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A B S T R A C T   

Front Distribution Centre (FDC) is a new terminal warehouse which is closer to customers, with its location 
selection being crucial for e-commerce and customer time satisfaction. We introduce in this paper a joint dis
tribution function of demand based on time and space, which constructs two spatio-time models: spatio-time 
clustering model and spatio-time optimisation model. A staged clustering algorithm is designed to obtain the 
candidate FDCs, and an intelligent algorithm based on NSGA-II (Non-dominated Sorting Genetic Algorithm II) is 
applied to determine the final FDCs, in which the location selection problem is formulated as a bi-objective 
programming model to minimise total costs and maximise customer time satisfaction. Our results indicate 
that the model considering spatio-temporal joint attribute of demand performs better than the traditional spatial 
model. Furthermore, when compared with the k-means clustering algorithm, Multi-Objective Evolutionary Al
gorithm based on Decomposition (MOEA/D) and its improved algorithm Multi-Objective Evolutionary Algorithm 
based on the Adaptive Neighborhood Adjustment strategy (MOEA/D-ANA), Multi-Objective Particle Swarm 
Optimisation” (MOPSO) and its enhancing algorithm Competitive Multi-Objective Particle Swarm Optimiser 
(CMOPSO), the solving method based on staged clustering and NSGA-II absolutely performs more stable and can 
get a greater number of pareto-optimal solutions with higher qualities. Especially when compared with K-means 
clustering algorithms, it can reduce total costs by up to 38.84% and improve customer time satisfaction by up to 
36.22%.   

1. Introduction 

As a product of community e-commerce development, front distri
bution centre (FDC) is a new terminal warehouse which is closer to 
customers (Dai et al., 2021). According to the 2021 China Fresh Food 
E-commerce Industry Research Report (issued by iResearch Institute), 
from 2018 to 2020, the scale of the real-time fresh food distribution 
market represented by FDC has increased from USD 1.26 billion to USD 
5.24 billion, with a compound annual growth rate of 107%. FDC has 
expanded rapidly. For example, Alibaba Group has set up 230 front 
distribution centres (FDCs) (freshHEMA) in two years (Huang and Shi, 
2021). However, inappropriate location selection of FDC leads to higher 
operation costs and lower efficiency, and even large loss (Huang and Shi, 

2021). Many studies have pointed out that an appropriate location is 
decisive for minimizing inventory holding and transportation cost 
(Holzapfel et al., 2023; Yazdekhasti et al., 2022). Therefore, selecting 
appropriate FDC location with the optimal demand allocation plays an 
essential role in an effective supply chain system (Chen and Tsai, 2016; 
Xuan and Chi, 2020), but so far, there is still limited research on the 
location selection of FDC. To address this issue, this paper proposed a 
FDC location selection method from spatio-temporal perspective. 

Different from the traditional warehouse, the order response speed of 
the FDC is faster because its delivery distance is shorter (Huang and Shi, 
2021), and this characteristic directly affects its customer time satis
faction, which mainly refers to the satisfaction with delivery time in this 
paper (Ma et al., 2006). However, same as other instant delivery 
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platforms, it is difficult for FDC to cope with the peak period of fast 
delivery, while the distribution resources are idle during the low peak 
period of orders (Yildiz and Savelsbergh, 2019). Therefore, the charac
teristics of demand distribution cannot be ignored. In particular, the 
time distribution of customer demand reflects the time information 
when customers place orders. In addition, Nasr et al. (2021) have 
demonstrated that the location-inventory-routing model is efficient, 
which means that considering the routing problem in advance in the 
location selection stage can reduce total costs effectively. Thus, this 
paper macroscopically considers the distribution problem, that is, from 
both space and time dimensions, considering which demand points are 
suitable for delivery by the same distribution centre. 

The location of FDC is a topic which belongs to the multiple distri
bution centre location problem (Ge et al., 2018). Recently, location 
methods of multiple distribution centres can be broadly classified into 
two categories. One group is to assume the candidate distribution cen
tres are known (Tnissen and Arts, 2020; Ge et al., 2018; Nasiri et al., 
2014), and the other one is in a situation with unknown candidate dis
tribution centres (Wang et al., 2020). This paper considers the latter 
situation more realistic due to the requirements of real life. 

A key contribution of this paper is to extend the two-stage location 
decision method by focusing on the spatio-temporal considerations in 
the literature on FDC location selection problem. Specifically, in clus
tering stage, many studies use the K-means clustering algorithm to 
generate the candidate facility location (Wang et al., 2018, 2022; 
Shahparvari et al., 2020). However, these studies only clustered demand 
points based on space distance. Recently, Wang et al. (2021) have 
focused on customer time information and considered time windows of 
customers in the clustering stage. They have demonstrated that 
considering customer spatio-temporal information is beneficial to 
reducing cost and delivery time. Different from the traditional facility 
location problem which is business to business in Wang et al. (2021), the 
customer demand in FDC location problem is more stochastic and its 
delivery capacity is limited. Therefore, the temporal distribution func
tion of customer demand is introduced into this study to describe 
customer time information. We construct a new spatio-temporal clus
tering model with two situations presumed, which is more in line with 
the operation requirements of FDC. By presenting a staged clustering 
algorithm of three-dimensional clustering and then two-dimensional 
clustering, the candidate FDCs are obtained. 

Although in the planning optimisation stage, most studies focus on 
the optimisation of costs (You et al., 2019; Kuznietsov et al., 2017; Yong 
et al., 2015), all of them ignore the customer time satisfaction, which is 
very important in FDC operation (Ma et al., 2006). This study proposes a 
bi-objective optimisation model in which not only total costs, but also 
the customer time satisfaction that is often neglected can now be 
considered, which we refer to as the spatio-temporal optimisation 
model. Our optimisation model ensures that the FDC responds to 
customer needs on time, which is conductive to customer retention and 
enterprise brand building. Finally, the Non-dominated Sorting Genetic 
Algorithm (NSGA-II), one of the most popular multi-objective genetic 
algorithms (Deb and Jain, 2012) is adopted in this study. We use it to 
solve the optimisation model to derive the final FDCs because of its 
advantages in reducing the complexity of non-inferior ranking genetic 
algorithms (Guo et al., 2021). 

The structure of this study is organized as follows. We first review 
relevant literature to introduce the research and explain our thinking 
and contribution. Then we elaborate the methodology. Next, experi
ments are carried out, with the results analysed and sensitivity analysis 
performed. Finally, we conclude our research, its theoretical contribu
tions, and managerial insights, as well as our limitation and future 
research directions. 

2. Literature review 

The location of FDC involves two main tasks: determining the 

candidate location and analysing the multiple distribution centre loca
tions optimisation problem. This section briefly reviews the literatures 
in these two fields, mainly focusing on research conducted in recent 
years. To better introduce our contribution with a multi-objective 
approach, we also review the literatures on the multi-objective 
optimisation. 

2.1. Decision of candidate location 

Though the work of determining the candidate location is an 
important part of location selection, most studies of location selection 
are carried out based on the assumption of known candidate locations. 
Vavatsikos et al. (2022) has pointed out that site selection from candi
date locations is a multiple criteria decision-making problem. Therefore, 
the Multi-Criteria Decision Model (MCDM) is often used to help decision 
making (Gul and Guneri, 2021), especially in hospital location selection 
(Ahin et al., 2019) and tourism location selection (Mardani et al., 2016), 
where there have been more mature developments. For example, 
Moradian et al. (2017) introduced disaster risk criteria into MCDM of 
hospital location selection. Popovic et al. (2019) estimated a set of 
criteria based on the MCDM method to select an optimal location for a 
tourist hotel. Besides, Liu et al. (2020) proposed a fuzzy MCDM to select 
suitable charging station locations. However, in many real-life location 
selection problems, the alternative locations are unknown (Yazdekhasti 
et al., 2022), so this paper carries out the research without the pre
determined alternative locations, and the clustering algorithm is used to 
generate the alternative locations. 

Clustering algorithm is a type of data mining analysis method (Iko
tun et al., 2023), which has been applied in the problem of location 
selection and its allocation in recent years (Rajendran and Zack., 2019; 
Jain et al., 2022). Shahparvari et al. (2020) proposed a K-means based 
heuristic approach to determine potential locations. Jian (2019) pro
posed a new supply chain distribution centre selection method based on 
the clustering algorithm and the centre-of-gravity selection method. 
Kuznietsov et al. (2017) aimed at the logistics of a food and customer 
goods distributor problem, generating the initial responsibility areas 
based on the clustering algorithm. Shin and Kim (2016) used the clus
tering algorithm as well as other algorithms to design optimal locations 
of offshore substations. However, these studies only consider the loca
tion problem in the space dimension but ignore the time dimension. 
Because the FDC is a time-sensitive issue, this paper considers a 
spatio-temporal clustering model in the location problem. 

2.2. Multiple distribution centre location optimisation 

After determining the alternative location of FDC, the location se
lection problem can be treated like the optimisation problem of Multiple 
Distribution Centre Locations (MDCLs), and there is much related 
research on MDCLs. Some research analysed the logistic optimisation 
problem from upstream integration centre to multiple distribution 
centres (Yaghin et al., 2020; Masoud and Mason, 2016), and others focus 
on the logistic optimisation problem from multiple distribution centres 
to demand points (Memari et al., 2019; Tsao et al., 2012). Fontaine et al. 
(2023) have demonstrated that it is suitable to adopt 2-tier trans
portation strategies under the situation of higher customer density and 
longer distances between integration centre depots and distribution 
areas. Therefore, this paper constructs the optimisation model from city 
distribution centre to the FDCs, then to each demand point. 

Compared to the single distribution location optimisation, the opti
misation of MDCLs is more beneficial to improve the efficiency of lo
gistics systems and reduce the operational costs with growing logistics 
demands (Azizi and Hu, 2020). Holzapfel et al. (2023) minimised the 
total supply chain costs by determining the warehouses’ locations, their 
type affiliations and capacities. Avgerinos et al. (2022) proposed a 
compact integer programming formulation which minimises the fixed 
opening costs and the connection costs per client and location. Fathi 
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et al. (2021) considered a supply chain problem that consists of a sup
plier, multiple distribution centres and multiple retailers. Azizi, & Hu 
(2020) presented a decision-making model which took multiple distri
bution centres locating into account, as well as the pickup and delivery 
vehicle routing, and direct shipment. Most of these studies set the 
optimisation goal with costs minimisation. Different from the traditional 
MDCLs optimisation problem, the location optimisation of FDC pays 
more attention to customers’ time satisfaction, which needs to consider 
goods delivery in a shorter time (Huang and Shi, 2021). Therefore, this 
paper constructs the bi-objective function with costs minimisation as 
well as customers time satisfaction maximisation (Ma et al., 2006). 

2.3. Multi-objective optimisation approaches 

Currently, much research has focused on the design of multi- 
objective solutions (Mohebalizadehgashti et al., 2020). Classical 
multi-objective optimisation methods include NSGA-II, multi-objective 
particle swarm optimisation (MOPSO) (Coello and Lechuga, 2002), 
and multi-objective evolutionary algorithm based on decomposition 
(MOEA/D) (Zhang and Li, 2007). There has been much research devoted 
to the improvement of algorithms. For example, Hao et al. (2020) pro
posed an improved NSGA-II algorithms by using the crowded distance 
comparison strategy. Zhang et al. (2018) extended MOPSO and put 
forward a Competitive Multi-Objective Particle Swarm Optimiser 

(CMOPSO), which has a promising convergence performance. Wang 
et al. (2020) studied an improved MOEA/D and proposed a decompo
sition Multi-Objective Evolutionary Algorithm based on the Adaptive 
Neighborhood Adjustment strategy (MOEA/D- ANA). 

Nowadays, multi-objective methods have been applied to many 
areas, such as food supply chains (Mohebalizadehgashti et al., 2020), 
supply chain gap analysis (Jafarian et al., 2020), pricing problems 
(Gupta et al., 2019) and so on. NSGA-II is outstanding due to its low 
complexity (Guo et al., 2022; Hao et al., 2020; Shekarian et al., 2020). 

3. Methodology 

Fig. 1 shows the methodology framework for this research, the 
candidate FDCs are obtained in the clustering stage, and the final FDCs 
are determined in the optimisation stage. 

Before construction of models, the related symbols are defined as 
Table 1 shown. The demand point here refers to relevant point of in
terest, which may be a residential area, a school and so on. 

3.1. Clustering stage 

In order to reduce total costs while improving customer time satis
faction, spatio-temporal clustering model is constructed in this paper. 
Therefore, not only geographical distribution information of demand 

Fig. 1. Methodology framework for research.  
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Table 1 
Indices, variables and parameters of the mathematical model.  

stage type symbol definition 

Clustering stage parameters xm Information of demand point m, and xm = [lonm,latm,D(T)m], where (lonm, latm) are longitude and latitude coordinates and D(T)m 
is the demand time distribution function with respect to time. 

αm Coefficient that controls the demand time distribution function. 
x1 and x2 Independent mean in the demand time distribution function. 
δ1 and δ2 Independent standard deviation in the demand time distribution function. 
R Radius of the earth, and R = 6, 371km. 
v Delivery velocity from the FDC to demands. 
β Spatio-temporal coefficient that controls the influence degree from space and time dimensions, and β ∈ [0,1]. 
k Number of clusters in three-dimension clustering. 
k’ Number of clusters in two-dimension clustering. 

another 
variable 

σm Standard deviation of clusters that demand xm wants to join, which represents the degree of dispersion, when we hope that the 
time lag is as longer as possible, that is we hope σm is bigger. 

Optimisation 
stage 

sets and 
indices 

I Set of DCPs, I = {1, 2,3, ...,k}, where k is the total number of DCPs determined in clustering stage. 
i DCPs index, and i ∈ I. 
J Set of candidate FDCs, J = {1, 2, 3, ...,k′}, where k′ is the total number of the candidate FDC determined in the clustering stage. 
j Candidate FDCs index, and j ∈ J. 
Mi Set of demands in initial small demand cluster DCP i, Mi = {1, 2, 3, ...,nMi}, where nMi is the total number of demands in DCP i. 
mi Demands index in DCP i, and mi ∈ Mi. 

parameters tjmi Delivery time from FDC j to demand mi. 

Lmi The longest waiting time that the customer mi can accept. 
β′ Positive time sensitivity coefficient in customer time satisfaction function. 
na The number of final FDC. 
cr Fixed costs of each FDC every month, including rent and fixed operation cost. 
cO Unit delivery cost from city distribution centre to the FDC. 
c1 Unit delivery cost from the FDC to demands. 
hi Total monthly demand of DCP i. 
dOj Delivery distance from city distribution centre O to the FDC j. 
djmi Directly delivery distance from the FDC j to the demand mi. 
γ Probability coefficient dedicates the probability that demands in the same small demand clusters can be delivered together. 

decision 
Variable Yij =

{1, demand cluster i is delivered by the FDC j

0, otherwise 
Another 
variable 

TSP dji Sum of the minimum delivery distance from the FDC j to every demand point in the DCP i, which can be obtained as a traveling 
salesman problem. 

TSP djmi Delivery distance from the FDC j to demand mi when demands in the same small demand clusters can be delivered together.  

Fig. 2. Time distribution function.  
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points needs to be known, but also time distribution information of 
demand points is required. In this section, demand time distribution 
function is discussed at first, then the distance function in three- 
dimension clustering model is constructed based on the time distribu
tion information and geographical distribution information. Finally, a 
staged clustering algorithm of three-dimensional clustering and then 
two-dimensional clustering is designed to obtain candidate FDCs. 

3.1.1. Demand time distribution function 
Usually shopping time is concentrated around 11:00 a.m. and 18:00 

p.m. (Guidotti et al., 2018), so this paper supposes that the demand time 
distribution function is a bimodal distribution, which is shown as for
mula (1), and can also be turned into a unimodal distribution, like 
normal distribution and skewness distribution, by adjusting its 
parameters. 

D(T)m =αm*
e−

(x1 − x1)
2

2δ1 2

̅̅̅̅̅
2π

√
δ1

+ (1 − αm)*
e−

(x2 − x2)
2

2δ2 2

̅̅̅̅̅
2π

√
δ2

(1) 

For example, when x1 = 11, x2 = 18, δ1 = 1 and δ2 = 12, the 
different symbol αm generates a different time distribution (Fig. 2), 
where (a) indicates that the order in this demand point usually occurs 
around 11:00 a.m., and (b) represents that the order in this demand 
point often occurs around 18:00 p.m. Furthermore, the probability of (a) 
occurring at around 18:00 p.m. is higher than the probability of (b) 
occurring at around 11:00 a.m. In another situation, when x1 = 11, 
x2 = 18, δ1 = 10 and δ2 = 1, the time distribution is a unimodal dis
tribution, which is shown as Fig. 1 (c). 

According to the research by Guidotti et al.(2018), we set x1 = 11, 
x2 = 18, δ1 = 1 and δ2 = 12 in this paper, and simulate the different 
characteristics of each demand point by randomly generating the cor
responding parameter αm of the bimodal distribution. For example, if the 
order occurred time is often around 11:00 a.m., it may be full-time 
family members who are responsible for the purchase (Fig. 2 (a)), and 
if it is concentrated at around 18:00 p.m. (Fig. 2 (b)), it is mostly workers 
who are not at home during the day. 

3.1.2. Distance function in three-dimensional clustering model 
Different from the traditional Euclidean distance in k-means cluster, 

the spatio-temporal joint distance is proposed in this paper. 
According to the actual goal of operation, it can be divided into two 

application: situation (A) to reduce later stage delivery costs, arranging 
the demand points with similar time distributions to be delivered 
together, so as to realise the strategy of putting together orders; situation 
(B) to reduce the delivery pressure, arranging the demand points with 
less similar time distribution to be delivered by the same FDC, so as to 
reduce the total number of delivery clerks in each FDC. Therefore, the 
spatio-temporal joint distance has two expressions, and the detail for
mulations are as follows: 

Tdm,m′ = [αm × x1 +(1 − αm)× x2] − [αm′ × x1 +(1 − αm′)× x2] (2)   

Sdm,m′ =R×arccos
(
Cm,m′

)
×pi

/
180

where Cm,m′ =cos(latm)×cos(latm′)×cos(lonm − lonm′)+sin(latm)×sin(latm′)

(3)  

Dm,m′ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Sdm,m′
2 +

(
Tdm,m′ × v × β

)2
√

or Dm,m′ = Sdm,m′ − βσm
(4) 

Based on formula (1), formula (2) indicates the time lag of order 
between two points, and formula (3) indicates the space distance be
tween two points. Formula (4) represents the spatio-temporal joint 
distance that replaces the traditional Euclidean distance in three- 
dimensional clustering. When the application situation is (A), Dm,m′ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Sdm,m′
2
+ (Tdm,m′ × v × β)2

√

, it means that we hope the time lag between 
demands is as short as possible. While application situation is (B), 
Dm,m′ = Sdm,m′ − βσm, it makes the demand time distribution of points in 
the same cluster the more dispersed, the better. 

3.1.3. Staged clustering algorithm 
The basic idea is to take demand points that are needed to be 

delivered by the same FDC as a whole, then do the second clustering of it 
to obtain the candidate FDCs. The specific algorithm flow is shown in 
Fig. 3: 

The K-means clustering algorithm is an iterative algorithm of clus
tering analysis, which can divide the population into several groups 
according to the distance between points. The three-dimensional clus
tering algorithm is designed based on the principle of K-means. A three- 
dimensional coordinate system is established in space, the x-o-y axis 
represents the geographic information of each point, and the z-axis 
represents the time information. The space distance is calculated by 
formula (3) and the time lag is calculated by formula (2), and then the 
spatio-temporal distance is defined, which is used in the three- 
dimension clustering stage to get the initial small demand clusters, 
where the number of demand points in each initial small clusters are 
limited to n, k and are defined as the number of clusters in three- 
dimension clustering, with totalD being the total number of demands. 
The cluster centres of these initial small demand clusters are named 
demand cluster points (DCPs), which are used as the representative of 
these demands. 

Through preliminary three-dimensional clustering, we have ob
tained the DCPs in three-dimensional space. Then the problem that these 

Fig. 3. Staged clustering algorithm flow.  
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DCPs should be covered by which FDC is considered. That is only a 
problem in space dimension, so we reduce the dimensionality of the 
DCPs in the three-dimensional space to the two-dimensional space, 
eliminating the time information. Through projecting to the x-o-y plane, 
the DCPs in the two-dimensional space are obtained. After that, the 
traditional k-means clustering algorithm is used to do secondary clus
tering of these DCPs to get k’ cluster centres, that is, to derive the 
candidate FDCs. 

3.2. Optimisation stage 

3.2.1. Optimisation model 
This paper builds the spatio-temporal optimisation model with the 

goal of improving customer time satisfaction and reducing total costs. To 
simplify the model, these assumptions are made below:  

(1) Each demand point can only be delivered by one FDC, and the 
transfer of goods between the FDCs is not considered.  

(2) The maximum supply capacity of the city distribution centre and 
the FDCs can always meet all current corresponding needs. 

(3) Within the service range of the FDCs, the demand time distribu
tion of each demand point is predictable. 

First, the customer time satisfaction function is constructed. The 
descending logarithm Sigmoid function is used to construct the customer 
time satisfaction function (Ma et al., 2006), as shown in formula (5), 
where f(tjmi ) is a measure value that is similar to the utility, and f(tjmi ) ∈

(0, 1]. 

f
(
tjmi

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1, tjmi ≤ Lmi

2e− β′(tjmi − Lmi )

1 + e− β′(tjmi − Lmi )
, tjmi > Lmi

(5) 

The objective function of the model is to improve customer time 
satisfaction as much as possible but simultaneously reduce total costs. 
The amount of demand at each demand point is used as a weight to affect 
overall customer time satisfaction and total costs, and the higher the 
total demand of the DCP, the more attention is paid to its satisfaction 
and costs. The detailed objective functions and constraints are as for
mula (6) to formula (11) shown: 

max
∑

j∈J

∑

i∈I
hiYij

∑

mi∈Mi

f
(
tjmi

)
(6)   

s.t.
∑

j∈J
Yij = 1 (8)  

tjmi = γ
TSP djmi

v
+ (1 − γ)

djmi

v
(9)  

0< na ≤ k′ (10)  

Yij ∈ {0, 1}, (∀i∈ I), (j∈ J) (11) 

Formula (6) is the objective function that maximizes the customer’s 

satisfaction. When Yij = 1, the overall customer time satisfaction is 
composed of the sum of the product of the customer time satisfaction 
function of each DCP and its demand. Formula (7) is the objective 
function that minimises the total costs. The total costs are composed of 
fixed costs and the delivery cost from city distribution centre to FDC to 
demands. The distance from FDCs to demands here is divided into two 
types: direct delivery distance and indirect delivery distance. TSP dji is 
the indirect delivery distance, which is considered in situation (A) 
mentioned in section 3.1.2, djmi is the direct delivery distance, which is 
considered in situation (B) mentioned in section 3.1.2, and it is the same 
as the distance formulation in traditional location selection. In situation 
(A), demand time distributions in the same small demand clusters tend 
to be similar, there is a certain probability of delivering demands 
together, so γ ∈ [0, 1]. While in situation (B), demand time distributions 
in the same small demand clusters are dispersed, the case of joint de
livery is not considered, so γ = 0. Constraint (8) ensures that every 
demand is delivered by one FDC. Constraint (9) determines the delivery 
time from FDC j to demand mi, which depends on the probability coef
ficient γ, and the same as formula (7) γ ∈ [0, 1] in situation (A), and γ = 0 
in situation (B). Constraint (10) limits the range of final FDC’s number. 
Constraint (11) represents decision variable. 

3.2.2. Solving algorithm based on NSGA-II 
In the optimisation part, NSGA-II is used to obtain the optimal so

lutions, where the greedy algorithm is embedded to find the TSP dji. The 
DCPs and candidate FDCs obtained in clustering stage are the inputs in 
NSGA-II. 

Initial population: the population size of NSGA-II is determined at 
first, and each individual in the population represents a delivery plan. To 
facilitate reading, we choose the real number to code, and the serial 
numbers of DCPs are used as the coding genes. Meanwhile, the range of 
each coding gene’s values is determined based on the serial numbers of 
candidate FDCs, that is, the candidate FDC are numbered sequentially as 
1, 2,3,...,k′, and the value of the gene is randomly selected from 1,2, 3,...,
k′. 

Non-dominant sorting and congestion calculation: following the goal of 
this paper that maximizes the customer time satisfaction and minimises 
the total costs, the optimal frontier at the stage is obtained. To calculate 
the TSP dji in delivery cost, we introduce the greedy algorithm in this 
part, which is used in situation (A) to find the shortest path from the 
candidate FDC to each demand points and then back to the candidate 

FDC. 
Combination of the populations, selection, crossover, and mutation: by 

duplicating the current population, the population size is expanded to 2 
times of the original population size. Then the selection follows the 
principle of random selection. The gene fragment is selected randomly 
to crossover. After that, the mutation operation is to randomly change 
FDC. Finally, in compliance with the principle of the survival of the 
fittest, a new population of FDC is generated. 

The stopping condition criteria: the criteria iterate multiple times until 
the maximum number of iterations is reached, then the Pareto optimal 
frontier is obtained, with each result corresponds to a solution, that is 
which FDC is to be chosen and the corresponding relationship between 
the FDCs and DCPs determined. 

min

[

crna +
∑

j∈J
cOdOj

(
∑

i∈I
hiYij

)

+ γ
∑

j∈J

∑

i∈I
Yjic1hiTSP dji +(1 − γ)

∑

j∈J

∑

i∈I
Yjic1hi

(

2
∑

mi∈Mi

djmi

)

(7)   

L. Chen et al.                                                                                                                                                                                                                                    



International Journal of Production Economics 263 (2023) 108950

7

4. Results and sensitivity analysis 

4.1. Results of a small-scale and a large-scale experiment 

To verify the feasibility and effectiveness of the algorithm proposed 
in this paper and observe the influence of spatio-temporal attribute, this 
section first conducts a simulation analysis based on a small-scale 
calculation example with 31 demand locations (Hu et al., 2015). Then 
a large-scale example verification is carried out based on 2415 real de
mand points in Beijing to further verify the application of the method in 
this paper on real business application. 

4.1.1. Small-scale experiment 
Since this article does not specifically discuss demand forecasting, 

the simulation only randomly generates parameters and assigns corre
sponding demand time distributions to the 31 demand points as dis
cussed in the literature (Hu et al., 2015). The location data are as shown 
in Table 2, and these data does not represent the actual values. 

According to two situations (A & B) explained in section 3.1.2, this 
paper conducts experiments respectively, and to compare the influence 
of the time dimension in the demand distribution on the location se
lection results, we also design a control group which is the traditional 
location selection method that only considers problem from the space 
dimension. The relevant parameters of the clustering stage are set out as 
follows: γ = 0.5 in situation (A), γ = 0 in situation (B) and the control 
group, β = 1, k = 8, and k′ = 4, then the results of candidate FDCs 
obtained in clustering stage are as shown in Table 3, and the detailed 
discussion about the parameters will be carried out in later section. 

Based on the obtained candidate FDCs, NSGA II is adopted to derive 
optimal solutions. To verify the advantages of NSGA II in solving the 
model in this research, we first compare it with five existing approaches, 
including staged clustering only based on K-means clustering algorithm 
(Ikotun et al., 2023), another well-known multi-objective algorithm 
MOPSO (Coello and Lechuga, 2002) and its enhancing algorithm 
CMOPSO (Zhang et al., 2018), and popular multi-objective evolutionary 
algorithms MOEA/D (Zhang and Li, 2007) and its enhancing algorithm 
MOEA/D-ANA (Wang et al., 2020). 

Take the experiment in situation (A) as an example, the longest 
waiting time that the customer can accept is set to 0.5 h, the delivery 
cost from the city distribution centre to FDCs is 0.1 yuan/km, and the 
delivery fee from FDCs to demand points is 1.4 yuan/km, the fixed costs 

of the FDCs is 3000 yuan/month. These data are only for simulation and 
do not represent the actual values. 

As shown in Table 4, the parameters of NSGA-II in this paper were 
defined after several computational experiments. The number of clusters 
in K-means clustering algorithms is set in turns from 1 to 4, retaining all 
non-inferior solutions. For fair comparisons, the parameters with the 
same meaning in all evolutionary algorithms take the same value, and 
other specific parameters of compared algorithms are set according to 
the original papers (Coello and Lechuga, 2002; Zhang et al., 2018; Zhang 
and Li, 2007; Wang et al., 2020). 

We run algorithms through python 3.7. To reduce the influence of 
randomness, 10 independent runs are conducted based on NSGA II and 
other four heuristic algorithms separately. All non-inferior solutions 
obtained by each approach are retained, and Table 4 presents the results 
comparing between NSGA II and other approach: 

From Table 4 above, there are 4 solutions obtained by staged clus
tering + NSGA II, 2 solutions obtained by K-means clustering algo
rithms, 1 solution obtained by staged clustering + MOPSO and staged 
clustering + CMOPSO, and 3 solutions obtained by staged clustering +
MOEA/D and staged clustering + MOEA/D-ANA. We can find that the 
results obtained by staged clustering + NSGA II is completely superior to 
those obtained by K-means clustering algorithms, staged clustering +
MOPSO and staged clustering + CMOPSO. Especially, compared with 
the K-means clustering algorithms, the solving method based on staged 
clustering and NSGA-II reduces total costs by up to 38.84% and improve 
customer time satisfaction by up to 36.22%. Though staged clustering +
MOEA/D and staged clustering + MOEA/D-ANA show similar results, 
the staged clustering + NSGA II performs the best in stability as shown 
Table 4. 

Based on NSGA II, the Pareto frontier is emerged in the iteration 
process, which corresponding to the solutions. Then the Pareto frontier 
of the last generation under different situations in Fig. 4 can be obtained 
after the calculation. Each node represents a potential location selection 
solution, and the corresponding detail information is shown in Table 5. 

According to the goals of operation, managers can choose any po
tential solutions above. Comparing the location selection results under 
different situations, the results in situation (A) are the best. Though the 
results in situation (B) is worse, the delivery pressure under this situa
tion is lower. To further analyse the characteristic of FDC delivery under 
different situations and illustrate the impact of spatio-temporal attri
butes on the location results, we take the solutions with the largest 
number of FDC under each situation as an example (bold highlighted 
solutions in Table 5) and draw the location selection results of the FDCs 
as shown below. 

As shown in Fig. 5, the results obtained in situation (A) and situation 
(B) are very different, while the results obtained in situation (B) and 
control group are more like. That is because the coefficient β we set here 
is relatively large. Combining the data in Table 2, many points that seem 
close in the space dimension are far away in the time dimension, so they 
are not allocated in the same small demand clusters, resulting in not 
being covered by the same FDC, such as points 10 and 11. The impact of 

Table 2 
Location data of the small-scale experiment.  

number X (m) Y (m) α demand number X (m) Y (m) α demand number X (m) Y (m) α demand 

0 1300 2300 0.29 40 11 3450 3100 0.55 40 22 3700 2200 0.46 50 
1 1400 600 0.17 70 12 3400 2550 0.38 40 23 3900 2150 0.34 70 
2 2400 1550 0.46 70 13 3500 2400 0.26 40 24 4000 2490 0.55 60 
3 2500 1600 0.71 40 14 3600 2500 0.72 40 25 3990 2800 0.25 40 
4 2500 2300 0.72 70 15 3250 1100 0.71 80 26 4100 2200 0.24 40 
5 2750 1490 0.19 70 16 3400 1500 0.63 90 27 4250 2950 0.68 60 
6 3000 1990 0.17 40 17 3450 1800 0.25 50 28 4250 1000 0.2 60 
7 2400 3000 0.49 80 18 3500 1500 0.4 80 29 4300 750 0.58 40 
8 2750 2750 0.49 80 19 3600 1250 0.45 50 30 4450 500 0.65 40 
9 2800 3100 0.19 50 20 3650 1300 0.33 50      
10 3100 3500 0.84 60 21 3650 1600 0.55 50       

Table 3 
FDC coordinates information under different situations.  

group 1 2 3 4 

Situation 
(A) 

(3433.53, 
1838.97) 

(3112.67, 
2650.00) 

(2200.00, 
1295.00) 

(3850.00, 
1985.00) 

Situation 
(B) 

(2768.75, 
1530.83) 

(1400.00, 
600.00) 

(1300.00, 
2300.00) 

(3399.72, 
2199.44) 

Control 
group 

(2331.25, 
2693.75) 

(3783.34, 
1166.67) 

(3742.23, 
2533.78) 

(2031.25, 
1128.75)  
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the β on the location selection results will be discussed in detail in the 
subsequent sensitivity analysis part. 

4.1.2. Large-scale experiment 
To verify the applicability of the models and methods proposed in 

this paper in large-scale examples, especially in real life, we take the 
actual data of residential areas in Xicheng District of Beijing, China as an 
example for further verification. The latitude and longitude information 

of 2415 demand points are collected, and part of the coordinate infor
mation are as shown in Table 6. Because the emphasis of this paper is to 
discuss the spatio-temporal attribute of demands, in this experiment, the 
total demand of each demand point is assumed to be the same, which 
can be standardised as a unit, and no longer appear in Table 6. 

The parameters in clustering stage are set as follows: γ = 0.5, β = 1, 
k is 483 and k’ is 10. To observe the clustering situation under different 
situations, the three-dimensional clustering results are drawn as shown 
in Fig. 6. 

As shown in Fig. 6, we can find that in situation (B), demand points 
are more concentrated from the spatial dimension, and more dispersed 
from the time dimension, which is consistent with our situation defini
tion, indicating that the staged clustering algorithm we proposed in this 
paper is appropriate. 

The parameters in optimisation stage of this instance are set as fol
lows: the population size in NSGA-II is 200, the maximum iteration 
algebra is 300, the crossover rate is 1, and the mutation rate is 0.3. The 
longest waiting time that the customer can accept is set 0.5 h, the de
livery cost from city distribution centre to FDCs is 0.1 yuan/km, the 
delivery cost from FDCs to demand points is 1.4 yuan/km, and the fixed 
costs of FDCs is 3000 yuan/month. 

As in the previous section 4.1.1, the pareto frontiers of the last 
generation in different situations are shown in Fig. 7. 

From Fig. 7, we can find that in this instance, situation (A) has the 
minimum costs, and control group has the maximum satisfaction. 

Table 4 
The results comparison between NSGA II and other approach in the literature in situation (A).  

Approach Reference Relative parameters settings Number of 
solutions 

cost satisfaction Number of occurrences in 10 times 
experiments 

staged clustering + NSGA 
II 

This paper Population size: 100 maximum 
iteration algebra: 200 
crossover rate: 1 
mutation rate: 0.3 

4 44021.80 29845.20 10 
45829.20 29871.60 10 
46318.40 29883.80 10 
49192.60 29885.00 10 

staged clustering Ikotun et al. (2023) K = 1, 2, 3, 4 2 67121.16 21909.35 – 
71976.91 21909.39 

staged clustering +
MOPSO 

Coello and Lechuga 
(2002) 

population size: 100 
maximum iteration algebra: 200 
archive size: 300 
inertia factor: 0.4 
local velocity factor: 0.1 
global velocity factor: 0.1 
divisions for the adaptive grid: 30 

1 46563.60 29875.50 1 

staged clustering +
CMOPSO 

Zhang et al. (2018) population size: 100 
maximum iteration algebra: 200 
archive size: 300 
inertia factor: 0.4 
local velocity factor: 0.1 
global velocity factor: 0.1 
divisions for the adaptive grid: 30 
Number of elite particles to selected: 
10 

1 46397.60 29882.70 1 

staged clustering +
MOEA/D 

Zhang and Li (2007) population size:100 
maximum iteration algebra: 200 
mutation rate: 0.3 
neighborhood size: 10 

3 44021.80 29845.20 10 
45829.20 29871.60 6 
46318.40 29883.80 3 

staged clustering +
MOEA/D-ANA 

Wang et al. (2020) population size: 100 
maximum iteration algebra: 200 
mutation rate: 0.3 
neighborhood size: [5,30] 

3 44021.80 29845.20 9 
45829.20 29871.60 6 
46318.40 29883.80 1  

Fig. 4. Pareto frontier of the last generation under different situations.  

Table 5 
The location selection solution under different situations.  

Situation (A) Situation (B) Control group 

Solution No. Cost Satisfaction The number of FDC Cost Satisfaction The number of FDC Cost Satisfaction The number of FDC 

1 44021.80 29845.20 1 79096.70 24384.40 4 64357.00 21910.00 4 
2 45829.20 29871.60 2       
3 46318.40 29883.80 2       
4 49192.60 29885.00 3        

L. Chen et al.                                                                                                                                                                                                                                    



International Journal of Production Economics 263 (2023) 108950

9

Though the results in situation (B) appear to be the worst, the delivery 
pressure under this situation is generally the smallest. This is because 
under this situation, the time for customers of the same FDCs to place 
orders is relatively scattered, which alleviates the situation of the 
imbalance between supply and demand. 

4.2. Sensitivity analysis 

In the next section, we conduct sensitivity analyses by changing the 
relevant parameters in the model, to investigate the effect of each 
parameter on location selection results under different situations. The 
sensitivity analysis is carried out based on the data of the small-scale 
experiment. 

Fig. 5. Location selection results under different situations.  

Table 6 
Part of the coordinate information.  

Number Longitude Latitude α Time focus Number Longitude Latitude α Time focus 

1 116.38750 39.97132 0.29 15.93629 20 116.37740 39.96120 0.45 14.87742 
2 116.36480 39.96453 0.17 16.78777 21 116.37650 39.96514 0.33 15.68747 
3 116.36660 39.96174 0.46 14.74774 22 116.37690 39.96933 0.55 14.12138 
4 116.36780 39.96533 0.71 13.00200 23 116.37660 39.97062 0.46 14.76248 
5 116.3860 39.97117 0.72 12.97563 24 116.37710 39.96806 0.34 15.61161 
6 116.37580 39.97084 0.19 16.66819 25 116.37660 39.97013 0.55 14.17224 
7 116.37660 39.96322 0.17 16.82624 26 116.37160 39.96505 0.25 16.22592 
8 116.36450 39.96354 0.49 14.54783 27 116.36840 39.96323 0.24 16.31529 
9 116.37730 39.96794 0.49 14.57897 28 116.37830 39.96597 0.68 13.24337 
10 116.37320 39.96304 0.19 16.65481 29 116.37780 39.96600 0.20 16.57527 
11 116.37140 39.96541 0.84 12.08999 30 116.37400 39.96209 0.58 13.95146 
12 116.37880 39.96728 0.55 14.13220 31 116.37680 39.96607 0.65 13.42617 
13 116.37840 39.96210 0.38 15.32852 32 116.37200 39.96180 0.99 11.04044 
14 116.36450 39.96310 0.26 16.15298 33 116.37410 39.96231 0.24 16.28978 
15 116.37140 39.96573 0.72 12.98876 34 116.37710 39.96788 0.15 16.94156 
16 116.37320 39.96291 0.71 12.99747 35 116.37020 39.96482 0.77 12.58498 
17 116.37330 39.96374 0.63 13.56998 36 116.37660 39.96926 0.14 17.02448 
18 116.37320 39.96308 0.25 16.24826 37 116.37300 39.96179 0.78 12.57407 
19 116.37410 39.96187 0.40 15.23451 38 116.37260 39.96374 0.82 12.27416  

Fig. 6. The three-dimensional clustering results under different situations.  
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4.2.1. Sensitivity analysis on the spatio-temporal coefficient 
In the previous section 4.1, we allocated β = 1 to expand the impact 

of time attribute on location selection to facilitate the comparison of 
results. In this section, we conduct a sensitivity analysis to examine how 
the spatio-temporal coefficient β that controls the degree of influence 
from time and space dimensions on clustering affects the location se
lection results. Fig. 8 indicates that the coefficient β has little effect on 
costs but has a skipping effect on customer time satisfaction. When the 
value of β is relatively small, the time lag between points has little 
impact on clustering, and when β is relatively large, the space distance 
has little impact on clustering. Therefore, choosing a proper β can 
comprehensively consider the problem from the spatio-temporal 

dimension, and help managers to make a more reasonable decision to 
reduce the costs and improve the customer time satisfaction. 

4.2.2. Sensitivity analysis on the number of clusters in three-dimension 
clustering 

In this section, we conduct a sensitivity analysis to examine how the 
clustering parameter k affects the results of location selection. The 
parameter k controls the number of small demand clusters, the larger the 
k, the less the demand points in the small demand clusters. Fig. 9 in
dicates that the impact of k on total costs and customer time satisfaction 
is different under different situations. In situation (A), the bigger the k, 
the higher the customer time satisfaction, but the higher the costs as 
well, and when k is relatively big, the results tend to stable. While in 
situation (B), there seems that the bigger the k, the higher the costs and 
the lower the customer time satisfaction. Therefore, in situation (A), a 
relatively big k is advised if managers prefer to improve customer time 
satisfaction, and a relatively small k is advised if managers prefer to 
reduce costs; in situation (B), a relatively small k is advised to reduce 
costs and improve customer time satisfaction. 

4.2.3. Sensitivity analysis on the number of clusters in two-dimension 
clustering 

In this section, we conduct a sensitivity analysis to examine how the 
parameter k’ affects the overall customer time satisfaction and the total 
costs of location selection. Fig. 10 indicates that k’ has little effect on 
satisfaction, but the costs have a downward trend with the increase of k’. 
Furthermore, when k’ is relatively big, the location selection results tend 
to be stable. That is because the location selection method proposed in 
this paper can choose the appropriate number of FDC independently in 
the optimisation stage. Therefore, it is beneficial for managers to choose 

Fig. 7. Pareto frontier of the last generation under different situations.  

Fig. 8. The impact of different coefficient β on results.  

Fig. 9. The impact of different clustering parameter k on results.  
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a relatively large value of k’ according to the budget. 

4.2.4. Sensitivity analysis on the probability coefficient 
In the previous section 3.2.1, we have explained that in situation (B) 

γ = 0. In this section, the sensitivity analysis is for situation (A), which 
examines how the probability coefficient γ that controls the probability 
of successfully delivering the order together in the same small demand 
cluster affects the overall customer time satisfaction and the total costs 
of location selection. Fig. 11 indicates that in situation (A), the larger the 
γ, the smaller the costs of location selection, but the lower the customer 
time satisfaction. Furthermore, even though when γ = 0, the results in 
situation (A) are no worse than the results of control group that without 
considering the time attribute, which means that although demand 
forecasts may be biased, the results obtained by the location selection 
method proposed in this paper for situation (A) is not bad. Therefore, it 
is reasonable to consider the spatio-temporal attribute in location se
lection. In addition, because the value of coefficient γ in situation (A) 
depends on the accuracy of demand forecasting, the more accurate the 
demand forecast, the higher the probability of simultaneous delivery of 
demand points in a small demand cluster. 

5. Discussion 

This paper considers the actual delivery route that from city distri
bution centre to FDCs to each demand point, rather than the straight-line 

distance between FDCs and demand points. Due to the time sensitive 
nature of FDC, the spatio-temporal attribute of demand point is espe
cially focused. Without assuming the FDCs is known, this paper designs a 
staged clustering algorithm of three-dimensional clustering and then 
two-dimensional clustering to generate the candidate FDCs, considering 
the spatio-temporal joint distance. And then a bi-objective spatio-tem
poral optimisation model is constructed to determine the final FDCs, 
where an intelligent algorithm based on NSGA-II is designed and 
applied. 

This study provides several contributions to the location problem of 
FDC, which are discussed in the following sections from key aspects of 
the theory and practice. 

5.1. Theoretical contributions 

This paper proposes a location selection approach based on a two- 
stage decision method, so the main theoretical contributions can also 
be summarized from these two aspects: 

In clustering stage, a spatio-temporal clustering model is constructed 
to obtain the candidate FDCs instead of assuming candidate FDCs is 
known, and a staged clustering algorithm of three-dimensional clus
tering and then two-dimensional clustering is designed to solve the 
clustering model. Traditional research of location selection only con
siders the demand points from space dimension (Jian, 2019; Kuznietsov 
et al., 2017; Shin, and Kim, 2016), while the time attribute of demand 

Fig. 10. The impact of different clustering parameter k’ on results.  

Fig. 11. The impact of different coefficient γ on results.  
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distribution reflects the customer consumption habit, which is very 
important in instant delivery. This paper introduces the time dimension 
of demand into location selection problem, considering the 
spatio-temporal distance. This provides a new aspect for research on the 
demand in the location selection research, which paves the way for 
considering customer time satisfaction. In addition, the staged clustering 
algorithm can also provide a reference for the solution of location 
problems focusing on other multi-dimensional attributes. It is not 
limited to space attribute and time attribute, but may also be other at
tributes, such as shopping types. For example, gathering demand points 
with similar shopping types can optimise types of goods in the FDC 
effectively, which also provides benefit to reduce the operation costs. 

In optimisation stage, a spatio-temporal optimisation model is 
formulated to determine the final FDCs. The operation process from the 
city distribution centre to FDCs then to demand points is considered, 
which provides a more complete modeling idea. The spatio-temporal 
optimisation model in this paper is a bi-objective optimisation model. 
Most of traditional location selection modeling only pay attention to 
reduce the operation costs (Holzapfel et al., 2023; Avgerinos et al., 2022; 
Fathi et al., 2021), this paper not only tries best to reduce total costs but 
also focuses on improving the customers satisfaction that is of essential 
importance nowadays. 

5.2. Managerial insights 

Based on upon experiments and sensitive analysis of two-stage 
location decision method, we have derived two directions of manage
rial insights in this section: response to different operation situation in 
clustering stage and manage operation goals in optimisation stage. 

5.2.1. Clustering stage: response to different demand distribution 
In real life, demand usually mismatches the supply in the peak 

period, it is hard to result in all-win outcome (Zhong et al., 2023). To 
overcome this challenge, we can imagine a location selection strategy, 
considering the spatio-temporal joint dimension of demand. The clus
tering model is constructed according to the different demand distri
bution. When demand is relatively small (maybe office building), the 
clustering model is constructed based on situation (A), which means that 
arranging the demand points with similar time distributions to be 
delivered together, so that it can increase the probability of placing 
orders together and improve the efficiency of delivery. When demand is 
relatively large (maybe residential), the clustering model can often be 
built based on situation (B), which indicates that the demand points with 
different distribution characteristics can be covered by the same FDC. It 
is because the delivery capacity is limited and the probability of placing 
orders together within each demand point is very high, there is no need 
to delivery orders together between different demand points. 

Our numerical results suggest that the spatio-temporal joint dimen
sion of demand plays an important role in location selection problem, in 
situation (A), it makes the costs the lowest, while in situation (B), the 
delivery pressure is generally the lowest. Then the problem that delivery 
staffs are often idle during off peak periods but overwork during peak 
periods can be alleviated. 

5.2.2. Optimisation stage: operation goals management 
Because of the fierce market competition nowadays, retaining cus

tomers is a constant challenge. Zihayat et al. (2021) have pointed out 
that marketers need to improve customer satisfaction to retain cus
tomers. However, the customer satisfaction is usually ignored in location 
selection (Holzapfel et al., 2023; Avgerinos et al., 2022), which goes 
against the sustainable development of business. Especially, in the 
operation of FDC, customers have strong bargaining power to choose 
their service providers due to the digital transformation of business 
(Zihayat et al., 2021). Therefore, it is important to take the customer 
satisfaction into account in FDC location selection. By constructing the 
spatio-temporal multi-objective optimisation model and designing the 

corresponding solving algorithm, a series of optimal results can be ob
tained. A manager is able to choose an appropriate solution according to 
the real-life operation goals, where both operation costs and customer 
time satisfaction can be considered. 

Our numerical experiments have shown that the optimisation algo
rithm based on NSGA-II performs better than MOPSO (Coello and 
Lechuga, 2002), CMOPSO (Zhang et al., 2018), MOEA/D (Zhang and Li, 
2007), MOEA/D-ANA (Wang et al., 2020) and simple K-means clus
tering algorithm (Ikotun et al., 2023), which could achieve a greater 
number of Pareto-optimal solutions with higher qualities. In particular, 
compared with K-means clustering algorithm, the customer time satis
faction can be improved by up to 36.22% when costs are declined by up 
to 38.84%. Besides, the algorithm stability of NSGA-II is also the best. 
This finding suggests that our approach can provide support for the 
location decision of FDC, and at the same time, it can also provide 
certain guidance for the delivery arrangement of FDC. In addition, our 
sensitivity analysis also provides some important insights. For example, 
decision maker can improve customer time satisfaction by increasing the 
number of three-dimension clusters. In conclude, in the FDC manage
ment, improving customer time satisfaction is conducive to building 
corporate brands, making it easier to retain customers. Managers need to 
consider the customer satisfaction in their operation goals, which has 
also been emphasized by Ashill et al. (2022), they presented that 
customer satisfaction is one of the most important measures of project 
success. 

5.3. Limitation and future research 

At the same time, there are several limitations and future research 
directions of our study should be highlighted. First, the discussion of 
demand time distribution is restricted by data sources. This paper as
sumes that the demand time distribution is a bimodal distribution ac
cording to a reference (Guidotti et al., 2018) and no further verification 
work has been done. In the future research, we can collect a large 
amount of user order data to grasp the demand time distribution char
acteristics more specifically and focus on the prediction aspects of de
mand time distribution. Although the daily needs of users are not fixed, 
the probability coefficient can be used to abstract the time distribution 
function of each demand point. In addition, future studies can incor
porate more demand information, such as detailed order time and the 
category of the product purchased to further refine the research. 

Second, the optimisation algorithm based on NSGA-II has not been 
improved further in this paper. Though this paper adopts the NSGA-II to 
simplify the solving process, the attention has not been paid to how to 
further improve the solving speed of NSGA-II. Therefore, we can try 
improving its solving efficiency in the future study and making more 
comparisons between improved NSGA-II and other optimisation algo
rithms like simulated annealing algorithm and so on. 

Third, the measurement of customer time satisfaction levels will 
become more complicated when customer needs are heterogeneous. 
Therefore, future works can take customer heterogeneity into account to 
improve the application of location selection method, and how to 
measure the heterogeneity of customer time satisfaction is one of our 
focuses of future research. 
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