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This study explores how researchers’ analytical choices affect the reliability of scientific
findings. Most discussions of reliability problems in science focus on systematic biases.
We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious
decisions that researchers make during data analysis. We coordinated 161 researchers in
73 research teams and observed their research decisions as they used the same data to
independently test the same prominent social science hypothesis: that greater immigra-
tion reduces support for social policies among the public. In this typical case of social
science research, research teams reported both widely diverging numerical findings and
substantive conclusions despite identical start conditions. Researchers’ expertise, prior
beliefs, and expectations barely predict the wide variation in research outcomes. More
than 95% of the total variance in numerical results remains unexplained even after
qualitative coding of all identifiable decisions in each team’s workflow. This reveals a
universe of uncertainty that remains hidden when considering a single study in isola-
tion. The idiosyncratic nature of how researchers’ results and conclusions varied is a
previously underappreciated explanation for why many scientific hypotheses remain
contested. These results call for greater epistemic humility and clarity in reporting sci-
entific findings.

metascience j many analysts j researcher degrees of freedom j analytical flexibility j immigration and
policy preferences

Organized scientific knowledge production involves institutionalized checks, such as edi-
torial vetting, peer review, and methodological standards, to ensure that findings are
independent of the characteristics or predispositions of any single researcher (1, 2). These
procedures should generate interresearcher reliability, offering consumers of scientific
findings assurance that they are not arbitrary flukes and that other researchers would gen-
erate similar findings given the same data. Recent metascience research challenges this
assumption as several attempts to reproduce findings from previous studies failed (3, 4).
In response, scientists have discussed various threats to the reliability of the scientific

process with a focus on biases inherent in the production of science. Pointing to both
misaligned structural incentives and the cognitive tendencies of researchers (5–7), this bias-
focused perspective argues that systematic distortions of the research process push the
published literature away from truth seeking and accurate observation. This then reduces
the probability that a carefully executed replication will arrive at the same findings.
Here, we argue that some roots of reliability issues in science run deeper than system-

atically distorted research practices. We propose that to better understand why research is
often nonreplicable or lacking interresearcher reliability, we need to account for idiosyn-
cratic variation inherent in the scientific process. Our main argument is that variability
in research outcomes between researchers can occur even under rigid adherence to the
scientific method, high ethical standards, and state-of-the-art approaches to maximizing
reproducibility. As we report below, even well-meaning scientists provided with identical
data and freed from pressures to distort results may not reliably converge in their findings
because of the complexity and ambiguity inherent to the process of scientific analysis.

Variability in Research Outcomes

The scientific process confronts researchers with a multiplicity of seemingly minor, yet
nontrivial, decision points, each of which may introduce variability in research out-
comes. An important but underappreciated fact is that this even holds for what is often
seen as the most objective step in the research process: working with the data after it
has come in. Researchers can take literally millions of different paths in wrangling, ana-
lyzing, presenting, and interpreting their data. The number of choices grows exponen-
tially with the number of cases and variables included (8–10).
A bias-focused perspective implicitly assumes that reducing “perverse” incentives to

generate surprising and sleek results would instead lead researchers to generate valid
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conclusions. This may be too optimistic. While removing these
barriers leads researchers away from systematically taking invalid
or biased analytical paths (8–11), this alone does not guarantee
validity and reliability. For reasons less nefarious, researchers can
disperse in different directions in what Gelman and Loken call a
“garden of forking paths” in analytical decision-making (8).
There are two primary explanations for variation in forking

decisions. The competency hypothesis posits that researchers
may make different analytical decisions because of varying levels
of statistical and subject expertise that lead to different judg-
ments as to what constitutes the “ideal” analysis in a given
research situation. The confirmation bias hypothesis holds
that researchers may make reliably different analytical choices
because of differences in preexisting beliefs and attitudes, which
may lead to justification of analytical approaches favoring cer-
tain outcomes post hoc. However, many other covert or idio-
syncratic influences, large and small, may also lead to unreliable
and unexplainable variation in analytical decision pathways
(10). Sometimes even the tiniest of these differences may add
up and interact to produce widely varying outcomes.
There is growing awareness of the dependence of findings on

statistical modeling decisions and the importance of analytical
robustness (9, 11–13). However, only recently scientists began
to assess whether researcher variability affects scientific out-
comes in reality, sometimes employing “many analysts”
approaches where many researchers or teams independently test
the same hypothesis with the same data. The first such study
showed that when 29 researchers tested if soccer referees were
biased toward darker-skin players using the same data, they
reported 29 unique model specifications, with empirical results
ranging from modestly negative to strongly positive (14). Thus
far, most many-analysts studies have been small in scale or
focused on narrow, field-specific analysis methods (15, 16).
Recent studies by Botvinik-Nezer et al. (17) and Menkveld et al.
(18) were larger, involving 65 and 164 teams, respectively.
Critically, despite their size, these studies also found large inter-
researcher variation in reported results. They also made first
steps at explaining the amount of variation in reported results
using a small set of variables, such as the computational repro-
ducibility and peer ratings of submitted analyses or the statistical
software that analysts used. Yet, they had little success in explain-
ing the variation in results or the distance of results from the
overall mean of the results (i.e., error). We expanded on these
explanatory attempts by observing every step of each indepen-
dent research team’s workflow, expecting that such close observa-
tion should explain far more variance in research outcomes.
Moreover, when coupled with measures of relevant analytical
competencies and substantive beliefs of the analysts as explana-
tory variables, we expected to arrive at a deeper understanding of
the results and crucially, which key decisions drive them.

Methods

The principal investigators (PIs) coordinated a group of 161 researchers in
73 teams to complete the same task of independently testing a hypothesis
central to an “extensive body of scholarship” (19) in the social sciences: that
immigration reduces support for social policies among the public.* Our entire
reproducible workflow for this study is available online in our Project Repository.†

The task given to the participants is typical for research on human societies, in
which the central concepts and quantities of interest are open to broad and

complex interpretations (20, 21). In classic political economy research, for exam-
ple, Alberto Alesina and Edward Glaeser (22, 23) hypothesized that differences
in North American and European social security systems are a result of
immigration-generated ethnic diversity or a lack thereof. More recently, other
scholars see immigration and refugee crises as catalysts of retrenchment of social
security systems in Western Europe and across the globe. Put simply, this
hypothesis was given to participating teams because it is influential, long stand-
ing, and typical for contemporary social research in political science, sociology,
economics, geography, and beyond (24–29).

We recruited participants by circulating a call across academic networks,
social media, and official communication channels of academic associations
across social science disciplines (SI Appendix, Research Design). Although
106 teams expressed interest in participation, we count our initial sample as
88 that completed the prestudy questionnaire. In the end, 73 of those
88 teams (a total of 161 researchers with an average of 2.24 researchers per
team) completed the study. Of these, 46% had a background in sociology;
25% had a background in political science; and the rest had economics, com-
munication, interdisciplinary, or methods-focused degree backgrounds.
Eighty-three percent had experience teaching courses on data analysis, and
70% had published at least one article or chapter on the substantive topic of
the study or the usage of a relevant method (SI Appendix, III. Participant
Survey Codebook has more participant details).

The PIs provided teams with data from the International Social Survey Pro-
gram (ISSP), a long-running large-scale cross-nationally comparative survey of
political and economic attitudes used in over 10,000 published studies.‡ The
ISSP includes a six-question module on the role of government in providing
different social policies, such as old-age, labor market, and health care provi-
sions. This six-question module is also the source of the data used by David
Brady and Ryan Finnigan (19) in one of the most cited investigations of the
substantive hypothesis participants were instructed to test. The PIs also pro-
vided yearly indicator data for countries on immigrant ’stock’ as a percentage
of the population and on ’flow’ as a net change in stock, taken from the World
Bank, the United Nations, and the Organization for Economic Co-Operation
and Development. Relevant ISSP and immigration data were available for
31 mostly rich and some middle-income countries. There were up to five sur-
vey waves from 1985, 1990, 1996, 2006, and 2016. All provided data come
from publicly available sources.

To remove potentially biasing incentives, all researchers from teams that com-
pleted the study were ensured coauthorship on the final paper regardless of
their results. Because the “participants” themselves were researchers and all
tasks assigned to them were standard research practices theoretically worthy of
coauthorship, institutional review prior to conducting this study was not neces-
sary. The researchers participated in surveys to measure expertise and study-
relevant beliefs and attitudes before and during the research process. Moreover,
they took part in online deliberations before (a randomized half of teams) and
after they had run their main analyses (all teams) (SI Appendix, III. Participant
Survey Codebook). To familiarize participating researchers with the data, their
first task was to numerically reproduce results from the Brady and Finnigan
(19) study on a subset of the ISSP data. This was followed by a request that
the teams develop their own ideal models for testing the same hypothesis
using potentially all of the provided data, but that they submit their analysis
plan prior to running the models. To enhance ecological validity, we
allowed the teams to include additional data sources for measuring inde-
pendent variables. Each team was then instructed to run their model(s) and
report dependent variable–standardized effect estimates equal to the
change in policy preferences (in SD units) predicted by a one-point change
in the respective independent immigration variable. We also asked them to
draw one of three subjective conclusions: whether their results offered evi-
dence that supported the hypothesis that immigration reduces support for
social policies among the public, whether their results offered evidence that
rejected the hypothesis, or instead, whether they believed the hypothesis
was not testable given these data.

Of the 73 teams, 1 conducted preliminary measurement scaling tests, con-
cluded that the hypothesis could not be reliably tested, and thus, did not design
or carry out any further tests. This left 72 teams submitting a total of 1,261

*SI Appendix, Figs. S1 and S2 and Tables S1 and S2 have the time line and more partici-
pant details.

†It is available at https://github.com/nbreznau/CRI. ‡Information is available at https://issp.org/about-issp/.
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models. One team’s preregistered models failed to converge and thus, had no
numerical results. This left a total of 71 teams with numerical results from 1,253
models. In their subjective conclusions, 16 teams determined that the two differ-
ent measures of immigration should be considered independent hypothesis
tests and therefore, submitted different conclusions for each. This changed the
primary unit of analysis for subjective conclusions from 73 team conclusions to
89 team-level conclusions.

There was an average of 17.5 models per team among the 71 teams submit-
ting numerical results (ranging from 1 to 124 models per team). Most teams sub-
mitted at least 12 models because they used each of the six ISSP questions as a
single dependent outcome twice in their statistical models, once for each version
of the immigration measure (stock and flow). Several teams submitted 18 models
because they ran an additional 6 models with both immigration variables
included. The teams often adjusted for the nested nature of the data, accounting
for variance at the individual, country, year, and/or country-year levels. Some
made no such hierarchical adjustments with multilevel models, and others used
clustering of the SEs at the country, wave, and/or country-wave levels. Some used
dummy interactions for example world region indicators (such as Eastern Europe)
or political party preferences with immigration variables, leading to nonlinear pre-
dicted values. Others used alternative estimators based on maximum likelihood
or Bayesian estimation as opposed to ordinary least squares (SI Appendix, Table
S3 shows the most common model decisions). In all, researchers’ modeling deci-
sions reflected the diversity of similar, but technically distinct, methodological
approaches currently used in contemporary research.

Each team’s code was checked and then anonymized for public sharing by
the PIs. Some teams failed to report a standardized estimate. Also, different scal-
ing of the two independent immigration variables meant that results were not
always distributionally comparable. Therefore, we standardized the teams’ results
for each coefficient for stock and flow of immigration post hoc. We also trans-
formed the teams’ results into average marginal effects (AMEs), which are the
standardized average effects of a one-unit change in the respective independent
(immigration) variable on the respective dependent (policy support) variable,
where this average is based on predictions for each observation in the dataset.
The advantage of using AMEs is that they allow for a single marginal estimate in
the presence of nonlinearities and present predicted probabilities that reflect the
reality of the data sample rather than the mean of each independent variable
(Fig. 1 shows results). After submitting their own results but prior to seeing the
other teams’ results, each participant was randomly given a rough description of
the models employed by four to five other teams and asked to rank them on
their quality for testing the hypothesis. With six to seven rankings per team, the
PIs constructed model rankings (SI Appendix, Model Ranking).

At any point after they submitted their results, including after results of
the other teams were revealed, the teams could change their preferred mod-
els and resubmit their results and conclusion. No team voluntarily opted to
do this. However, some teams’ results and conclusions changed after they
were informed that the PIs were unable to reproduce their findings due to
coding mistakes or a mismatch between their intended models and those
that appeared in the code.

Next, we examined all 1,261 models and identified 166 distinct research
design decisions associated with those models. “Decision” refers to any aspect
in the design of a statistical model: for example, the measurement strategy,
estimator, hierarchical structure, choice of independent variables, and potential
subsetting of the data (SI Appendix, Table S12). For simplicity, decision also
refers to variables measuring team characteristics, such as software used, over-
all familiarity with the subject or methods, and preexisting beliefs as measured
in our participant survey (SI Appendix, Table S1). Of the 166 decisions, 107
were taken by at least three teams. We used these 107 as variables that might
statistically explain the variation in the results and conclusions because the
other 59 were unique to one or two teams and would thus impede statistical
identification. In other words, uniquely identifying one or two teams’ results
via the variance in a single independent variable in the regression would inter-
rupt the parsimonious estimation of residual, unexplained variance calculated
in the level 2 equation. A dissimilarity matrix revealed that no two models of
1,261 were 100% identical.

To explore the sources of variance in results, we regressed the numerical
point estimates and subjective conclusions on all different combinations and
interactions of the 107 decisions. We used multilevel regression models,

allowing us to account for models nested in teams and to explain total, within-
team, and between-team variance in numerical results. For subjective conclu-
sions, we used multinomial logistic regressions predicting teams’ conclusions to
1) support or 2) reject the target hypothesis, or 3) regard it as not testable. Our
analyses proceeded in several stages. At each stage, decision variables and their
interactions were tested, and only terms that explained the most variance using
the least degrees of freedom (or deviance in the case of subjective conclusions)
were carried to the next phase.

Exploring the variance in results runs the risk of overfitting. It is statistically
inappropriate to use 107 variables when there are 87 team-test cases (from
71 teams with numerical results). Therefore, we entered the variables in groups
and only kept variables from each group that showed an increase in the
explained variance without a loss in fit as measured by Akaike’s Information Cri-
terion (AIC) and log likelihood. This started with “design” decisions, including
which of the six survey questions the teams used as the dependent variable in a
given model and dummies indicating the two random experimental treatments
(which were included in the study but are unrelated to the main modeling task
assigned to the teams). The next stage added “measurement” decisions, includ-
ing which immigration measure the team used in a given model and how the
dependent variable was measured (dichotomous, ordinal, multinomial, or con-
tinuous). The following stages added “data and sample” and “model design”
decisions and concluded with the addition of “researcher aspects” (Project Repos-
itory, 04_CRI_Main_Analyses). We also reran the phase-wise analysis separately
for each of the six survey questions used as dependent variables by the teams
(Project Repository, 07_CRI_DVspecific_Analyses) (SI Appendix, Tables S4 and
S9–S11). The exact variables in our final analysis plus various models leading up
to them are found in SI Appendix, Tables S5 and S7. Fig. 2 reports the explained
variance from our preferred model m13.

To check the robustness of our phase-wise strategy, we used an algorithm to
analyze all possible variable combinations from our primary variables of inter-
est—those that showed any capacity to explain variance in the main analyses
(Project Repository, 06_CRI_Multiverse). This led us to a slightly different ideal
model than m13 (Auto_1 in SI Appendix, Table S10). Although this alternative
model had the best AIC and could explain slightly more model-level variance, it
could not explain as much total variance. We then combined all variables from
our main model (m13) and the algorithm-derived model (Auto_1) to generate a
new model (Auto_1_m13). Although this new model explained more variance
and had lower AIC, we were careful not to overfit because it had 22 variables,
whereas m13 and Auto_1 had 18 and 15, respectively.

Next, based on PNAS peer review feedback, we generated a list of every pos-
sible interaction pair of all 107 variables. Of these 5,565 interactions, 2,637
have nonzero variance and thus, were usable in a regression without automati-
cally being dropped. Including 8 or more interaction variables plus their main
effects (i.e., 24 or more variables, many that were cross-level interactions) led to

Fig. 1. Broad variation in the findings from 73 teams testing the same
hypothesis with the same data. The distribution of estimated AMEs across
all converged models (n = 1,253) includes results that are negative (yellow;
in the direction predicted by the given hypothesis the teams were testing),
not different from zero (gray), or positive (blue) using a 95% CI. AME are xy
standardized. The y axis contains two scaling breaks at ±0.05. Numbers
inside circles represent the percentages of the distribution of each out-
come inversely weighted by the number of models per team.
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convergence or overidentification problems. Even with 87 level 2 cases, this
leaves us with roughly 4 cases per variable. Research reviewing different simula-
tion studies on level 2 case numbers suggests that 10 cases per variable are a
bare minimum, and we should have closer to 50 ideally (30). Therefore, we set-
tled on 7 interacted variables as our absolute maximum (which corresponds to
21 variables, including two main effects for each interaction). We then randomly
sampled 1,000 sets of 7 variables from the list of all and let the algorithm run
every subcombination of these, which led to just over 1 million models. We
then took the 2 models with the lowest AIC score from each of the 1,000 itera-
tions and extracted all variables from those models. There were 19 unique varia-
bles among the 2,000 best-fitting models in total, which we then analyzed using
the same “random-seven” sampling method. The best-fitting models from this
second iteration left us with four interaction variables as candidates to explain
more variance while avoiding sacrificing the simplicity of the model and overfit-
ting (as indicated by model AIC). We added each of these variables separately to
our initial algorithm-generated results. None of these models could explain
more variance in research outcomes than m13 or Auto_1_m13 (SI Appendix,
Table S10, Auto_2 to Auto_5).

Main Results

Fig. 1 visualizes the substantial variation of numerical results
reported by 71 researcher teams that analyzed the same data.
Results are diffuse. Little more than half the reported estimates
were statistically not significantly different from zero at 95%
CI, while a quarter were significantly different and negative,
and 16.9% were statistically significant and positive.
We observe the same pattern of divergent research outcomes

when we use the teams’ subjective conclusions rather than their
statistical results. Overall, 13.5% (12 of 89) of the team conclu-
sions were that the hypothesis was not testable given these data,
60.7% (54 of 89) were that the hypothesis should be rejected,
and 28.5% (23 of 89) were that the hypothesis was supported
(SI Appendix, Figs. S5, S9, and S10).§

We find that competencies and potential confirmation biases
do not explain the broad variation in outcomes; researcher
characteristics show a statistically significant association with
neither statistical results nor substantive conclusions (Fig. 3).
Hence, the data are not consistent with the expectation that
outcome variability simply reflects a lack of knowledge among
some participants or preexisting preferences for particular
results.

In principle, variation in outcomes must reflect prior decisions
of the researchers. Yet, Fig. 2 shows that the 107 identified deci-
sion points explain little of the variation. The major components
of the identified researcher decisions explain less than a quarter of
the variation in four measures of research outcomes. Most variance
also remains unexplained after accounting for researcher character-
istics or assignment to a small experiment (not reported in this
study) (“assigned conditions” in Fig. 2). Looking at total variance
in the numerical results (top bar), identified components of the
research design explain 2.6% (green segment), and researcher
characteristics only account for a maximum of 1.2% of the vari-
ance (violet segment). In other words, 95.2% of the total variance
in results is left unexplained, suggesting that massive variation in
reported results originated from idiosyncratic decisions in the data
analysis process.

The share of explained variance is somewhat higher when
looking at between-team results (second bar), but still, 82.4%
remained unexplained. Variance continues to remain mostly
unexplained when moving away from the numerical results and
considering researchers’ substantive conclusions (bottom bar;
80.1% unexplained). It is noteworthy that even the percentage
of test results per team that statistically support their conclu-
sions explains only about a third of the deviance in conclusions
(salmon-colored segment in the bottom bar), which points at
the variation in how different researchers interpret the same set
of numerical results. Overall, the complexity of the data-
analytic process leads to variation that cannot be easily
explained, even with a close look at researcher characteristics
and researcher decisions.

Fig. 2. Variance in statistical results and substantive conclusions between and within teams is mostly unexplained by conditions, research design, and
researcher characteristics. Decomposition of numerical variance taken from generalized linear multilevel regression models’ AMEs (the top three rows).
Explained deviance taken from multinomial logistic regressions using the substantive conclusions about the target hypothesis as the outcome submitted
by the research teams (bottom row). We used informed stepwise addition and removal of predictors to identify which specifications could explain the
most numeric variance (SI Appendix, Table S6) and others that could explain the most subjective conclusion deviance (SI Appendix, Table S7) while sacrific-
ing the fewest degrees of freedom and maintaining the highest level of model fit based on log likelihood and AIC. We also used algorithms to test variable
combinations, but these could not explain more meaningful variation (Methods). Assigned conditions were the division of participants into two different
task groups and two different deliberation groups during the preparatory phase. Identified researcher decisions are the 107 common decisions taken in
data preparation and statistical modeling across teams and their models. Researcher characteristics were identified through a survey of participants and
multiitem scaling using factor analysis (SI Appendix, Fig. S3). The reader will find many other details in SI Appendix.

§This is a reminder that 16 teams reported two differing conclusions based on their inter-
pretation of different model specifications, causing the N to jump from 72 teams to 89
team-conclusion units of analysis (Methods).
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Finally, we followed previous many-analysts research (31) by
creating a benchmark for the above results via a multiverse sim-
ulation of possible model specifications. Using the same
approach, we found that 23 decisions could explain just over
16% of the variance in numerical outcomes among 2,304 sim-
ulated models (SI Appendix, Table S8). In contrast to our eco-
logical research setting observing actual researcher behaviors, we
fall far short of this 16% simulated total explained variance by
almost 12 percentage points. Even with the use of an algorithm
to sample all possible variable combinations, we remain over 11
percentage points short.

Discussion

Results from our controlled research design in a large-scale
crowdsourced research effort involving 73 teams demonstrate
that analyzing the same hypothesis with the same data can lead
to substantial differences in statistical estimates and substantive
conclusions. In fact, no two teams arrived at the same set of
numerical results or took the same major decisions during data
analysis. Our finding of outcome variability echoes those of
recent studies involving many analysts undertaken across scien-
tific disciplines. The study reported here differs from these pre-
vious efforts because it attempted to catalog every decision in
the research process within each team and use those decisions
and predictive modeling to explain why there is so much out-
come variability. Despite this highly granular decomposition of
the analytical process, we could only explain less than 2.6% of
the total variance in numerical outcomes. We also tested if
expertise, beliefs, and attitudes observed among the teams
biased results, but they explained little. Even highly skilled sci-
entists motivated to come to accurate results varied tremen-
dously in what they found when provided with the same data

and hypothesis to test. The standard presentation and con-
sumption of scientific results did not disclose the totality of
research decisions in the research process. Our conclusion is
that we have tapped into a hidden universe of idiosyncratic
researcher variability.

This finding was afforded by a many-analysts design as an
approach to scientific inquiry. Some scholars have proposed
multiverse analysis to simulate analytic decisions across
researchers (31), a method to provide a many-analysts set of
outcomes without the massive coordination and human capi-
tal commitment otherwise necessary for such a study. The
drawback of a simulation approach is that it is constructed
based on a single data analysis pipeline from one research
team and may not reflect the complex reality of different
research processes carried out by different teams in different
contexts. This study observed researchers in a controlled yet
ecological work environment. In doing so, it revealed the hid-
den universe of consequential decisions and contextual factors
that vary across researchers and that a simulation, thus far,
cannot capture.

Implications. Researchers must make analytical decisions so
minute that they often do not even register as decisions.
Instead, they go unnoticed as nondeliberate actions following
ostensibly standard operating procedures. Our study shows
that, when taken as a whole, these hundreds of decisions
combine to be far from trivial. However, this understanding
only arises from the uniqueness of each of the 1,253 models
analyzed herein. Our findings suggest reliability across
researchers may remain low even when their accuracy motiva-
tion is high and biasing incentives are removed. Higher levels
of methodological expertise, another frequently suggested
remedy, did not lead to lower variance either. Hence, we are

Fig. 3. Researcher characteristics do not explain outcome variance between teams or within teams. The distribution of team average of AMEs (Left) and
within-team variance in AMEs (Right) across researchers grouped according to mean splits (“lower” and “higher”) on methodological and topic expertise
(potential competencies bias) and on prior attitudes toward immigration and beliefs about whether the hypothesis is true (potential confirmation bias). Log
variance was shifted so that the minimum log value equals zero. Teams submitting only one model assigned a variance of zero. Pearson correlations along
with a P value (“R”) are calculated using continuous scores of each researcher characteristic variable.
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left to believe that idiosyncratic uncertainty is a fundamental
feature of the scientific process that is not easily explained
by typically observed researcher characteristics or analyti-
cal decisions.
These findings add a perspective to the metascience con-

versation, emphasizing uncertainty in addition to bias. The
conclusion warranted from much of the metascience work
carried out in the wake of the “replication crisis” in psychol-
ogy and other fields has been that published research findings
are more biased than previously thought. The conclusion
warranted from this and other similar studies is that pub-
lished research findings are also more uncertain than previ-
ously thought.
As researchers, we bear the responsibility to accurately

describe and explain the world as it is but also, to communicate
the uncertainty associated with our knowledge claims.
Although the academic system privileges innovation over repli-
cation, providing a novel answer to a question is just as essen-
tial as informing about how much trust we can place in that
answer. Our study has shown that to fully assess and address
uncertainty, replications are valuable but insufficient. Only
large numbers of analyses may show whether in a specific
field, independent researchers reliably arrive at similar conclu-
sions, thus enhancing or undermining our confidence in a
given knowledge claim.
Specifically, we believe that serious acknowledgment of

idiosyncratic variation in research findings has at least four
implications for improving the presentation and interpretation
of empirical evidence. First, contemplating that results might
vary greatly if a given study had been conducted by a different
set of researchers or even the same researchers at a different
time, calls for epistemic humility when drawing conclusions
based on seemingly objective quantitative procedures. Second,
the findings remind us to carefully document everything
because, in combination, even the most seemingly minute deci-
sions could drive results in different directions; and only aware-
ness of these minutae could lead to productive theroetical
discussions or empirical tests of their legitimacy. Third, coun-
tering a defeatist view of the scientific enterprise, this study
helps us appreciate the knowledge accumulated in areas where
scientists do converge on expert consensus—such as the human
impact on the global climate or a notable increase in political
polarization in the United States over the past decades. Fourth,
our study suggests that if we freed scientists from bias caused
by the “perverse incentives” inherent in the institutions of sci-
ence, their own preexisting biases or beliefs might not matter as
much to the outcomes they generate as some may fear. In fair-
ness, the teams indicated what models they intended to run in
advance. Although they were free to update and change these at
any time, we can assume that this may have reduced potential
confirmation bias.

Limitations and Outlook. Our study has limitations that war-
rant discussion. First, we do not know the generalizability of
our study to different topics, disciplines, or even datasets.
A major segment of social science works with survey data, and
our results reflect this type of research. In experimental
research, the data-generating model is often clearer or involves
fewer decisions. Moreover, in social research, there are no
Newtonian laws or definite quantum statistical likelihoods to
work with, suggesting that our case might overestimate vari-
ability compared with the natural sciences. On the other
hand, functional magnetic resonance imaging (fMRI), gene,
and space telescope data, for example, are far more complex

than what we gather in social surveys. The complexity of data
analysis pipelines is correspondingly greater in these fields,
but it is possible that having more analytical decisions allows
us to account for more of the variation in research outcomes.
We believe that the number of decision points in data analysis
and the extent to which researchers understand the data-
generating process may determine the degree of outcome vari-
ation in a field, but it remains an open question if and how
design decisions play a smaller or larger role across fields.

Second, although we hoped to offer deeper insights on the
substantive hypothesis under observation, we did not obtain
evidence that moves conclusions in any direction. These lessons
combined with the fact that a substantial portion of partici-
pants considered the hypothesis not testable with these data
offer a potential explanation for why this is such a contested
hypothesis in the social sciences (19, 24, 32).

Looking forward, we take the fact that 13.5% of participat-
ing analysts claimed that the target hypothesis is “not testable”
with the provided data as a powerful reminder of the impor-
tance of design appropriateness and clear specification of
hypotheses. This implicates clarity in the meaning of a conclu-
sion. In our study, “support” of the hypothesis generally meant
rejection of the null, whereas “reject” meant consistency with
the null or inconclusive results. Teams were left to their own
devices in deciding what constituted support for, evidence
against, or nontestability of the target hypothesis, and this alone
introduced a degree of indeterminacy into the research process.
Overall, these observations call for more attention to concep-
tual, causal, and theoretical clarity in the social sciences as well
as for the gathering of new data when results no longer appear
to move a substantive area forward (20, 21). They also suggest
that if we want to reap epistemic benefits from the present
move toward open research practices, we must make more con-
scious efforts to complement methodological transparency with
theoretical clarity.

Finally, we note that the conclusions of this study were
themselves derived from myriad seemingly minor (meta-)ana-
lytical decisions, just like those we observed among our
analysts. We, therefore, encourage readers to scrutinize our ana-
lytical process by taking advantage of SI Appendix, the repro-
duction files, and the web-based interactive app that allow for
easy exploration of all data underlying this study.¶

Data, Materials, and Software Availability. Data and code have been
deposited in GitHub (https://github.com/nbreznau/CRI) (33), and Harvard Data-
verse (https://doi.org/10.7910/DVN/UUP8CX) (34).
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