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A major challenge of genome-wide association studies (GWAS) is to translate phenotypic 741 

associations into biological insights. Here, we integrate a large GWAS on blood lipids 742 

involving 1.6 million individuals from five ancestries with a wide array of functional 743 

genomic datasets to discover regulatory mechanisms underlying lipid associations. We first 744 

prioritize lipid-associated genes with expression quantitative trait locus (eQTL) 745 

colocalizations, and then add chromatin interaction data to narrow the search for functional 746 

genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell 747 

types confirms the central role of the liver in lipid levels, and highlights the selective 748 

enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and 749 

triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci 750 

identifies TFs relevant in lipid biology. In addition, we present an integrative framework to 751 

prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal 752 

genes and variants with multiple layers of functional evidence. Two prioritized genes, 753 

CREBRF and RRBP1, show convergent evidence across functional datasets supporting their 754 

roles in lipid biology. 755 

 756 

  757 
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Introduction 758 

 759 

Most GWAS findings have not directly led to mechanistic interpretations, largely because 760 

90% of GWAS associations map to non-coding sequences 1,2. Mechanistic interpretations in 761 

GWAS have proven challenging because the strongest signals identified in GWAS typically 762 

contain many variants in strong linkage disequilibrium (LD) 3 and functional mechanisms 763 

including genes of action are often not clear from GWAS data alone 4,5. 764 

 765 

Linking trait-associated variants to genome function has emerged as a promising model for 766 

mechanistic interpretation of non-coding findings in GWAS. This 'variant-to-function' model 767 

is premised on recent observations that non-coding variants often affect a trait of interest 768 

through the regulation of genes and processes in trait-relevant cell types or tissues 2,6. 769 

Implementing this functional model in GWAS has become more feasible as large-scale 770 

functional genomic resources, such as epigenomic 7 and transcriptomic 8 catalogues, have 771 

been systematically generated across a wide range of human cell types and tissues. The 772 

integration of functional genomics with GWAS has identified regulatory mechanisms in 773 

variants associated with some flagship disorders such as obesity 9 and schizophrenia 10, 774 

yielding important functional insights into the genetic architecture of human complex traits.  775 

 776 

The history of the human genetics of lipids mirrors the successes and challenges of GWAS. 777 

Increasing sample size and genetic diversity has significantly boosted the power of discovery: 778 

the first lipid GWAS in 2008 with 8,816 European-descent individuals identified 29 lipid-779 

associated loci11 ; the latest study of 1.6 million individuals across five ancestries 12 found 780 

941. Despite the dramatic increase in the number of associations, our biological 781 

understanding of many of these genetic discoveries remains limited. The causal gene has 782 
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been confidently assigned at only a small fraction of these loci 2, and the regulatory 783 

mechanism connecting variant to phenotype has been conclusively characterized only for a 784 

handful of genes 5. Furthermore, systematic mapping of lipid-associated variants to their 785 

biological functions has been missing in the literature at the time of this study. 786 

 787 

Here we conduct a genome-scale integrative analysis on the largest GWAS to-date of five 788 

lipid phenotypes (LDL, or low density lipoprotein; HDL, or high density lipoprotein; TC, or 789 

total cholesterol; nonHDL, or non-high density lipoprotein; and TG, or triglycerides) 790 

involving 1.65 million individuals from five ancestries 12. Combining the lipid GWAS with a 791 

wide array of functional genomic resources in diverse human tissues and cell types, we 792 

identify regulatory mechanisms of noncoding genetic variation in lipids with a full suite of 793 

computational approaches. Further, we develop a generalizable framework to understand how 794 

tissue-specific gene regulation can explain GWAS findings, and demonstrate its real-world 795 

value on lipid-associated loci. 796 

 797 

Material and Methods 798 

GWAS 799 

 800 

We performed GWAS for five blood lipid traits (LDL, HDL, TC, TG, and nonHDL) in 1.65 801 

million individuals from five ancestry groups 12(African and African-admixed, East Asian, 802 

European, Hispanic, South Asian) at 91 million variants imputed primarily from the 803 

Haplotype Reference Consortium 13 or 1000 Genomes Phase 3 14. The individual GWAS and 804 

meta-analyses were performed using the hg19 version of the human reference genome. We 805 

used MR-MEGA 15 for meta-analysis across cohorts. 806 

 807 
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We defined 'sentinel variants' as lead variants representing independent trait-associated loci in 808 

the genome. These windows are the greater of 500kb or 0.25cM around the sentinel variant; 809 

genetic distances were defined using reference maps from HapMap 3 16. We performed a 810 

second round of conditional analysis, conditioning on the sentinel variants to identify and 811 

remove any significant windows that are shadow signals (or dependent on) of a neighboring 812 

locus to enforce independence of associated loci. 813 

 814 

Colocalization with eQTLs 815 

 816 

We performed statistical colocalization of lipid GWAS with eQTLs obtained from GTEx v8 817 

across 49 tissues 8. For each of the five lipid traits, we used the same sentinel variants defined 818 

in the previous section to represent approximately independent GWAS-associated windows 819 

(also removing shadow signals as described before). 820 

 821 

For each such window, we ran eQTL colocalization with GTEx v8 single-tissue cis-eQTL 822 

summary statistics 8. For each of 49 GTEx tissues, we first identified all genes within 1Mb of 823 

the sentinel SNP, and then restricted analysis to those genes with significant eQTLs (i.e., 824 

'eGenes' as defined by GTEx) in that tissue (FDR < 0.05). We used the R package 'coloc' (run 825 

on R version 3.4.3, coloc version 3.2.1) 17 with default parameters to run colocalization 826 

between the GWAS signal and the eQTL signal for each of these cis-eGenes, using as input 827 

those SNPs in the defined window (greater than 500kb or 0.25cM on either side of the lead 828 

variant), i.e. all SNPs present in both datasets. eQTL summary statistics were in GRCh38, so 829 

we first lifted over the GWAS summary statistics (in hg19) to GRCh38 using liftOver 18. As 830 

in previous studies 19, we used a colocalization posterior probability of (PP3+PP4) > 0.8 to 831 

identify loci with enough colocalization power, and PP4/PP3 > 0.9 to define those loci that 832 
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show significant colocalization, where PP4 represents posterior probability of a single shared 833 

signal, and PP3 represents posterior probability of two unique signals in the GWAS and 834 

eQTL datasets. 835 

 836 

Overlap with promoter Capture-C data 837 

 838 

We used four promoter-focused Capture-C (henceforth Capture-C) datasets from three human 839 

cell/tissue types to capture physical interactions between gene promoters and their regulatory 840 

elements. We used three biological replicates of HepG2 liver carcinoma cells 20, another 841 

HepG2 dataset described in Selvarajan et al 21, hepatocyte-like cells (HLC) produced by 842 

differentiating three biological replicates of iPSCs (which in turn were generated from 843 

peripheral blood mononuclear cells using a previously published protocol 22), and an adipose 844 

dataset obtained from Pan et al 23 that was produced using primary human white adipocytes. 845 

 846 

The detailed protocol to prepare HepG2 or HLC cells for the Capture-C experiment is 847 

described in Chesi et al20. Briefly, for each dataset, 10 million cells were used for promoter 848 

Capture-C library generation. Custom capture baits were designed using an Agilent 849 

SureSelect library design targeting both ends of DpnII restriction fragments encompassing 850 

promoters (including alternative promoters) of all human coding genes, noncoding RNA, 851 

antisense RNA, snRNA, miRNA, snoRNA, and lincRNA transcripts, totaling 36,691 RNA 852 

baited fragments. Each library was then sequenced on an Illumina HiSeq 4000 (HepG2) or 853 

Illumina NovoSeq (HLC), generating 1.6 billion read pairs per sample (50 base pair read 854 

length.) We used HiCUP v0.7.2 24 to process the raw FastQ files into loop calls and 855 

CHiCAGO v1.6.0 24,25 to define significant looping interactions; we defined a CHiCAGO 856 

score of 5 as significant, as specified in the default parameters. 857 
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 858 

Starting with Capture-C maps processed as described above, we re-annotated the baits to 859 

gene IDs from Gencode v19 26 to ensure uniformity of gene annotations with the rest of our 860 

pipeline. For each bait, we identified any gene whose transcription start site (TSS) from any 861 

transcript in Gencode v19 was within 175 base pair distance from the bait (to account for 862 

differing bait designs for external datasets which may not directly overlap the canonical 863 

TSS). We filtered all datasets to only include interactions in which the interacting end was 864 

not another bait. Enrichment with colocalized genes was robust to our choice of distance 865 

between bait and gene (enrichment with eQTL colocalized genes ranging from 2.94-2.96 for 866 

bait distances from 0-350 base pairs). 867 

 868 

To identify genetic variants associated with any of the five lipid traits that physically interact 869 

with locations in the genome, we used the R package ‛Genomic Ranges’ version 1.30.3 27 to 870 

find overlap between credible sets for each trait’s GWAS and the previously annotated 871 

promoter Capture-C data; we refer to these as Capture-C/GWAS interactions. Each credible 872 

set was defined as the set of variants with a 95% posterior probability of being the causal 873 

variant. For all individual variants within all GWAS-associated loci for the five lipid traits, 874 

we identified which variants overlapped any interacting end of the four previously annotated 875 

promoter Capture-C data. 876 

 877 

Presence of gene-variant pairs in same topologically associated domains 878 

 879 

To estimate the frequency of colocalized gene-sentinel pairs in the same topologically 880 

associated domain (TAD), we used publicly-available TADs from human liver 28. We 881 

compared the number of colocalizations with the sentinel variant and colocalized gene in the 882 
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same TAD divided by all colocalizations in which the sentinel variant lies in a TAD. To test 883 

if this ratio was statistically significant, we generated random TAD boundaries using 884 

‘bedtools shuffle’ 1000 times, and calculated the same ratio for these randomly-generated 885 

TAD boundaries. 886 

 887 

Pathway enrichment  888 

 889 

We used ClusterProfiler v3.6.0 29 to look for pathways over-represented in each gene list:  890 

genes with eQTL colocalization and genes interacting with variants in GWAS credible sets. 891 

We used the enrichKEGG function to look for pathway enrichment in KEGG pathways 892 

(using the latest version of the KEGG database 30). We first re-mapped gencode IDs to gene 893 

symbols using the Gencode v24 annotation and then used the biomaRt R package v2.34.2 31 894 

to convert gene symbols to Entrez IDs. We ran enrichKEGG to identify enriched pathways 895 

significant at a Benjamini-Hochberg threshold of 0.05. 896 

 897 

Enrichment in known lipid-associated genes 898 

 899 

We calculated enrichment odds ratio of genes identified in our analysis with three known sets 900 

of lipid-associated genes using the Fisher’s exact test (R function ‘fisher.test’). First, we 901 

identified a list of 33 Mendelian genes from ClinVar 32 with lipidemia-associated ICD10 902 

codes (E78). Second, we used the set of genes identified from a transcriptome-wide 903 

association study (TWAS) on the same GWAS and GTEx v8 summary statistics using the S-904 

PrediXcan software 33 default setup. Third, we used 35 genes with rare-coding variants 905 

associated with lipid levels 34. 906 

 907 
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Stratified LD score regression 908 

 909 

We used LDSC version 1.0.1 35 to estimate the enrichment of heritability using GWAS 910 

summary statistics in different epigenetic and transcriptomic annotations, including gene 911 

expression, chromatin marks and TF binding sites. The gene expression and chromatin mark 912 

annotations and the corresponding LD scores were provided as 913 

'Multitissuegeneexpr1000Gv3' and 'Multitissuechromatin1000Gv3' databases in LDSC 914 

software. The TF binding site annotations were extracted from ChIP-seq data of 161 TFs 915 

from ENCODE, and their LD scores were estimated from 1000 Genomes Phase 3 European 916 

samples using ‘ldsc.py --l2’. We first converted the summary statistics for each phenotype to 917 

LDSC-formatted summary statistics using 'munge_sumstats.py'. Second, we ran 'ldsc.py' 918 

using the baseline_v1.2 baseline model on each annotation to estimate enrichment of 919 

heritability. For primary analyses, we used multi-population GWAS summary statistics and 920 

LD scores estimated from 1000 Genomes Phase 3 European samples. For secondary analyses 921 

on East Asian GWAS alone, we obtained EAS-specific LD scores for the same epigenomic 922 

annotations 36. 923 

 924 

GREGOR analysis 925 

 926 

We used GREGOR 37 to estimate enrichment of sentinel variants for each lipid phenotype in 927 

TF binding sites for 161 TFs from ENCODE compared to a null distribution of variants 928 

matched for allele frequency. We ran GREGOR with default parameters, specifying 0.8 as 929 

the R2 threshold, window size of 1Mb, and ‘EUR’ as the population. Annotations with FDR-930 

adjusted P-value < 0.05 were considered significant. 931 

 932 
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Enrichment in single-cell expression data 933 

 934 

We overlapped our list of colocalized genes with publicly available single-cell RNA-935 

sequencing data of 8,444 cells from liver 38 and 38,408 cells from adipose (Web resources) in 936 

humans. For both datasets, we downloaded normalized TPM data and existing tSNE cluster 937 

annotations for each cell. For each cluster, we defined median expression for each gene 938 

across all cells in that cluster. Then for each cluster, we calculated the enrichment P-value for 939 

our list of colocalized genes using the ‘fgsea’ R package v1.4.1, which looks for 940 

overrepresentation of our gene list in ranked genes for each cluster 39, implemented in R 941 

3.4.3. 942 

 943 

Results 944 

 945 

We systematically integrated lipid GWAS results 12 with multiple layers of functional 946 

genomic data from diverse tissues and cell types to understand regulatory mechanisms at 947 

lipid-associated loci (Figure 1). Specifically, we overlaid GWAS loci with eQTL and 948 

chromatin-chromatin interactions to identify causal genes. We assessed polygenic 949 

enrichments of tissue-specific histone marks to prioritize relevant tissues and examined 950 

GWAS loci at transcription factor (TF) binding sites to detect lipid-relevant TFs. Finally, we 951 

combined all these layers to prioritize functional variants at GWAS loci, providing a holistic 952 

view of gene regulation at lipid loci in relevant tissue and cell types. 953 

 954 

Figure 1: Schematic overview of the multi-layer functional genomic analysis. We first 955 

integrate GWAS summary statistics for five lipid phenotypes with eQTL and chromatin 956 

interaction data to identify potential genes mediating the GWAS association, and then 957 
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incorporate epigenomic annotations to identify regulatory mechanisms at these loci. For any 958 

lead variant ‘X’, A, B, and C represent nearby eGenes, and SNPs around SNP X represent 959 

variants in the credible set. 960 

 961 

 962 

Colocalization with eQTLs identifies candidate lipid-relevant genes 963 

 964 

First, we identified shared association signals between lipid levels and expression of nearby 965 

genes, since most GWAS signals are presumed to influence complex traits through impact on 966 

gene expression 40. To do so, we tested for colocalization of each of the 1,750 significant 967 

lipid GWAS association signals across the five traits examined with significant cis-eQTL 968 

data across 49 human tissues from the GTEx consortium 8. Here, we defined significant 969 

GWAS signals as 1,750 loci reaching genome-wide significance and corrected for shadow 970 

signals (Methods) in our multi-population meta-analysis for at least one of five lipid traits. 971 

 972 

Second, we restricted our analysis to those loci likely mediated through regulatory 973 

mechanisms as opposed to coding variation. In particular, we excluded all loci with credible 974 
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sets containing at least one missense variant (369 of 1,750 loci, 21% of credible sets). Of the 975 

remaining 1,381 GWAS loci, 696 significantly colocalized with eQTLs (the ratio of posterior 976 

probability of a shared signal to the posterior probability of two signals being > 0.9 19; 977 

Methods) in at least one of 49 tissues for at least one lipid phenotype. This resulted in 1,076 978 

colocalized eGenes ranging from 1 to 16 genes per locus (Figure 2A; Table S1). Since with 979 

eQTL data alone it is difficult to disentangle a single functional gene from multiple functional 980 

(and likely coregulated) genes at a locus 41 we performed all downstream analyses with all 981 

1,076 colocalized genes, to further prioritize functional genes at loci with multiple eGenes. 982 

 983 

To acquire additional functional insights into the 1,076 colocalized genes, we assessed their 984 

enrichments across existing biological and clinical gene sets. Colocalized genes showed 985 

enrichments in (a) 20 KEGG pathways 30 at FDR 5% (Table S2), including known lipid-986 

related processes such as cholesterol metabolism, PPAR signaling, and bile secretion; (b) 33 987 

Mendelian genes from ClinVar 32 associated with lipid-related ICD10 codes, (11 fold 988 

enrichment at P=2.08e-06, including APOB, LPL, and APOE; Figure 2B), suggesting the 989 

shared genetic basis of Mendelian and complex lipid phenotypes 42; (c) 35 genes with rare-990 

variant burden for lipid phenotypes in a recent multi-ancestry analysis 34 (30-fold enrichment, 991 

P = 1.77e-16, including APOB, LPL, LIPG and ANGPTL4), confirming shared mechanisms 992 

of rare and common variation underlying lipid traits 42,43. Colocalized genes also showed 993 

enrichment with genes implicated in TWAS run on the same GWAS and eQTL summary 994 

statistics (20-fold enrichment, P<2.22e-308). These enrichment results demonstrate the 995 

biological relevance of candidate functional genes prioritized by our approach. 996 

 997 

Figure 2: Overlap between eQTL colocalized genes and capture-C prioritized genes, and 998 

their enrichment in known lipid-associated genes. A. Numbers of genes identified by two 999 
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approaches: eQTL colocalization (upper half) and promoter capture-c interactions (lower 1000 

half) B. Overlap between our list of prioritized genes (left: capture-C prioritized genes; right: 1001 

eQTL colocalized genes) with three sets of genes previously associated with lipid biology 1002 

(ClinVar lipidemia-associated genes, genes implicated in rare burden of lipids, and genes 1003 

from a lipid TWAS). C. Enrichment in overlap between eQTL colocalized genes and capture-1004 

C prioritized genes against what is expected by chance, assuming both gene sets are 1005 

independent. Enrichment estimates and confidence intervals shown in Panels B and C were 1006 

obtained using Fisher’s exact test. 1007 

 1008 

 1009 

Chromatin-chromatin interactions improve eQTL-based colocalization 1010 

 1011 

Our eQTL-based colocalization analysis uses a linear sequence of DNA, and ignores physical 1012 

interaction between non-adjacent DNA segments, another regulatory layer underlying 1013 

complex human traits 44. To add this layer to our analysis, we generated Capture-C data from 1014 

HepG2 liver carcinoma cells (denoted as HepG2.1) and hepatocyte-like cells (HLC) derived 1015 

from differentiating iPSCs (the latter is described in 22), as well as publicly-available Capture-1016 

C datasets from HepG2 21,43 (denoted as HepG2.2) and adipose tissue 23. We defined a 1017 

GWAS-relevant interaction as any Capture-C interaction between any gene and a variant in 1018 

the 95% credible set for a GWAS locus45. Credible set sizes ranged from 1 to 417 variants at 1019 
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the 1,750 examined loci, with a median size of 5 variants per credible set. In total, 1,079 1020 

GWAS loci had at least one variant in the credible set with a physical interaction with a gene 1021 

promoter and 3,543 of 26,621 genes with promoter-interactions had promoters physically 1022 

interacting with at least one GWAS credible set variant (Figure 2A; Table S3). Unlike eQTL-1023 

colocalized genes, these genes interacting with their credible sets showed limited enrichment 1024 

in relevant KEGG pathways (Table S2) and lipid-related genes from ClinVar (Figure 2B), 1025 

though we see 5-fold enrichment (compared to greater than 10-fold enrichment for eQTL-1026 

colocalized genes) in genes with rare-variant lipid associations (P =2.8e-05) and TWAS 1027 

genes (P=2.5e-288). 1028 

 1029 

Genes physically interacting with GWAS loci helped shortlist functional genes from eQTL 1030 

colocalization despite their reduced enrichments in known gene sets. Of 1,079 credible sets 1031 

with promoter interactions, 224 also colocalized with eQTLs for the same gene. At the gene 1032 

level, 233 genes were implicated in both eQTL colocalization and Capture-C interactions 1033 

(Figure 2C), representing an enrichment of 3-fold compared to random chance (P =3.11e-38). 1034 

Among these loci with concordant eQTL colocalizations and Capture-C interactions, only 1035 

39% of them mapped to a single gene using eQTL data alone, whereas adding Capture-C 1036 

information increased this fraction to 80%. These results showcase the potential value of 1037 

combining eQTLs with physical chromatin interactions to prioritize functional genes at 1038 

GWAS loci. 1039 

 1040 

Since eQTLs are likely to reside in the same topologically associated domain (TADs) as the 1041 

genes they regulate 46, we examined TAD structure from independent datasets at lipid GWAS 1042 

loci with eQTL colocalizations. Of eQTL-GWAS colocalizations in which the sentinel 1043 

variant resided within a liver TAD 28, the colocalized gene resided in the same liver TAD 1044 
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84.8% of the time (P < 0.001 with 1000 permutations; Methods). When we restricted 1045 

colocalizations to those supported by Capture-C data in any cell type, 91.2% fall in the same 1046 

TAD. These results add to the existing evidence for TAD boundaries being regulatory 1047 

insulators in the cell 47 and confirm our integration of chromatin interactions with eQTL 1048 

colocalizations as an effective strategy to hone in on functional genes. 1049 

 1050 

Tissue-specific enrichment of GWAS signals differentiates lipid traits 1051 

 1052 

Regulatory variants often affect complex traits in a tissue-specific manner 6, as shown in our 1053 

eQTL colocalization analysis. Specifically, by computing the ratio of the number of 1054 

colocalizations in a tissue to eQTL sample size in that tissue, we found that the liver was 1055 

universally enriched for colocalized eGenes with respect to sample size across all lipid traits 1056 

whereas adipose was selectively enriched in HDL and TG only (Figure S1). Motivated by 1057 

these findings, we leveraged systematic approaches and additional data to identify relevant 1058 

tissues and cell types for each lipid trait.  1059 

 1060 

We implemented stratified LD score regression (S-LDSC), a polygenic approach not 1061 

restricted to genome-wide significant variants, on tissue-specific transcriptomic and 1062 

epigenomic annotations across 204 datasets from more than 170 tissues and cell types, to 1063 

identify relevant tissues for each lipid trait (Methods). Consistent with previous studies and 1064 

our eQTL-based analysis, liver-related tissues (Table S4) showed strong enrichments across 1065 

all lipid traits (S-LDSC enrichment p-values ranging from .001 in TG to .0001 in TC), for 1066 

both expression (Figure 3A) and chromatin annotations (Figure 3B). This result was 1067 

confirmed by analysis using two other approaches: DEPICT 48 (Figure S2) and RSS-NET 49 1068 

(Table S5). To assess the robustness of our S-LDSC results based on multi-population 1069 
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GWAS, we applied S-LDSC to population-specific GWAS in European and East Asian 1070 

ancestry participants together with population-specific LD scores (Methods) and obtained 1071 

similar results (Table S6).  1072 

 1073 

Figure 3: Tissue relevance based on lipid GWAS and functional annotations. Partitioning 1074 

heritability of GWAS summary statistics for five lipid traits on gene expression (A) and 1075 

chromatin mark (B) annotations across tissues. Each plotted point represents a tested dataset 1076 

for enrichment of heritability, with larger dots representing datasets with P-value < 0.05; 1077 

multiple annotation datasets are tested for the same tissue group. Each color represents a 1078 

tissue group, and the y-axis represents -log10 P-value of enrichment of heritability. 1079 

 1080 

 1081 

 1082 

The S-LDSC results also highlighted tissues selectively enriched in certain lipid traits as 1083 

shown in the eQTL-based analysis. The most enriched category for HDL using chromatin 1084 

annotation is ‘Adipose H3K4me3’ (P-value 7.6e-04); for TG, enrichment in liver-related 1085 
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tissues (P-value 1.2e-03) is similar to enrichment in adipose (P-value 2.7e-03). For LDL, TC, 1086 

and non-HDL, enrichment P-values for the liver were much more significant than for all 1087 

other tissues including adipose (Figure 3B). We observed the same pattern in S-LDSC results 1088 

based on gene expression (Figure 3A). This finding is consistent with the known influence of 1089 

adipose on plasma HDL levels 50, and the role of adipose as TG deposits 51. These results 1090 

were corroborated by eQTL colocalizations stratified by phenotype (Figure S1) and DEPICT 1091 

analysis on gene expression 48 (Figure S2).  Together, these results confirm the liver as the 1092 

tissue of action for all five lipid traits, and highlight the additional role of adipose in HDL and 1093 

TG only.  1094 

 1095 

Given the importance of the liver and adipose in modulating lipid levels, we further identified 1096 

the relevant cell types within these tissues. Using existing single-cell data from adipose and 1097 

liver, we performed gene-set enrichment analysis 52 to identify cell-type clusters enriched for 1098 

genes colocalized with any lipid trait. Out of 11 identified cell types in 20 clusters in the 1099 

liver, only hepatocytes were enriched at FDR-adjusted P < 0.05 (Figure S3), consistent with 1100 

previous results21. In adipose, only adipocyte clusters and macrophage-monocyte clusters 1101 

showed suggestive enrichment (nominal P < 0.05) in colocalized genes (Figure S4). Of note, 1102 

the enrichment in adipocytes was significant when we restricted this analysis to genes that 1103 

were colocalized only with HDL and TG (FDR-corrected P < 0.05), consistent with the 1104 

selective enrichments of adipose in HDL and TG (but not the other lipid traits) from our S-1105 

LDSC analysis. Evaluations at cellular resolution are required to understand the cell-type 1106 

specific mechanisms underlying lipid GWAS loci, but our results could form a useful basis 1107 

for future studies. 1108 

 1109 

Overlapping GWAS signals with binding sites highlights lipid-relevant TFs 1110 
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 1111 

TFs have been implicated as a key mediator of linking genetic variation to complex traits 53. 1112 

To understand lipid GWAS in the context of TF activity, we assessed enrichment of genome-1113 

wide significant variants at TF binding sites using GREGOR 37 and performed polygenic 1114 

enrichment analysis of TF binding sites using S-LDSC. 1115 

 1116 

Using ChIP-Seq data from 161 TFs across 91 cell types from the ENCODE project 7, 70.7% 1117 

of lipid credible sets overlapped with at least one TF binding site. Using GREGOR 37, we 1118 

identified 137 TFs whose binding sites were significantly enriched in GWAS lead SNPs for 1119 

at least one lipid phenotype (enrichment > 2; FDR adjusted P-value < 0.05; Figure S5; Table 1120 

S7). Among these 137 enriched TFs, 69 of them (50%) showed significant enrichments 1121 

across all five lipid phenotypes, suggesting a potential core regulatory circuit shared by all 1122 

lipid traits (Figure S5). The TF with the strongest enrichment in all phenotypes was ESRRA 1123 

(estrogen-related receptor alpha), a nuclear receptor active in metabolic tissues 54; ESRRA 1124 

has been implicated in adipogenesis and lipid metabolism, and ESRRA-null mice display an 1125 

increase in fat mass and obesity 54. 1126 

 1127 

The GREGOR analysis also highlighted 68 TFs significantly enriched in specific subsets of 1128 

(but not all five) lipid phenotypes (Figure S8). For example, we found 4 TFs (FOXM1, 1129 

PBX3, ZKSCAN1, ZEB1) enriched in HDL and TG only, 4 TFs (EZH2, NFE2, NFATC1, 1130 

KDM5A) enriched in HDL only and 11 TFs (FOSL1, IRF3, JUN, MEF2C, NANOG, 1131 

PRDM1, RUNX3, SIRT6, SMC3, STAT3, ZNF217) enriched in TG only. Of these TFs, the 1132 

central role of ZEB1 in adiposity 55 and fat cell differentiation has been demonstrated 56. 1133 

Taken together, these TF-centric findings corroborate the selective enrichments of adipose in 1134 
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HDL and TG (but not the other lipid traits) identified in our previous tissue prioritization 1135 

analyses.  1136 

 1137 

Similar to tissue prioritization, we also performed polygenic enrichment analysis of TF 1138 

binding sites using S-LDSC (Table S8), which differed from GREGOR analysis by looking at 1139 

not only the genome-wide significant associations but also the polygenic signal irrespective 1140 

of GWAS P-values. On the same 161 ENCODE TFs, this polygenic analysis identified 25 1141 

TFs whose binding sites were significantly enriched in heritability (nominal P < 0.05) for at 1142 

least one lipid phenotype (Figure S6); reassuringly, 24 of 25 TFs were also significant in 1143 

GREGOR analysis. Among these enriched TFs, eight (34%) were significantly enriched in all 1144 

five lipid traits (CEBPB, CEBPD, FOXA2, HDAC2, HNF4G, NFYA, RXRA, SP1; P < 1145 

0.05). Of those TFs significant in both analyses, RXRA (retinoid X receptor alpha) is also 1146 

encoded by a colocalized gene (RXRA) near a GWAS hit (chr9:137,268,682). RXRA is a 1147 

ligand-activated transcription factor that forms heterodimers with other receptors (including 1148 

PPARG) and is involved in lipid metabolism 57 and homeostasis. Moreover, 145 GWAS loci 1149 

(Table S9) overlap RXRA binding peaks, suggesting that the GWAS variants might affect 1150 

lipids (partially) through affecting the binding activity of RXRA. While the RXRA-associated 1151 

variant has been previously implicated as a GWAS locus 58, our study demonstrates its role in 1152 

lipid biology through its regulatory influence on other lipid-associated genes.  1153 

 1154 

Multi-layer functional integration reveals regulatory mechanisms at GWAS loci  1155 

 1156 

Motivated by our finding that integrating chromatin interaction improved eQTL 1157 

colocalizations, we further brought together multiple lines of functional evidence at each 1158 

GWAS locus for mechanistic inference. We started with the list of genes with evidence for 1159 
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both eQTL colocalization in the liver or adipose and credible set physical interactions. We 1160 

next annotated each variant in the 95% credible set with various indicators of regulatory 1161 

function, including its open chromatin status in liver or adipose-related cell types, its 1162 

proximity to a promoter or an enhancer, and its RegulomeDB regulation probability 59 (see 1163 

Table S10 for the complete list of annotations used). To account for complexities of 1164 

regulatory mechanisms and limitations of functional datasets, we combined evidence across 1165 

these datasets to prioritize variants at GWAS loci (Figure 4A). Specifically, we prioritized 1166 

variants with at least three independent lines of functional evidence (chromatin openness, 1167 

physically interaction with target genes, and promoter/enhancer status in liver or adipose), 1168 

with at least two being in the same tissue with colocalization with the target gene, and with a 1169 

RegulomeDB score > 0.5. Applying this simple procedure to lipid GWAS we identified 13 1170 

candidate loci, each with the strongest multi-layer evidence pointing to a single functional 1171 

variant (Table 1). Below we describe two examples to highlight key features of this multi-1172 

layer integration framework. 1173 

 1174 

RRBP1 (ribosomal binding protein 1) could be identified from eQTL colocalization alone, 1175 

but our multi-layer integration approach strengthened the conclusion via convergent evidence 1176 

from various sources (Figure 4B). The RRBP1 eQTL signals in the liver colocalize with LDL, 1177 

TC, and nonHDL GWAS signals. The 'T' allele of the lead variant (chr20:17,844,684, hg19) 1178 

decreases RRBP1 expression levels and increases LDL, TC, and nonHDL levels. This lead 1179 

variant is in open chromatin in HLC, and physically interacts with the RRBP1 promoter 1180 

(250kb away) in adipose and HepG2. All these data consistently point to RRBP1 as the 1181 

functional gene underlying this locus. RRBP1 specifically tethers the endoplasmic reticulum 1182 

to the mitochondria in the liver--an interaction that is enriched in hepatocytes--and regulates 1183 
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very low density lipoprotein (vLDL) levels 60. Rare variants in RRBP1 are associated with 1184 

LDL in humans 61 and silencing RRBP1 in liver affects lipid homeostasis in mice 60.  1185 

 1186 

Figure 4. An easy-to-implement multi-layer framework to prioritize functional variants at 1187 

GWAS loci. A. Variant annotation and prioritization scheme at each credible set. B. Evidence 1188 

for gene RRBP1 from functional genomics data. The LDL GWAS locus at this region is an 1189 

eQTL for gene RRBP1 in the liver (second row). Variants in the credible set of this locus 1190 

interact with the gene promoter in both adipose and HepG2 Capture-C data. The interacting 1191 

variant is also in an open chromatin peak in three liver-related cell types. C. Multiple 1192 

sources of functional genomics data support CREBRF as a gene contributing to HDL levels. 1193 

The HDL GWAS locus at this region is an eQTL for gene CREBRF in adipose (second row). 1194 

Variants in the credible set at this locus interact with the CREBRF promoter in adipose. The 1195 

interacting variant is also in open chromatin in liver-related cell types.  1196 

 1197 
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 1198 

CREBRF (CREB3 regulatory factor) demonstrates the power of our multi-layer integration 1199 

framework in prioritizing functional variants (Figure 4C). The eQTL signals of CREBRF 1200 

colocalized with a GWAS locus for HDL with 30 candidate variants. In contrast, our multi-1201 

layer approach identified a single candidate variant (chr5:172,566,698) at this locus that 1202 

physically interacts with the CREBRF promoter in adipose, was predicted to be a regulatory 1203 

element (RegulomeDB score=0.91). Consistent with the index variant (chr5:172,591,337), 1204 

the allele 'A' at this functional variant increased HDL levels and increased CREBRF 1205 

expression in adipose. Missense variants in CREBRF have been linked to body mass index, 1206 

and the gene has been linked to obesity risk in Samoans  62. 1207 

 1208 

Finally, to compare the power of functional fine-mapping with trans-ancestry fine-mapping, 1209 

we applied our prioritization rule to credible sets derived from European-only meta-analysis. 1210 

The 111 variants prioritized by our rule described above (including multiple variants in the 1211 

same credible set) were all found in the multi-ancestry credible sets, representing a 3.7 fold 1212 

enrichment (P < 1e-04 derived from 10000 permutations randomly sampling variants from 1213 

the European-only credible sets). This convergence of complementary approaches to the 1214 

same smaller set of variants highlights the power of multi-ancestry datasets as an approach to 1215 

narrow in on functional variants. 1216 

 1217 

Discussion 1218 

 1219 

Here we integrate the largest multi-population lipid GWAS to date with a wide array of 1220 

functional genomic resources to understand how noncoding genetic variation affects lipids 1221 

through gene regulation. Specifically, we identify 1,076 genes whose eQTL signals 1222 
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colocalize with lipid GWAS signals and demonstrate how physical chromatin interaction can 1223 

improve standard eQTL-based colocalization. We assess tissue-specific enrichments of lipid 1224 

GWAS signals and demonstrate the selective importance of adipose in HDL and triglyceride 1225 

biology. We examine binding site enrichments of 161 TFs in lipid GWAS and expand our 1226 

understanding of lipid GWAS loci (e.g., RXRA) in the context of TF activity. Finally, we 1227 

build a simple and interpretable prioritization framework that automatically combines 1228 

multiple lines of evidence from orthogonal datasets, pinpointing a single functional variant at 1229 

each of 13 lipid-associated loci (e.g., RRBP1 and CREBRF). While there are studies that 1230 

interpret lipid GWAS associations 21,63,64, the size of our multi-population GWAS and multi-1231 

layer functional integration represent a comprehensive effort and an important step forward in 1232 

this direction.  1233 

 1234 

Our multi-layer analysis has two key strengths. First, despite a large array of functional 1235 

genomic resources being embedded, our analysis produces results with high consistency. For 1236 

example, the selective enrichment of adipose in HDL and TG identified by S-LDSC is 1237 

confirmed by our eQTL-based colocalization and TF binding site overlap. Another example 1238 

of consistency is the multi-layer prioritization of RRBP1, which can be identified from eQTL-1239 

based colocalization alone and it is further validated by chromatin openness and interaction. 1240 

Such convergent evidence from various sources improves the confidence of our findings. 1241 

Second, our analysis highlights that combining multiple layers of regulatory information can 1242 

improve sensitivity to prioritize functional genes and variants. For example, we refined eQTL 1243 

colocalized genes (1,076) to a smaller set of functional genes (233) through integration with 1244 

promoter Capture-C data. Another example of sensitivity is CREBRF, where eQTL-based 1245 

colocalization implicates 30 candidate variants and adding other regulatory layers points to a 1246 
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single functional variant. Moving forward, we expect these two features will serve as useful 1247 

guidelines for future integrative genomic analyses of other traits.  1248 

 1249 

Our results rely on the breadth and accuracy of functional genomic datasets used in our 1250 

analyses. First, unlike our lipid GWAS, current functional datasets 65 are limited both in 1251 

sample size and ancestral diversity, which can affect discovery and replication of regulatory 1252 

mechanisms in diverse populations. Second, some functional datasets are generated at limited 1253 

resolution. For example, our colocalizations are based on eQTLs from bulk tissue RNA-seq 8, 1254 

which may miss detailed cell types and biological processes in which lipid-associated SNPs 1255 

regulate gene expression 66. Third, some functional datasets are not available across the full 1256 

spectrum of human tissues and cell types. For example, our chromatin-chromatin interaction 1257 

analysis only examines a few cell types in two known lipid-related tissues, producing results 1258 

that may be biased towards known lipid biology. As more comprehensive and accurate 1259 

functional genomic resources are becoming publicly available in diverse cellular contexts and 1260 

ancestry groups, the resolution and power of integrative analyses like ours will be markedly 1261 

increased.  1262 

 1263 

Other limitations of this study stem from computational methods embedded in our 1264 

framework. First, the colocalization approach 'coloc' assumes one causal variant per locus, 1265 

whereas recent studies suggest extensive allelic heterogeneity 67 consistent with a model of a 1266 

milieu of related transcription factors binding within a single locus. Accounting for allelic 1267 

heterogeneity in summary statistics-based colocalization typically requires modelling 1268 

multiple correlated SNPs through LD matrix 68, which is computationally intensive in large-1269 

scale analyses derived from many cohorts with diverse ancestries, like the multi-population 1270 

GWAS examined here. Second, due to restricted access to individual genotypes of 201 1271 
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cohorts, we cannot produce multi-population LD scores within GLGC but have to use 1272 

European-based LD scores in all S-LDSC analyses. This approach, though less rigorous in 1273 

principle, provides robust results in practice (as confirmed by our ancestry-specific analysis), 1274 

largely because 79% of cohorts in GLGC are of European descent 12. That said, we caution 1275 

that the same approach might fall short in ancestrally diverse studies with few European 1276 

individuals 69. Third, our multi-layer variant prioritization framework is built on a series of 1277 

simple rules that are easy to implement on large datasets. This approach could possibly be 1278 

formalized as statistical models (e.g., priors in Bayesian methods 49), but certainly simplify 1279 

computation and improve scalability of our framework. Despite the technical limitations, our 1280 

approach here can serve as a useful benchmark for future development of methods with 1281 

improved statistical rigor and computation efficiency. 1282 

In summary, mapping noncoding genetic variation of complex traits to biological functions 1283 

can benefit greatly from thorough integration of multiple layers of functional genomics, as 1284 

demonstrated in the present study. Although tested on lipids only, our integrative framework 1285 

is straightforward to implement more broadly on many other phenotypes, yielding functional 1286 

insights of heritable traits and diseases in humans.  1287 
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Tables 
Table 1. Thirteen prioritized loci with highest confidence of a single functional variant in the 
credible set. The ‘sentinel’ column represents the lead variant at the locus. ‘Prioritized var’ 
represents the prioritized variant in the credible set. Columns 5-8 represent overlap of the 
functional variant with open chromatin (‘Open’), capture-C (‘CapC’) interactions with the 
candidate gene, enhancer and promoter marks from Roadmap in liver (‘Liver’), adipose 
(‘Ad’), both or none of these datasets. The ‘RegDB’ column represents the RegulomeDB 
score of the prioritized variant. 
 

Gene 
Name 

Tissue Sentinel Prioritized 
Var Open CapC Enhance

r 
Promote

r RegDB 

CEP68 Adipose 2:65284231 65279414 Liver Liver None Ad 0.5896 

TIPARP Adipose 3:156797941 156795408 Both Both Ad Liver 0.705 

CREBRF Adipose 5:172591337 172566698 Liver Ad None Both 0.9124 

PALM2 Adipose 9:112556911 112556911 Both Ad Both None 0.6091 

MEGF9 Adipose 9:123481206 123421556 Liver Ad None Liver 0.9933 

GBF1 Liver 10:104142294 104107191 Ad Ad Both Ad 0.705 

MICAL2 Liver 11:12071855 12221016 Liver Liver Liver Ad 0.6018 

ACP2 Liver 11:47278917 47276350 Ad Liver Liver Ad 0.6091 

PTPRJ Adipose 11:48021778 48011180 Liver Ad Liver Ad 0.8797 

NFATC2I
P 

Adipose 16:28899411 28883327 Liver Liver None Both 0.6091 

HELZ Liver 17:65109591 65156919 Liver Liver Both Ad 
0.6090

6 

FAM210A Liver 18:13725674 13725674 Liver Liver Both Ad 0.7571 

RRBP1 Liver 20:17844684 17844684 Both Ad Both Ad 0.6091 
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