 > 1 from Proposition 2. O
Proof of Lemma 3. Recall that the customer’s utilities from shopping in peak and normal hours in stores

A and B are, respectively,

UA peak = C“‘/A — YqA,peak — 5APA» UB,peak = OéVB — YqB,peak — 5Bva
uA,no'r‘m = VA —Y4A,norm — PA, uB,norm = VB — Y4B,norm — PB-
Here, qa peaks 9a,norm> 4B peak 804 ¢5 norm € (0,1) represent the initial belief about the average percentage
of customers who shop during peak and normal hour in stores A and B,respectively.
Let ¢;, ¢x and ¢, be customer ¢’s percentage of his shopping trips that take place in peak hours in store
A, normal hours in store A and peak hours in store B, respectively. Recall that we had normalized the

population size to 1. For clarity, instead of 1, we let N be the population size so that:

N N
.1 .1 o1
dA,peak = 1\}1_1}100 AT Z Qj7 dA,norm = 1\}1_1;20 AT Z [ 4B,pecak = ]\}1—13100 N7 Z q
j=1 k=1 1=1
1 N
qB,norm = ]\}Lnlc N ;;1(1 - QJ —qr — Ql) =1- qAJ?eak - qA,naTm - qB,Pealm

where the final expression is because qa peak + ¢4, norm + 4B peak + 4B, norm = 1 by Assumption 1.
An infinitesimal customer i wants to maximize his expected utility by randomizing between peak and

normal hours, and store A and B, where his expected utility is:

i i i i i i
U; (ql) - QA’peakuA,peak: + qA,normuA;”EOTm + qB)peakuB,peak + (1 - qA,peak - qA,no'rm - QB,peak)U’Ba’WOT’m

v o1 .
= qz,peak ((’Y‘/4 - 1\121;0 N <Z qj + qA,peak) 5Ap4) + qA ,norm (VA -7 hIIl T (Z qk + qA 'n.orm) )

i ki

i . 1 i i i i
+q;§,peak (aVB - ’YI\}LH;O N <Z Q+ qR,peak) - 6BpB) + (1 - qA,:Deak - qA,norm - qB,peak) x
[

(VB -7 lim — ( Z (]‘ 95 — 4k — ql) + (1 - qfq,peak - qil,norm - qg,peak)) _pB)

N—)oo
I,k lF#1
= qz,peak ((YVA - ’Y[(JA,peak} - 5ApA) + qil,nm"m (VA - V[QA,norm] - pA)
+qu,pcak (aVB - 7[[]3,?3@'@} - 5BpB) + q%,nomn (VB - ’Y[(l - qA,peak - q/\,norm - qB,;neak] - pB) .

Because customer ¢ is infinitesimal, customer i’s shopping choice ¢; will not impact the belief or actual

rea‘hzation Of the average q.4,peak7 qA,nm‘vna qB,peak a'nd qB,no'rm-



32

The expression for u;(g;) is a linear function of g;. Among the four utilities, aVa — Y[ga pear] — 04D a4,
Va — ’Y[QA,norm] —pa, aVp — ’Y[QB,pcak] — 6ppp, and Vg — ’Y[(l — qA,peak — 9Anorm — (IB,peak] —pa, if aVy —
Y[qA peak] —0apa is the largest, then ¢ ., = 1 would maximize his expected utility. In fact, everybody would
choose ¢’ ..., = 1, and so cannot be a Nash equilibrium, because players beliefs about others’ strategies are
not correct in equilibrium. Following the same logic, if any of the other three utilities is the largest, it is easy
to observe that, all customers would choose the corresponding ¢; = 1, and this cannot be a Nash equilibrium.

Hence, the only possible Nash equilibrium occurs in a mixed strategy where customers are indifferent
between shopping in peak hours and normal hours or in store A and B, i.e., the four utilities are equal. Thus,

we have system of three equations:

aVA - ’YQA,peak - 5APA = aVB - fYQB,peak - 6BPB; (A_l)
aVA — Y4A,peak — 5APA = VA — Y4A,norm —PA, (A_2>
VA - ’qu,na'rm —Pa = VB - 7(1 - qA,peak - qB,peak - qA,nor'm) —PB- (A'3)

Solving the system of equations (A-1)—(A-3), we have:

9+ Ba—1D)Vu—(1+a)Ve+pa+(1+3p)ps  3pa

q:ﬁ,peak((sA’ (SB) - 4,)/ — E(SA’
Y+ B—a)Va—(14+a)Veg—3pa+(1+4

G (6adg) = AT B Va1 4V —3pa+ (14 0p)ps | Pay

qB,P&ak AyUB 4}7 47 5,

. = (1+a)Va—(a—3)Vs+(1+0a)pa—3

qB,no'r"m(6A76B) == ! ( ) A ( 4)’YB ( A)pA P +Z_35B

By Assumption 4,

2(0[—1>VA+(1+OZ)(VA—VB) <3’Y <~ 3OCVA—VA—VB —OZVB <3"/
= Ba—-1)Vi—(1+a)Vs—2(ps—ps) <3y

v+ Ba—1)Va—(1+a)V+pa+ (1+03)ps —30apa

<1.
1y

(64.05)=(1,1)

where the implication is since p4 > pp. This is the condition for ¢} .., <1 assuming no peak-period pricing
occurs (04 =06p =1). If ¢}y .0, <1, then ¢ ,,,,,, <1 because peak attracts more demand. Also, ¢j .. <1
because V4 > V. Thus if this condition holds under this restricted setting, it holds for all optimal setting.

Hence, ¢ pcars 95 peaks Thaonorm A @5 opy, can be interpreted as a symmetric mixed strategy under which
cach customer j chooses g7 so that ¢ = ¢} years G = Chnorm: 6§ = QBpears 1 =G — G — G = 4B norm-

To show that this is a Nash mixed equilibrium strategy, consider customer j deviates from ¢; by choosing
q; = q; + €. Because customer j is infinitesimal, his expected utility is q; - U} ,ear + @ " Uh norm T 90 UB peak T
(1=q; =@ — @) U5 orm = u”- Hence, any deviation from the this strategy does not lead to an improvement in
his expected utility, so he has no incentive to deviate. Therefore, we can conclude that ¢} ,ears @i norm> @5 peaks
and g% .o, are equilibrium. [

Each firm’s best-response peak-hour multipliers as given in the following lemma, which resembles Lemma
Al
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LEMMA A.2 (Best-Response Peak-Hour Multipliers — Full Flexibility). Suppose that Assump-
tions 1 and 4 hold. Then firm A’s and B’s best-response peak-hour multipliers satisfy the following:

v+ Ba-1)Vy—(1+a)Vs+2ps+ps s
+_6B )

8% (65) = max {1,

6pa 6pa
S (84) = max{l, y—(1+a)Va—(1-3a)Vg+pa+2pp n P_A(SA} '
6pp 6p

By simultaneously considering these two best-response peak-hour multipliers, we can obtain the equilibrium
peak-hour multipliers as given in the following proposition.
Proof of Lemma A.2. For simplicity, let us denote

3ps
4y

3pa
4y

Pa

=5 o = (3
47 Ay QAno ( )

qA,peak é (1/) 5A7 4B ,peak — = (2 ) + 5Ba qB norm é (4/) + Z_de

The profit function of firm A is

3 3 2
Ta(0a,08) = dapa ((1/) - %5/1) +Da <(2/) + Z—j}h) = —& [(1 )Pa %] da+pa(2'),

which is quadratic function of § 4. Taking the first order conditions and rearranging the terms, firm A’s best

response peak period multiplier is

Om4(04,05) 3pA [ i } 2y 2y {pﬂ 2y Pa
———— =0 — 5+ 1 + =0 i,=—1")+— = 1)+ —
004 ( )p 4y ! 3PA( ) 310 4y 3PA( 6pa
gy Ba= Ve (14 a)Vat Dpatpa  pa s
6pa GPA
Similarly, the profit function of firm B is:
, 3 3 2 2
73(04,05) = DB ((3 ) — %53) + D5 ((4 )+ H(SB> =— f,f 6%+ [( s+ 47] dp+ps(d),

which is quadratic in 0. Taking the first order conditions and rearranging the terms, we have

Onp(64,05) 3pB P5 2 an 2y [PR] 27 an . PB

—(14a)Vy— (1 —3a)Vs +pa +2p3
6ps 6 Pn

@53: 6A

Since the peak rate cannot be less than 1, we have the maximum operators for both expressions. [

Proof of Proposition 3.  We deal with best responses of the form,

8% (8p) =max{l,a+bdz}, 6% (64)=max{l,u+vd,},

— 7F+Ba—1)Vy— (611)‘;0‘)‘/B+2PA+PB b= % u=21=0+a)Va~ (16p20¢)‘3+2p3+pf; and v = %_ The equilib-
rium (8%, §%) occurs when 6% =69 (%) and 63 = 67(8%), i.e., at the intersection between 6% (d5) and inverse
of 6% (64). Because 6% (63) has smaller slope than the inverted 6% (04), as illustrated in Figure A-1, there
are four possible fixed points.

(i) Ifa+b<1and u+wv<1 (upper left panel of Figure A-1), then the fixed point (6%,0%)=(1,1).

(i) f a+b<1and 1 <u+wv <y, where y is the inflection point of 6% (6z) (lower left panel of Figure A-1),
then the fixed point (6%,0%) = (1,u+v).

(ili) If 1 < a+b < 2 and u+v < 1, where 2 is the inflection point of 6% (d4) (upper right panel of Figure A-1),
then the fixed point (8%,05) = (a+b,1).

where a =
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(iv) Otherwise, in all other cases (lower right panel of Figure A-1), the fixed point (&%, d%) occurs at a

non corner solution, which can be found by solving the system of equations

6z<5B>éKA+p—BaB, S5(0a) 2 Ky + 245,

6pp
where K, = = 24+ Ba=DVa-(1+a)Vp+2pa+ps 4 Kp=1= (Lte)Va—(1-3)Vpitpat2pn
6pa 6pp
36 PB 36 6ps

0q= — | K — & 0% = K K =—K —— Kp;
4 A+6pA( B+6BA) 4 35( AT opa B) 350 A T g5y,

Pa 36 6]7]3 36 6pA
B B+6 o (35 5P ) 35 B+ o— Sopg A

We have the expressions after substituting the expressions for K, and K.

The equilibrium peak period multipliers are determined by four curves a+b=1,a+b=2x, u+v=1, and

. . Vv —
u+ v =1y, which in terms ofy:—;‘ and p—p—; are

v+ (1 +a)Vs—2ps 4pp
b=1< v+ Ba—DVi—(1+0)Va +2pa+2ps = 6ps & v=
at Y+ Ba—1)Vi—(14+ )V +2pa+2pp=6ps & v (3a—1)Vp +(30¢—1)VBP’
RO Y+ (3 — 1)V — (14 )V + 2pa + 2p5 :GpB—'y+(1+oz)VA+(1—30z)VB—pA—2;03
GpA Pa
Ty+ (17a—="T7)Vs —22ps 8ps
= v= p
Ba+7)Vs Ba+7)Vs
v—(1-3a)Vs —4pp 2ps
=1 & y—(1+a)Va—(1-30)Vs+2ps+2pp =6pp & v = ’
W~V y ( +a) A ( Oé) B+ 2pa+2pB DB v (1+OZ)VB +(1+a)VBP
u+v:y(:>7—(1+a)VA—(1—3a)VB+2pA+2PB:GPA_7—(304—1)VA+(1+“)VB_2pA_pB
6p3 Ps
—7v+ (Ba+T7)Vs —8pg 22pp
S v= p-
(17 —=T7)Vs (17 =T7)Vp

These four lines have four different slopes and one can verify that they all intersect at:
() = (2m +4a(a—1)Ve+(3—5a)ps 37y + (ba—3)Vs — 6p3> '
’ (3—a)ps ’ (3—a)Vs
One can also verify that that for case (ii), the condition a+ b <1 is implied by 1 < u+ v < y; and for case

(ii) 1 <a+b <z implies u +v < 1. The result follows upon removing the redundant conditions. O
Proof of Corollary 2. (i) From Proof of Proposition 3, all four lines have four different slopes that uniquely
intersect at (7,7). If 2 + (o —1)Vp < pp, then

%—i—(a—l)VB <pp € 20y +4a(a—1)Ve+ (B —-5a)ps < (B3—a)pp & 7<1,
%+(a71)VB<pB & 37+ (5a—3)Ve —6pp < (3—a)Vp & i< 1,

and the region where both % >1 and dj; > 1 does not exist.

We observe from the condition for (6% > 1,05 > 1) — ie., v > —vt(+a)Ve—2pp 4 & drp —p and v >

(Ba—1)Vp a—1)V,
Ll +(1(7§Q_J:7))VVBB_22” E 4 (3a8f$)v3 p — that an increase in « enlarges this region. Similarly we observe from the

aps « - . —v+(1+a)Vg—2 4 1-3a)Vp—4 2
condition for (65 =1,05=1) —ie,v< 530‘*;)53 P+ B pand v > - ( (1+a))53 LE 4 R —p

that an increase in « shrinks this region.
(ii) It is clear from the equilibriumn expressions for 6% >1 and é5 >1. O
Proof of Corollary 3. Suppose that 7 =7 and n=1). Then the (6% > 1,05 > 1) region is narrower with

time flexibility because the slopes of the upper and lower boundaries are respectively (HT)V >0 and

22p
(17a=T)Vp

lower and upper boundaries are respectively (Bﬁ'ﬁ < j@g and (“ﬁi I)*‘,B > a”‘fB [l

< j—"’/i;. Also, the (0%, =1,d5 = 1) region is narrower with time flexibility because the slopes of the
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Proof of Proposition 4. Proposition 4 is a special case (when dg = 1) of Proposition 5 (when ép > 1),
thus the proof is omitted. O

Proof of Proposition 5. Give pg and dg, firm A optimizes over p, and J, to maximize its total profit
from normal hours and peak hours. The optimal p4 and §, can be obtained by applying first-order conditions
on firm A’s profit function. We next show the key steps in the three cases, time flexibility, store flexibility

and time and store flexibility, respectively.
Time Flexibility Only Similar to §3.1, by applying Lemma 1, we can obtain the equilibrium proportion,
TApeak(Da,04) = % + (O‘—AW. Firm A then maximizes below profit by deciding p4 and § 4.

Ta(Pas04) = 0aPaAT A peak(Pa,04) F DAL =T 4 pear(Pa,04)),

I (a=1Va—(0a—1)pa I (@=1)Vi—(0a—1)pa
= JapaX(z A=z — .
a5+ 29\ )+ PaA(; 27\ )
It is easy to verify that the profit function is concave, thus by applying the first order conditions, we obtain
Oma M+ (a=1)Vy Ora M(1464) (a—1)V,
— L =0ei=1+—"1—7 L L _0opu= .
96 4 A ) DA 6. —1)2 T 20— 1)

In the normal period, considering all customers will buy the product as indicated by Assumption 1,

firm A will charge the highest possible p, at the upper bounds defined by Assumption 1 to extract the

maximum profit, which is px = max{V, —7, %ﬁ} Knowing that 64 =1+ W, one can verify that
Vi—v< O‘V(;; — by applying Assumption 2. Thus, store A’s optimal pricing strategy is:

e - DVatsa L (akDVar24))

4 (a+)Vyi—y(2+N) P2 2 '

As p% >0, it is clear that §% > 1.

Store Flexibility Only Similar to §3.2, a known proportion S of the customers must shop during peak
hours and (1 — ) during normal hours. Let ¢4 pear = 874, pear @0d G4 norm = (1 — B)7 4 norm denote the
proportions of peak- and normal-hour customers, respectively, who shop in store A. Hence, gg pear = B(1 —
T4 peak) A ¢B norm = (1 — B)(1 = T4 norm ). The customer’s utilities for shopping at store A and store B are

as follows:

“A,peak = QVA - ﬁ/[ﬁ,rA,peak] - 5APA-, uB,peak = aVB - ’7[/{—))(1 - TAﬁpeak)] - 6pr’7
U’A,norm = VA - ’7(1 - B)TA,norm —Pa, uB,nomn = VB - ’Y(l - }3)(1 - ,"A,nof‘m) —PB-

Each customer makes a decision regarding whether to shop at store A or at store B during the peak hours.
By applying Lemma 2, we find find the mixed strategy equilibrium,
1 a(Va—Vg)—(6apa—65ps)

« -
uA,pcak = uB,pcak < TA,pcak(bAva) =-+

2 243 ’

Va—Ve—pa+ps
27(1-p)

Firm A solve the following profit maximizing problem, which is also a concave function:

1
*
UA norm = UB norm a4 TA71LOTm(pA) = 5 +

WA(pA’ 514) = 5ApA/6rf4,peak‘(pA’ 5A) +pA(1 - /B)/"Z,nov'rn (pA7 614))

Applying first-order conditions yields the following non-corner optimal solutions:

_ a(Va—Vp) +v8+dpps Va=Vs+v(1-B)+ps
Va—V+~(1-p8)+ps 2 '

Note that, p% is increasing in pg. And 6% should be bounded by 6% > 1, thus 6% > 1 only when (a—1)(V4 —

Vi) >~v(1—2p). Also, for 6% > 1, it is straightforward that 0% decreases with pg.

O

*
>pA7
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Store and Time Flexibility Similar to §3.3, from Table 1, each customer’s decision regarding when and
where to shop hinges on the following net utilities:
Ua peak = Va4 —Yqa pear — 0aDa;  UB peak = VB — V4B peak — OBDB,
UA norm = VA —7qAnorm — Das UB norm = VB = Y4B,norm — PB-
By applying Lemma 3, thus, we have system of four equations and four unknowns, which determines the
equilibrium proportions:
4A peak + 4B peak T qAnorm + 4B norm =1
UA peak = UB peak & OVA — VG peak — 04Pa = &V — V4B pear — 0BPB,
UA peak = UA norm = VA —Yqa peak — 0apa=Va— Y4A,norm —PAs
WA norm = UB,norm < Va = VA norm —Pa = VB — V4B, norm — Pb-
This yields the following equilibrium proportions g; ;:

7+ Ba=1)Va—(1+a)Vp+pa+(1+055)ps  3pa

qz,peak(éAapA) - 47 - EdAv
+B—-—a)Vy—(14+a)Vg—3pa+(1+6
qz,norm((SAypA) _ 0 ( ) A ( 4) B DA ( B)pB + E(iA,
Y 4y
* Y= (14+a)Vy—(1=30)Vp+(1+06a)pa+ps  3ps
qB,peak(6A’pA) = 1y - E(SBa
Y= (1+a)Vy—(a=3)Ve+(1+64)pa —3ps

* PB
qB,non((SA?pA) = +H(SB

4~
By using the equilibrium proportions of customers who shop at the different stores during the different

hours as given above, we can express firm A’s profit function as

Ta(0a,04) = 0aPa " Ch pear(04:P4) DA Ca porm (04,D4).

By applying the first-order conditions, we obtain firm A’s optimal pricing strategy:
2Vy —(a+ 1)V + (1+605)ps +7’ 4 '
It is clear that 6% > 1, as p3, >0. O

Fh=1+

Pa=

Proof of Proposition 6. We next prove the three cases, time flexibility, store flexibility and time and store
flexibility, corresponding to Proposition 6(i), (i) and (iii), respectively.
Time Flexibility Only A customer with V, € [y —¢,7 + €] 2 [V, Van] has the following utilities,
uA,peak(VA) = aVA - fyATA,peak - 5APA> and uA,no'rm(VA) = VA - ’7)\(1 - rA,peak) —Pa,
where 74 cqr Tepresents the equilibrium proportion of loyal customers who purchase during the peak period
(to be determined). This customer will purchase in the peak-hour if and only if,
uA,pea,k(VA) > uA,noTTn,(VA) = (CE - 1)VA - ((SA - 1)pA + '7)\ > 27ATAA[)€(LI€'

We observe that a customer with higher V, is more likely to buy during the peak times. In equilibrium,
there exists a customer with V who is indifferent between purchasing in peak or normal period. All customers
with V, >V will purchase during the peak period, and the rest during the normal period, i.e.,

S 1 4 (a—1)Vi— (64— 1)27,4’ S Van = Vi
2 29 Van —Vae
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Substituting the expression for V; from the second expression into the first equation, we have

1 (a=1)[Vap = (Van — Vae)Tapear]) — (04 —1)pa . YA+ (@—=1)Va, — (64— 1)pa
rA,peak =—-+ A TA peak —
2 2")/)\ ’ 2"}/)\+(a—1>(VAh—VAg)

We have the profit function,

7TA(5A) = 6ApA)\T;\,peak(5A) +pA)‘(1 - le,peak((sA))
’7)\"— (Oé — 1)VA},, — ((SA — 1>pA:| +p A |:1 _ ’7)\"— (a — 1)VAh, — (5A — 1)pA
29\ + (@ — 1) (Van — Vi) B 29\ + (a = 1)(Van — Vae)

= 0apaA

Taking the first order condition,

Oma(da) _ \. YA+ (a=1)Vap — (64 —1)pa 0apaA-(=pa) PaA-Pa 0

86A o4 2’}/)\4’(0[*1)(‘/,4]1*‘/‘4@) 2’YA+(OZ*1)(VA;I*VA[) 27)\+((1*1)(VA;L*VA4 -
o 5= PaAYA+ (@ = 1)Var +2pa) g YA+ (@ = 1)V, 14 YA+ (e — l)VB(que).
2p 4 APA 2pa 2pa

Therefore, Proposition 6(i) holds.

Store Flexibility Only A customer with relative valuation V4 € [Va,, Vay] compares and chooses where

to shop based on the following two utilities
uA,peak<VA) = OéVA - W/BT’A,Peak - 6ApA7 and uB,peak(VA) = O[VB - ’7/3(1 - TA,peak) - (SBpB?

where 14 peqr denotes the equilibrium proportion of peak time shoppers shopping in store A.
In equilibrium, there exists a customer with V, =V whose wa pear (V) = tp pear (Va). For all customers
with Vy > Vi, they will shop at A because t pear(Va) > up pear(Va); the rest will shop at B, i.e.,
aVi— ’YIBTA,pcak —0apa=alVp — ’Yﬁ(l - 7’A,pcak) —0gDE, T A peak = I‘/{;‘h—i“/{z-
An — Vae
Substituting the expression for Vi from the second expression to the first, we have

a{VAh — T A,peak (VAh - VMZ)} - ’Y»‘gTA,peak - 5APA =aV — v+ ’)’57'A,peak - 5BPB

 (YantVae _y0) — (§ -5 _ _ _
& ory cak(5A75B):l+(Y( 2 B) (0apa —I5ps) :l+ (v—1)aVy — (6apa (SBpB).
»P! 2 267 + OZ(VAh — VAZ) 2 Qﬂry + OZQGVB

We have firm A’s profit,

* B (v—1)aVp —(0aps —65pPB)
Ta = 0aPaBriy pear(04,08) =0apa (5 + 2+ a2eVi /5 .

Each firm seeks to maximize their profit 74 = 0apaBri ,ear(04,05) (or mp = 0PSBl — 14 hear(94,05)))-

Taking the first order conditions,

—DaV, )
Sam0 & oy = D1FEe=DaVs | ps g
2pa 2pa

aﬂ :PL»B pa(v—1)aVp +0sps _ 2p%
004 2 27+ (2€)aVy /8 27+ (2€)aVzf

Similarly, we have firm B’s profit

—1)aVi — (0apa —0ppn
5 = 05psB(1 =1 .un(04,05)) = Oups <§ (v )2(;+(2€()a‘1;5/ﬂ p ))

Taking the first order conditions,

—aVa(v—e—1
—0 o oy=D QQB}E: € )+2"~';—‘;5A.

32 _ I’iﬁ . pp(v—1)aVp —dapa _ 2p305
ddp 2 2v+ (2e)aVp /B 27+ (2€)aVp /B
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Thus, if V, is distributed uniformly between [Vy4,, Va;], taking the maximization operator because 6 4,05 >

1, the best responses are

By+a(Va, — Vi) | ps By—a(Vace—Vs) | pa
85 (0p) = 1 — ¢, 05(54)= 1 Sag.
4 (%) max{ 7 2pa4 N 2p0 0 5 (0a) =maxy L. 2pp * 2pp

Note that the best response peak period multiplier for firm A is a function of the upper bound on Vy, Vi,

where as that for firm B is a function of the lower bound on V,, Viy,.
The expression for these best responses take the same form as those in Lemma A.1, ie., §%(dg) =
max{1, a+bdp} and 6% (64) = max{1, G+vd,}. Thus, following the same procedure of proving Proposition 2

(but accounting for @ # a and @ # u), we can show that the four regions in Figure 5 are defined by the four

curves:
—Bv+aVs —ps 2pp
b=1&v= — ,
at v (,YVB €+(1VBP/
a+b==x V:357+04V373p3+3€’
OéVB
By +aVe —2pp Ps
=lseyv=--——— —p,
utv v aVB +€+O&VBP
-3 Vi 3
utv=y S v= prta E _3e+ po.
(YVB OLVB

Moreover, the four lines have different slopes and intersect uniquely at

(7.77) = (2(67—0—eaVB) C11s 3(By—ps +eaVB)> .
PB aVp

Thus, we have our result after simplifying the conditions accordingly.

For the region (6% > 1,05 > 1), we observe that the line defining the upper boundary of the region,
v< W + 3¢, increases in €, while the line defining the lower boundary of the region, v > % -
3e + Z’pTZp, decreases in e. Similarly, for the region (8% = 1,05 = 1), we observe that the line defining the
upper boundary of the region, v < %&iﬂ —e+ %ﬁ; p, decreases in € and the line defining the lower
boundary of the region, v > W +e+ ;’TBBp, increases in e. The impact of € on the values of §% and
0% are clear from the expression. Therefore, Proposition 6(ii) follows.

Both Store and Time Flexibility In this setting, a customer with Vi € [Va,, Vas] compares between

four utilities and chooses when and where to shop:
uA,peak(VA) = aVA - quA,peak - 6ApA; uB,peak(vA) = aVB - ’qu,peak - 5BpB;
uA,norm(VA) = VA - ’YqA,nm'm —DPa; uB,norm(VA) - VB - '.YQB,nm‘m —PB-

In equilibrium, there exists a customer V4 =V} where all four utilities are equal. For customer whose
Va4 >V, she will purchase from A (either peak or normal period) because doing so has higher utility than
purchasing from B (either in peak or normal period respectively). Similarly, for a customer whose V4 < V|
he will purchase from B (either in peak or normal period) because purchasing from A (either in peak or
normal period respectively) has lower utility that purchasing from B. Because the proportion must sum to

1, we have the following system of four equations and four unknowns (V3,qa peak: 45,peak, 94, norm),

av/); - ’YQA,peak - 5ApA = aVB - ’YqB,pea.k - 5Bva

*

O/VZ — Y4A,peak — 5ApA - V/\ — Y4A norm — PA,

Vz:; - ’quﬁnorm —Pa = VB - ’Y(l - qA,pcak - qA,norm - qB,pcak) —DPB,
Van — Vi
VAh - VAZ

qA,peak + dAnorm =
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This linear system of equations can be expressed in the form

a - v 0 Vi aVp+0apa —0ppp
a—1 - 0 v X qA,peak _ (5A - 1)pA

1 -y - _27 qB,pcak VB _’Y_._pA —PB ’

1 2¢ 0 2 qA,norm v+e

and unique (V}, ¢4 peaks 4B peaks 44 norm) Can be solved by inverting the matrix

_ -1
Vi « -y 0 oV +64pa — 0505
qA,peak — a — 1 - 0 vy . (6/1 - 1)PA
4B peak I =y =y -2y Ve —v+pa—Dps
G A, norm |1 2¢ 0 2¢ v+e
i e 0 e T
v+ (1+a)e Y+ (1+a)e Y+ (1+a)e
__at2(-a)e 1 __yt2(-a)e  __ (1-3a) aVp +0apa—0pPs
4(v2 4y (1+a)e) 2y 4(v2+y(1+a)e) 4(v+(1+a)e) (64 —1)pa
N 3v12(lte)e 1 ~y+2(te)e __ (1ta) Ve —v+pa—ps
4(y2 4y (1+a)e) 2y 4(y24+y(1+a)e) 4(v+(1+a)e) V+e
__r—2(1-a)e 1 __r—2(1-a)e (3—a)
L 402 +yv(1+a)e) 2y 4(v2+v(Ita)e)  4(v+(1+a)e)

Thus we have closed form expressions for the equilibrium demand and profit functions for each firm. Thus,
following the same procedure as Proposition 3, we can (i) find the best response peak period multipliers
for each firm, (ii) characterize the four curves that define the four regions in which one firm, neither firm,
or both firm employs peak period pricing, and (iii) find the comparative statics with respect to the level
heterogeneity e. The expressions however are cumbersome and their algebraic derivations are omitted for
brevity. [

Proof of Proposition 7. In this proof, we only provide the key steps and more details can be found in Sec.
B of Appendix. Using the same approach as presented in §5.1, a customer with v~ U[y — ¢, v+ €] 2 Uy, 7]
compares the utilities from buy in normal or peak hours, then the equilibrium ratio for peak hours can be

obtained:

o (5a) = (46 —29)A + /(46 = 27)2X2 + 16Xe[AN(y — €) + (= 1)V4 — (64 — 1)pa]
A,peak\YA) — Y .

Therefore, firm A’s the profit function is,
TrA((sA) = 6ApA)‘,r2,pcak (6A) +pA)\(1 - /rj:l,pcak (5A))

It is easy to verify that the profit function is concave in § 4. Taking the first-order conditions yields,

aﬂ—A((SA) _ * _ 8T2,pcak(6A)
W =0 < /rA,pea,k, (614) - (1 SA)T

The first order condition uniquely determines the optimal 7. Under Assumptions 1 and 2, 77 .., > 0 and

Oripear®a) 0, therefore, 0% > 1. O

it is easy to verify that s

Appendix B: Detailed Analysis for Heterogeneity in Congestion Aversion Level v

In this section, we provide detailed results and analysis for the case when customers have heterogencous
congestion aversion coefficient +y. Specifically, we let v ~ U[y—¢€,v+¢] = U[y;,7,]. Noting that € > 0 represents
the level of heterogeneity, we shall examine the impact of heterogeneity in congestion aversion coefficient
€ on the firms’ decision to adopt time-base pricing in this section. We next analyze three scenarios, time

flexibility only, store flexibility only, and both time and store flexibility, separately.
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Time Flexibility Only Using the same approach as presented in §3.1, we consider the setting where a
proportion A of loyal customers shop at store A (and (1 — ) at store B). However, customers are heteroge-
neous in their congestion aversion coefficient . For simplicity, we focus on customers who shop at firm A
and firm A’s peak-period pricing decision.

A customer with v~ Uy — ¢,y + €] 2 U[y,,7,] has the following utilities,

u/\,peak ('7) = OZV/\ - ﬁ/)"r/\,peak - 5APA» a‘nd u/\,norm(’y) = V/\ - ’Y)\(l - ,"A,peak) —Pa,

where 74 peqr represents the equilibrium ratio of customers who purchase during the peak hours (to be

determined). This customer will purchase in the peak hours if and ouly if,
uA,peak‘ (’7) > uA,nor”nL(’Y) ~ (a - 1)VA - (5A - 1)]?,4 + ’Y)\ > ZVATA,peak'

We observe that a customer with lower v is more likely to buy during the peak hours. In equilibrium, there
exists a customer with v* who is indifferent between purchasing in peak or normal period. All customers

with v < ~* will purchase during the peak period, and the rest during the normal hours, i.c.,

1 I (a—l)VA—(5A—1)PA ="

a TA,peak = .
Y =N

2 29\ ’
Substituting the expression for v* from the second expression into the first equation, we have

L (a=1)Vi—(0a—1)pa
TA,pcak =3 +
2 2>\[7"A,peak (Yn =) + 7]

rA,peak =

Solving for 4 peqr yields,

(7 = 3)A 4+ v/ (9 = 370)2 A% + 8A (7 — ) [Myi + (@ = 1)Va — (64 — 1)pa]

Tz,pcak (514) =

AN —m)
(46 —29)X4 /(46 —27)2X2 + 16Ae[A(y — €) + (e — 1)V4 — (64 — 1)p.a]
N 8\e '

Note that, there are two roots from solving the quadratic equation. As % ...(04) € [0,1], the negative root
is omitted.

Therefore, firm A’s the profit function can be written as,

//TA(JA) = 6ApA)\TZ,pea,k (514) +pAA(1 - T.Z,peak, (5A))

It is easy to verify that the profit function is concave in 4. Taking the first-order condition yields,

871—A (5A) 87’1*4,peak(614)
904 0.

The first-order condition uniquely determines the optimal §%, which we solved using the software MATLAB.

=0 < rz,peak(é/‘\) = (1 - 6A)

Under Assumptions 1 and 2,the optimal peak hour multiplier, 6% > 1. And,

(46 —27) - #+24(a—1)eVi+ AM(v+€)° +6(y+€)(y—€) —3(y — 6)2).

0% =1
4 + 36p 4€

where # = \/A[12(a — 1)eVa + A((y+€)2 + 3(7 — €)2)]

Also, it is obvious that 7% .., >0 and %‘TM) <0, therefore, 6% > 1.This means a firm should employ
peak-hour pricing. Hence, the presence of customer valuation heterogeneity € > 0 does not influence whether
or not peak-hour pricing will occur. However, the impact of € on the optimal §% and 7% is complicated. The

relationships are no longer linear, which are visualized in below figure.



41

Figure A-2 Equilibrium peak-period multiplier and profit (67, 774) as a function of ¢ under heterogeneous ~ and

time flexibility only.
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Note. Parameters: V4 =10, pa =2, a=1.3, y=25.

Store Flexibility Only Following the same approach as presented in §3.2, we assume that a proportion 3
of the customers are peak-hour shoppers. However, they can choose between firm A and B. We examine how
the presence of heterogeneity in v, € > 0, influences the region boundaries in Figure 3, as presented in §3.2. We
can express the equilibrium peak-hour multipliers as follows. A customer with v~ U[y —€,7+ €] 2 Uy, 7]

compares and chooses where to shop based on the following two utilities
uA,peak (’7) = aVA - ’Y/—}TA,peak - 5ApA7 a‘nd uB,peak (A/) - aVB - 7/\8(1 - rA,pe(lk,) - (5BpB’

where 74 ,eqr denotes the REE proportion of peak time shoppers shopping in store A.
In equilibrium, there exists a customer with v =y* whose %a pear (V") = Up pear (7). For all customers with

v <%, they will shop at A because U4 pear > U pear; the rest will shop at B, i.e.,

*

YN
T — N

aVA - ’Y*/@/"A,peak - 6«4[)44 - aVB - 7*/8(1 - Y‘A,peak) - 5BpB7 TA,peak =
Substituting the expression for v* from the second expression to the first, we have
Q(VA - VB) — (5APA - 5BPB) = ﬁ(QTA,pcak - 1)[70A1pcak (7h - ’71) +”Yz]

Solving for 77 .., vields,

(=3B + \/(’Yh —3%)2682+8B(vin — ) [Bv +a(Va — Vi) — (0apa — 05P5)]

rz’pmk(éA) N 45(% —’Yl)
_ (4e —27)p+ \/(46 —29)262+168¢[B(y—€) + a(Va— Vi) — (0apa — d5pB)]
8Be '

Note that, there are two roots from solving the quadratic equation. As % ... (04) € [0,1], the negative root
is omitted.

Each firm seeks to maximize their profits,

Ta(04) =0aPaBT} pear(04,68), and 75(05) =08psB(1 =17 ,ear(04,05))

Taking the first-order conditions yields,
Oma _ 2paPRe—1y)+#1  Boapi
86A 8¢ #1
_ B(de—27) +#1, Bigp}
= ol 8 e ] 1

=0

871'3

o5
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where #1 = +/B[4872 4+ 16¢(a(Va — Vi) — (04pa — 65p5)]. Note that the two implicit best-response functions
from the first-order conditions should be bounded by §4,05 > 1.
The non-corner optimal solutions of §%,d% are obtained by MATLAB and given below,
27+ 20e ( 4
40pge ‘5

€e—2y 4
 — Z 2 -
o T (5ﬂv+# )+ #3, o5

By + #2) — #4.

46[36372+80ae(V4—V
BI3657 = +800e(Va = Vip)] 43— 4B+2+160e(V4—Vi) and #4 — 4872 +160e(V4—VE)
? - 40p g€ : - 40ppe :

where #2 = v

Due to the complicated expression of the best response functions, we numerically analyze the optimal

2

solutions and the corresponding conditions, by following the same steps as in the Proof of Proposition 2.

The results are visualized on left panel of Figure 6.

Both Store and Time Flexibility We now consider how the heterogeneity in v influences the peak-hour
multipliers in the setting where customers are flexible in both store choice and shopping time. In this setting,
a customer with v~ U[y — ¢, + €] = U[y;,7,] compares between four utilities and chooses when and where

to shop:

uA,peak (’Y) - OZVA - fqu,paak - 5ApA; uB,peak (7) = aVB - ’YqB.peak: - 5BPB§

’U/A,norm (’7) = VA — Yq4A,norm —PA; uB,norm (7) = VB - /YqB,norm —PB-

In equilibrium, there exists a customer 7 = 4* where all four utilities are equal. For customer whose
~v < ~*, she will purchase from firm A (either peak or normal period) because doing so has higher utility
than purchasing from firm B (either in peak or normal period respectively). Similarly, for a customer whose
~ > ~*, he will purchase from B (either in peak or normal period) because purchasing from A (either in peak
or normal period respectively) has lower utility that purchasing from B. Because the proportions must sum

to 1, we have the following system of four equations and four unknowns (Y, qa peak, 45, peaks A ,norm)s

aVy — ’Y*QA,pmk - 5APA = aVp— ’y*qB,pcak - 531)3,
aVA - ’y*qA,peak - 5ApA - VA - fy*qA,norm —Pa,

VA - v*qAﬂzorm —Pa = VB - 7*(1 - qA,peak - qA,norm - qB,peak) —PB;
el
Th =N

This system of equations determine the unique optimal solutions of (Y*,q% ,car: @5 pear Tanorm: T.morm )

qA,peak + qA,norm -

which can be obtained in closed-form using MATLAB. Thus we have closed form expressions for the demand

and profit functions for each firm in equilibrium.

ﬂ-A((sz‘U 63) = (sApA : qjl,peak (5147 (SB) +pA ) qz,norm (5‘47 63)7
75(04,08) = dpPB" qEA,paak(fsAv 0p)+p5- q*BJLo'r'm((SA? 0p)-

Due to the complex forms of the demand proportions and profit functions, it is unable to solve the best-
response functions of firm A and B even in MATLAB. Therefore, instead of obtaining the best-response
functions of firm A and B then numerically analyzing the optimal 6% and 3, we follow below steps to observe
the firms’ optimal peak-hour pricing strategy. We first replace some parameters with real values, i.e., we let
V=10, pp =2, e =2, a =1.2, vy =5. Second, we obtain the best-response functions, d,(dz) and d5(d4),
which now only involve the parameters V, and p4. Note that, these two best-response functions should also
be bounded by 4,05 > 1. Third, we search over the space of V, € [10,35] and pa € [2,20] (equivalent to



43

v e [1,3.5] and p € [1,10], which are the ranges of y-axis and x-axis in Figure 6), to find the optimal pairs
of §% and 0% that maximize the firms’ profit functions. Finally, based on whether ¢% and §3 are equal to or
larger than 1, we plot the four curves that determine the regions for four different types of optimal solution

pairs. This leads to the right panel of Figure 6.



