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Abstract—Free-hand optical ultrasound (OpUS) imaging is an
emerging ultrasound imaging paradigm that utilises an array
of fiber-optic sources and a single fiber-optic detector to achieve
video-rate, real-time imaging with a flexible probe that is immune
to electromagnetic interference. Due to the use of only a single
detector, such probes have limited channel counts, resulting in
significant imaging artefacts and limited contrast when imaging
is performed with a conventional Delay-and-Sum (DAS) beam-
former. Non-linear beamforming can help improve the imaging
quality by exploiting cross-channel coherence across the aperture,
at the expense of significantly increased computational complex-
ity. In this work, GPU implementations of different non-linear
beamformers were implemented and tailored specifically to OpUS
array devices and tested on both simulated and experimental
data.

Index Terms—Optical ultrasound, Non-linear beamforming,
GPU programming, Low Channel Count Reconstruction

I. INTRODUCTION

Optical Ultrasound (OpUS) is an imaging paradigm in
which light is used for both generation and detection of
ultrasound, as opposed to the use of conventional ultrasound
devices. In an OpUS system ultrasound is generated by the
selective application of the photoacoustic effect in an optically
absorbing material [1], which is typically either deposited at
the tip of an optical fiber [2] or formed into a membrane
[3]. Back-scattered ultrasound is then detected by an optically
resonant structure such as Fabry-Pérot cavities [4], [S] or
ring resonators [6], which are mounted on an optical fiber
tip. Typically these components are used to form two-fiber
devices, with a single fiber for ultrasound generation and
another for detection mounted together. These probes function
on a sub-millimetre scale, can emit and detect broadband
ultrasound (commonly 20-30 MHz around a 10-15 MHz center
frequency) and are immune to electromagnetic interference
[4]. To form an imaging aperture, two-fiber probes require
some form of mechanical translation [7] and as a result
typically require long acquisition times.

Recently a hand-held OpUS imaging probe was presented
that performed real-time, video rate imaging, using an array
of 64 fiber-optic sources and a single fiber-optic Fabry-Pérot
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detector [8]. This probe achieved frame rates of up to 11 Hz,
however the low channel count combined with the applied
Delay-and-Sum (DaS) reconstruction algorithm resulted in
significant artefacts and thus limited image contrast. The
DaS algorithm is the standard beamformer for biomedical
ultrasound imaging and OpUS devices, and operates under the
assumption that actual pulse-echo signal originating from the
location corresponding to an image pixel will sum coherently
across the imaging aperture, while other signal components
(such as noise, interference and out-of-plane artefacts) are
zero-mean and hence will average out. This method is ef-
fective for systems with a large number of channels, but the
assumption does not hold for systems with low channel counts
such as the hand-held OpUS probe [8].

Non-linear beamformers such as the Delay-Multiply-
and-Sum (DMaS) algorithm [9] and the Short-lag-spacial-
coherence (SLSC) algorithm [10] have been shown to be
effective at improving image quality in situations with low
channel counts, at the expense of increased computational
complexity. Such methods exploit cross-channel coherence to
distinguish true signals from artefacts and noise, thus resulting
in improved image contrast. However, for freehand OpUS
imaging, reconstruction algorithms need to run in real-time
to be clinically relevant.

Here, we present graphics processing unit (GPU)-enabled
implementations of several non-linear beamforming algo-
rithms, developed with the NVIDIA CUDA toolkit [11]. These
implementations were specifically taylored for use with hand-
held OpUS imaging probes, compirisng a single detector and
an array of OpUS sources. Implementations designed for use
with an OpUS system of the DaS, DMaS and SLSC algorithms
are presented and tested with simulated and experimental data,
and both the reconstruction speed and image quality were
assessed. In addition a novel variation to the DMaS algorithm
is presented that exploits the cross-channel coherence only of
near-neighbour pairs; presented as a more efficient alternative
to DMaS with comparable performance.

II. METHODS
A. Delay and Sum

A GPU-enabled implementation of the DaS beamformer
was developed to act as a baseline to judge both relative image
quality and as a reference point for targeted reconstruction
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Fig. 1. Beamforming with simulated data Comparison images of simulated
data reconstructed by each of the four beamforming implementations devel-
oped. The simulated phantom used was comprised of two rows of nine point
scatterers at 0.5 mm spacing, positioned in the imaging plane at 6 mm and 9
mm from the probe face.

speed. In this work a version of the DaS algorithm specifically
tailored to the OpUS probe configuration was used [3]. The
image signal I(7) at image location 7 at a time ¢; is given by
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where S; is the time delayed signal from source i, 75 ; is the
position of source 4, 7y is the location of the single, stationary
receiver, ¢ is the speed of sound and N is the number of
acoustic sources. A CUDA kernel was written to perform
the computations required for a single image pixel, and the
algorithm was parallelised by distributing the computation
of each pixel to separate threads. A linear grid of 1024
thread blocks was used (empirically determined to maximise
performance) to distribute a total of (N;,g + 1024 —1)/1024
blocks, which ensured all pixels were computed correctly
regadless of the number of pixels Ny,  in the image.

B. Short Lag Spatial Coherence Beamformer

The SLSC beamformer was proposed by Lediju er al. as
a method for directly exploiting cross-channel correlation in
ultrasound beamforming [10]. The normalised spatial correla-
tion calculated by SLSC for a given lag M in a single-detector,
multiple source OpUS system is given by
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where spatial correlation Ris given by
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Where N is the total number of sources, S;(t;) is the signal for
source ¢ at time ¢; and ¢;,, includes an additional time delay
of n samples used to compute cross-channel cross-correlations
across a temporal window of length w. Optimal values for M
and w were determined empirically and were set to 12 and
4 respectively to balance image quality and reconstruction
speed effectively. The GPU implementation of the SLSC
algorithm used two separate CUDA kernels to perform the
SLSC calculation for each pixel. The first kernel calculated the
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TABLE I
IMAGE RECONSTRUCTION PARAMETERS FOR GPU IMPLEMENTATIONS OF
NON-LINEAR BEAMFORMERS

Method Computation Axial Lateral Contrast
Time (ms) Res. (um) | Res. (um) (dB)
DaS 67 150 209 28
SLSC 200 800 966 11
DMaS 88 120 228 52
PDMaS 70 79 195 45

element-wise square of all RF data, and the second calculated
the normalised spatial correlation for each pixel. The same
grid scheme used for DaS was used for SLSC, with each
thread calculating the value for a single pixel in the image
field. Additional white noise was added to all simulated RF
data to avoid high amplitude coherence artefacts arising from
the coherent background as previously discussed by Lediju et
al. [10].

C. Delay Multiply and Sum Beamformer

DMaS was originally proposed as an improved beamformer
for confocal microwave imaging to improve clutter rejection
and noise levels, especially targeting the effects of side lobes
in devices with low channel counts [12]. First applied to
biomedical ultrasound imaging by Matrone et al. [9], DMaS
has become a widely recognised non-linear beamformer in the
research community. The DMAS beamformed signal at at pixel
7 is given by
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with S;;(t;,t;) the amplitude corrected DMAS equivalent RF
signal at the point 7 for sources 4 and j is given by

Sij(tist;) = sign(Si(t:)S;(t;)) - \/ISi(t:) S (t5)]. (5)

Here time delays ¢;,t; are as defined in equation (1). The
resulting DMaS signal is then bandpass filtered (the so-
called Filtered-DMaS) to remove sub- and super-harmonic
components arising from the multiplication operations [9].
Two forms of CUDA kernel were used for the DMaS
implementations tested here. The first was based on the DaS
implementation described above, with each thread calculating
a single pixel value. The second method took advantage of the
small channel counts to unroll one of the summations in the
DMasS process. The latter kernel format developed unrolled the
summation over ¢ in equation (4), with one thread running the
summation over j for each value of ¢. Each thread then saved
the calculated value to the shared memory on the GPU, and
the final thread performed a warp unrolled summation over
all data points to complete the summation. Whilst this method
forced some threads to stall due to varying lengths of the
summation over j, an overall decrease in reconstruction time
was observed. This resulted in the use of (Ngrc — 1)* Npige
threads arranged such that each block in the computation grid
could calculate a certain number of pixels. For an OpUS
array comprising 64 sources, a block size of four pixels was
emperically determined to yield the best performance.
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D. Pseudo-DMaS beamformer

To improve the speed of the DMAS algorithm, and bring
the reconstruction speeds closer to those seen with the DAS
algorithm, a novel extension of the DMAS algorithm was pro-
posed and implemented. Referred to as pseudo- or windowed-
DMAS (PDMaS), this scheme applies a windowing scheme
to the summations in the DMAS algorithm, selecting only
the cross-correlation between close-neighbour pairs. This is
motivated by the limited omni-directionality of the sources
in the OpUS array probe, where each source insonifies only
part of the imaging volume. As a consequence the number of
iterations needed in each calculation loop is reduced, reducing
the overall computational complexity. For a 16-element win-
dow that is symmetrical around the current source the PDMAS
signal is given by
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where S'Z-j is the time delayed, scaled, DMAS signal for
sources i and j as given by Eq. (5). The limits of the innermost
summations are adjusted to correctly handle the edges of
the aperture. The PDMaS implementation was developed in
both the single and dual kernel configurations discussed for
DMasS above. However, as for PDMasS signals originating from
fewer elements are summed, a one-thread-per-pixel scheme
was found to achieve highest efficiency.

E. Testing

All GPU implementations were written in C++ using the
NVIDIA CUDA platform (CUDA toolbox version 11.7.64)
[11], and used to generate a CUDA-enabled dynamic-link-
library (DLL) that could be used with other applications such
as MATLAB or LABVIEW. Each GPU implementation was
used to reconstruct both simulated and experimental datasets.

Simulated data was generated using a two stage simulation:
the forward propagation and interaction with isotropic point
scatterers was modelled using the fast-nearfield method using
the FOCUS MATLAB toolbox [13], the detection of reflected
ultrasound was then modelled using the free-space Green’s
function for a point detector [14] (figure 1). Simulated data
from this scheme has been previously validated against ex-
perimental results [3], [15], [16]. Each GPU implementation
was then used to reconstruct experimental data sets acquired
with a previously-reported free-hand OpUS probe [8]. A static
image of a tungsten wire phantom (figure 2) in a waterbath
was used to determine point scatterer performance. In addition
a video data set of a needle inserted into a tissue-mimicking
gelwax phantom, originally recorded at 11 Hz frame rate, was
reconstructed with each GPU implementation to demonstrate
performance of the algorithms in video-rate imaging. All
reconstructed data sets had 64 channels, 5001 time samples
and a 250 MHz sample rate. All simulations and image
reconstructions presented were performed on a Dell Inspiron
7501 PC, with an Intel Core i7-10750H CPU, 16GB RAM
and an NVIDIA GeFORCE GTX 1650 Ti GPU.
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Fig. 2. Beamforming with experimental data of a wire phantom.
Comparison images of single-frame data collected by a free-hand OpUS probe
[8] of a tungsten wire, diameter 27 um, placed at an axial depth of 3.9 mm.

III. RESULTS

All GPU-implementations were capable of reconstructing
image data with a reconstruction time significantly less than
the equivalent CPU-based implementation. This SLSC im-
plementation demonstrated a contrast reduction of 17 dB
when compared to DaS beamforming, however the distinction
between point targets and background is more apparent, with
greatly reduced artefacts. However the longer reconstruction
times for SLSC severely limit the possible frame rates achiev-
able, and limit the possibility for real-time OpUS imaging.

In contrast, the DMaS and PDMaS algorithms were capable
of image contrasts of 52 dB and 42 dB, respectively, whilst
maintaining reconstructions speeds that would enable real-time
video imaging. This presents a significant improvement over
DaS reconstruction, which achieved 28 dB contrast, whilst
maintaining a reconstruction rate that would enable real-time
video-rate imaging.

IV. DISCUSSION AND CONCLUSION

This work demonstrates the power of non-linear beamforming
when applied to situations with low channel counts. This is
particularly relevant to the OpUS probes discussed here as
expanding the number of channels in a free-hand OpUS device
is not feasible due to the prohibitively high costs of the inter-
rogation optics required for multiple fibre-optic detectors. The
DMaS-based algorithms considered here achieve improved
image quality through reduction in grating- and side-lobe
artefacts, and out-of-plane-clutter that dominate linear DaS
beamformed images, and yield images with increased dynamic
range despite similar reconstruction times (particularly for
PDMaS).

For both simulated and experimental point target data, SLSC
significantly reduced the level of “wing-shaped” side-lobe
artefacts. However, when reconstructing experimental data of
a phantom study, SLSC imaging was found to be less effective
in improving the image quality: vessel walls that are distin-
guishable in DaS are unclear, and during the needle insertion
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Fig. 3. Video reconstruction Comparison images taken from real-time
imaging of a tissue mimicking phantom, containing a wall-less structure
mimicking a blood vessel. The phantom was imaged whilst a needle was
inserted into the phantom and then withdrawn [8]

only the tip of the needle is visible, and can only really be
seen in videos. In addition, with the method presented here,
SLSC was not achievable at a reconstruction rate that would
enable it to be used for video-rate imaging in real-time. SLSC
is routinely used as a mask or weighting factor alongside other
beamformers, indicating a possible use when post-processing
OpUS data, however due to the comparably low numerical
efficiency this aspect was not further investigated.

The DMaS implementation presented here achieved sig-
nificant reductions in side lobe artefacts when compared to
DaS reconstruction of the same data. This implementation
exhibited contrast gains of up to 24 dB (when compared
to DaS reconstruction), whilst maintaining a reconstruction
time that would enable imaging at 11 Hz with a free-hand
OpUS imaging probe. One possible route to improve the
performance of the DMaS algorithm presented here could be
to use a re-factored format of the DMaS algorithm to reduce
computational complexity [17].

The novel PDMaS algorithm implemented here demon-
strated an effective middle ground between DaS and full
DMaS reconstruction. Contrast gains of up to 17 dB when
compared to DaS are less effective than DMaS, however the
faster computation time would enable imaging at 14 Hz with
a free-hand OpUS probe, matching the performance of the
equivalent GPU enabled DaS implementation. In addition,
the PDMaS algorithm also demonstrated improved imaging
of wall structures running parallel to the probe face, as
demonstrated in figure 3, which is explained by PDMaS re-
jecting widely spaced channels that exhibit low cross-channel

coherence.

The methods presented in this paper demonstrate the capa-
bilities of non-linear beamforming for improving the image
quality of freehand OpUS array probes. The implementa-
tions developed here may also improve imaging of other
low-channel count systems such as sparse arrays. Notably,
DMaS based beamformers approached the image reconstruc-
tion speeds of conventional DaS methods, whilst achieving
significant contrast gains. The results presented here were
achieved using GPU acceleration on consumer-grade hardware
readily available in personal computers. High-end workstation
GPU cards, with significantly higher clock speeds, memory
capacity, and throughput will further accelerate the reconstruc-
tions, and could readily achieve frame rates exceeding 50 Hz.
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