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Background. Survival extrapolation is essential in cost-effectiveness analysis to quantify the lifetime survival benefit
associated with a new intervention, due to the restricted duration of randomized controlled trials (RCTs). Current
approaches of extrapolation often assume that the treatment effect observed in the trial can continue indefinitely,
which is unrealistic and may have a huge impact on decisions for resource allocation. Objective. We introduce a
novel methodology as a possible solution to alleviate the problem of survival extrapolation with heavily censored
data from clinical trials. Method. The main idea is to mix a flexible model (e.g., Cox semiparametric) to fit as well as
possible the observed data and a parametric model encoding assumptions on the expected behavior of underlying
long-term survival. The two are “blended” into a single survival curve that is identical with the Cox model over the
range of observed times and gradually approaching the parametric model over the extrapolation period based on a
weight function. The weight function regulates the way two survival curves are blended, determining how the internal
and external sources contribute to the estimated survival over time. Results. A 4-y follow-up RCT of rituximab in
combination with fludarabine and cyclophosphamide versus fludarabine and cyclophosphamide alone for the first-
line treatment of chronic lymphocytic leukemia is used to illustrate the method. Conclusion. Long-term extrapolation
from immature trial data may lead to significantly different estimates with various modelling assumptions. The
blending approach provides sufficient flexibility, allowing a wide range of plausible scenarios to be considered as well
as the inclusion of external information, based, for example, on hard data or expert opinion. Both internal and exter-
nal validity can be carefully examined.

Highlights

e Interim analyses of trials with limited follow-up are often subject to high degrees of administrative censoring,
which may result in implausible long-term extrapolations using standard approaches.

e In this article, we present an innovative methodology based on “blending” survival curves to relax the
traditional proportional hazard assumption and simultaneously incorporate external information to guide
the extrapolation.

e The blended method provides a simple and powerful framework to allow a careful consideration of a wide
range of plausible scenarios, accounting for model fit to the short-term data as well as the plausibility of
long-term extrapolations.
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Survival or “time-to-event” data from randomized
control trials (RCTs) are typically used to assess the
cost-effectiveness of new interventions. However, the
observed data from RCTs are often censored and
immature with limited duration of follow-up,' so the
clinical benefits regarding life expectancy or quality-
adjusted life-years (QALYs) cannot be estimated
directly. Consequently, it is necessary to extrapolate the
estimates of the resulting survival proportions, often
long beyond the data observed in the trial period.?

Methods of extrapolation most used in submissions to
health technology agencies such as the National Institute
for Health and Care Excellence (NICE) in the United
Kingdom often consider a parametric model for the con-
trol arm and assume proportional hazard (PH) to derive
the survival curve for the treatment arm.>> This impli-
citly assumes a constant treatment effect beyond the trial
period. However, a treatment performing well over the
course of the trial is unlikely to remain consistent on
account of various factors such as waning treatment
effects or competing risks from other causes of mortality.
The typical length of follow-up in clinical trials has been
shown to account for no more than 40% of the modeled
time horizon,® failing to reach median time. In the
absence of long-term data, care should be taken in
whether the extrapolation is realistic, as the long-term
modeling assumptions can have a dramatic impact on
the decisions.”®

Historically, conventional approaches involved fitting
the most appropriate parametric model to the observed
data.’ In fact, different models with a similar fit to the
data may generate highly divergent long-term survival
estimates due to the differences in the tails of survival
distributions. Recently, there has been an increasing rec-
ognition that external long-term validity is essential
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when the extrapolation period is substantial with heavy
censoring in the trial data.*'"'? Current guidelines rec-
ommend the inclusion of both statistical criteria for
model fitting as well as clinical plausibility of extrapola-
tion, which may be achieved through the use of external
data or expert opinion.'® In recent times, the proportion
of health technology appraisals (HTAs) using external
information for validity has increased sharply,”® in
which clinical experts assess the plausibility of extrapola-
tion or evaluate which models fall in with the elicited
plausible range of survival.'*

There are many different ways that external data can
be leveraged.'®!> While the most frequent methods are
indirect or retrospective, direct utilization of patient-level
data for the extrapolation have increasingly been consid-
ered.'> ' It is possible that historical data are formally
integrated into the extrapolated portion as informative
priors via a Bayesian framework.'® In addition, a piece-
wise or hybrid approach where observational data are
used to facilitate the extrapolation has been undertaken,
although the selection of where to implement cut points
can be fairly subjective or arbitrary.''"!® Commonly,
external data from a different source will not match the
trial population perfectly'®?' so that hazard rates from a
model fitted to external data could be matched to the
control arm using a time acceleration adjustment after
follow-up of the trial and anchoring/hazard ratio taper-
ing for the investigation arm.'? Further methods were
attempted to combine evidence from a variety of avail-
able sources: especially under the Bayesian framework,
disease-specific external data from registries might be
extrapolated using general population data'>'>?*2% or
informed by justifiable clinical opinion where the exter-
nal data are not fully mature.'>*¢

This article presents a method based on “blending”
survival curves as a possible solution. A similar approach
has been presented previously in other applied fields®’
but we adapt it to survival modeling for cost-
effectiveness analysis. The basic idea is to mix a flexible
model (e.g., Cox semiparametric) to fit as well as possi-
ble the observed data and a parametric model enco-
ding assumptions on the expected behavior of underlying
long-term survival. The blended curve will improve
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decision making especially in cases in which decisions are
made accounting for survival in long-term timeframes
relative to the available trial data but expert knowledge
or external information about the long-term is available
and can be coherently combined. Extrapolated curves
using only the short-term data are likely to be biased or
overestimate survival, whereas the blended model helps
constrain the tail and retain the information in the early
time period. For HTA, cost and QALY calculations can
use the estimated survival in the blending interval, which
is consistent with information from both the early and
later stages.

Motivating Case Study

Our motivating example is the one considered in NICE
technology appraisal TA174%® and in other methodologi-
cal contributions.?>° This is based on the CLL-8 trial,*!
which compares rituximab with fludarabine and cyclo-
phosphamide (FCR) to fludarabine and cyclophos-
phamide (FC) for the first-line treatment of chronic
lymphocytic leukemia.

Among 810 patients enrolled in the trial, 403 were ran-
domly assigned to receive the treatment of FCR and the
remaining 407 to the control arm of FC. There were 41
and 52 deaths in the FCR and FC arms, respectively.>
While this study has a relatively large sample size and a
relatively long follow-up (about 4 y), it is also character-
ized by a large amount of censoring such that more than
70% of individuals were not observed to die, as is com-
mon in this type of investigation. Following existing gui-
dance,'**? a set of standard parametric distributions were
fitted to the digitized data on overall survival from pub-
lished Kaplan-Meier (KM) curves, as shown in Figure 1.

These models achieved a reasonable fit to the observed
data (as evident in the left portion of Figure 1), but none
of them generated credible extrapolations. All models
suggested greater than 30% survival at 15 y, which was
in stark contrast with expert estimates, suggesting instead
that only 1.3% of the cohort would be likely to survive
beyond that time.>

Blended Survival Curve Methodology

Denote the available data as D; = (t;, d;), where ¢; is the
observed time at which the event (e.g., progression or
death) occurs, while d; is an event indicator taking value
1 if the ith individual is fully observed and 0 if censored.
Typically, we model #|6; ~ p(¢|6), where p(-) is a para-
metric distribution indexed by a vector of parameters 6,
for instance 6 = (y,u) indicating shape and scale,
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Figure 1 Overall survival curves for the parametric models
(Exponential, Weibull, log-Normal, log-Logistic, Gompertz)
fitted to the 4-y CLL-8 trial data (Kaplan-Meier curves) and
long-term extrapolation to 15 y.

respectively. Given this structure, we can define the
hazard A(#6) and the survival function S(¢/0) =
Pr(T>1]9).

Blending considers 2 separate processes to describe
the long-term horizon survival. The first one is driven
exclusively by the observed data. Similar to a “standard”
HTA analysis, we use this to determine an estimate over
the entire time horizon, which we term Syp5(#|6,55), @
function of the relevant parameters 6,,. We could
choose a simple parametric model or, alternatively, some
more complex model, with the main objective to produce
the best fit possible to the observed information. Unlike
in a standard modeling exercise in which the issue of
overfitting is potentially critical, achieving a very close
approximation to the observed dynamics has much less
important implications in the case of blending, as
explained below.

For the second component of the blending process,
we consider a separate external survival curve, S..(¢]0.y).
This is a parametric model that is not informed by the
observed data—for instance, we could use hard informa-
tion (e.g., derived from a different data source, such as
registries or observational studies) or construct a model
that is purely based on subjective knowledge elicited
from experts or possibly a combination of the two.
Either way, S.u(¢|0..;) will typically be less concerned
with the observed portion (for which we want the avail-
able data to drive the inference) but is instrumental to
produce a reasonable and realistic long-term estimate for
the survival probabilities.
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Figure 2 Graphical representation of the blended curve method. The whole time-horizon is partitioned into 3 parts: Follow-up,
Blending interval, and Long-term. The blended survival is equivalent to the model fitted to the short-term data (purple Kaplan-
Meier curve) within the Follow-up period (green curve), then gradually approaching the external estimate in the Blending
interval (red curve), and eventually consistent with the expected behavior (blue curve) in the Long-term. The black point in the
Long-term is an example of external information about 10% expected survival at the 13 y from experts.

The blended survival curve is simply obtained as

Sble(t‘e) = Sobs(tlgabs)] e B.a.b) X Sext(t|0ext)7(t;a’ﬁﬂ «?)

(1)

where 0 = (0,ps, Oext, @, B, a, b)T is the vector of model
parameters. Here, 7( - ) is a weight function that controls
the extent to which the 2 survival curves Sy,(-) and
Sex( ) are blended together. Technically, we define 7( - )
as the cumulative distribution function of a Beta random
variable with parameters «, >0, evaluated at the point

(t —a)/(b — a)

7(t;a, B,a,b) = Pr(TS IZ_TZ|Q’B) = FReta (gkx,ﬁ),

for ¢ € [0, T*], where T* is the upper end of the interval
of times over which we want to perform our evaluation.
This means that the weighting function 7r( - ) varies over
the time horizon, which in turn allows us to give different
weights to the 2 components at different times 7. The
range [a,b] € (0, T*) is the blending interval, that is, a
subset of the lifetime horizon in which S,;( - ) and Se( - )
are blended into a single survival curve.

Figure 2 depicts this process graphically. In this case,
we assume that the trial data span over the interval [0, al,

which we label in the graph as the “Follow-up.” The
dashed curve is the KM estimate of the observed data
(for simplicity, but without loss of generality, we con-
sider here a single arm). The green curve indicated as S,
results from a suitable model fitted to the observed data,
in order to capture the known features of the data gener-
ating process almost to perfection—as is possible to
appreciate in the graph, the KM curve is basically identi-
cal with the model obtained with S,,.

The blue curve, indicated as S,,;, should be used to
give information about the expected long-term beha-
vior of the survival process. While it may be difficult
to directly access hard data, as discussed in the “Unob-
served Time Period: Extrapolation Using External
Data” section, we and others'>** argue that it is often
possible and generally desirable to so. For example, we
may have individual-level data from a registry based on
a drug with a similar mechanism to the one of interest or
perhaps we have elicited clinical knowledge or expert
opinion to identify that survival at a certain time point
is not expected to exceed a certain threshold and we
can use this information to constrain S, to conform
with this expectation. Notice in particular that S, can
deviate substantially from the observed data, as shown in
Figure 2.

In summary, Sp.(-) is constructed as a combination
of Syps( - ) and S, ( - ) so that:
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Figure 3 Graphical examples of the weight function

7(t; a, B, a, b). The gray area [a, b] is the blending intervals
[3, 13] for both weight curves. The initial slope of the red
curve (@ = 3, B = 3) is smaller than the blue one (=2,

B = 5), which means the former blending rate is slower than
the latter one.

e Between times 0 and a, 7(-) = 0, which means that
the long-term extrapolation has no influence. Since
this is the trial follow-up, the observed data should
be described as best as possible, as obtained by
Sobs( : )

e Between times b and T* (set to 20 in the example
shown in Figure 2), 7r(-) = 1, which means that it is
the long-term extrapolated survival curve from the
observed data to bear no weight whatsoever. Again,
we do this because, given the heavy censoring, the
resulting extrapolation is most likely a gross
overestimation.

e Between times a and b, the 2 curves merge into one
another, according to the process characterized by
the weight function #(-). In the blending interval,
both curves influence the resulting blended survival
curve, which gradually abandons the extrapolation
from the observed data (thus avoiding issues with the
inherent overfitting and unrealistic estimates) and
merges into the long-term extrapolation from the
external evidence.

We can control the rate at which the blending process
occurs by using specific values for the parameters (a, B)
of the relevant Beta distribution. Given the same blend-
ing area, different values of parameters for (a,B) will
provide distinct slopes, influencing the speed of the
blending process. For example, in Figure 3, in the same
interval (a = 3,b = 13), the blue curve (a« = 2,8 =15) is

steeper than the red one (¢ = 8 = 3), which implies that
the blending trend of the former is faster and the impact
of S,,; would be relatively greater at the same point in
time (along the x-axis). Overall, the slope of the weight
curve in the situation that a<p is larger than when
a > .

Different assumptions about how quickly the treat-
ment effect might wane can be easily examined by adjust-
ing the choice of parameters regarding the weight
function 7r(¢) as a part of sensitivity analysis. For exam-
ple, if the observed treatment effect is assumed to persist
over the whole horizon, we can set value of a equal to
the point 7™, in which case the blended curve is the same
as the observed one over entire time frame.

Note also that our method is fundamentally different
from well established mixture cure models (MCMs*). In
the MCM case, it is assumed that the observed trial data
correspond to a mixed survival curve resulting from the
experience of 2 subgroups (“cured” v. “noncured”
patients). Conversely, we model 2 components, S, and
Sexs, independently within the blended process, respec-
tively, based on observed data and external evidence.
Importantly, values for 7(¢) are provided externally and
could be modified on demand. We return to this impor-
tant distinction in the “Discussion” section.

Blending Hazard Functions

By simply rescaling Equation 1, our method can also be
expressed in terms of hazard functions. This is helpful
because hazard plots often aid understanding of long-
term survival mechanism and provide useful insights into
suitable model selection.” Specifically, the blended hazard
rate hy.(tf) can be characterized by 3 components: the
weighted hazard rates from 2 survival curves /,,,(¢) and
hew(f) and an extra term related to the weight function
and cumulative hazard. Then, we can re-express Equa-
tion 1 equivalently as

hpie(t) = [(1 = a0(6)) X hops(D)] + [7(0) X hew(?)]

N /%ﬁi) X (Hou(t) — Hops (D) |+
—a

where fpea( - ) denotes the density function of a Beta
random variable, associated with the weight function
(), while H,,,(f) and H,(¢) are the cumulative hazard
rates from the 2 underlying survival curves, respectively.

The hazard function depends on the same subset of
parameters as the corresponding survival functions.
Given the properties of the Beta distribution, fz..(-)
supports only the blending interval (i.e., [a,b]) but is
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Figure 4 Graphical representation of the blended hazard. For
interval [0, a, the blended hazard is equal to the observed
hazard (h,ps, green curve); then in the blending interval [a, ],
there is a sharp increase followed by a steady decrease (4.,
red curve). Eventually, it is consistent with the external hazard
(Bexs, blue curve).

zero otherwise. Since 7r(f) is 0 in [0,a) and 1 in [b, T*], it
is easy to show that the blended hazard #%;;, is equal to
the observed estimate /,,:(¢) at the beginning and to
the external hazard h.,(¢) in the long-term after time
point b.

The slope of the blended hazards as well as the loca-
tion of the turning point can be determined by the value
imposed for the parameters («,f), enabling different
assumptions on the underlying hazard rates to be tested.
In this example, in which the external hazard is much
greater than the observed hazard, if a <, there would
be monotonic increasing hazard within the interval [a, b].
Alternatively, if >, a sharp increase would be followed
by a steady decrease during the interval (red segment in
Figure 4). This pattern allows the turning points beyond
the observed period, and so it is likely that the form of
the blended hazard is more flexible and realistic com-
pared with standard parametric models.

Technical Implementation
Observed Time Period: Best Fit to the Internal Data

Generally speaking, there is no restriction to the distribu-
tional assumptions used to model the observed data.
With a view to providing the best fit possible and a good
level of flexibility, here we recommend a Cox semipara-
metric model with piecewise constant hazards. We

choose a Bayesian approach, which naturally allows the
incorporation of external evidence and lends itself to the
conduct of “uncertainty analysis.”***” The R code is
provided for the motivating case study, which is avail-
able at the GitHub repository (https://github.com/Statis-
ticsHealthEconomics/blendR-paper).

To construct the model, we partition the time period
into K intervals, 0 =ug<--- <ug, and assume the
hazard £(¢) to be constant in each interval using K para-
meters Aq, ..., Ax. We set a random walk (RW) of order
1 (or 2) as the prior for A;, which implies that the incre-
ments AA; = A — Aoy (or A*Ap = Ap — 2051 + Apn)
are associated with a Gaussian distribution with zero
mean and a common precision.*®

Note that, using this model, we can still extrapolate
beyond the observed times using the RW structure.
Obviously, in the presence of large censoring, the extra-
polation is likely to be not credible, with substantial
uncertainty around the average. This, however, is a
minor concern in our modeling structure, because as
time progresses outside of the blending interval, the
extrapolation from the semiparametric component has
increasingly low weight.

Of course, other choices are possible: we could select a
parametric model (e.g., Weibull, Gompertz, or any other
from the set suggested in various guidelines?); in reality,
a flexible semiparametric model may not increase the
computational complexity by a substantial amount, com-
pared with alternatives such as Royston-Parmar splines®
or fractional polynomials.** In addition, because of the
blending process, we need to worry only about the per-
formance of any model chosen in the follow-up period.

Unobserved Time Period: Extrapolation
Using External Data

In the best-case scenario, long-term data can be accessed
from a relevant study, possibly of an observational
nature, such as a registry or a cohort study; this is natu-
rally unlikely to contain direct information on the inter-
vention under investigation from the trial data. But,
perhaps, we may have information on drugs with similar
mechanisms of action or tackling the same condition. In
these circumstances, we could simply use the survival
result from an appropriate model fitted to the relatively
complete data externally or include additional assump-
tions such as a time acceleration adjustment to match
the reconstructed external data to the trial data.'> What-
ever the distributional assumptions, we would be able to
determine an estimate of the survival curve for the extra-
polation period and then plug that into the blended
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model. Note that it is not simple to adjust the external
population to accurately represent the trial population,'’
so the blending procedure would allow further assump-
tions for the extrapolated curve, in which different
weights could be given to the external component over
time.

Unobserved Time Period: Extrapolation
Using Expert Judgment

A more general situation, encountered in real-life appli-
cations, is when only tentative knowledge is available,
typically in the form of expert elicitation. It is rather
common for modelers to ask “key opinion leaders” for
their assessment of the validity of a given extrapolation,
perhaps in the form of plausible ranges or point esti-
mates for the survival probabilities at given times. For
example, experts may suggest that, given their clinical
knowledge, the plausible interval of 10-y survival prob-
ability is between 10% and 30% or that no more than
5% of participants would survive beyond 15 y. We thus
need to map those numerical estimates onto a suitable
model and construct a representative curve of the exter-
nal information.

Elicitation of survival estimates could be expressed as
the expected number of individuals who, in a population
of a given size, will survive at the specific point; for
instance, 20% survival at 10 y could be interpreted as
“20 in 100 patients would survive beyond 10 years.” We
could translate the clinical constraint into an artificial
data set and then use the standard method to analyze the
pseudo data. Given that 80% of time-to-event data
should be shorter than 10 y, we could use a uniform dis-
tribution with boundaries 0 and 10 to generate the indi-
vidual survival times, because there is no knowledge or
assumption about the time-to-event outcome in this syn-
thetic data set. To build up survival outcomes for the
remaining 20% of the population who would survive at
least 10 y, it is essential to determine a maximum lifetime
Tmax beyond which no patient would be expected to be
alive, and then similarly, the survival times should be
samples of the uniform distribution ranging from 10 y to
Tax. Of course, other processes of simulation of the
underlying time-to-event data may be selected, as long as
the soft constraints hold and the resulting long-term
extrapolation is justifiable.

Figure 5 (top plot) illustrates the above example, and
the synthetic data set consists of the 2 groups of time-to-
event data t; and £, in which all the event indicators are
equal to 1 as they are assumed to be fully observed. The
dashed curve in Figure 5 (bottom plot) shows the KM
estimate for the synthetic data set with 100 individuals.

t, ~ U(0,10) i ta~ U0, Tax)
e S+02
m 3 0000
eosss :
0 10‘:37 Tnax
1.00- f
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i
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Figure 5 Graphical representation of constructing external
survival curve (based on the subjective opinion). The top plot
illustrates mechanism of generating the artificial data set, and
the bottom plot is the Gompertz model fitted to the synthetic
data set. The elicitation is only at 1 time point: 20% expected
survival at 10 y.

The choice of the sample size is directly related to the
level of implied uncertainty on the external information.
If clinicians/experts are not very certain about their elici-
tation, the sample size of the artificial data set should be
reduced, which would lead to a wider 95% interval
around the point estimate. When the data set is con-
structed, the process is similar to the one used for direct
“hard” external data. In Figure 5, fitting a Gompertz dis-
tribution appears to perform well, and the blue curve is
fully reflective of the expert opinion at 10 y. Using a
Bayesian approach implies that we can naturally charac-
terize the underlying uncertainty in the survival curves.
This simple case only considers 1 time constraint, but
more importantly, the process would be essentially iden-
tical and easy even if there are multiple elicited time
points. Given more information about several time
points, it is required only to partition a whole time hori-
zon into 3 or more portions while constructing the exter-
nal data set; other than that, all procedures should be
consistent. The method of using an artificial data set
enables a range of possible constraints to be flexibly
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Figure 6 Blended survival curve based on short-term data and external information for the FCR arm. The digitized data from
CLL-8 are updated with longer follow-up until 96 mo (purple dotted line). (a) FC arm. (b) FCR arm.

considered. Moreover, based on more externally specific
details, the resulting curves can align more closely with
substantive expert beliefs.

Results
Interim Analysis for Observed Time Period

The piecewise constant hazard model in the Bayesian
framework provided a good fit to the observed data (with
8 intervals over the 4-y follow-up; green curve in Figure
6). As is known, a greater number of intervals might lead
to lower deviance (better fit); however, in this particular
case, no meaningful improvement was seen by increasing
the number of intervals. Notice that, unsurprisingly, the
extrapolation from the model is not reasonable, as it
implies artificially and unrealistically large survival prob-
abilities at the end of the follow-up period.

External Curve with Expert Information

Given the relatively strong opinion that approximately
1.3% of the cohort would be alive beyond 15 y, we con-
struct a synthetic data set with 300 participants, in which
no more than 4 individual times are longer than 15y (180
mo). We can experiment with different sample sizes (in
our case, we used a number of scenarios, with the sample
size ranging from 10 to 500) to get a better sense of the
implied uncertainty around the resulting survival curves.

Among the candidate parametric models, the Gom-
pertz distribution fits the external data very well, describ-
ing the belief specified above accurately. In a real-life
case, the experts and modelers should be able to defend
this assumption, in the absence of hard evidence to jus-
tify it. We note, however, that this process happens irre-
spective of the modeling strategy chosen; in our case, we
make it in a way that does not affect directly the fit to
the observed data.

Blended Estimate Compared with Updated
Data from the CLL-8 Trial

Figure 6 shows the blended survival curve driven by the
internal and external curve and 95% interval estimates
around the average curves over the whole time horizon.
Under the Bayesian framework, the interval estimates
are simulations generated from the posterior distribution
as the probabilistic sensitivity analysis. Without any fur-
ther information about the blending process, we assume
a constant rate over the blending interval, based on a lin-
ear weight function with &« = 8 = 1. On account of the
only elicited time point at 15 y, we identify the blending
interval from the end of follow-up (4 y) to the end of the
modeling horizon.

When compared with a later data cut for the CLL-8
trial until 96 mo,*' the blended survival curve after 48
mo is generally very close to the updated data. Unsur-
prisingly, the observed survival without external
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information overestimate the longer value, 40% higher
than the updated result.

Discussion

There is a growing need to improve extrapolation of
immature survival data when interim analysis is fre-
quently carried out in the context of accelerated regula-
tory approvals. A short duration of follow-up is often
subject to a substantial amount of censoring, which can
lead to implausible extrapolations with conventional
approaches based only on observed data. In addition,
innovative cancer drugs are evaluated on the back of
limited information, because no alternative treatment is
available as a viable option for patients affected by a spe-
cific disease. To obtain credible estimation of overall sur-
vival gains, it is essential to relax the traditional PH
assumption and supplement the external information to
guide the extrapolated curve. In this article, we have
introduced an innovative approach based on blended
survival curves as a possible solution to these issues in
the extrapolation.

In the cases in which the hazard early on is unlikely to
reflect the long-term behavior, our blended approach
enables the extrapolated survival to be less and less
affected by the short-term data as time progresses. Long-
term outcomes would be dominated by the external
information. Providing a best fit to the observed data,
the blended curve would gradually approach the predic-
tion derived from the external sources over the extrapo-
lated period. In the blending interval, time-specific
weights are allocated to the observed and external sur-
vival to allow for varying proportions of the 2 compo-
nents contributing to the overall estimate in the course
of time, which largely differs from the other mixture
models with time-independent mixtures over time. As
mentioned in the “Blended Survival Curve Methodol-
ogy” section 2, a mixture cure model also consists of 2
components (survival profiles of cured and uncured
patients) but is distinct because it assumes a constant
weight, namely, the proportion of cured patients,
through the entire time range.** The mixtures are time
independent, and cure fractions—as well as the survival
of uncured patients—often rely solely on short-term
data.*® Conversely, weight functions, together with exter-
nal projections in the blended curves, would be governed
by information outside an RCT. Finally, MCMs are
based on the assumption that the underlying data-
generating process gives rise to a single survival mechan-
ism that is a combination of 2 subgroups; in our case, we
explicitly consider 2 separate processes (the short-term

and long-term survivals) and ensure that extrapolation
from the former is anchored in a principled and flexible
way to the latter.

With the use of external sources, our novel method
allows turning points in the extrapolated hazard, which
may provide a more flexible and realistic shape beyond
the trial period. By adjusting relevant parameters of the
weight function, the blended procedure permits nonmo-
notonic hazards (as shown in Figure 4) that might be
more practical in the extrapolation. For example, if a
trial period ends with a low but increasing hazard, there
could be several turning points over time, such as a tem-
porary decrease due to the long-term survivors then a
following increase due to aging effects.® Although the
flexible parametric models, such as splines or fractional
polynomials, can also capture a complex hazard func-
tion, a turning point cannot be generated in the posttrial
period, and the monotonic hazard based on the final
observed segment is likely to be undesirable without
external data.

It is important to identify appropriate external infor-
mation to facilitate the extrapolation. A key assumption
in the blended method is that from a specific time point,
the extrapolated survival is consistent with the estimate
from external evidence. Before using potential data from
other sources, researchers should examine if the external
population matches some characteristics for the patients
of interest and have equivalent mortality in the long-
term. Conveniently, there is one advantage to the blend-
ing process that no adjustment would be required, even
if 1:1 matching between 2 sources were unavailable. The
matching procedure is replaced by the blending process.

Expert opinion as a kind of subjective information is
frequently used for model validation rather than formal
incorporation in the modeling. However, some research
indicated the potential benefits of formally integrating
expert opinion to aid the long-term extrapolation,'> espe-
cially in situations in which no access is given to the
patient-level external data. Therefore, we focus on more
general cases such that only expert/clinical subjective
beliefs are available in the long-term. Experts may have
some knowledge about the likely values or plausible
ranges of survival in the future according to the trial data
and their experience. Different from expressing the evi-
dence via informative priors of relevant parameters, our
approach translates the beliefs about long-term survival
to a representative curve by interpreting the elicitation as
an artificial data set and then using standard methods to
analyze it. Meaningfully, the number of elicited time
points is not limited and depends completely on the clini-
cians. Obviously, the curve would be closer to what the
expert believes if more elicited information are collected.
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The procedure is simple and straightforward, yet the
expert-based survival estimates are inherently subjective
and might be limited in scope, which means attention
should be given to the selection of more appropriate
knowledge if possible.

In the absence of long-term data within a trial itself,
scenario-based sensitivity analyses should be performed
for uncertain assumptions of the extrapolations. Uncer-
tainty of the underlying evidence may have a large impact
on the prediction. It may be worthwhile to test a range of
plausible scenarios about the future trend, especially
when integrating limited or conflicting elicitation into the
extrapolations.®? This implementation is not hugely com-
plicated, in which the modeler simply changes the values
of the parameters associated with the blended model for
defensible circumstances. In the extrapolated period, they
can select suitable values (e.g., plausible ranges) of sur-
vival at multiple time points and flexibly determine the
number of the elicited points and their locations. Besides,
the blending operation, including the interval and the
rate, can be characterized by the weight function if there
is any available knowledge about biologically plausible
shapes for the extrapolated hazard. A web-based applica-
tion is being developed to aid the elicitation process, in
which immediate outcomes (i.e., survival and hazard
plots) would help the experts to obtain reliable estimate.

Due to the lack of long-term data, extrapolation is
always going to be a problem, which largely involves the
subjective modeling assumptions. Crucially, we believe
that the blending method allows to shift elements of sub-
jective assumptions away from the extrapolation derived
from the observed data, although the blending operation
cannot necessarily avoid the issue of subjectivity. It is our
view that untestable assumptions are all but unavoidable
in the range of survival models that are relevant in HTA.
The blending procedure attempts at recognizing and
embracing this feature by providing a simple and powerful
framework for its incorporation and evaluation on the
model fit as well as on the long-term economic outputs.

There is no restrictive technical implementation for
modeling the observed data. The piecewise Cox model is
recommended due to the potential advantage of
extremely good fits to the data without substantial com-
putation required. Under a Bayesian framework, it
allows a high level of flexibility and does not bring extra
complexity, compared with spline or fractional polyno-
mial models. Furthermore, the PH assumption is not
necessary, as a stratified version of the Cox model exists
in which we can control for covariates that do violate the
assumption by stratifying, effectively creating many ver-
sions of the baseline hazard.**

Current implications focus on the absolute effective-
ness of treatments in a trial; however, decision making
requires a combination of different trials that compare
multiple treatments with the relative effectiveness of
interest. In fact, it is not difficult to implement the
blended approach into network meta-analysis with a
hierarchical structure that synthesizes all direct and indi-
rect evidence across trials.** The mechanism of sepa-
rately estimating observed and external hazards achieves
flexibility in a simple way, and obtaining the blending
result is not complex given a weight function identified
by the experts. It is possible to apply a common weight
function with consistent values for the relevant para-
meters to all treatment arms or alternatively to consider
different choices for each specific treatment if justified
information is available externally. For the trial data, the
Cox model would be beneficial, providing the same
structure as other studies based on the PH assumption in
the network. Moreover, the interpretation of the para-
meters in the Cox model is explicit. As the piecewise
exponential model does not add much computation
under the Bayesian framework, the implementation of
the blending approach is less computationally intensive,
and therefore, time consumption is probably less than
that of alternative flexible models.

Conclusion

Long-term extrapolation entirely driven by the immature
trial data is highly unreliable, and varying assumptions
of the treatment effect can have a great impact on the
survival estimate. To improve the credibility of the pre-
diction, the blended survival curve method allows the
extrapolation to take advantage of external knowledge
that manufacturers might have in form of hard data or
just elicited belief from clinical experts. The formal inclu-
sion of external evidence considers a variety of available
sources, especially the subjective opinion that is more
common in reality. Therefore, not only internal but also
external validity can be fully taken into account for the
survival model. Considering a range of easily plausible
scenarios, the blended approach provides a simple and
robust framework to ensure sufficient flexibility for the
long-term survival estimate.

Author’s Note
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