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Abstract: 146 

Water is essential for survival, but one in three individuals worldwide (2.2 billion 147 

people) lack access to safe drinking water. Water intake requirements largely reflect 148 

water turnover, the water used by the body each day. We investigated the determinants 149 

of human water turnover in 5,604 people aged 8 days to 96 years from 26 countries 150 

using isotope tracking (2H) methods. Age, body size, and composition were significantly 151 

associated with water turnover as were physical activity, athletic status, pregnancy, 152 

socioeconomic status, and environmental characteristics (latitude, altitude, air 153 

temperature, and humidity). People in countries with low human development index 154 

(HDI) had higher water turnover than people who lived in countries with high HDI. 155 

Based on this extensive dataset we provide equations to predict human water 156 

requirements in relation to anthropometric, economic, and environmental factors.  157 

 158 

One Sentence Summary: 159 

Measures of human water turnover from a large global database demonstrate the effects of 160 

body size, age, lifestyle, and climate. 161 

  162 



6 
 

Main text: 163 

Water is essential for life (1) and daily water intake is necessary to prevent 164 

dehydration (i.e., net loss of body water) in most terrestrial animals, including humans (2). 165 

Total body water (L) is homeostatically controlled (3) and tightly regulated day-to-day by 166 

thirst and hunger drives leading to intake of fluids and food to offset water losses (4). Body 167 

water is lost as urine, insensible transcutaneous evaporation and sweat loss, respiratory water 168 

vapor, and water in feces (Fig. 1A). To maintain water balance, these losses must be matched 169 

by intake of water from liquids (drinking water and beverages) and foods (5, 6), water vapor 170 

in respiratory air intake, transcutaneous water uptake, and water formed during aerobic 171 

respiration and metabolism (Fig. 1A) (2, 7). The total movement of water through the body, 172 

both intake and loss, is called water turnover (L/day). 173 

Despite adaptations to minimize dehydration, humans can survive for only ~3 days 174 

without consuming water (1). The risk of dehydration is greater under conditions requiring 175 

increased respiration, blood circulation, and sweating, such as vigorous physical activity or 176 

in hot and humid environments (3). Insufficient water intake is a risk factor for heat stroke, 177 

urinary and kidney diseases, and cardiovascular failure (8, 9). An understanding of water 178 

turnover and its determinants is critical for global public health decision-making regarding 179 

the provision of drinking water and water-enriched food (10). 180 

Public health officals need to be able to anticipate future daily water intake demands 181 

of their populaions, especially during periods of impeding crisis. Ideally this would be based 182 

on scientific evidence regarding the levels of normal water intake. The current recommended 183 
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intakes for water (8, 9, 11), however, rely on epidemiologic self-reported surveys or 184 

laboratory-based physiological studies with rather small sample sizes. Results obtained from 185 

self-reported intake surveys show large variation linked to imprecision in the assessment 186 

method. It is thus difficult to establish clear guidelines for worldwide public health actions 187 

from these sources of information. The majority of people who lack access to safely managed 188 

drinking water live in countries with a low human development index (HDI), but few studies 189 

have examined water turnover in those populations (2). To develop global guidelines for 190 

daily water intake, empirical measurements of water turnover under free-living conditions 191 

are required across a broad range of economic and environmental conditions. 192 

We report water turnover (Fig 1) and total body water for 5,604 (3,729 females and 193 

1875 males) people, aged between 8 days to 96 years, from 26 countries around the globe, 194 

across a wide range of environments and living conditions (Fig. S1 and Table S1). We used 195 

the hydrogen isotope dilution and elimination technique, which provides an objective, 196 

accurate, reliable, and precise measurement of both total body water and water turnover under 197 

free-living conditions (Fig. 1B) (7). This method involves the subject drinking about 100 mls 198 

of water that is enriched with about 5% deuterated water (DHO). The deuterium floods into 199 

the body water pool providing an estimate of total body water via the dilution principle (12). 200 

The excess deuterium isotope is then eliminated from the body by the elimination routes 201 

detailed in Fig 1A. Because there is no enriched isotope tracer entering the system the isotope 202 

enrichment declines exponentionally back to the baseline level. The rate constant of this 203 

exponential return to baseline multiplied by the body water pool is equal to the water turnover.  204 
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Data were obtained from the International Atomic Energy Agency doubly labeled 205 

water (DLW) Database (13, 14). The current study aimed to examine (1) the dependence of 206 

water turnover and total body water on age, body size, body composition, total energy 207 

expenditure (MJ/d), and physical activity level (PAL = total energy expenditure/basal energy 208 

expenditure) through the human lifecourse, (2) the effects of climate, including latitude, 209 

altitude, outside air temperature, and humidity; and (3) the potential influence of economic 210 

development as measured by the HDI.  211 

Water turnover was greatest in individuals aged  20 to 30 yr in men, and from 20 to 212 

55 yr in women (Fig. 2A and Table S2). Water turnover was lower in men aged >40 and 213 

women aged >65.  Total body water was also highest for adults 20 to 40 years old (Fig. 2B). 214 

As a fraction of total body water, water turnover was highest in neonates (28.3 ± 7.2% per 215 

day) and decreased with age to 9.9 ± 3.0% per day in adults aged 18 to 40 years (Fig. 2C). 216 

Total body water as a proportion of body weight also decreased with age, from 60.0 ± 6.4% 217 

of body weight from birth to 6 months to 50.4 ± 5.3% (males) and 42.0 ± 4.8% (females) at 218 

age 60 (Fig. 2D). Sex differences and the relationship with age and total body water in adults 219 

largely reflected variations in percent body fat, which contains less water than muscle and 220 

other organs. The ratio of water turnover to total energy expenditure was 0.33 ± 0.09 L/MJ 221 

(1.4 ± 0.4 ml/kcal) for adults, comparable to previous isotope-based measures (15) (Fig. 2E).  222 

Body size and composition, energy expenditure, and climate variables were all 223 

correlated with water turnover. Limiting our analysis to adults aged 18 to 60 years to avoid 224 

strong age effects (as shown in Fig. 2), bivariate analyses showed that water turnover was 225 
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positively correlated with fat-free mass, total energy expenditure, and PAL, and negatively 226 

correlated with percent body fat (P<0.001) (Fig. 3A through D). We found a significant 227 

curvelinear relationship between outdoor air temperature and water turnover and a 228 

curvelinear relationship between latitude and water turnover (P<0.001) (Fig. 3E, F). Air 229 

temperature was positively correlated with water turnover when it was higher than 10 °C 230 

(P<0.001). Daily water intake was highest at approximately 0° effective latitude and the 231 

lowest at -50° or +50° latitude. People living above the Arctic Circle had higher water 232 

turnover than those who lived at -50° or +50° latitude.  233 

 Linear regression analysis showed that age, fat-free mass, PAL, air temperature, 234 

relative humidity, HDI, and altitude were significant predictors of water turnover in adults 235 

aged 18 years and older (Table S3). We conducted multiple regression analysis (including 236 

first- and second-order polynomial terms) to examine potential non-linear relationships 237 

between water turnover and the above variables in adults aged 18 years and older (Table S4). 238 

The positive coefficient of the second-order term of air temperature indicated a curvilinear 239 

relationship between water turnover and air temperature. The negative coefficient of the 240 

second-order term of age also indicated a curvilinear relationship between water turnover 241 

and age. A non-linear increase of water turnover with increase of air temperature is predicted 242 

from the standard Scholander curve (16) for the impact of ambient temperature on metabolic 243 

rate and evaporative water loss. In an additional test of these relationships, repeated measures 244 

for 72 people in spring and summer indicated higher water turnover in the summer (mean air 245 

temperature of 29 °C) than in spring (mean air temperature of 18 °C) (P<0.001), whereas 246 

total energy expenditure did not differ seasonally (Fig. 4A and 4B). 247 
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Water turnover of pregnant and lactating women is of interest because pregnant 248 

women have higher total body water and fat-free mass than do non-pregnant women (17), 249 

and lactating women also lose water via milk production (11). Repeated measures of 63 250 

women indicated water turnover increases in the third trimester of pregnancy (+670 mL/d) 251 

and during lactation (+260 mL/d) compared to pre-pregnancy (Fig. 4C) (17). The increase 252 

of water turnover during pregnancy is consistent with the increase in total body water.  253 

The highest water turnovers in our sample are consistent with the effects of 254 

temperature, climate, physical activity and body size. Nine of the 1,875 males had high water 255 

turnover greater than 10 L/d; of these four were athletes, four  were adult Shuar forager-256 

horticulturalists of Amazonian Ecuador (18), and one male was Caucasian with normal BMI 257 

but measured in the summer with a maximal air temperature of 31.7 °C. Thirteen of 3,729 258 

females had high water turnover greater than 7 L/d; of these five females were athletes, two 259 

females were pregnant women who had extremely high BMI (>45 kg/m2) and were measured 260 

in the summer; three females had high BMI (>30 kg/m2), in which two were measured in the 261 

summer. Three females were measured in summer, with a maximal air temperature of >30°C.  262 

Lifestyle had clear effects on water turnover. Athletes had higher water turnover 263 

than non-athletes (P<0.001, Fig. 5A and Table S5). Hunter-gatherers, mixed farmers, and 264 

subsistence agriculturalists all had higher water turnover than those in industrialized 265 

economies (P<0.001, Fig. 5B and Table S6). People in countries with low HDI had higher 266 

water turnover than those who lived in countries with middle and high HDI, even after 267 

adjustment for physiological and environmental variables (P<0.001, Fig. 5C and Table S7). 268 
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The effects of body size, PAL, and air temperature were greater for people in countries with 269 

low HDI (Fig. 4D through F). The smaller effects for these variables in high HDI 270 

populations suggests water needs are buffered against environmental influences through 271 

effective indoor climate control (e.g., air conditioning). In high HDI countries with access to 272 

air-conditioning and heating, people are exposed primarily to a narrow indoor temperature in 273 

range (18 to 25 °C) (19). By comparison, people living in low HDI countries are more likely 274 

to be exposed to ambient environmental temperatures without climate control. This view is 275 

consistent with greater size-adjusted water turnover for hunter-gatherers and manual laborers 276 

when compared to sedentary adults in industrialized countries (2). Similarly, a previous 277 

comparison of regional water use (20) noted that water use is relatively high in Africa and 278 

relatively low in Europe, and results from our analysis may help to explain why.  279 

We obtained the following equation to predict water turnover (Fig. 6): 280 

Water turnover (mL/d) = 1076×PAL +14.34×Body weight (kg) +374.9×Sex 281 

+5.823×Humidity (%) +1070×Athlete status +104.6×HDI +0.4726×Altitude (m) –282 

0.3529×Age^2 +24.78×Age (y) +1.865×Temperature^2 –19.66×Temperature (°C) –713.1   283 

[eq.1] 284 

Sex is 0 for female and 1 for male; Athlete status is 0 for non-athlete and 1 for athlete; HDI 285 

is 0 for high HDI countries, 1 for middle HDI countries, and 2 for low HDI countries. This 286 

equation explains 47.1% of the variation in water turnover. An increase in PAL of 1.0 induces 287 

a ~1000 ml increase in water turnover; a 50 kg increase in body weight induces a ~700 ml 288 

increases in water turnover; a 50% increase in relative humidity induces a ~300 ml increase 289 
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in water turnover; and a 1000 m increase in altitude induces a ~500 ml increase in water 290 

turnover. Males exhibit ~400 ml more water turnover than do females of the same weight 291 

because males have greater fat-free mass and a lower percentage body fat. People who live 292 

in low HDI countries exhibit ~200 ml more water turnover than people who live in high HDI 293 

countries after controlling for the other measured variables. Athletes have ~1000 ml more 294 

water turnover than do non-athletes with everything else being equal. A U-shaped 295 

relationship between water turnover and air temperature shows ~1000 ml more water 296 

turnover at +30 °C air temperature than the nadir between ±0 and +10 °C air temperature, 297 

and also ~400 ml more water turnover at –10 °C air temperature than that nadir. A curvilinear 298 

relationship between water turnover and age shows the peak water turnover is shown between 299 

20’s and 40’s and decrease after 50’s and ~700 ml less water turnover at age 80 than at age 300 

30.  301 

A 20-year-old male weighing 70 kg, who is not athletic and exhibits a PAL of 1.75, 302 

and who lives in a high HDI country at 0 m altitude where mean air temperature is 10°C and 303 

relative humidity is 50%, has a predicted water turnover of 3.2 L/d. A non-athletic 20-year-304 

old female weighing 60 kg living at the same location will have a water turnover of 2.7 L/d. 305 

In contrast, a 20-year-old athletic male weighing 70 kg, with a PAL of 2.5, who lives in a 306 

high HDI country at a location 2000 m above sea level, where air temperature is 30°C and 307 

relative humidity is 90%, has a water turnover of 7.3 L/d; for a 60 kg athletic female in the 308 

same scenario, water turnover is 6.8 L/d. In this equation, we used weight and sex as a proxy 309 

of fat-free mass because body composition is not easily measured in daily setting. If body 310 
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composition can be assessed, the following equation can be used to predict water turnover 311 

(Fig. 6): 312 

Water turnover (mL/d) = 861.9×PAL + 37.34×Fat-free mass (kg) +4.288×Humidity (%) 313 

+699.7×Athlete status +105.0×HDI +0.5140×Altitude (m) –0.3625×Age^2 +29.42×Age (y) 314 

+1.937×Temperature^2 –23.15×Temperature (°C) –984.8   [eq.2] 315 

TEE was not included into the equations because sex, body weight or PAL capture the 316 

variance explained by TEE. When fat-free mass was included in the model, the effect of sex 317 

was not significant. The sex difference of water turnover can be explained by the sex 318 

difference of the fat-free mass/body weight ratio. 319 

Values of water turnover in this study represented average values under normal 320 

conditions. Many health conditions, including parasitic infections and diarrhea, affect water 321 

loss and intake (21). Additionally, the current study did not assess any indicators of hydration 322 

status and did not indicate whether the participants were adequately hydrated. Older adults 323 

or vulnerable individuals have a higher risk of both acute and chronic dehydration (22, 23) 324 

because they have a decreased thirst response. Medications, anorexia or frailty, and low total 325 

body water (storage) are associated with a lower skeletal muscle mass (i.e., sarcopenia). 326 

Skeletal muscle tissues contain a large volume of water, particularly in the intracellular space 327 

(24). Mean water turnover values presented here are not necessarily representative of all 328 

people or conditions (21) but provide a comparative framework for investigating water 329 

intakes in populations with greater needs. 330 
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Objective measures of water turnover from a large global dataset indicate that water 331 

turnover is strongly related to anthropometric, lifestyle, and environmental factors. We found 332 

significant correlations between water turnover and several known markers of health, 333 

wellness, and disease risks: Water turnover is positively correlated with fat-free mass, TEE, 334 

PAL, athletic status, and negatively correlated with percent body fat and age in adults. Water 335 

turnover may therefore provide a useful, integrative biomarker of metabolic health. 336 

Biomarkers that capture global metabolic health are generally lacking and of potentially 337 

enormous value for public health and medical management.  338 

As shown in Figure 1, we need to be aware that water turnover obtained by the 339 

hydrogen isotope dilution and elimination technique is not equal to daily water intake from 340 

liquids and foods. Metabolic water accounts for ~10% of water turnover, and respiratory 341 

water uptake and transcutaneous water uptake each account for 2 to 3% of water turnover. 342 

Therefore, daily water intake from liquids and foods is equivalent to ~85% of water turnover 343 

(7). An unsolved question is, what percentage of water intake comes from food? Self-reported 344 

surveys around the world suggested 20-50% of daily water intake is from food (5, 6, 11). 345 

These estimates, however, are questionable because many studies that have demonstrated 346 

self-reported surveys underestimate energy, protein and salt intake. Thus, dietary survey 347 

methods probably also underestimate the water intake in food and overestimate from drinking 348 

water and beverages. Conversely, if people consume a higher energy density diet with lower 349 

water content (25, 26), they may need more water from drinks and beverages. Without 350 

measured water intakes from food, it is not possible to assess the relative contributions of 351 

food and drinking water or beverages to water turnover in this study, and indeed no studies 352 
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to date have adequately addressed this issue. Nonetheless, the current study clearly indicates 353 

that one size does not fit all for drinking water guidelines, and the common suggestion that 354 

we should drink 8 × 8oz glasses of water per day (approx. 2 L) is not backed by objective 355 

evidence.  356 

We provide equations to predict human water turnover by environmental, lifestyle 357 

and anthropometric factors guided by a large dataset. Improved guidelines are of increasing 358 

importance because of the explosive population growth and climate change the world 359 

currently faces, which will affect the availability of water for human consumption (27, 28) 360 

and non-ingestive uses, such as irrigation, cooling, and manufacturing (29). Presently, 2.2 361 

billion people lack access to safe drinking water (30). The water turnover measures here can 362 

help shape strategies for drinking water and water-enriched food management as the global 363 

population and climate changes. 364 

 365 

  366 
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Figure legends 478 

 479 

Fig. 1. (A) Conceptual diagram showing sources of water influx and efflux on human body. * 480 

Metabolic water produced inside a living organism as an end product of the oxidation of energy-481 

containing substances in their food. (B) Hydrogen isotope dilution and elimination provides an 482 

objective measure of total body water (TBW) and water turnover (WT). DLW; doubly labeled 483 

water. 484 

 485 

Fig. 2. Relationships between age and total body water (TBW) or water turnover (WT) in 3729 486 

females (orange) and 1875 males (blue) aged 0 to 96 years with mean and SD. (A) displays WT 487 

(L/d), (B) TBW (kg), (C) WT per TBW (%), (D) TBW per body weight (%), (E) WT per total energy 488 

expenditure (TEE) (L/MJ), or (F) TEE (MJ/d). Water turnover increases with age until about 30 years 489 

and is higher in men (4.3 L/d) than women (3.4 L/d). Water turnover significantly decreases after 490 

30 years in men and 55 years in women, reaching an average water turnover of 3.1 and 2.8 L/d in 491 

men and women aged over 70 years, respectively. The average water turnover rate as a percent of 492 

total body water is a maximum of ~25% in neonates, decreases with development, and is ~15% in 493 

5-year-old children. At puberty, water turnover falls to ~10% and remains constant until age 40 494 

years in men and 65 years in women, after which it decreases. The average water turnover per TEE 495 

is about 0.33 L/MJ (~1.4 ml/kcal) in adults. Note that the variation in water turnover is incredibly 496 

large – the low end for men and women is ~1-1.5 L/day while the upper end is around ~6 L/day – 497 

and the outliers lie in the 10L/d range. On average, water accounts for 60% of the body weight in 498 

infants, 50% in older adults, and only 42% in women at 60 years of age, reflecting a larger % body 499 

fat. 500 

 501 

Fig. 3. Relationships between water turnover (WT) against (A) fat-free mass (FFM), (B) percent 502 

body fat, (C) total energy expenditure (TEE), (D) physical activity level (PAL), (E) air temperature, 503 

and (F) effective latitude in 1657 females (upper panels; red) and 1013 males (lower panels; blue) 504 

aged 20 to 60 years. The blue line represents generalized additive models with integrated 505 

smoothness (GAM). Pearson correlation analysis shows positive correlations between water 506 

turnover and fat-free mass (r = 0.442, P < 0.001), TEE (r = 0.488, P < 0.001), PAL (r = 0.388, P < 507 

0.001), and altitude (r = 0.100, P < 0.001). Water turnover was negatively correlated with percent 508 

body fat (-0.311, P < 0.001). Outdoor air temperature was only weakly correlated with water 509 

turnover in the whole sample (r = 0.160, P < 0.001). A significant curvilinear relationship between 510 

water turnover and the air temperature and a significant curvilinear relationship between water 511 

turnover and effective latitude was observed (see text for details). Average water turnover 512 

reached the highest values at around 0° and the lowest at around -50° or +50° of effective latitude. 513 

People who lived near the Arctic Circle had higher average water turnover than those who lived 514 

around -50° or +50° of effective latitude. 515 
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 516 

Fig. 4. (A) Repeated measures of 72 people (31 females and 41 males) shows water turnover (WT) 517 

was significantly higher in the summer (3.7 ± 1.0 L/d) with an average temperature of 29°C than in 518 

the spring (3.0 ± 0.7 L/d) with 18°C (P < 0.001). (B) In contrast, total energy expenditure (TEE) was 519 

not significantly different between summer and spring (P = 0.233). (C) Repeated measures of 63 520 

pregnant women show that total water turnover was significantly higher during late pregnancy 521 

and lactation (data from Butte et al. 2005). (Pre = Before pregnancy; Post = 27 weeks postpartum). 522 

 523 

Fig. 5. (A) Athletes had higher water turnover (WT) than non-athletes, even after adjusting for 524 

physiological and environmental variables (P < 0.001). (B) Hunter-gatherers (HG), mixed farmer 525 

and hunter-gatherer (HGF), and subsistence agriculturalists (SA) had higher water turnover than 526 

other people (C), even after adjusting for physiological and environmental variables (P < 0.001). 527 

Note that there are no males in the database who fell into the SA category. (C) People who lived in 528 

countries with a low Human Development Index (HDI) had higher WT than people who lived in 529 

countries with high or middle HDI, even after adjusting for physiological and environmental 530 

variables (P < 0.001). (D-F) Relationship between water turnover and outdoor air temperature, 531 

physical activity level (PAL), or fat-free mass. The countries were categorized as high (red), middle 532 

(green), and low (blue) HDI. (D) A significant interaction (P < 0.001) was observed between 533 

outdoor air temperature and HDI in water turnover. The association between outdoor air 534 

temperature and water turnover is weak in high HDI countries (r = 0.086, P < 0.001) but strong in 535 

men in low HDI countries (r = 0.604, P < 0.001). (E, F) A significant interaction (P < 0.001) was 536 

observed between HDI and PAL or FFM in water turnover. Correlation coefficients were 537 

significantly higher (P < 0.001) in low HDI countries (r = 0.484 to 0.670, P < 0.001) than in high HDI 538 

countries (r = 0.367 to 0,510, P < 0.001). 539 

 540 

Fig. 6. Determinants of human water turnover. Objective measures of water turnover from a large 541 

global dataset indicate that water turnover is strongly related to anthropometric, lifestyle, and 542 

environmental factors. PAL = Physical activity level (Total energy expenditure/Basal energy 543 

expenditure), HDI = Human development index. 544 
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Fig. 1. (A) Conceptual diagram showing sources of water influx and efflux on human body. * Metabolic water produced inside a living organism as an end 
product of the oxidation of energy-containing substances in their food. (B) Hydrogen isotope dilution and elimination provides an objective measure of total 
body water (TBW) and water turnover (WT). DLW; doubly labeled water.  
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Fig. 2. Relationships between age and total body water (TBW) or water turnover (WT) in 3729 
females (orange) and 1875 males (blue) aged 0 to 96 years with mean and SD. (A) displays WT 
(L/d), (B) TBW (kg), (C) WT per TBW (%), (D) TBW per body weight (%), (E) WT per total energy 
expenditure (TEE) (L/MJ), or (F) TEE (MJ/d). Water turnover increases with age until about 30 years 
and is higher in men (4.3 L/d) than women (3.4 L/d). Water turnover significantly decreases after 
30 years in men and 55 years in women, reaching an average water turnover of 3.1 and 2.8 L/d in 
men and women aged over 70 years, respectively. The average water turnover rate as a percent of 
total body water is a maximum of ~25% in neonates, decreases with development, and is ~15% in 
5-year-old children. At puberty, water turnover falls to ~10% and remains constant until age 40 
years in men and 65 years in women, after which it decreases. The average water turnover per TEE 
is about 0.33 L/MJ (~1.4 ml/kcal) in adults. Note that the variation in water turnover is incredibly 
large – the low end for men and women is ~1-1.5 L/day while the upper end is around ~6 L/day – 
and the outliers lie in the 10L/d range. On average, water accounts for 60% of the body weight in 
infants, 50% in older adults, and only 42% in women at 60 years of age, reflecting a larger % body 
fat. 
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Fig. 3. Relationships between water turnover (WT) against (A) fat-free mass (FFM), (B) percent 
body fat, (C) total energy expenditure (TEE), (D) physical activity level (PAL), (E) air temperature, 
and (F) effective latitude in 1657 females (upper panels; red) and 1013 males (lower panels; blue) 
aged 20 to 60 years. The blue line represents generalized additive models with integrated 
smoothness (GAM). Pearson correlation analysis shows positive correlations between water 
turnover and fat-free mass (r = 0.442, P < 0.001), TEE (r = 0.488, P < 0.001), PAL (r = 0.388, P < 
0.001), and altitude (r = 0.100, P < 0.001). Water turnover was negatively correlated with percent 
body fat (-0.311, P < 0.001). Outdoor air temperature was only weakly correlated with water 
turnover in the whole sample (r = 0.160, P < 0.001). A significant curvilinear relationship between 
water turnover and the air temperature and a significant curvilinear relationship between water 
turnover and effective latitude was observed (see text for details). Average water turnover 
reached the highest values at around 0° and the lowest at around -50° or +50° of effective latitude. 
People who lived near the Arctic Circle had higher average water turnover than those who lived 
around -50° or +50° of effective latitude. 
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Fig. 4. (A) Repeated measures of 72 people (31 females and 41 males) shows water turnover (WT) 
was significantly higher in the summer (3.7 ± 1.0 L/d) with an average temperature of 29°C than in 
the spring (3.0 ± 0.7 L/d) with 18°C (P < 0.001). (B) In contrast, total energy expenditure (TEE) was 
not significantly different between summer and spring (P = 0.233). (C) Repeated measures of 63 
pregnant women show that total water turnover was significantly higher during late pregnancy 
and lactation (data from Butte et al. 2005). (Pre = Before pregnancy; Post = 27 weeks postpartum). 
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Fig. 5. (A) Athletes had higher water turnover (WT) than non-athletes, even after adjusting for 
physiological and environmental variables (P < 0.001). (B) Hunter-gatherers (HG), mixed farmer 
and hunter-gatherer (HGF), and subsistence agriculturalists (SA) had higher water turnover than 
other people (C), even after adjusting for physiological and environmental variables (P < 0.001). 
Note that there are no males in the database who fell into the SA category. (C) People who lived in 
countries with a low Human Development Index (HDI) had higher WT than people who lived in 
countries with high or middle HDI, even after adjusting for physiological and environmental 
variables (P < 0.001). (D-F) Relationship between water turnover and outdoor air temperature, 
physical activity level (PAL), or fat-free mass. The countries were categorized as high (red), middle 
(green), and low (blue) HDI. (D) A significant interaction (P < 0.001) was observed between 
outdoor air temperature and HDI in water turnover. The association between outdoor air 
temperature and water turnover is weak in high HDI countries (r = 0.086, P < 0.001) but strong in 
men in low HDI countries (r = 0.604, P < 0.001). (E, F) A significant interaction (P < 0.001) was 
observed between HDI and PAL or FFM in water turnover. Correlation coefficients were 
significantly higher (P < 0.001) in low HDI countries (r = 0.484 to 0.670, P < 0.001) than in high HDI 
countries (r = 0.367 to 0,510, P < 0.001).  
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Fig. 6. Determinants of human water turnover. Objective measures of water turnover from a large 
global dataset indicate that water turnover is strongly related to anthropometric, lifestyle, and 
environmental factors. PAL = Physical activity level (Total energy expenditure/Basal energy 
expenditure), HDI = Human development index. 
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Materials and Methods 

Participants 

This analysis was conducted using the International Atomic Energy Agency International 

Doubly Labeled Water database (IAEA DLW database). The details of the database have 

been described elsewhere (31), and the information is available on the IAEA website (32). 

We used the database version 3.5.3, which had a total of 7049 measurements, of which 

we analyzed a total of 5604 subjects (3729 females and 1875 males). These subjects had 

no missing information on age, sex, height, weight, dilution spaces, and elimination rates 

of 18O and 2H, total energy expenditure (TEE), water turnover (WT), fat-free mass (FFM), 

fat mass (FM), measurement data, latitude, longitude, and climate data.  

 

 

---------------------------------------------------------------------------------------------------- 

 

Fig. S1. Measurement locations of the IAEA DLW Database. Darker shading indicates a larger 
sample size from that country. Data were divided by country on the basis of the world bank coding 
classification.  

-------------------------------------------------------------------------------------------------------- 
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Water turnover, body composition, and energy expenditure 

Water turnover, energy expenditure, and body composition were measured using the 

DLW method (33). Details of the methods have been described in previous papers (13, 

34). Briefly, each participant was given a drink that containing a weighed premixed dose of 
2H2O and H218O (DLW) based on body size. Predose and postdose samples of urine, blood 

or salvia were collected and analyzed mostly by isotope-ratio mass spectrometry, with 

some samples analysed by laser spectroscopy. There is no significant effect of the analysis 

method on the estimated isotope enrichments (35-37). The dilution spaces of 2H and 18O 

(ND and NO, respectively) and the elimination rates of 2H and 18O (kD and kO, respectively) 

were obtained. Total body water was calculated from the average of the two dilution 

spaces, ND/1.043 and NO/1.007, which corrects for isotopic sequestration in non-aqueous 

tissues (3, 41-43).  FFM was calculated by assuming a hydration coefficient of 73.2% in 

adults. Age-specific hydration coefficients were applied to children. The carbon dioxide 

production rate (rCO2) was calculated using a common equation across all studies, 

specifically equation 1 from Speakman et al. (2021) (13). TEE was calculated using Wier’s 

equation (equation 5 in reference 13, Speakman et al. 2021), using respiratory quotients 

for each specific study.  

For n = 1439 subjects we also had measures of basal energy expenditure (BEE: n = 181 

females and n = 621 males). Because only ~30% of subjects had measured BEE, the 

predicted BEE was used in this study with the Mifflin et al. equation for adults aged 18 

years and older (38) and Schofield equation for those under 18 years old (39). The physical 

activity level (PAL) was calculated as TEE divided by BEE 

The rate of daily water turnover (rH2O, L/d) was calculated using the following 

equation(40): 

 rH2O = kDND     [1] 

When body water is maintained constant, rH2O is equal to the total water efflux and total 

water influx (41).  
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Ambient temperature and other weather related variables 

Weather related data were extracted differently for locations within and outside the USA. 

For measurements inside the USA, we used the National Centers for Environmental 

Information (NCEI)'s FTP site (ftp://ftp.ncdc.noaa.gov/pub/data/daily-grids/). This dataset 

contains averages of daily maximum, minimum, and average temperature (TMAX, TMIN, 

and TAVG) and precipitation (PRCP) for the contiguous USA between January 1, 1951, and 

the present (46). These data cover gridded fields that cover the land area between 24°N 

and 49°N and between 67°W and 125°W. The grids are approximately 4 km square. These 

data are compiled into averages for US counties. For each DLW measurement we used the 

known geographical location to identify the county where the person was measured and 

then extracted the daily averages for the duration of the measurement, which was also 

provided from the IAEA DLW database. We then generated an average maximum, 

minimum and mean temperature and precipitation exposure for each individual 

measurement.  

For data outside the USA we matched the individual estimates for each study 

participant, based on reported dates and locations for each measurement in the database, 

to the local average ambient temperature (TAVG), relative humidity (RH), precipitation 

(PRCP) and windspeed (WDSP) extracted from the National Oceanic and Atmospheric 

Administration's (NOAA) National Centers for Environmental Information (NCEI) online 

data repository and NOAA's Global Surface Summary of the Day (GSOD; 

https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00

516/html) records using the R package GSODR. The GSOD is derived from The Integrated 

Surface Hourly (ISH) dataset available from National Centers for Environmental 

Information. This database contains global averages of daily weather elements between 

1929 and the present calculated on an hourly basis. For each participant, daily weather 

data were extracted from the database from the nearest weather station within a 50km 

https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00516/html
https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00516/html
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radius of the study coordinates for the days of each DLW measurement and then averaged 

across those days.  

 

Statistical analyses 

We used the base package in R version 4.0.2 (R Core Team 2020-06-22) with RStudio 

version 1.2.5019 (2019-10-24) for all analyses. The mean and standard deviation (SD) were 

calculated for descriptive statistics. General linear models were implemented using the lm 

function for multiple regression analysis with WT as the dependent variable. Pearson 

correlation coefficients were calculated between log-transformed WT and log-

transformed FFM, percent body fat, log-transformed TEE, PAL, or air temperature. Scatter 

plots were generated using the ggplot function with generalized additive models with 

integrated smoothness.  
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Table S1-1. Distribution of Observations by Economy & Country 
Low HDI*   259 
 Ghana GHA 59 
 Kenya KEN 35 
 Nigeria NGA 116 
 Tanzania TZA 49 
Middle HDI  368 
 China CHN 16 
 Ecuador ECU 44 
 Jamaica JAM 72 
 Morocco MAR 22 
 Mauritius MUS 51 
 Seychelles SYC 72 
 South Africa ZAF 91 
High HDI  4977 
 Belgium BEL 50 
 Denmark DNK 27 
 Finland FIN 48 
 France FRA 6 
 Germany DEU 79 
 Great Britain GBR 163 
 Japan JPN 159 
 Netherlands NLD 415 
 Norway NOR 26 
 Spain ESP 31 
 Sweden SWE 97 
 United States USA 3876 
Total   5604 

*HDI, human development index. 
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Table S1-2. Distribution of Observations by Country in Adults Aged 
60 Years and Older 
 Tanzania TZA 8 
 Germany DEU 10 
 Japan JPN 159 
 Netherlands NLD 50 
 Norway NOR 2 
 Sweden SWE 49 
 United States USA 1579 
Total   1857 

   

   
Table S1-3. Distribution of Observations by Country in People Aged 
<18 Years 
 Kenya KEN 27 
 Nigeria NGA 6 
 Ecuador ECU 44 
 Morocco MAR 22 
 Mauritius MUS 51 
 Belgium BEL 31 
 Denmark DNK 27 
 Great Britain GBR 111 
 Netherlands NLD 95 
 Spain ESP 31 
 Sweden SWE 30 
 United States USA 651 
Total   1126 
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Male   Age (y) Height (cm) Weight (kg) BMI Fat (%) FFM (kg) TEE (MJ/d) TBW (kg) TBW (%) WT (L/d) WT/TEE (mL/kcal) 
Age group N mean sd mean Sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd 

(0,0.5] 78 0.2 0.1 59.6 5.9 6.0 1.7 16.3 2.2 23.9 7.8 4.4 1.1 1.8 0.6 3.6 0.8 61.1 6.4 0.9 0.2 2.29 0.67 
(0.5,1] 15 0.7 0.2 69.7 3.8 8.4 0.8 17.4 1.0 30.4 7.5 5.9 0.9 2.6 0.8 4.7 0.7 55.3 5.9 1.2 0.4 1.89 0.43 
(1,2] 6 1.0 0.0 75.7 2.5 9.8 0.7 17.1 0.9 26.7 6.3 7.2 0.6 3.5 0.8 5.7 0.5 58.0 4.9 1.2 0.2 1.49 0.21 
(2,4] 25 3.6 0.3 102.3 7.2 17.7 3.4 16.9 3.1 27.5 5.8 12.7 1.9 5.1 1.0 9.8 1.4 56.1 4.5 1.4 0.4 1.15 0.47 
(4,6] 91 5.1 0.7 112.9 7.8 21.6 5.7 16.8 2.8 25.5 7.3 15.8 2.8 6.3 1.1 12.1 2.2 57.2 5.6 1.6 0.6 1.07 0.27 
(6,8] 30 7.2 0.6 124.9 8.4 25.4 6.0 16.2 2.6 22.5 8.9 19.3 2.7 7.2 1.1 14.7 2.0 59.0 6.8 2.0 0.6 1.13 0.29 

(8,10] 67 9.1 0.5 136.4 9.6 34.6 13.1 18.1 4.6 26.0 12.8 24.3 5.7 8.4 1.6 18.4 4.3 56.0 9.7 2.2 0.7 1.09 0.28 
(10,12] 29 11.0 0.5 143.7 9.6 44.5 13.2 21.2 4.4 30.9 10.5 29.8 6.3 9.4 1.8 22.4 4.7 52.0 7.9 2.5 0.7 1.10 0.26 
(12,16] 119 14.5 1.2 168.7 12.0 60.6 17.8 21.0 5.2 22.2 9.1 46.2 11.0 12.0 2.3 34.5 8.2 58.1 6.8 3.2 0.9 1.11 0.27 
(16,20] 93 18.3 1.1 178.2 7.1 73.7 15.1 23.1 4.2 21.7 9.2 56.7 7.2 14.0 2.5 41.8 5.2 57.8 6.8 3.8 1.1 1.15 0.33 
(20,25] 100 23.5 1.4 177.7 9.5 76.0 19.3 23.9 5.0 19.5 8.9 60.1 10.8 13.7 3.6 44.0 7.9 59.0 6.5 4.2 1.1 1.35 0.46 
(25,30] 145 28.0 1.4 177.2 8.8 77.7 15.6 24.6 4.0 22.4 8.1 59.5 9.4 12.7 3.2 43.6 6.9 56.9 5.9 4.1 1.2 1.40 0.41 
(30,35] 103 32.8 1.4 176.8 8.0 79.7 19.5 25.4 5.3 24.1 8.1 59.5 10.6 12.7 3.6 43.6 7.7 55.6 5.9 4.3 1.3 1.45 0.50 
(35,40] 135 38.0 1.5 177.0 7.7 83.0 19.8 26.4 5.5 27.6 8.1 59.0 10.4 12.8 2.9 43.2 7.6 53.0 6.0 4.0 1.1 1.35 0.46 
(40,45] 155 42.9 1.4 176.4 7.7 82.5 16.1 26.4 4.3 27.7 7.8 58.8 9.1 12.6 2.3 43.1 6.6 52.9 5.7 4.0 1.2 1.33 0.38 
(45,50] 129 47.8 1.5 176.8 7.1 85.8 15.1 27.4 4.3 29.1 6.2 60.2 7.8 12.7 2.3 44.1 5.7 51.9 4.6 3.9 1.0 1.31 0.31 
(50,55] 87 52.5 1.5 177.3 6.5 89.9 15.7 28.6 4.8 32.3 6.0 60.3 7.9 12.6 1.9 44.2 5.7 49.6 4.4 3.5 0.8 1.18 0.21 
(55,60] 64 57.7 1.4 177.4 7.5 89.1 14.0 28.2 3.8 30.9 6.6 61.0 7.2 12.7 2.0 44.6 5.3 50.6 4.8 3.7 0.7 1.23 0.22 
(60,65] 70 63.1 1.6 174.8 7.8 84.8 17.4 27.6 4.6 31.2 7.2 57.4 8.1 11.9 2.0 42.0 5.9 50.4 5.3 3.4 0.7 1.21 0.24 
(65,70] 71 67.8 1.2 171.4 6.9 78.1 17.3 26.4 4.8 31.2 6.7 52.9 8.4 10.8 1.8 38.7 6.2 50.4 4.9 3.5 0.8 1.35 0.26 
(70,80] 194 75.5 3.0 171.0 8.3 77.3 15.8 26.3 4.5 31.4 6.5 52.4 8.3 10.1 1.8 38.4 6.1 50.3 4.7 3.1 0.6 1.30 0.28 
(80,90] 61 84.2 2.5 168.1 7.4 72.3 13.9 25.5 4.4 32.8 6.3 48.0 7.3 8.6 1.7 35.2 5.3 49.2 4.6 2.5 0.7 1.23 0.27 

(90,100] 8 94.0 1.9 168.8 3.0 62.6 9.5 22.0 3.4 26.8 8.9 45.2 4.9 7.6 1.0 33.1 3.6 53.6 6.5 2.0 0.3 1.12 0.36 
Female N mean sd mean Sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd 
(0,0.5] 78 0.2 0.1 59.2 5.3 5.7 1.4 15.9 1.7 26.4 7.6 4.1 0.9 1.7 0.5 3.3 0.7 59.0 6.2 0.8 0.2 2.21 0.67 
(0.5,1] 12 0.6 0.2 67.5 4.3 8.4 1.6 18.4 1.9 33.6 5.2 5.6 0.9 2.4 0.3 4.4 0.7 52.8 4.1 1.1 0.2 1.86 0.33 
(1,2] 6 1.5 0.5 80.7 5.8 11.0 1.9 16.7 0.6 22.6 8.0 8.5 1.9 3.8 0.7 6.7 1.4 60.9 6.2 1.3 0.3 1.40 0.16 
(2,4] 29 3.6 0.3 101.0 5.7 16.0 3.1 15.6 1.7 27.7 4.8 11.5 1.7 4.8 0.6 8.9 1.3 55.9 3.7 1.2 0.2 1.07 0.23 
(4,6] 73 5.1 0.6 111.2 6.8 19.7 3.3 15.8 1.7 27.3 5.8 14.2 2.2 5.5 0.8 10.9 1.6 55.8 4.4 1.4 0.4 1.04 0.21 
(6,8] 36 7.0 0.6 121.7 9.2 26.8 7.8 17.8 3.8 30.2 10.1 18.1 3.5 6.5 1.2 13.8 2.7 53.2 7.7 1.7 0.6 1.11 0.32 

(8,10] 72 9.1 0.5 133.5 9.3 33.0 11.2 18.2 4.5 31.1 10.8 21.9 4.7 7.3 1.7 16.6 3.6 52.1 8.2 1.9 0.7 1.10 0.30 
(10,12] 69 11.1 0.6 148.5 8.0 45.1 11.6 20.3 4.1 29.5 10.2 31.1 6.2 8.9 1.9 23.4 4.6 53.1 7.7 2.3 0.6 1.12 0.39 
(12,16] 218 14.4 1.2 160.8 7.9 56.5 14.0 21.7 4.6 30.1 8.2 38.7 6.9 10.0 2.3 28.9 5.1 52.3 6.2 2.5 0.9 1.07 0.47 
(16,20] 195 18.3 1.0 164.2 7.1 63.9 15.2 23.6 5.3 32.6 8.2 42.2 7.0 10.0 1.9 31.2 5.2 49.8 6.0 2.9 0.8 1.22 0.31 
(20,25] 220 23.3 1.4 164.7 7.4 68.1 18.6 25.1 6.6 34.2 9.5 43.4 7.2 9.5 1.9 31.8 5.3 48.2 6.9 3.0 0.9 1.34 0.36 
(25,30] 252 27.7 1.5 164.0 6.9 68.4 17.0 25.4 6.0 34.9 9.5 43.3 7.0 9.5 1.9 31.7 5.1 47.7 7.0 3.2 1.1 1.41 0.47 
(30,35] 206 32.9 1.3 164.6 6.2 73.5 17.5 27.1 6.2 36.9 8.8 45.2 6.5 9.8 1.6 33.1 4.8 46.2 6.5 3.4 1.0 1.47 0.45 
(35,40] 213 38.0 1.5 164.0 6.6 74.7 17.7 27.8 6.6 38.4 7.7 45.0 6.6 9.8 1.7 32.9 4.8 45.1 5.6 3.2 0.8 1.39 0.35 
(40,45] 275 42.8 1.4 163.7 7.2 73.4 18.7 27.3 6.3 37.9 8.0 44.5 7.6 9.8 1.9 32.6 5.6 45.5 5.8 3.3 0.9 1.44 0.43 
(45,50] 159 47.4 1.5 164.5 6.1 73.8 17.0 27.3 6.2 38.7 7.9 44.2 6.2 9.8 1.5 32.4 4.5 44.9 5.8 3.2 0.9 1.37 0.38 
(50,55] 102 52.8 1.5 163.4 5.9 79.6 19.5 29.8 7.0 42.2 7.8 44.7 6.6 9.7 1.6 32.7 4.8 42.3 5.7 3.1 0.9 1.35 0.37 
(55,60] 99 58.3 1.5 164.0 6.0 76.7 17.0 28.4 5.7 41.7 7.5 43.7 6.1 9.7 1.5 32.0 4.5 42.7 5.5 3.3 0.7 1.42 0.32 
(60,65] 239 63.3 1.5 161.5 7.2 76.9 18.4 29.5 6.9 42.7 6.6 43.1 6.8 9.3 1.6 31.6 5.0 42.0 4.8 3.2 0.7 1.47 0.37 
(65,70] 361 68.1 1.5 161.3 6.8 74.0 15.8 28.4 5.7 41.8 7.3 42.3 5.9 9.0 1.3 31.0 4.4 42.7 5.3 3.1 0.7 1.44 0.31 
(70,80] 653 75.0 2.8 159.4 6.8 68.7 14.4 27.0 5.2 41.1 6.7 39.7 5.6 8.2 1.3 29.1 4.1 43.1 4.9 2.8 0.7 1.43 0.34 
(80,90] 140 83.6 2.4 157.4 7.3 64.1 12.4 25.9 4.7 39.5 6.5 38.2 5.2 7.4 1.4 28.0 3.8 44.3 4.8 2.4 0.6 1.39 0.31 

(90,100] 22 94.4 1.8 158.0 9.1 59.0 12.8 23.5 4.1 34.6 7.9 38.3 8.5 6.2 1.2 28.0 6.2 47.9 5.8 2.0 0.4 1.39 0.26 
 

Table S2. Key characteristics by age-sex group (mean and SD). BMI, body mass index; Fat, percent body fat; FFM, fat-free mass; TEE, total energy 
expenditure; TBW, total body water; WT, water turnover. 
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Table S3. Multiple regression analysis to predict water turnover in adults aged 18 years and 
older. 
 β std. err. t-value p  

(Intercept) -0.059 0.036 -1.635 0.102   

Age (yr) -0.203 0.051 -3.982 0.00007  *** 

Height (cm) 0.003 0.047 0.064 0.949   

FFM (kg) 0.454 0.076 5.947 0.00000  *** 

% body fat (%) 0.050 0.049 1.020 0.308   

Sex (F=0, M=1) 0.075 0.045 1.691 0.091   

TEE (MJ/d) -0.094 0.128 -0.734 0.463   

PAL 0.309 0.083 3.725 0.0002  *** 

Air temp. (°C) 0.240 0.035 6.887 0.00000  *** 

Relative humidity (%) 0.093 0.030 3.137 0.0018  ** 

Wind speed (m/s) -0.027 0.025 -1.067 0.286   

precipitation (mm) 0.018 0.027 0.655 0.513   

HDI (H=0, M=1, L=2) 0.158 0.028 5.678 0.00000  *** 

Effective latitude (°) 0.038 0.024 1.544 0.123   

Altitude (m) 0.062 0.025 2.448 0.0145  * 
 SEE R2 adj R2 P  
 0.7944 0.456 0.4496 < 2.2e-16 

FFM, fat-free mass; TEE, total energy expenditure; PAL, physical activity level; HDI, Human 
Development Index. * P<0.05, ** P<0.01, *** P<0.001 
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The positive coefficient of Air temp.2 indicated an U-shaped relationship between water 
turnover and air temp.. The negative coefficient of Age2 indicated an inverse U-shaped 
relationship between water turnover and age. Eleven subjects who engaged in the DLW 
experiment at an altitude over 3000 m were excluded from the analysis (7490 m [n = 3], 
5390 m [n = 6], and 3263 m [n = 2] ).  

  

Table S4.  Multiple regression analysis including first and second-order terms to predict water 
turnover (WT) in adults aged 18 years and older. 
  β std. err. t-value p   
(Intercept) 0.032 0.032 0.987 0.32389  

 

PAL 0.237 0.019 12.307 0.00000  *** 
FFM (kg) 0.386 0.031 12.348 0.00000  *** 
Sex (F=0, M=1) 0.018 0.026 0.701 0.48348  

 

Air temp. (°C) -0.192 0.063 -3.048 0.00236  ** 
Air temp. * Air temp 0.479 0.065 7.339 0.00000  *** 
Relative humidity (%) 0.067 0.028 2.399 0.01660  * 
Athlete (No=0, Athlete=1) 0.041 0.012 3.357 0.00081  *** 
HDI (H=0, M=1, L=2) 0.052 0.025 2.051 0.04044  * 
Altitude (m) 0.133 0.025 5.443 0.00000  *** 
Age (year) 0.611 0.123 4.986 0.00000  *** 
Age * Age -0.800 0.125 -6.401 0.00000  *** 
  SEE R2 adj R2 P   
 0.7618 0.486 0.484 < 2.2e-16 
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Table S5. Participant characteristics by Athletic status & Sex (mean ± SD; [range])* 

  Male   Female 
 Athlete Non-athlete  Athlete Non-athlete 

  (n = 95) (n = 720)   (n = 19) (n = 1100) 

Age (y) 23.5 ± 5 38.1 ± 12.1  24.8 ± 5.6 35.5 ± 12.1 
 [18-45] [18-59]  [18-36] [18-59] 

Height (cm) 183.2 ± 10 178.6 ± 7.1  173.1 ± 11.4 164.7 ± 6.5 
 [155-204.7] [153-204]  [162.4-195] [142.1-186] 

Weight (kg) 78.2 ± 12.3 85.9 ± 18.8  66.5 ± 11.4 79.5 ± 23.6 
 [51.8-108.9] [49.9-189.9]  [52.2-84.3] [38.3-192.4] 

BMI (kg/m2) 23.2 ± 2.3 26.9 ± 5.7  22.0 ± 1.7 29.3 ± 8.5 
 [18.9-29.9] [15.7-61.4]  [19.6-25.0] [12.5-71.9] 

Fat (%) 17.4 ± 5.4 27.3 ± 9.1  28.9 ± 8 38.5 ± 9.3 
 [3.2-40.4] [3.4-56.2]  [9.8-40.0] [6.9-70.1] 

FFM (kg) 64.7 ± 11.2 61.3 ± 8.8  46.7 ± 5.6 47.2 ± 9.0 
 [38.3-96.9] [36.3-97.8]  [35.7-56.2] [26.3-89.8] 

TEE (MJ/d) 17.3 ± 3.3 13.6 ± 2.8  12.8 ± 1.9 10.2 ± 1.9 
 [7.7-26.3] [6.7-26.1]  [10.2-17.1] [4.7-19.9] 

WT (L/d) 5.1 ± 1.6 3.9 ± 1.1  4.1 ± 1.5 3.2 ± 0.9 
 [1.8-10.6] [1.7-10.1]  [1.8-8.0] [1.3-8.6] 

WT/Weight 
(L/kg/d) 66.2 ± 21.1 47.1 ± 14.6  61.7 ± 19.8 43.0 ± 16.8 

  [26.9-141.0] [17.9-139.2]   [29.6-100.9] [10.5-194.8] 
*BMI, body mass index; FFM, fat-free mass; TEE, total energy expenditure; WT, water 
turnover. 
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*BMI, body mass index; FFM, fat-free mass; TEE, total energy expenditure; WT, water turnover; C, control; HG, hunter-
gatherers; HGF, mixed farmer and hunter-gatherer; SA, subsistence agriculturalists. 

 

Table S6. Participant characteristics by Occupation & Sex (mean ± SD; [range])* 
 Male  Female 

 C HG HGF  C HG HGF SA 
  (n = 589) (n = 21) (n = 19)   (n = 809) (n = 19) (n = 22) (n = 7) 
Age (y) 38.4 ± 12.3 32.2 ± 12.3 41.1 ± 10.7  37.3 ± 11.7 32.8 ± 12.1 40 ± 12.8 30 ± 6.4 

[18-59] [18-58] [18-54]  [18-59] [18-59] [18-57] [21-38] 
Height (cm) 178.5 ± 7.3 159.6 ± 7.2 165 ± 5.6  164.3 ± 6.8 149.7 ± 8 150.2 ± 5 161.1 ± 7.8 

[153.0-204.0] [144.5-171.1] [155.2-178.1]  [142.1-186] [137.4-164.5] [141.5-160.6] [152-177.5] 
Weight (kg) 85.5 ± 18.7 51.5 ± 4.8 69.1 ± 9.6  80.8 ± 24.6 45.5 ± 6.4 54.9 ± 7.7 59.6 ± 5.5 

[49.9-189.9] [42.8-58.2] [53.8-84.9]  [38.3-192.4] [34-55] [42.8-66.5] [51.3-65.4] 
BMI 
(kg/m2) 

26.8 ± 5.6 20.2 ± 1.7 25.3 ± 2.7  29.9 ± 8.9 20.2 ± 2 24.3 ± 2.8 23.1 ± 2.7 
[15.7-61.4] [18.1-23.8] [20.6-31.1]  [12.5-71.9] [16.7-23.9] [19.9-29] [20-26.2] 

Fat (%) 27.7 ± 9.2 14.0 ± 5.5 21.5 ± 7.6  39.0 ± 9.5 23.1 ± 5 29.1 ± 6.1 30.7 ± 5.7 
[3.4-56.2] [2.2-23.9] [12.4-42.3]  [6.9-70.1] [13.3-31.9] [15.5-40.6] [22.4-38.2] 

FFM (kg) 60.6 ± 8.5 44.2 ± 3.9 54.2 ± 8.8  47.5 ± 9.5 34.8 ± 4.1 38.8 ± 4.8 41.2 ± 4.0 
[36.3-92.3] [34.8-52.2] [41.1-73.1]  [26.3-89.8] [29.5-43.6] [26.2-46] [35.5-45.3] 

TEE (MJ/d) 13.8 ± 3.0 10.5 ± 1.6 14.1 ± 3.3  10.3 ± 2.0 8.0 ± 1.5 9.9 ± 1.3 13.9 ± 1.9 
[6.7-26.1] [7.5-14.3] [8.2-20.8]  [4.7-19.9] [6.1-12.0] [7.5-12.7] [10-15.8] 

WT (L/d) 3.9 ± 1.1 4.5 ± 0.6 6.2 ± 2.3  3.3 ± 0.9 3.9 ± 0.6 3.6 ± 0.9 4.0 ± 0.3 
[1.7-10.1] [3.4-5.9] [3.2-11.6]  [1.3-8.6] [2.7-5] [1.5-5] [3.7-4.4] 

WT/Weight 
(L/kg) 

47.0 ± 15.0 89.4 ± 16.7 88.1 ± 24.7  43.8 ± 17.4 85.5 ± 12.2 66.9 ± 16.8 68.1 ± 3.6 
[17.9-142.2] [64.7-134.9] [47.5-136.2]   [10.5-194.8] [64.8-105.3] [27.6-102.2] [62.7-73.9] 
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Table S7. Participant characteristics by Human Development Index (HDI) & Sex (mean ± SD; [range])* 
  Male   Female 

 High HDI Middle HDI Low HDI  High HDI Middle HDI Low HDI 
  (n = 813) (n = 103) (n = 57)   (n = 1339) (n = 148) (n = 161) 
Age (y) 38.7 ± 11.4 32.8 ± 5.7 32.1 ± 9.7  36.3 ± 11.3 31.9 ± 6.5 32.1 ± 10.2 

[18-59] [21-44] [18-58]  [18-59] [20-45] [18-59] 
Height 
(cm) 

178.5 ± 7.0 171.8 ± 6.6 165.8 ± 8.7  165 ± 6.4 162.3 ± 6.2 158.9 ± 7.1 
[153-204] [157-187] [144.5-182.8]  [146-186] [147-183.3] [137.4-176.5] 

Weight (kg) 85.1 ± 16.2 68.4 ± 14.4 57.1 ± 8  73.0 ± 17.4 76.1 ± 22.8 57.4 ± 12.3 
[49.9-174.6] [47.6-127] [41.6-74.7]  [38.3-164.5] [36.9-148.2] [34-106.9] 

BMI 
(kg/m2) 

26.7 ± 4.7 23.1 ± 4.3 20.7 ± 2.3  26.8 ± 6.2 28.8 ± 8.2 22.7 ± 4.7 
[15.7-57.1] [15.5-38.4] [16.7-26.4]  [12.5-55.3] [14.5-54.8] [15.4-47.8] 

Fat (%) 27.3 ± 8.1 22.6 ± 7.8 13.3 ± 5.8  37.4 ± 8.4 40.4 ± 9.2 29.4 ± 8.1 
[3.4-54.5] [1.3-44.1] [1.2-28]  [8-70.1] [19.7-59.6] [5.5-51.8] 

FFM (kg) 61.1 ± 8.6 52.3 ± 8.4 49.3 ± 6.3  44.6 ± 6.8 43.7 ± 8.5 39.8 ± 5.5 
[36.3-97.8] [33.9-77.9] [34.8-63.3]  [26.3-95.7] [27.5-68.3] [29.5-66.4] 

TEE (MJ/d) 13.3 ± 2.8 10.8 ± 2.3 11.9 ± 2.0  9.8 ± 1.7 9.3 ± 2.0 9.3 ± 1.6 
[6.7-34.3] [5.4-18.3] [7.5-15.4]  [4.7-20.4] [4.6-15] [6.1-17.4] 

WT (L/d) 3.9 ± 1.1 4.0 ± 1.2 5.2 ± 1.1  3.1 ± 0.9 3.2 ± 0.9 3.8 ± 0.9 
[1.7-10.1] [1.7-8.7] [3.3-8.0]  [1.3-8.4] [1.3-6.6] [2.1-7.2] 

WT/Weight 
(L/kg/d) 

47.0 ± 13.5 59.6 ± 16.9 91.3 ± 17.5  44.5 ± 16.2 44.2 ± 12.0 67.0 ± 16.4 
[17.9-139.2] [24.8-142.2] [61-134.9]   [14-194.8] [14.5-80.2] [36-114] 

*BMI, body mass index; FFM, fat-free mass; TEE, total energy expenditure; WT, water 
turnover. 
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The IAEA DLW database group authorship (database version 3.5.3). 

This group authorship contains the names of people whose data were contributed into the IAEA 
DLW database by the analysis laboratory but they later could not be traced, or they did not 
respond to emails to assent inclusion among the authorship. The list also includes some 
researchers who did not assent inclusion to the main authorship because they felt their 
contribution was not sufficient to merit authorship, or their specific data was not used in the 
present analysis (eg pediatric data) 
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Academic Medical Center of Amsterdam University, Amsterdam, The 
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University of Gothenburg, Gothenburg, Sweden 
 
Dr David S. Ludwig 
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Santiago Chile.  
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