1 A multi-layer functional genomic analysis to understand noncoding genetic variation in

2 lipids	5
----------	---

3	Shweta Ramdas ^{1*} , Jonathan Judd ^{2*} , Sarah E Graham ^{3*} , Stavroula Kanoni ^{4*} , Yuxuan Wang ^{5*} , Ida
4	Surakka ³ , Brandon Wenz ¹ , Shoa L Clarke ^{6,7} , Alessandra Chesi ⁸ , Andrew Wells ¹ , Konain Fatima
5	Bhatti ⁴ , Sailaja Vedantam ^{9,10} , Thomas W Winkler ¹¹ , Adam E Locke ¹² , Eirini Marouli ⁴ , Greg JM
6	Zajac ¹³ , Kuan-Han H Wu ¹⁴ , Ioanna Ntalla ¹⁵ , Qin Hui ^{16,17} , Derek Klarin ^{18,19,20} , Austin T Hilliard ⁶ ,
7	Zeyuan Wang ^{16,17} , Chao Xue ³ , Gudmar Thorleifsson ²¹ , Anna Helgadottir ²¹ , Daniel F
8	Gudbjartsson ^{21,22} , Hilma Holm ²¹ , Isleifur Olafsson ²³ , Mi Yeong Hwang ²⁴ , Sohee Han ²⁴ , Masato
9	Akiyama ^{25,26} , Saori Sakaue ^{27,28,29} , Chikashi Terao ³⁰ , Masahiro Kanai ^{25,31,32} , Wei Zhou ^{33,14,20} , Ben M
10	Brumpton ^{34,35,36} , Humaira Rasheed ^{34,35,37} , Aki S Havulinna ^{38,39} , Yogasudha Veturi ⁴⁰ , Jennifer Allen
11	Pacheco4, Elisabeth A Rosenthal42, Todd Lingren43, QiPing Feng44, Iftikhar J. Kullo45, Akira
12	Narita ⁴⁶ , Jun Takayama ⁴⁶ , Hilary C Martin ⁴⁷ , Karen A Hunt ⁴⁸ , Bhavi Trivedi ⁴⁸ , Jeffrey Haessler ⁴⁹ ,
13	Franco Giulianini ⁵⁰ , Yuki Bradford ⁴⁰ , Jason E Miller ⁴⁰ , Archie Campbell ^{51,52} , Kuang Lin ⁵³ , Iona Y
14	Millwood ^{53,54} , Asif Rasheed ⁵⁵ , George Hindy ⁵⁶ , Jessica D Faul ⁵⁷ , Wei Zhao ⁵⁸ , David R Weir ⁵⁷ ,
15	Constance Turman ³⁹ , Hongyan Huang ³⁹ , Mariaelisa Graff ⁶⁰ , Ananyo Choudhury ⁶¹ , Dhriti
16	Sengupta ⁶¹ , Anubha Mahajan ⁶² , Michael R Brown ⁸³ , Weihua Zhang ^{64,65,66} , Ketian Yu ¹³ , Ellen M
17	Schmidt ¹³ , Anita Pandit ¹³ , Stefan Gustafsson ⁶⁷ , Xianyong Yin ¹³ , Jian'an Luan ⁶⁸ , Jing-Hua Zhao ⁶⁹ ,
18	Fumihiko Matsuda ⁷⁰ , Hye-Mi Jang ²⁴ , Kyungheon Yoon ²⁴ , Carolina Medina-Gomez ⁷¹ , Achilleas
19	Pitsillides ⁵ , Jouke Jan Hottenga ^{72,73} , Andrew R Wood ⁷⁴ , Yingji Ji ⁷⁴ , Zishan Gao ^{75,76,77} , Simon
20	Haworth ^{35,78} , Ruth E Mitchell ^{35,79} , Jin Fang Chai ⁸⁰ , Mette Aadahl ^{81,82} , Anne A Bjerregaard ⁸¹ , Jie
21	Yao ⁸³ , Ani Manichaikul ⁸⁴ , PhD Wen-Jane ⁸⁵ , PhD Chao A ⁸⁶ , Helen R Warren ^{87,88} , Julia Ramirez ⁸⁷ ,
22	Jette Bork-Jensen ⁸⁹ , Line L Kårhus ⁸¹ , Anuj Goel ^{90.91} , Maria Sabater-Lleal ^{92,93} , Raymond
23	Noordam ⁹⁴ , Pala Mauro ⁹⁵ , Floris Matteo ^{96,95} , Aaron F McDaid ^{97,98} , Pedro Marques-Vidal ⁹⁹ ,
24	Matthias Wielscher ¹⁰⁰ , Stella Trompet ^{101,102} , Naveed Sattar ¹⁰³ , Line T Møllehave ⁸¹ , Matthias
25	Munz ¹⁰⁴ , Lingyao Zeng ^{105,106} , Jianfeng Huang ¹⁰⁷ , Bin Yang ¹⁰⁷ , Alaitz Poveda ¹⁰⁸ , Azra Kurbasic ¹⁰⁸ ,

26	Sebastian Schönherr ¹⁰⁹ , Lukas Forer ¹⁰⁹ , Markus Scholz ^{110,111} , Tessel E. Galesloot ¹¹² , Jonathan P.
27	Bradfield ¹¹³ , Sanni E Ruotsalainen ³⁸ , E Warwick Daw ¹¹⁴ , Joseph M Zmuda ¹¹⁵ , Jonathan S
28	Mitchell ¹¹⁶ , Christian Fuchsberger ¹¹⁶ , Henry Christensen ¹¹⁷ , Jennifer A Brody ¹¹⁸ , Phuong Le ^{119,120} ,
29	Mary F Feitosa ¹¹⁴ , Mary K Wojczynski ¹¹⁴ , Daiane Hemerich ¹²¹ , Michael Preuss ¹²¹ , Massimo
30	Mangino ^{122,123} , Paraskevi Christofidou ¹²² , Niek Verweij ¹²⁴ , Jan W Benjamins ¹²⁴ , Jorgen
31	Engmann ^{125,126} , Tsao L. Noah ¹²⁷ , Anurag Verma ¹ , Roderick C Slieker ^{128,129} , Ken Sin Lo ¹³⁰ , Nuno R
32	Zilhao ¹³¹ , Marcus E Kleber ^{132,133} , Graciela E Delgado ¹³² , Shaofeng Huo ¹³⁴ , Daisuke D Ikeda ¹³⁵ ,
33	Hiroyuki Iha ¹³⁵ , Jian Yang ^{136,137,138} , Jun Liu ^{139,140} , Ayşe Demirkan ^{141,142} , Hampton L Leonard ^{143,144} ,
34	Jonathan Marten ¹⁴⁵ , Carina Emmel ¹⁴⁶ , Börge Schmidt ¹⁴⁶ , Laura J Smyth ¹⁴⁷ , Marisa Cañadas-
35	Garre ^{147,148,149,150} , Chaolong Wang ^{151,152} , Masahiro Nakatochi ¹⁵³ , Andrew Wong ¹⁵⁴ , Nina Hutri-
36	Kähönen ¹⁵⁵ , Xueling Sim ⁸⁰ , Rui Xia ¹⁵⁶ , Alicia Huerta-Chagoya ¹⁵⁷ , Juan Carlos Fernandez-
37	Lopez ¹⁵⁸ , Valeriya Lyssenko ^{159,160} , Suraj S Nongmaithem ¹⁶¹ , Alagu Sankareswaran ^{161,162} ,
38	Marguerite R Irvin ¹⁵⁴ , Christopher Oldmeadow ¹⁶³ , Han-Na Kim ^{164,165} , Seungho Ryu ^{166,167} , Paul RHJ
39	Timmers ^{168,145} , Liubov Arbeeva ¹⁶⁹ , Rajkumar Dorajoo ^{152,170} , Leslie A Lange ¹⁷¹ , Gauri Prasad ^{172,173} ,
40	Laura Lorés-Motta ¹⁷⁴ , Marc Pauper ¹⁷⁴ , Jirong Long ¹⁷⁵ , Xiaohui Li ⁸³ , Elizabeth Theusch ¹⁷⁶ ,
41	Fumihiko Takeuchi ¹⁷⁷ , Cassandra N Spracklen ^{178,179} , Anu Loukola ³⁸ , Sailalitha Bollepalli ³⁸ ,
42	Sophie C Warner ^{180,181} , Ya Xing Wang ¹⁸² , Wen B. Wei ¹⁸³ , Teresa Nutile ¹⁸⁴ , Daniela Ruggiero ^{184,185} ,
43	Yun Ju Sung ¹⁸⁶ , Shufeng Chen ¹⁰⁷ , Fangchao Liu ¹⁰⁷ , Jingyun Yang ^{187,188} , Katherine A Kentistou ¹⁶⁸ ,
44	Bernhard Banas ¹⁸⁹ , Anna Morgan ¹⁹⁰ , Karina Meidtner ^{191,192} , Lawrence F Bielak ⁵⁸ , Jennifer A
45	Smith ^{58,57} , Prashantha Hebbar ¹⁹³ , Aliki-Eleni Farmaki ^{194,195} , Edith Hofer ^{196,197} , Maoxuan Lin ¹⁹⁸ , Maria
46	Pina Concas ¹⁹⁹ , Simona Vaccargiu ²⁰⁰ , Peter J van der Most ²⁰¹ , Niina Pitkänen ²⁰²²⁰³ , Brian E
47	Cade ^{204,205} , Sander W. van der Laan ²⁰⁶ , Kumaraswamy Naidu Chitrala ^{207,208} , Stefan Weiss ²⁰⁹ , Amy
48	R Bentley ²¹⁰ , Ayo P Doumatey ²¹⁰ , Adebowale A Adeyemo ²¹⁰ , Jong Young Lee ²¹¹ , Eva RB
49	Petersen ²¹² , Aneta A Nielsen ²¹³ , Hyeok Sun Choi ²¹⁴ , Maria Nethander ^{215,216} , Sandra Freitag-Wolf ²¹⁷ ,
50	Lorraine Southam ^{218,47} , Nigel W Rayner ^{219,220,47,218} , Carol A Wang ²²¹ , Shih-Yi Lin ^{222,223,224} , Jun-Sing

51	Wang ^{225,226} , Christian Couture ²²⁷ , Leo-Pekka Lyytikäinen ^{228,229} , Kjell Nikus ^{230,231} , Gabriel Cuellar-
52	Partida ²³² , Henrik Vestergaard ^{89,233} , Bertha Hidalgo ²³⁴ , Olga Giannakopoulou ⁴ , Qiuyin Cai ¹⁷⁵ ,
53	Morgan O Obura ¹²⁸ , Jessica van Setten ²³⁵ , Karen Y. He ²³⁶ , Hua Tang ²³⁷ , Natalie Terzikhan ²³⁸ , Jae
54	Hun Shin ²¹⁴ , Rebecca D Jackson ²³⁹ , Alexander P Reiner ²⁴⁰ , Lisa Warsinger Martin ²⁴¹ , Zhengming
55	Chen ^{53,54} , Liming Li ²⁴² , Takahisa Kawaguchi ⁷⁰ , Joachim Thiery ^{243,111} , Joshua C Bis ¹¹⁸ , Lenore J
56	Launer ²⁴⁴ , Huaixing Li ²⁴⁵ , Mike A Nalls ^{143,144} , Olli T Raitakari ^{246,247,248} , Sahoko Ichihara ²⁴⁹ , Sarah H
57	Wild ²⁵⁰ , Christopher P Nelson ^{180,181} , Harry Campbell ¹⁶⁸ , Susanne Jäger ^{191,192} , Toru Nabika ²⁵¹ , Fahd
58	Al-Mulla ¹⁹³ , Harri Niinikoski ^{252,253} , Peter S Braund ^{180,181} , Ivana Kolcic ²⁵⁴ , Peter Kovacs ²⁵⁵ , Tota
59	Giardoglou ²⁵⁶ , Tomohiro Katsuya ^{257,258} , Dominique de Kleijn ²⁵⁹ , Gert J. de Borst ²⁵⁹ , Eung Kweon
60	Kim ²⁶⁰ , Hieab H.H. Adams ^{238,261} , M. Arfan Ikram ²³⁸ , Xiaofeng Zhu ²³⁶ , Folkert W Asselbergs ²³⁵ ,
61	Adriaan O Kraaijeveld ²³⁵ , Joline WJ Beulens ^{128,262} , Xiao-Ou Shu ¹⁷⁵ , Loukianos S Rallidis ²⁶³ , Oluf
62	Pedersen ⁸⁹ , Torben Hansen ⁸⁹ , Paul Mitchell ²⁶⁴ , Alex W Hewitt ^{265,266} , Mika Kähönen ^{267,268} , Louis
63	Pérusse ^{227,269} , Claude Bouchard ²⁷⁰ , Anke Tönjes ²⁷¹ , Yii-Der Ida Chen ⁸³ , Craig E Pennell ²²¹ , Trevor
64	A Mori ²⁷² , Wolfgang Lieb ²⁷³ , Andre Franke ²⁷⁴ , Claes Ohlsson ^{215,275} , Dan Mellström ^{215,276} , Yoon Shin
65	Cho ²¹⁴ , Hyejin Lee ²⁷⁷ , Jian-Min Yuan ^{278,279} , Woon-Puay Koh ^{280,281} , Sang Youl Rhee ²⁸² , Jeong-Taek
66	Woo ²⁸² , Iris M Heid ¹¹ , Klaus J Stark ¹¹ , Martina E Zimmermann ¹¹ , Henry Völzke ²⁸³ , Georg
67	Homuth ²⁰⁹ , Michele K Evans ²⁸⁴ , Alan B Zonderman ²⁸⁴ , Ozren Polasek ^{254,285} , Gerard Pasterkamp ²⁰⁶ ,
68	Imo E Hoefer ²⁰⁶ , Susan Redline ^{204,205} , Katja Pahkala ^{202,203,286} , Albertine J Oldehinkel ²⁸⁷ , Harold
69	Snieder ²⁰¹ , Ginevra Biino ²⁸⁸ , Reinhold Schmidt ¹⁹⁶ , Helena Schmidt ²⁸⁹ , Stefania Bandinelli ²⁹⁰ ,
70	George Dedoussis ¹⁹⁴ , Thangavel Alphonse Thanaraj ¹⁹³ , Patricia A Peyser ^{s8} , Norihiro Kato ¹⁷⁷ ,
71	Matthias B Schulze ^{191,192,291} , Giorgia Girotto ^{292,199} , Carsten A Böger ^{189,293,294} , Bettina Jung ^{189,293,294} , Peter
72	K Joshi ¹⁶⁸ , David A Bennett ^{187,188} , Philip L De Jager ^{295,296} , Xiangfeng Lu ¹⁰⁷ , Vasiliki Mamakou ^{297,298} ,
73	Morris Brown ^{299,88} , Mark J Caulfield ^{87,88} , Patricia B Munroe ^{87,88} , Xiuqing Guo ⁸³ , Marina Ciullo ^{184,185} ,
74	Jost B. Jonas ^{300,182,301,302} , Nilesh J Samani ^{180,181} , Jaakko Kaprio ³⁸ , Päivi Pajukanta ³⁰³ , Teresa Tusié-
75	Luna ^{304,305} , Carlos A Aguilar-Salinas ³⁰⁶ , Linda S Adair ^{307,308} , Sonny Augustin Bechayda ^{309,310} , H.

76	Janaka de Silva ³¹¹ , Ananda R Wickremasinghe ³¹² , Ronald M Krauss ³¹³ , Jer-Yuarn Wu ³¹⁴ , Wei
77	Zheng ¹⁷⁵ , Anneke I den Hollander ¹⁷⁴ , Dwaipayan Bharadwaj ^{173,315} , Adolfo Correa ³¹⁶ , James G
78	Wilson ³¹⁷ , Lars Lind ³¹⁸ , Chew-Kiat Heng ³¹⁹ , Amanda E Nelson ^{169,320} , Yvonne M Golightly ^{169,321,322,323} ,
79	James F Wilson ^{168,145} , Brenda Penninx ^{324,325} , Hyung-Lae Kim ³²⁶ , John Attia ^{327,163} , Rodney J Scott ^{327,163} ,
80	D C Rao ³²⁸ , Donna K Arnett ³²⁹ , Mark Walker ³³⁰ , Laura J Scott ¹³ , Heikki A Koistinen ^{39,331,332} , Giriraj
81	R Chandak ^{161,162,333} , Josep M Mercader ^{334,335,336} , Teresa Tusie-Luna ³³⁷ , Carlos Aguilar-Salinas ³³⁸ ,
82	Clicerio Gonzalez Villalpando ³³⁹ , Lorena Orozco ³⁴⁰ , Myriam Fornage ^{156,341} , E Shyong Tai ^{342,80} , Rob
83	M van Dam ^{80.342} , Terho Lehtimäki ^{228,229} , Nish Chaturvedi ³⁴³ , Mitsuhiro Yokota ³⁴⁴ , Jianjun Liu ¹⁵² ,
84	Dermot F Reilly ³⁴⁵ , Amy Jayne McKnight ¹⁴⁷ , Frank Kee ¹⁴⁷ , Karl-Heinz Jöckel ¹⁴⁶ , Mark I
85	McCarthy ^{62,346} , Colin NA Palmer ³⁴⁷ , Veronique Vitart ¹⁴⁵ , Caroline Hayward ¹⁴⁵ , Eleanor
86	Simonsick ³⁴⁸ , Cornelia M van Duijn ^{139,140} , Zi-Bing Jin ^{349,350} , Fan Lu ³⁵⁰ , Haretsugu Hishigaki ¹³⁵ , Xu
87	Lin ¹³⁴ , Winfried März ^{351,352,132} , Vilmundur Gudnason ^{131,353} , Jean-Claude Tardif ¹³⁰ , Guillaume
88	Lettre ¹³⁰ , Leen M t Hart ^{354,355,356} , Petra JM Elders ³⁵⁷ , Daniel J Rader ³⁵⁸ , Scott M Damrauer ^{359,360} ,
89	Meena Kumari ³⁶¹ , Mika Kivimaki ¹²⁶ , Pim van der Harst ³⁶² , Tim D Spector ¹²² , Ruth J.F. Loos ^{121,363,89} ,
90	Michael A Province ¹¹⁴ , Esteban J Parra ¹¹⁹ , Miguel Cruz ³⁶⁴ , Bruce M Psaty ^{118,365,366} , Ivan
91	Brandslund ^{117,367} , Peter P Pramstaller ¹¹⁶ , Charles N Rotimi ³⁶⁸ , Kaare Christensen ³⁶⁹ , Samuli
92	Ripatti ^{38,370,371} , Elisabeth Widén ³⁸ , Hakon Hakonarson ^{372,373} , Struan F.A. Grant ^{373,374,375} , Lambertus
93	ALM Kiemeney ³⁷⁶ , Jacqueline de Graaf ³⁷⁶ , Markus Loeffler ^{110,111} , Florian Kronenberg ¹⁰⁹ ,
94	Dongfeng Gu ^{107,377} , Jeanette Erdmann ³⁷⁸ , Heribert Schunkert ^{105,106} , Paul W Franks ¹⁰⁸ , Allan
95	Linneberg ^{81,82} , J. Wouter Jukema ^{101,379} , Amit V Khera ^{380,381,382,383} , Minna Männikkö ³⁸⁴ , Marjo-Riitta
96	Jarvelin ^{100,385,386} , Zoltan Kutalik ^{97,98} , Cucca Francesco ^{387,388} , Dennis O Mook-Kanamori ^{389,390} , Ko
97	Willems van Dijk ^{391,392,393} , Hugh Watkins ^{90,91} , David P Strachan ³⁹⁴ , Niels Grarup ⁸⁹ , Peter Sever ³⁹⁵ ,
98	Neil Poulter ³⁹⁶ , Wayne Huey-Herng Sheu ^{397,398} , Jerome I Rotter ⁸³ , Thomas M Dantoft ⁸¹ , Fredrik
99	Karpe ^{399,400} , Matt J Neville ^{399,400} , Nicholas J Timpson ^{35,79} , Ching-Yu Cheng ^{401,402} , Tien-Yin Wong ^{401,402} ,
100	Chiea Chuen Khor ¹⁵² , Hengtong Li ⁴⁰³ , Charumathi Sabanayagam ^{401,402} , Annette Peters ^{77,404,405} ,

101	Christian Gieger ^{76,77,405} , Andrew T Hattersley ⁴⁰⁶ , Nancy L Pedersen ⁴⁰⁷ , Patrik KE Magnusson ⁴⁰⁷ ,
102	Dorret I Boomsma ^{72,408} , Eco JC de Geus ^{72,408} , L Adrienne Cupples ^{5,409} , Joyce B.J. van Meurs ^{71,140} ,
103	Arfan Ikram ¹⁴⁰ , Mohsen Ghanbari ^{140,410} , Penny Gordon-Larsen ^{307,308} , Wei Huang ⁴¹¹ , Young Jin
104	Kim ²⁴ , Yasuharu Tabara ⁷⁰ , Nicholas J Wareham ⁶⁸ , Claudia Langenberg ⁶⁸ , Eleftheria
105	Zeggini ^{218,47,412} , Jaakko Tuomilehto ^{39,413,414} , Johanna Kuusisto ⁴¹⁵ , Markku Laakso ⁴¹⁵ , Erik
106	Ingelsson ^{7,416,417,418} , Goncalo Abecasis ^{13,419} , John C Chambers ^{420,64,65,421} , Jaspal S Kooner ^{65,66,422,423} , Paul S
107	de Vries ⁶³ , Alanna C Morrison ⁶³ , Scott Hazelhurst ^{61,424} , Michèle Ramsay ⁶¹ , Kari E. North ⁴²⁵ ,
108	Martha Daviglus ⁴²⁶ , Peter Kraft ^{59,427} , Nicholas G Martin ⁴²⁸ , John B Whitfield ⁴²⁸ , Shahid Abbas ⁴²⁹ ,
109	Danish Saleheen ^{55,430,431} , Robin G Walters ^{53,54,432} , Michael V Holmes ^{53,54,433} , Corri Black ⁴³⁴ , Blair H
110	Smith ⁴³⁵ , Aris Baras ⁴¹⁹ , Anne E Justice ⁴³⁶ , Julie E Buring ^{50,437} , Paul M Ridker ^{50,437} , Daniel I
111	Chasman ^{50,437} , Charles Kooperberg ⁴⁹ , Gen Tamiya ⁴⁶ , Masayuki Yamamoto ⁴⁶ , David A van Heel ⁴⁸ ,
112	Richard C Trembath438, Wei-Qi Wei439, Gail P Jarvik440, Bahram Namjou441, M. Geoffrey
113	Hayes ^{442,443,444} , Marylyn D Ritchie ⁴⁰ , Pekka Jousilahti ³⁹ , Veikko Salomaa ³⁹ , Kristian Hveem ^{34,445,446} ,
114	Bjørn Olav Åsvold ^{34,445,447} , Michiaki Kubo ⁴⁴⁸ , Yoichiro Kamatani ^{25,449} , Yukinori Okada ^{27,25,450,451} ,
115	Yoshinori Murakami ⁴⁵² , Bong-Jo Kim ⁴⁵³ , Unnur Thorsteinsdottir ^{21,454} , Kari Stefansson ^{21,454} , Jifeng
116	Zhang ³ , Y Eugene Chen ³ , Yuk-Lam Ho ⁴⁵⁵ , Julie A Lynch ^{456,457} , Daniel Rader ⁴⁵⁸ , Philip S Tsao ^{47,459} ,
117	Kyong-Mi Chang ^{460,458} , Kelly Cho ^{455,461} , Christopher J O'Donnell ^{455,461} , John M Gaziano ^{455,461} , Peter
118	Wilson ^{17,462} , Karen L Mohlke ¹⁷⁸ , Timothy M Frayling ⁷⁴ , Joel N Hirschhorn ^{463,10,464} , Sekar
119	Kathiresan ^{465,381,383} , Michael Boehnke ¹³ , Million Veterans Program, Global Lipids Genetics
120	Consortium, Struan Grant ^{1.374} , Pradeep Natarajan ^{466,467,20,468} , Yan V Sun ^{16,17} , Andrew P Morris ⁴⁶⁹ ,
121	Panos Deloukas ^{4,470} , Gina Peloso ⁴⁷¹ , Themistocles L Assimes ^{6,7,459} , Cristen J Willer ^{3,472,148} , Xiang
122	Zhu ^{473,474,475,476} , Christopher D Brown ¹

124	¹ Department of Genetics, Perelman School of Medicine, University of Pennsylvania,
125	Philadelphia, PA 19104, USA, 2Department of Genetics, Stanford University School of
126	Medicine, Stanford, CA, USA, ³ Department of Internal Medicine, Division of Cardiology,
127	University of Michigan, Ann Arbor, MI, 48109, USA, 4William Harvey Research Institute,
128	Barts and the London School of Medicine and Dentistry, Queen Mary University of London,
129	Charterhouse square, EC1M 6BQ, UK, 5Department of Biostatistics, Boston University
130	School of Public Health, 801 Massachusetts Ave, Boston, MA 02118, USA, «VA Palo Alto
131	Health Care Systems, Palo Alto, California, USA, 'Department of Medicine, Division of
132	Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305,
133	USA, ^s Department of Pathology and Laboratory Medicine, University of Pennsylvania,
134	Philadelphia, PA, USA, 'Endocrinology, Boston Childrens Hospital, Boston 02115 MA, USA,
135	¹⁰ Medical and Population Genetics, Broad Institute, 75 Ames street, Cambridge, MA
136	02142,USA, "Department of Genetic Epidemiology, University of Regensburg, Regensburg,
137	Germany, ¹² McDonnell Genome Institute and Department of Medicine, Washington
138	University, St. Louis, MO, 63108, USA, ¹³ Department of Biostatistics, Center for Statistical
139	Genetics, University of Michigan, Ann Arbor, MI, USA, ¹⁴ Department of Computational
140	Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA, ¹⁵ Clinical
141	Pharmacology, William Harvey Research Institute, Barts and The London School of
142	Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ UK,
143	¹⁶ Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta,
144	Georgia, USA, ¹⁷ Atlanta VA Health Care System, Decatur, GA, USA, ¹⁸ Malcolm Randall VA
145	Medical Center, Gainesville, FL, USA, ¹⁹ Division of Vascular Surgery and Endovascular
146	Therapy, University of Florida College of Medicine, Gainesville, FL, USA, ²⁰ Program in
147	Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA,
148	USA, 21deCODE genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland, 22School of

149	Engineering and Natural Sciences, University of Iceland, Sæmundargötu 2, Reykjavik, 102,
150	Iceland, ²³ Department of Clinical Biochemistry, Landspitali - National University Hospital of
151	Iceland, Hringbraut, Reykjavik, 101, Iceland, 24Division of Genome Science, Department of
152	Precision Medicine, National Institute of Health, Chungcheongbuk-do, South Korea,
153	²³ Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences,
154	Yokohama, Japan, ²⁶ Department of Ophthalmology, Graduate School of Medical Sciences,
155	Kyushu University, Fukuoka, Japan, ²⁷ Department of Statistical Genetics, Osaka University
156	Graduate School of Medicine, Osaka, Japan, ²⁸ Laboratory for Statistical Analysis, RIKEN
157	Center for Integrative Medical Sciences, ²⁹ Department of Allergy and Rheumatology,
158	Graduate School of Medicine, The University of Tokyo, Tokyo, Japan, ³⁰ Laboratory for
159	Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences,
160	Yokohama, Japan, ³¹ Program in Medical and Population Genetics, Broad Institute of MIT and
161	Harvard, Cambridge, MA, USA., 32Department of Biomedical Informatics, Harvard Medical
162	School, Boston, MA, USA, 33 Analytic and Translational Genetics Unit, Massachusetts
163	General Hospital, Boston, Massachusetts, USA, 34K.G. Jebsen Center for Genetic
164	Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of
165	Science and Technology, Trondheim, Norway, ³⁵ MRC Integrative Epidemiology Unit (IEU),
166	Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8
167	2BN, UK, ³⁶ Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital,
168	Trondheim, Norway, ³⁷ Division of Medicine and Laboratory Sciences, University of
169	Oslo,Norway, ³⁸ Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of
170	Helsinki, Tukholmankatu 8, 00014 Helsinki, Finland, ³⁹ Department of Public Health and
171	Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland, ⁴⁰ Department of
172	Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School
173	of Medicine, Philadelphia, PA 19104, USA, 4 Center for Genetic Medicine, Northwestern

174	University, Feinberg School of Medicine, Chicago, IL 60611, USA, ⁴² Department of
175	Medicine (Medical Genetics), University of Washington, WA, USA, 43Division of Biomedical
176	Informatics, Cincinnati Children's Hospital Medical Center, OH, USA, "Division of Clinical
177	Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville,
178	TN, USA, 45Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo
179	Clinic, Rochester, MN, USA, ⁴⁶ Tohoku Medical Megabank Organization, Tohoku University,
180	Sendai 980-8573, Japan, ⁴⁷ Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK,
181	⁴⁸ Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary
182	University of London, London, UK, ⁴⁹ Fred Hutchinson Cancer Research Center, Division of
183	Public Health Sciences, Seattle WA 9810, USA, ^a Division of Preventive Medicine, Brigham
184	and Women's Hospital, Boston, MA 02215, USA, 51Centre for Genomic and Experimental
185	Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General
186	Hospital, Edinburgh EH4 2XU, United Kingdom, ³² Usher Institute, The University of
187	Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, UK,
188	³³ Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of
189	Population Health, University of Oxford, Oxford OX3 7LF, UK, 54 Medical Research Council
190	Population Health Research Unit, Nuffield Department of Population Health, University of
191	Oxford, Oxford OX3 7LF, UK, 55Center for Non-Communicable Diseases, Karachi, Sindh,
192	Pakistan, 56Department of Population Medicine, Qatar University College of Medicine, QU
193	Health, Doha, Qatar, ⁵⁷ Survey Research Center, Institute for Social Research, University of
194	Michigan, Ann Arbor, MI, 48104, USA, ^{ss} Department of Epidemiology, School of Public
195	Health, University of Michigan, Ann Arbor, MI, 48109, USA, ³⁹ Program in Genetic
196	Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan
197	School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA, [®] Department of
198	Epidemiology, Gillings School of Global Public Health, University of North Carolina at

199	Chapel Hill, NC USA, ⁶¹ Sydney Brenner Institute for Molecular Bioscience, Faculty of Health
200	Sciences, University of the Witwatersrand, Johannesburg, South Africa, «Wellcome Centre
201	for Human Genetics, University of Oxford, UK, ⁶³ Human Genetics Center, Department of
202	Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The
203	University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA,
204	⁶⁴ Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG,
205	UK, 6Department of Cardiology, Ealing Hospital, London North West University Healthcare
206	NHS Trust, Middlesex UB1 3HW, UK, «Imperial College Healthcare NHS Trust, London
207	W12 0HS, UK, ⁶⁷ Department of Medical Sciences, Molecular Epidemiology and Science for
208	Life Laboratory, Uppsala University, Uppsala, Sweden, «MRC Epidemiology Unit,
209	University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK,
210	[®] Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care,
211	University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge
212	CB1 8RN, UK, ⁷⁰ Center for Genomic Medicine, Kyoto University Graduate School of
213	Medicine, Kyoto, Japan, "Department of Internal Medicine, Erasmus MC, University Medical
214	Center Rotterdam, the Netherlands, ⁷² Department of Biological Psychology, Vrije Universiteit
215	Amsterdam, The Netherlands, ⁷³ Amsterdam Public Health Research Institute, Amsterdam
216	UMC, the Netherlands, ⁷⁴ Genetics of Complex Traits, University of Exeter Medical School,
217	University of Exeter, Exeter, EX2 5DW, UK, ³⁵ Department of Clinical Acupuncture and
218	Moxibustion, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China,
219	⁷⁶ Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research
220	Center for Environmental Health, Neuherberg, Germany, "Institute of Epidemiology,
221	Helmholtz Zentrum München, German Research Center for Environmental Health,
222	Neuherberg, Germany, ⁷⁸ Bristol Dental School, University of Bristol, Lower Maudlin Street,
223	Bristol BS1 2LY, United Kingdom, "Population Health Sciences, Bristol Medical School,

224	University of Bristol, Oakfield Grove, Bristol, BS8 2BN, United Kingdom, ³⁰ Saw Swee Hock
225	School of Public Health, National University of Singapore and National University Health
226	System, 117549, Singapore, st Center for Clinical Research and Prevention, Bispebjerg and
227	Frederiksberg Hospital, Copenhagen, Denmark, ⁸² Department of Clinical Medicine, Faculty of
228	Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 83The
229	Institute for Translational Genomics and Population Sciences, Department of Pediatrics,
230	Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA
231	Medical Center, Torrance, CA 90502, USA, ⁸⁴ Center for Public Health Genomics, University
232	of Virginia, Charlottesville, VA 22903 USA, ^{ss} Department of Medical Research, Taichung
233	Veterans General Hospital, Taichung, Taiwan; No. 1650, Sec. 4, Taiwan Boulevard,
234	Taichung City 40705, Taiwan, "Institute of Population Health Sciences, National Health
235	Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC,
236	^{sr} William Harvey Research Institute, Barts and The London School of Medicine and
237	Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse
238	Square, London, EC1M 6BQ, UK, *NIHR Barts Cardiovascular Biomedical Research Centre,
239	Barts and The London School of Medicine and Dentistry, Queen Mary University of London,
240	London, EC1M 6BQ, UK, "Novo Nordisk Foundation Center for Basic Metabolic Research,
241	Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,
242	«Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe
243	Hospital, University of Oxford, Oxford. UK. OX3 9DU, 91Wellcome Centre for Human
244	Genetics, University of Oxford, Oxford. UK. OX3 7BN, ⁹² Unit of Genomics of Complex
245	Diseases. Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain,
246	⁹³ Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for
247	Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden, ⁹⁴ Department of
248	Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center,

249	Leiden, the Netherlands, ⁹⁵ Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle
250	Ricerche, Italy, «Dipartimento di Scienze Biomediche, Università degli Studi di Sassari,
251	Sardinia, Italy, ⁹⁷ University Center for Primary Care and Public Health, University of
252	Lausanne, Rte de Berne 113, Lausanne, 1010, Switzerland, ⁹⁸ Swiss Institute of
253	Bioinformatics, Lausanne, 1015, Switzerland, »Department of Medicine, Internal Medicine,
254	Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, Lausanne,
255	1011, Switzerland, ¹⁰⁰ Department of Epidemiology and Biostatistics, MRC-PHE Centre for
256	Environment and Health, School of Public Health, Imperial College London, London, UK,
257	¹⁰¹ Dept of Cardiology, Leiden University Medical Center, Leiden, the Netherlands, ¹⁰² Dept of
258	Internal Medicine, Section of Gerontology and Geriatrics, Leiden university Medical Center,
259	Leiden, the Netherlands, 108 BHF Glasgow Cardiovascular Research Centre, Faculty of
260	Medicine, Glasgow, United Kingdom, ¹⁰⁴ Institute for Cardiogenetics, University of Lübeck,
261	DZHK (German Research Centre for Cardiovascular Research), partner site
262	Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck and Charité – University
263	Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu
264	Berlin, and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences,
265	Department of Periodontology and Synoptic Dentistry, Berlin, Germany, ¹⁰⁵ Deutsches
266	Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität
267	München, Munich, Germany., 106 Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK)
268	e.V., partner site Munich Heart Alliance, Munich, Germany., 107Key Laboratory of
269	Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of
270	Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases,
271	Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037,
272	China, ¹⁰⁸ Lund University Diabetes Centre, Malmö, Sweden, ¹⁰⁹ Institute of Genetic
273	Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck,

274	Innsbruck, Austria and German Chronic Kidney Disease Study, Austria, 110Institute for
275	Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-
276	18, 04107 Leipzig, Germany, "LIFE Research Centre for Civilization Diseases, University of
277	Leipzig, Philipp-Rosenthal-Straße 27, 04103 Leipzig, Germany, ¹¹² Radboud university
278	medical center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands,
279	¹¹³ Quantinuum Research LLC, Wayne, PA, 19087 USA, ¹¹⁴ Division of Statistical Genomics,
280	Department of Genetics; Washington University School of Medicine; St. Louis, MO, USA,
281	¹¹⁵ Department of Epidemiology; University of Pittsburgh; Pittsburgh, PA, USA, ¹¹⁶ Institute for
282	Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani
283	31, 39100, Bolzano, Italy, ¹¹⁷ Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle,
284	Denmark, "Cardiovascular Health Research Unit, Department of Medicine, University of
285	Washington, Seattle, 98101, USA, ¹¹⁹ Department of Anthropology, University of Toronto at
286	Mississauga, Mississauga, ON L5L 1C6, Canada, 120 Department of Computer Science,
287	University of Toronto, Toronto, ON M5S 2E4, Canada, 121 The Charles Bronfman Institute for
288	Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,
289	¹²² Department of Twin Research and Genetic Epidemiology, King's College London, London
290	SE1 7EH, UK, 123NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation
291	Trust, London SE1 9RT, UK, 124Department of Cardiology, University of Groningen,
292	University Medical Center Groningen, 9700RB Groningen, the Netherlands, ¹²⁵ Institute of
293	Cardiovascular Sciences, University College London, Gower Street, WC1E 6BT London,
294	UK, 126Department of Epidemiology and Public Health, University College London, 1-19
295	Torrington Place, WC1E 6BT London, United Kingdom, 127Department of Surgery, University
296	of Pennsylvania, Philadelphia, PA, 128 Amsterdam UMC, Department of Epidemiology and
297	Data Science, Amsterdam Public Health Research Institute, Amsterdam, 1081HV, the
298	Netherlands, 129Leiden University Medical Center, Department of Cell and Chemical Biology,

299 Leiden, 2333ZA, the Netherlands, ¹³⁰Montreal Heart Institute, Université de Montréal, 5000 300 Belanger street, Montreal, PQ, Canada H1T1C8, ¹³Icelandic Heart Association, 201 301 Kopavogur, Iceland, ¹³²Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg 302 University, 68167 Mannheim, Germany, ¹³³SYNLAB MVZ Humangenetik Mannheim GmbH, 303 68163 Mannheim, Germany, ¹³Shanghai Institute of Nutrition and Health, University of 304 Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, ¹³Biomedical 305 Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., 306 Ltd., Tokushima, Japan, ¹²⁶School of Life Sciences, Westlake University, Hangzhou, Zhejiang 307 310024, China, ¹³⁷Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 308 Zhejiang 310024, China, ¹¹⁸Institute for Molecular Bioscience, The University of Queensland, 309 Brisbane, Queensland 4072, Australia, ¹³Nuffield Department of Population Health, 310 University of Oxford, Oxford, United Kingdom, ⁴⁰Department of Epidemiology, Erasmus 311 MC, University Medical Center Rotterdam, the Netherlands, ¹⁴¹Department of Epidemiology, 312 Erasmus MC, University Medical Center, Rotterdam, the Netherlands, ¹⁴²Section of Statistical 313 Multi-omics, Department of Clinical and Experimental research, University of Surrey, 314 Guildford, Surrey, UK, ¹⁴Laboratory of Neurogenetics, National Institute on Aging, NIH, 315 Bethesda MD, USA, ¹⁴Data Tecnica International, Glen Echo MD, USA, ¹⁴MRC Human 316 Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General 317 Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland, ¹⁴Institute for Medical Informatics, 318 Biometrie and Epidemiology, University of Duisburg-Essen, Essen, Germany, ¹⁴⁷Centre for 319 Public Health, Queen's University of Belfast, Northern Ireland, ¹⁴³Genomic Oncology Area, 320 GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-321 Andalusian Regional Government, Granada, Spain, ¹⁹Hematology Department, Hospital 322 Universitario Virgen de las Nieves, Granada, Spain, 150 Instituto de Investigación Biosanitaria 323 de Granada (ibs.GRANADA), Granada, Spain, ¹⁵¹Department of Epidemiology and

324	Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of
325	Science and Technology, Wuhan, China, ¹⁵² Genome Institute of Singapore, Agency for
326	Science, Technology and Research, Singapore, 153Public Health Informatics Unit, Department
327	of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya,
328	461-8673, Japan, 154University of Alabama at Birmingham, Epidemiology, School of Public
329	Health, AL, USA, 155 Tampere Centre for Skills Training and Simulation, Faculty of Medicine
330	and Health Technology, Tampere University, Tampere, Finland, 156 Brown Foundation
331	Institute of Molecular Medicine, McGovern Medical School, University of Texas Health
332	Science Center at Houston, Houston TX 77030, USA, 157CONACYT, Instituto Nacional de
333	Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico, 188 Departamento
334	de Genómica Computacional, Instituto Nacional de Medicina Genómica, Ciudad de Mexico,
335	Mexico, 159 Center for diabetes research, University of Bergen, Bergen, Norway, 160 Lund
336	University Diabetes Center, Lunds University, Malmö, Sweden, 16 Genomic Research on
337	Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology,
338	Hyderabad, Telangana, India, 142 Academy of Scientific and Innovative Research (AcSIR),
339	New Delhi, India, 163Hunter Medical Research Institute, Newcastle, Australia, 164Medical
340	Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of
341	Medicine, Seoul, 03181, Korea, 165 Department of Clinical Research Design & Evaluation,
342	SAIHST, Sungkyunkwan University, Seoul, 06355, Korea, ¹⁶⁶ Center for Cohort Studies, Total
343	Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of
344	Medicine, Seoul, 04514, Korea, 167 Department of Occupational and Environmental Medicine,
345	Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181,
346	Korea, 108 Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot
347	Place, Edinburgh, EH8 9AG, Scotland, 100 Thurston Arthritis Research Center, University of
348	North Carolina, Chapel Hill, North Carolina, USA, 170 Health Services and Systems Research,

349	Duke-NUS Medical School, 169857, Singapore, ¹⁷¹ Division of Biomedical Informatics and
350	Personalized Medicine, Department of Medicine, Anschutz Medical Campus, University of
351	Colorado, Denver, Aurora, CO 80045, USA, 172Genomics and Molecular Medicine Unit,
352	CSIR-Institute of Genomics and Integrative Biology, New Delhi - 110020, India, ¹⁷³ Academy
353	of Scientific and Innovative Research, CSIR-Human Resource Development Centre,
354	Ghaziabad, Uttar Pradesh, India, 174 Departments of Ophthalmology and Human Genetics,
355	Radboud University Nijmegen Medical Center, Philips van Leydenlaan 15, Nijmegen, 6525
356	EX, the Netherlands, 175 Vanderbilt Epidemiology Center, Division of Epidemiology,
357	Vanderbilt University Medical Center, USA, 176 Department of Pediatrics, University of
358	California San Francisco, Oakland, CA 94609 USA, 177 National Center for Global Health and
359	Medicine, Tokyo, 1628655, Japan, ¹⁷⁸ Department of Genetics, University of North Carolina,
360	Chapel Hill, NC 27599 USA, ¹⁷⁹ Department of Biostatistics and Epidemiology, University of
361	Massachusetts-Amherst, Amherst, MA 01003 USA, 180 Department of Cardiovascular
362	Sciences, University of Leicester, Leicester, UK, 181 NIHR Leicester Biomedical Research
363	Centre, Glenfield Hospital, Leicester, UK, 182 Beijing Institute of Ophthalmology, Beijing Key
364	Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing
365	Tongren Hospital, Capital Medical University, 17 Hougou Lane, Chong Wen Men, Beijing,
366	100005, China, 183Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical
367	University, 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing, 100730, China, 184Institute
368	of Genetics and Biophysics "Adriano Buzzati-Traverso" - CNR, Naples, Italy, 185 IRCCS
369	Neuromed, Pozzilli, Isernia, Italy, 186 Division of Biostatistics, Washington University, St.
370	Louis, MO 63110, USA, 187Rush Alzheimer's Disease Center, Rush University Medical
371	Center, IL, USA, 188Department of Neurological Sciences, Rush University Medical Center,
372	IL, USA, 189 Dept of Nephrology, University Hospital Regensburg, Regensburg, Germany,
373	¹⁹⁰ Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34127 Trieste, Italy,

374	¹⁹¹ Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-
375	Rehbruecke, Nuthetal, Germany, 192German Center for Diabetes Research (DZD), München-
376	Neuherberg, Germany, 193 Department of Genetics and Bioinformatics, Dasman Diabetes
377	Institute, Kuwait, 194Department of Nutrition and Dietetics, School of Health Science and
378	Education, Harokopio University of Athens, Athens, Greece, 195 Department of Population
379	Science and Experimental Medicine, University College London, London, UK, ¹⁹⁶ Clinical
380	Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz,
381	Austria, 197Institute for Medical Informatics, Statistics and Documentation, Medical University
382	of Graz, Graz, Austria, 198 Massachusetts General Hospital Cancer Center, Charlestown, MA
383	02129, USA, ¹⁹⁹ Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy,
384	²⁰⁰ Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of
385	Sassari, Sassari, Italy, 201 Department of Epidemiology, University of Groningen, University
386	Medical Center Groningen, Groningen, 9700 RB, the Netherlands, 202Research Centre of
387	Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland,
388	²⁰³ Centre for Population Health Research, University of Turku and Turku University Hospital,
389	Turku, Finland, 204 Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital,
390	Boston, Massachusetts 02115, USA, 205 Division of Sleep Medicine, Harvard Medical School,
391	Boston, Massachusetts 02115, USA, 206 Central Diagnostics Laboratory, Division Laboratories,
392	Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University,
393	Utrecht, the Netherlands, 207 Laboratory of Epidemiology and Population Science National
394	Institute on Aging Intramural Research Program, NIH, USA, 208Fels Cancer Institute for
395	Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia,
396	PA, USA, ³⁰⁹ Interfaculty Institute for Genetics and Functional Genomics, Department of
397	Functional Genomics, University of Greifswald and University Medicine Greifswald,
398	Greifswald, Germany, 210Center for Research on Genomics and Global Health, National

399	Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room
400	4047, Bethesda, MD, 20892, USA, 211 Oneomics. co. ltd. 2F, Soonchunhyang Mirai Medical
401	Center 173, Buheuyng-ro, Bucheon-si Gyeonggi-do, 14585, Korea, ²¹² Department of Clinical
402	Biochemistry and Immunology, Hospital of Southern Jutland, Kresten Philipsens Vej 15,
403	6200 Aabenraa, Denmark, ²¹³ Department of Clinical Biochemistry, Lillebaelt Hospital,
404	Kolding, Denmark, 214 Department of Biomedical Science, Hallym University, Chuncheon,
405	Gangwon-do 24252, Korea, ²¹⁵ Centre for Bone and Arthritis Research, Department of Internal
406	Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of
407	Gothenburg, Gothenburg, Sweden, 216Bioinformatics Core Facility, Sahlgrenska Academy,
408	University of Gothenburg, Gothenburg, Sweden, 217Institute of Medical Informatics and
409	Statistics, Kiel University, Kiel, Germany, 218 Institute of Translational Genomics, Helmholtz
410	Zentrum München – German Research Center for Environmental Health, Neuherberg,
411	Germany, 219Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK,
412	220Oxford Centre for Diabetes Endocrinology and Metabolism, Oxford, UK, 221School of
413	Medicine and Public Health, Faculty of Medicine and Health, University of Newcastle,
414	Newcastle, New South Wales, 2308, Australia, 222Center for Geriatrics and Gerontology,
415	Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung
416	Veterans General Hospital, Taichung, Taiwan, 223School of Medicine, National Yang-Ming
417	University, Taipei, Taiwan, 224School of Medicine, National Defense Medical Center, Taipei,
418	Taiwan, 225 Division of Endocrinology and Metabolism, Department of Internal Medicine,
419	Taichung Veterans General Hospital, Taichung, Taiwan, 226Department of Medicine, School
420	of Medicine, National Yang-Ming University, Taipei, Taiwan, 227Department of Kinesiology,
421	Université Laval, Québec, Canada, ²²⁸ Department of Clinical Chemistry, Fimlab Laboratories,
422	Tampere 33520, Finland, 229Department of Clinical Chemistry, Finnish Cardiovascular
423	Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere

424	University, Tampere 33014, Finland, 230 Department of Cardiology, Heart Center, Tampere
425	University Hospital, Tampere 33521, Finland, ²³¹ Department of Cardiology, Finnish
426	Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology,
427	Tampere University, Tampere 33014, Finland, 232University of Queensland Diamantina
428	Institute, Translational Research Institute, Kent St, Woolloongabba, Brisbane, QLD, 4102,
429	Australia, 233Department of Medicine, Bornholms Hospital, Rønne, Denmark, 234School of
430	Public Health, University of Alabama at Birmingham, AL, USA, ²³⁵ Cardiology, Division
431	Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the
432	Netherlands, 236 Department of Population and Quantitative Health Sciences, Case Western
433	Reserve University, Cleveland, OH, 44106, USA, 237Department of Genetics, Stanford
434	University School of Medicine Stanford, CA 94305, USA, 238 Department of Epidemiology -
435	Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands, ²³⁹ Ohio
436	State University, Division of Endricinology, Columbus OH 43210, USA, 240University of
437	Washington, Department of Epidemiology, Seattle WA 98195, USA, ²⁴ George Washington
438	University, School of Medicine and Health Sciences, Washington DC 20037, USA,
439	²⁴² Department of Epidemiology, School of Public Health, Peking University Health Science
440	Center, Beijing, China, 243Institute for Laboratory Medicine, University Hospital Leipzig,
441	Paul-List-Strasse 13/15, 04103 Leipzig, Germany, 244Laboratory of Epidemiology and
442	Population Sciences, National Institute on Aging, NIH, Baltimore, MD, 20892-9205, USA,
443	²⁴⁵ Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences,
444	Chinese Academy of Sciences, Shanghai, China, 246Centre for Population Health Research,
445	University of Turku and Turku University Hospital, Finland, 247 Research Centre of Applied
446	and Preventive Cardiovascular Medicine, University of Turku, Finland, ²⁴⁸ Department of
447	Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland,
448	²⁴⁹ Department of Environmental and Preventive Medicine, Jichi Medical University School of

449	Medicine, Shimotsuke, 329-0498, Japan, 250Centre for Population Health Sciences, Usher
450	Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland,
451	²⁵¹ Department of Functional Pathology, Shimane University School of Medicine, Izumo,
452	6938501, Japan, 252 Department of Pediatrics and Adolescent Medicine, Turku University
453	Hospital and University of Turku, Turku, Finland, ²⁵³ Department of Physiology, University of
454	Turku, Turku, Finland, 254 Faculty of Medicine, University of Split, Šoltanska 2, HR-21000,
455	Split, Croatia, 255 Medical Department III – Endocrinology, Nephrology, Rheumatology,
456	University of Leipzig Medical Center, Liebigstr. 21, 04103 Leipzig, Germany, 256 Department
457	of Nutrition-Dietetics, Harokopio University, Eleftheriou Venizelou, Athens, 17676, Greece,
458	²⁵⁷ Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine,
459	Suita, 5650871, Japan, 258 Department of Geriatric and General Medicine, Osaka University
460	Graduate School of Medicine, Suita, 5650871, Japan, 259Department of Vascular Surgery,
461	Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University,
462	Utrecht, the Netherlands, 200 Corneal Dystrophy Research Institute, Department of
463	Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Korea, 261 Dept of
464	Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam,
465	Rotterdam, the Netherlands, 262 Julius Centre for Health Sciences and Primary Care, University
466	Medical Centre Utrecht, 3584CG, the Netherlands, 263Second Department of Cardiology,
467	Medical School, National and Kapodistrian University of Athens, Attikon University
468	Hospital, Athens, Greece, 264 Center for Vision Research, Department of Ophthalmology and
469	The Westmead Institute, University of Sydney, Hawkesbury Rd, Sydney, New South Wales,
470	2145, Australia, ²⁶⁵ Menzies Institute for Medical Research, School of Medicine, University of
471	Tasmania, Liverpool St, Hobart, Tasmania, 7000, Australia, 266Centre for Eye Research
472	Australia, University of Melbourne, Melbourne, Victoria, 3002, Australia, 267 Department of
473	Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland, 268 Department of

474	Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine
475	and Health Technology, Tampere University, Tampere 33014, Finland, 209 Centre Nutrition,
476	santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Québec,
477	Canada, 270 Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA, 271 Medical
478	Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical
479	Center, Liebigstr. 18, 04103 Leipzig, Germany, 272Discipline of Internal Medicine, Medical
480	School, The University of Western Australia, Perth, WA, Australia, 273Institute of
481	Epidemiology, Kiel University, Kiel, Germany, 274Institute of Clinical Molecular Biology,
482	Kiel University, Kiel, Germany, 275 Sahlgrenska University Hospital, Department of Drug
483	Treatment, Gothenburg, Sweden, 276Geriatric Medicine, Institute of Medicine, Sahlgrenska
484	Academy, University of Gothenburg, Gothenburg, Sweden, 277Department of Internal
485	Medicine, EwhaWomans University School of Medicine, Seoul, Korea, 278Division of Cancer
486	Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh,
487	Pittsburgh, PA 15232, USA, 279Department of Epidemiology, Graduate School of Public
488	Health, University of Pittsburgh, Pittsburgh, PA 15232, USA, ²⁸⁰ Healthy Longevity
489	Translational Research Programme, Yong Loo Lin School of Medicine, National University
490	of Singapore, Singapore 117545, Singapore, ²⁸¹ Singapore Institute for Clinical Sciences,
491	Agency for Science Technology and Research (A*STAR), Singapore 117609, Singapore,
492	²⁸² Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine,
493	Seoul 02447, Korea, ²⁸³ Institute for Community Medicine, University Medicine Greifswald,
494	Germany, 284 Laboratory of Epidemiology and Population Science National Institute on Aging
495	Intramural Research Program, NIH 251 Bayview Blvd, NIH Biomedical Research Center,
496	Baltimore, MD 21224, USA, 285 Algebra University College, Ilica 242, Zagreb, Croatia,
497	²⁸⁶ Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Department of Physical Activity
498	and Health, University of Turku, Turku, Finland, 287 Interdisciplinary Center Psychopathology

499	and Emotion Regulation (ICPE), University of Groningen, University Medical Center
500	Groningen, Groningen, 9700 RB, the Netherlands, 288Institute of Molecular Genetics, National
501	Research Council of Italy, Pavia, Italy, 289 Gottfried Schatz Research Center for Cell Signaling,
502	Metabolism and Aging, Medical University of Graz, Graz, Austria, 200 Local Health Unit
503	Toscana Centro, Firenze, Italy, 291 Institute of Nutritional Science, University of Potsdam,
504	Nuthetal, Germany, 292 Department of Medicine, Surgery and Health Sciences, University of
505	Trieste, Strada di Fiume 447, 34149, Trieste, Italy, 293 Dept of Nephrology, Diabetology,
506	Rheumatology; Traunstein Hospital, Traunstein, Germany, 294KfH Kidney Center Traunstein,
507	Traunstein, Germany, 295 Center for Translational and Systems Neuroimmunology, Department
508	of Neurology, Columbia University Medical Center, New York, NY, USA, ³⁶ Program in
509	Medical and Population Genetics, Broad Institute, Cambridge, MA, USA, 397 Medical School,
510	National and Kapodistrian University Athens, 75 M. Assias Street, 115 27 Athens, Greece,
511	²⁹⁸ Dromokaiteio Psychiatric Hospital, 124 61 Athens, Greece, ²⁹⁹ Clinical Pharmacology,
512	William Harvey Research Institute, Queen Mary University of London, London, EC1M
513	6BQ,UK, 300Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg
514	University, Kutzerufer 1, Mannheim, 68167, Germany, 301 Institute of Molecular and Clinical
515	Ophthalmology Basel, Switzerland, 302 Privatpraxis Prof Jonas und Dr Panda-Jonas,
516	Heidelberg, Germany, 303 Department of Human Genetics, David Geffen School of Medicine at
517	UCLA, University of California, Los Angeles, CA, USA, 304Unidad de Biología Molecular y
518	Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán,
519	Mexico 14080, Mexico, ³⁰⁵ Instituto de Investigaciones Biomédicas, UNAM, Mexico,
520	³⁰⁶ Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y
521	Nutrición Salvador Zubirán, Mexico 14080, Mexico, 307 Department of Nutrition, Gillings
522	School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina,
523	27599 USA, 308 Carolina Population Center, University of North Carolina, Chapel Hill, North

524	Carolina, 27516 USA, 309 USC–Office of Population Studies Foundation, University of San
525	Carlos, Cebu City, 6000, Philippines, ³¹⁰ Department of Anthropology, Sociology, and History,
526	University of San Carlos, Cebu City, 6000 Philippines, 311 Department of Medicine, Faculty of
527	Medicine, University of Kelaniya, Ragama, 11010, Sri Lanka, ³¹² Department of Public Health,
528	Faculty of Medicine, University of Kelaniya, Ragama, 11010, Sri Lanka, ³¹³ Children's
529	Hospital Oakland Research Institute, Oakland, CA 94609 USA, ³¹⁴ Institute of Biomedical
530	Sciences, Academia Sinica, Taiwan, ³¹⁵ Systems Genomics Laboratory, School of
531	Biotechnology, Jawaharlal Nehru University, New Delhi - 110067, India, ³¹⁶ Department of
532	Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA,
533	³¹⁷ Department of Physiology and Biophysics, University of Mississippi Medical Center,
534	Jackson, MS, 39216, USA, ³¹⁸ Department of Medical Sciences, Uppsala University, Sweden,
535	³¹⁹ Department of Paediatrics, Yong Loo Lin School of Medicine, National University of
536	Singapore; and Khoo Teck Puat - National University Children's Medical Institute, National
537	University Health System, Singapore, 320 Department of Medicine, University of North
538	Carolina, Chapel Hill, NC, USA, 321 Department of Epidemiology, Gillings School of Global
539	Public Health, University of North Carolina, Chapel Hill, North Carolina, USA, 322Injury
540	Prevention Research Center, University of North Carolina, Chapel Hill, North Carolina,
541	USA, 323 Division of Physical Therapy, University of North Carolina, Chapel Hill, North
542	Carolina, USA, 324Department of Psychiatry, Amsterdam UMC, Vrije Universiteit
543	Amsterdam, the Netherlands, 325 Amsterdam Public Health research institute, VU medical
544	center Amsterdam, the Netherlands, 326Department of Biochemistry, College of Medicine,
545	Ewha Womans University, Seoul 07804, Korea, 327 Faculty of Health and Medicine, University
546	of Newcastle, Australia, 328 Washington University School of Medicine, Division of
547	Biostatistics, MO, USA, ³²⁹ University of Kentucky, College of Public Health, KY, USA,
548	³³⁰ Institute of Cellular Medicine (Diabetes), The Medical School, Newcastle University,

549	Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, ³³¹ University of Helsinki and
550	Department of Medicine, Helsinki University Hospital, P.O.Box 340, Haartmaninkatu 4,
551	Helsinki, FI-00029, Finland, 322 Minerva Foundation Institute for Medical Research,
552	Biomedicum 2U, Tukholmankatu 8, Helsinki, FI-00290, Finland, ³³³ JSS Academy of Higher
553	Education and Research, Mysuru, India, ³³⁴ Programs in Metabolism and Medical and
554	Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA, ³³ Diabetes
555	Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,
556	USA10, ³³⁶ Harvard Medical School, Boston, Massachusetts, USA, ³³⁷ Unidad de Biología
557	Molecular y Medicina Genómica, Instituto de Investigaciones Bimédicas UNAM/ Instituto
558	Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico,
559	³³⁸ Dirección de Nutrición and Unidad de Estudios de Enfermedades Metabólicas, Instituto
560	Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico,
561	³³⁹ InstitutoNacional de Salud Publica y Centro de Estudios en Diabetes, Mexico, ³⁴⁰ Instituto
562	Nacional de Medicina Genómica, Mexico, 341 Human Genetics Center, School of Public
563	Health, University of Texas Health Science Center at Houston, Houston TX 77030, USA,
564	³⁴² Yong Loo Lin School of Medicine, National University of Singapore and National
565	University Health System, 119228, Singapore, ³⁴³ MRC Unit for Lifelong Health and Ageing at
566	UCL, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom, 344Kurume University
567	School of Medicine, Kurume, 830-0011, Japan, ³⁴⁵ Genetics, Merck Sharp & Dohme Corp.,
568	Kenilworth, NJ, 07033, USA, ³⁴⁶ Oxford Centre for Diabetes, Endocrinology & Metabolism,
569	University of Oxford, UK, 347Population Health and Genomics, University of Dundee,
570	Ninwells Hospital and Medical School, Dundee, DD1 9SY, UK, 348 Intramural Research
571	Program, National Institute on Aging, 3001 S. Hanover St., Baltimore, MD 21225, 349 Beijing
572	Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital
573	Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, 100730

574	Beijing, China, ³⁵⁰ The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou
575	Medical University, Wenzhou, Zhejiang 325027, China, ³⁵¹ Synlab Academy, SYNLAB
576	Holding Deutschland GmbH, Mannheim and Augsburg, Germany, 322Clinical Institute of
577	Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria,
578	³⁵³ Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland, ³⁵⁴ Leiden University
579	Medical Center, Department of Cell and Chemical Biology, Leiden, 2333ZA, The
580	Netherlands, 355Leiden University Medical Center, Department of Biomedical Data Sciences,
581	Section Molecular Epidemiology, Leiden, 2333ZA, The Netherlands, ³⁵⁶ Amsterdam UMC,
582	Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute,
583	Amsterdam, 1081HV, the Netherlands., ³⁵⁷ Amsterdam UMC, Department of General Practice
584	and Elderly Care, Amsterdam Public Health Research Institute, Amsterdam, 1081HV, The
585	Netherlands, ³⁵⁸ Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104,
586	USA, ³⁵⁹ Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA,
587	³⁶⁰ Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania, PA, 19104,
588	USA, ³⁶¹ Institute of Social and Economic Research, University of Essex, Wivenhoe Park, CO4
589	3SQ, United Kingdom, 302Department of Cardiology, University of Groningen, University
590	Medical Center Groningen, 9700RB Groningen, The Netherlands, ³⁶³ Department of
591	Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New
592	York, NY, USA, 364Unidad de Investigacion Medica en Bioquimica, Hospital de
593	Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social,
594	Mexico City, Mexico., ³⁶⁵ Department of Epidemiology, University of Washington, Seattle,
595	WA, USA, ³⁶⁶ Department of Health Services, University of Washington, Seattle, WA, USA,
596	³⁶⁷ Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark,
597	³⁶⁸ 16Center for Research on Genomics and Global Health, National Human Genome Research
598	Institute, National Institutes of Health, 12 South Drive, Room 4047, Bethesda, MD, 20892,

599	USA,, ³⁶⁹ Danish Aging Research Center, University of Southern Denmark; Odense C,
600	Denmark, 370Public Health, Faculty of Medicine, University of Helsinki, Finland, 371Broad
601	Institute of MIT and Harvard, Cambridge, MA, 372Center for Applied Genomics, Children's
602	Hospital of Philadelphia, Philadelphia, PA, 19104 USA, ³⁷³ Department of Pediatrics, The
603	University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104 USA,
604	³⁷⁴ Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
605	USA, ³⁷⁵ Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104 USA,
606	³⁷⁶ Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The
607	Netherlands, 377School of Medicine, Southern University of Science and Technology,
608	Shenzhen, China, 378Institute for Cardiogenetics, University of Lübeck, DZHK (German
609	Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, and
610	University Heart Center Lübeck, Lübeck, Germany, 379Netherlands Heart Institute, Utrecht,
611	the Netherlands, 380 Division of Cardiology, Department of Medicine, Massachusetts General
612	Hospital, Boston, Massachusetts, USA, ³⁸¹ Program of Medical and Population Genetics, Broad
613	Institute, Cambridge, Massachusetts, USA, ³⁸² Center for Genomic Medicine, Massachusetts
614	General Hospital, Boston, Massachusetts, USA, ³⁸³ Department of Medicine, Harvard Medical
615	School, Boston, Massachusetts, USA, ³⁸⁴ Northern Finland Birth Cohorts, Infrastructure for
616	population studies, Faculty of Medicine, University of Oulu, Oulu, Finland, 385Center for Life
617	Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland, ³⁸⁶ Biocenter
618	of Oulu, University of Oulu, Oulu, Finland, 387Institute for Genetic and Biomedical Research,
619	Italian National Council of Research (IRGB CNR), Cagliari, Italy, 388University of Sassari,
620	Sassari, Italy, ³⁸⁹ Department of Clinical Epidemiology, Leiden University Medical Center,
621	Leiden, the Netherlands, ³⁰ Department of Public Health and Primary Care, Leiden University
622	Medical Center, Leiden, the Netherlands, ³⁹¹ Department of Internal Medicine, Division of
623	Endocrinology, Leiden University Medical Center, Leiden, the Netherlands, 392Einthoven

624	Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden,
625	the Netherlands, ³⁹³ Department of Human Genetics, Leiden University Medical Center,
626	Leiden, the Netherlands, 394 Population Health Research Institute, St George's, University of
627	London, London SW17 0RE, UK, 393 National Heart and Lung Institute, Imperial College
628	London, London, W2 1PG, UK, ³⁹⁶ School of Public Health, Imperial College London,
629	London, W12 7RH, UK, ³⁹⁷ Taichung Veterans General Hospital, Taichung, Taiwan; No. 1650,
630	Sec. 4, Taiwan Boulevard, Xitun District Taichung City 40705, Taiwan, 398Division of
631	Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital,
632	Taipei, Taiwan; No. 201, Sec. 2, Shipai Road, Beitou District, Taipei City, 112201, Taiwan,
633	³⁹⁹ OCDEM, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK, ⁴⁰⁰ NIHR Oxford
634	Biomedical Research Centre, Churchill Hospital, Oxford, UK, 401 Ocular Epidemiology,
635	Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore,
636	⁴⁰² Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS
637	Medical School, 169857, Singapore, ⁴⁰³ Data Science, Singapore Eye Research Institute,
638	Singapore National Eye Centre, 168751, Singapore, 404DZHK (German Centre for
639	Cardiovascular Research), Munich Heart Alliance partner site, Munich, Germany, 405 German
640	Center for Diabetes Research (DZD), Neuherberg, Germany, 406 University of Exeter Medical
641	School, University of Exeter, Exeter, EX2 5DW, UK, ⁴⁰⁷ Department of Medical Epidemiology
642	and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 408 Amsterdam Public Health
643	research institute, Amsterdam UMC, the Netherlands, 409 Framingham Heart Study, National
644	Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.,
645	⁴¹⁰ Department of Genetics, School of Medicine, Mashhad University of Medical Sciences,
646	Mashhad, Iran, 411Department of Genetics, Shanghai-MOST Key Laboratory of Health and
647	Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203
648	China, 412 Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School

649	of Medicine, Munich, Germany, ⁴¹³ Department of Public Health, University of Helsinki,
650	Helsinki, Finland, 414Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi
651	Arabia, 415Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and
652	Kuopio University Hospital, Finland, 416Stanford Cardiovascular Institute, Stanford
653	University, Stanford, CA 94305, USA, 417 Stanford Diabetes Research Center, Stanford
654	University, Stanford, CA 94305, USA, 418 Department of Medical Sciences, Molecular
655	Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,
656	⁴¹⁹ Regeneron Pharmaceuticals, Tarrytown, NY, USA, ⁴²⁰ Lee Kong Chian School of Medicine,
657	Nanyang Technological University, Singapore 308232, Singapore, 421 Imperial College
658	Healthcare NHS Trust, Imperial College London, London W12 0HS, UK, 422MRC-PHE
659	Centre for Environment and Health, Imperial College London, London W2 1PG, UK,
660	⁴²³ National Heart and Lung Institute, Imperial College London, London W12 0NN, UK,
661	⁴²⁴ School of Electrical & Information Engineering, University of the Witwatersrand, South
662	Africa, 425 Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA,
663	⁴²⁶ Institute for Minority Health Research, University of Illinois College of Medicine, Chicago,
664	Illinois, USA, 427 Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677
665	Huntington Avenue, Boston, MA, 02115, USA, 428QIMR Berghofer Medical Research
666	Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia, 429 Center for Non-
667	Communicable Diseases, Karachi, Sindh, Pakistan & Faisalabad Institute of Cardiology,
668	Faislabad, Pakistan, 430 Department of Medicine, Columbia University Irving Medical Center,
669	New York, NY, USA, 431 Department of Cardiology, Columbia University Irving Medical
670	Center, New York, NY, USA, 432Big Data Instutute, University of Oxford, Oxford OX3 7LF,
671	UK, 433National Institute for Health Research Oxford Biomedical Research Centre, Oxford
672	University Hospitals, Oxford, UK, 434 Aberdeen Centre for Health Data Science, 1:042
673	Polwarth Building School of Medicine, Medical Science and Nutrition University of

674	Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK, 435Division of Population Health and
675	Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1
676	9SY, United Kingdom, 436 Biomedical and Translational Informatics, Geisinger Health,
677	Danville, PA 17822, USA, 437 Harvard Medical School, Boston, MA 02115, USA, 438 School of
678	Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College
679	London, London, UK, 439 Department of Biomedical Informatics, Vanderbilt University
680	Medical Center, Nashville, TN, USA, 400 Departments of Medicine (Medical Genetics) and
681	Genome Sciences, University of Washington, USA, 44 Center for Autoimmune Genomics and
682	Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.,
683	⁴⁴² Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine,
684	Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA,
685	⁴⁴³ Department of Anthropology, Northwestern University, Evanston, IL 60208, USA, ⁴⁴⁴ Center
686	for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL
687	60611, USA, 445HUNT Research Centre, Department of Public Health and Nursing, NTNU,
688	Norwegian University of Science and Technology, Levanger, 7600 Norway, 446 Department of
689	Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, 7600 Norway,
690	⁴⁴⁷ Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital,
691	Trondheim, Norway, 448RIKEN Center for Integrative Medical Sciences, Yokohama, Japan,
692	449Laboratory of Complex Trait Genomics, Department of Computational Biology and
693	Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo,
694	Japan, 450 Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center,
695	Osaka University, Osaka, Japan, 451 Integrated Frontier Research for Medical Science Division,
696	Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka,
697	Japan, 452 Division of Molecular Pathology, Institute of Medical Science, The University of
698	Tokyo, Tokyo, Japan, 453 Division of Genome Research, Center for Genome Science, National

699	Institute of Health, Chungcheongbuk-do, South Korea, 454 Faculty of Medicine, University of
700	Iceland, Sæmundargötu 2, Reykjavik, 102, Iceland, 455 VA Boston Healthcare System, Boston,
701	MA, USA, 456VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care
702	System, Salt Lake City, UT, USA, 457 University of Massachusetts, Boston, MA, USA,
703	⁴⁵⁸ Department of Medicine, University of Pennsylvania Perelman School of Medicine,
704	Philadelphia, PA, USA, 459 Cardiovascular Institute, Stanford University School of Medicine,
705	Stanford, California, USA, 40 Corporal Michael J. Crescenz VA Medical Center, Philadelphia,
706	PA, USA, 461 Department of Medicine, Brigham Women's Hospital, Boston, MA, USA,
707	⁴⁶² Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA,
708	⁴⁶³ Endocrinology, Boston Childrens Hospital, Boston 02115 MA, USA, ⁴⁶⁴ Departments of
709	Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA, 465Center for Genomic
710	Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts,
711	USA, 466 Cardiology Division, Massachusetts General Hospital, Harvard Medical School,
712	Boston, MA, USA, 467 Department of Medicine, Massachusetts General Hospital, Harvard
713	Medical School, Boston, MA, USA, 468 Cardiovascular Research Center and Center for
714	Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA, 469 Centre for
715	Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of
716	Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester,
717	UK, 470Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary
718	Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia, 471Department of
719	Biostatistics, Boston University School of Public Health, Boston, MA, USA, 472Department of
720	Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA, 473Department of
721	Statistics, The Pennsylvania State University, University Park, PA, USA, 474Huck Institutes of
722	the Life Sciences, The Pennsylvania State University, University Park, PA, USA, 475VA Palo

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.470215; this version posted December 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 723 Alto Health Care System, Palo Alto, CA, USA, ⁴⁷⁶Department of Statistics, Stanford
- 724 University, Stanford, CA, USA
- 725 Corresponding Authors:
- 726 Xiang Zhu, PhD
- 727 Department of Statistics
- 728 Huck Institutes of the Life Sciences
- 729 The Pennsylvania State University
- 730 University Park, PA 16802
- 731 xiangzhu@psu.edu
- 732
- 733 Christopher D Brown, PhD
- 734 Department of Genetics
- 735 Perelman School of Medicine
- 736 University of Pennsylvania
- 737 Philadelphia PA 19104
- 738 chrbro@upenn.edu
- 739
- 740 Abstract

741	A major challenge of genome-wide association studies (GWAS) is to translate phenotypic
742	associations into biological insights. Here, we integrate a large GWAS on blood lipids
743	involving 1.6 million individuals from five ancestries with a wide array of functional
744	genomic datasets to discover regulatory mechanisms underlying lipid associations. We first
745	prioritize lipid-associated genes with expression quantitative trait locus (eQTL)
746	colocalizations, and then add chromatin interaction data to narrow the search for functional
747	genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell
748	types confirms the central role of the liver in lipid levels, and highlights the selective
749	enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and
750	triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci
751	identifies TFs relevant in lipid biology. In addition, we present an integrative framework to
752	prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal
753	genes and variants with multiple layers of functional evidence. Two prioritized genes,
754	CREBRF and RRBP1, show convergent evidence across functional datasets supporting their
755	roles in lipid biology.
756	

758 Introduction

759

760	Most GWAS findings have not directly led to mechanistic interpretations, largely because
761	90% of GWAS associations map to non-coding sequences ^{1,2} . Mechanistic interpretations in
762	GWAS have proven challenging because the strongest signals identified in GWAS typically
763	contain many variants in strong linkage disequilibrium (LD) ³ and functional mechanisms
764	including genes of action are often not clear from GWAS data alone ^{4,5} .
765	

recent observations that non-coding variants often affect a trait of interest

through the regulation of genes and processes in trait-relevant cell types or tissues 2,6 .

770 Implementing this functional model in GWAS has become more feasible as large-scale

functional genomic resources, such as epigenomic ⁷ and transcriptomic ⁸ catalogues, have

been systematically generated across a wide range of human cell types and tissues. The

773 integration of functional genomics with GWAS has identified regulatory mechanisms in

variants associated with some flagship disorders such as obesity 9 and schizophrenia 10 ,

yielding important functional insights into the genetic architecture of human complex traits.

776

777 The history of the human genetics of lipids mirrors the successes and challenges of GWAS.

778 Increasing sample size and genetic diversity has significantly boosted the power of discovery:

the first lipid GWAS in 2008 with 8,816 European-descent individuals identified 29 lipid-

780 associated loci¹¹; the latest study of 1.6 million individuals across five ancestries ¹² found

781 941. Despite the dramatic increase in the number of associations, our biological

vunderstanding of many of these genetic discoveries remains limited. The causal gene has

been confidently assigned at only a small fraction of these loci 2 , and the regulatory 783 784 mechanism connecting variant to phenotype has been conclusively characterized only for a 785 handful of genes⁵. Furthermore, systematic mapping of lipid-associated variants to their 786 biological functions has been missing in the literature at the time of this study. 787 788 Here we conduct a genome-scale integrative analysis on the largest GWAS to-date of five 789 lipid phenotypes (LDL, or low density lipoprotein; HDL, or high density lipoprotein; TC, or 790 total cholesterol; nonHDL, or non-high density lipoprotein; and TG, or triglycerides) involving 1.65 million individuals from five ancestries ¹². Combining the lipid GWAS with a 791 792 wide array of functional genomic resources in diverse human tissues and cell types, we 793 identify regulatory mechanisms of noncoding genetic variation in lipids with a full suite of 794 computational approaches. Further, we develop a generalizable framework to understand how 795 tissue-specific gene regulation can explain GWAS findings, and demonstrate its real-world 796 value on lipid-associated loci. 797

798 Material and Methods

799 *GWAS*

800

801 We performed GWAS for five blood lipid traits (LDL, HDL, TC, TG, and nonHDL) in 1.65

802 million individuals from five ancestry groups ¹²(African and African-admixed, East Asian,

803 European, Hispanic, South Asian) at 91 million variants imputed primarily from the

804 Haplotype Reference Consortium ¹³ or 1000 Genomes Phase 3 ¹⁴. The individual GWAS and

805 meta-analyses were performed using the hg19 version of the human reference genome. We

806 used MR-MEGA¹⁵ for meta-analysis across cohorts.

808	We defined 'sentinel variants' as lead variants representing independent trait-associated loci in
809	the genome. These windows are the greater of 500kb or 0.25cM around the sentinel variant;
810	genetic distances were defined using reference maps from HapMap 3 ¹⁶ . We performed a
811	second round of conditional analysis, conditioning on the sentinel variants to identify and
812	remove any significant windows that are shadow signals (or dependent on) of a neighboring
813	locus to enforce independence of associated loci.
814	
815	Colocalization with eQTLs
816	

817 We performed statistical colocalization of lipid GWAS with eQTLs obtained from GTEx v8

across 49 tissues ⁸. For each of the five lipid traits, we used the same sentinel variants defined
in the previous section to represent approximately independent GWAS-associated windows
(also removing shadow signals as described before).

821

822 For each such window, we ran eQTL colocalization with GTEx v8 single-tissue cis-eQTL

823 summary statistics ⁸. For each of 49 GTEx tissues, we first identified all genes within 1Mb of

the sentinel SNP, and then restricted analysis to those genes with significant eQTLs (i.e.,

'eGenes' as defined by GTEx) in that tissue (FDR < 0.05). We used the R package 'coloc' (run

826 on R version 3.4.3, coloc version 3.2.1)¹⁷ with default parameters to run colocalization

between the GWAS signal and the eQTL signal for each of these cis-eGenes, using as input

those SNPs in the defined window (greater than 500kb or 0.25cM on either side of the lead

variant), i.e. all SNPs present in both datasets. eQTL summary statistics were in GRCh38, so

830 we first lifted over the GWAS summary statistics (in hg19) to GRCh38 using liftOver 18 . As

in previous studies ¹⁹, we used a colocalization posterior probability of (PP3+PP4) > 0.8 to

identify loci with enough colocalization power, and PP4/PP3 > 0.9 to define those loci that

show significant colocalization, where PP4 represents posterior probability of a single shared

signal, and PP3 represents posterior probability of two unique signals in the GWAS and

eQTL datasets.

836

837 *Overlap with promoter Capture-C data*

838

839 We used four promoter-focused Capture-C (henceforth Capture-C) datasets from three human 840 cell/tissue types to capture physical interactions between gene promoters and their regulatory elements. We used three biological replicates of HepG2 liver carcinoma cells²⁰, another 841 HepG2 dataset described in Selvarajan et al²¹, hepatocyte-like cells (HLC) produced by 842 843 differentiating three biological replicates of iPSCs (which in turn were generated from peripheral blood mononuclear cells using a previously published protocol²²), and an adipose 844 dataset obtained from Pan et al²³ that was produced using primary human white adipocytes. 845 846 847 The detailed protocol to prepare HepG2 or HLC cells for the Capture-C experiment is described in Chesi et al²⁰. Briefly, for each dataset, 10 million cells were used for promoter 848 849 Capture-C library generation. Custom capture baits were designed using an Agilent 850 SureSelect library design targeting both ends of DpnII restriction fragments encompassing 851 promoters (including alternative promoters) of all human coding genes, noncoding RNA, 852 antisense RNA, snRNA, miRNA, snoRNA, and lincRNA transcripts, totaling 36,691 RNA 853 baited fragments. Each library was then sequenced on an Illumina HiSeq 4000 (HepG2) or 854 Illumina NovoSeq (HLC), generating 1.6 billion read pairs per sample (50 base pair read length.) We used HiCUP v0.7.2²⁴ to process the raw FastO files into loop calls and 855 856 CHiCAGO v1.6.0^{24,25} to define significant looping interactions; we defined a CHiCAGO 857 score of 5 as significant, as specified in the default parameters.

859	Starting with Capture-C maps processed as described above, we re-annotated the baits to
860	gene IDs from Gencode v19 26 to ensure uniformity of gene annotations with the rest of our
861	pipeline. For each bait, we identified any gene whose transcription start site (TSS) from any
862	transcript in Gencode v19 was within 175 base pair distance from the bait (to account for
863	differing bait designs for external datasets which may not directly overlap the canonical
864	TSS). We filtered all datasets to only include interactions in which the interacting end was
865	not another bait. Enrichment with colocalized genes was robust to our choice of distance
866	between bait and gene (enrichment with eQTL colocalized genes ranging from 2.94-2.96 for
867	bait distances from 0-350 base pairs).
868	
869	To identify genetic variants associated with any of the five lipid traits that physically interact
870	with locations in the genome, we used the R package 'Genomic Ranges' version 1.30.3 27 to
871	find overlap between credible sets for each trait's GWAS and the previously annotated
872	promoter Capture-C data; we refer to these as Capture-C/GWAS interactions. Each credible
873	set was defined as the set of variants with a 95% posterior probability of being the causal
874	variant. For all individual variants within all GWAS-associated loci for the five lipid traits,
875	we identified which variants overlapped any interacting end of the four previously annotated
876	promoter Capture-C data.
877	
878	Presence of gene-variant pairs in same topologically associated domains
879	
880	To estimate the frequency of colocalized gene-sentinel pairs in the same topologically
881	associated domain (TAD), we used publicly-available TADs from human liver ²⁸ . We
882	compared the number of colocalizations with the sentinel variant and colocalized gene in the

883	same TAD divided by all colocalizations in which the sentinel variant lies in a TAD. To test
884	if this ratio was statistically significant, we generated random TAD boundaries using
885	'bedtools shuffle' 1000 times, and calculated the same ratio for these randomly-generated
886	TAD boundaries.
887	
888	Pathway enrichment
889	
890	We used ClusterProfiler v3.6.0 29 to look for pathways over-represented in each gene list:
891	genes with eQTL colocalization and genes interacting with variants in GWAS credible sets.
892	We used the enrichKEGG function to look for pathway enrichment in KEGG pathways
893	(using the latest version of the KEGG database ³⁰). We first re-mapped gencode IDs to gene
894	symbols using the Gencode v24 annotation and then used the biomaRt R package v2.34.2 31
895	to convert gene symbols to Entrez IDs. We ran enrichKEGG to identify enriched pathways
896	significant at a Benjamini-Hochberg threshold of 0.05.
897	
898	Enrichment in known lipid-associated genes
899	
900	We calculated enrichment odds ratio of genes identified in our analysis with three known sets
901	of lipid-associated genes using the Fisher's exact test (R function 'fisher.test'). First, we
902	identified a list of 33 Mendelian genes from ClinVar ³² with lipidemia-associated ICD10
903	codes (E78). Second, we used the set of genes identified from a transcriptome-wide
904	association study (TWAS) on the same GWAS and GTEx v8 summary statistics using the S-
905	PrediXcan software ³³ default setup. Third, we used 35 genes with rare-coding variants
906	associated with lipid levels ³⁴ .
907	

908 Stratified LD score regression

910	We used LDSC version 1.0.1 35 to estimate the enrichment of heritability using GWAS
911	summary statistics in different epigenetic and transcriptomic annotations, including gene
912	expression, chromatin marks and TF binding sites. The gene expression and chromatin mark
913	annotations and the corresponding LD scores were provided as
914	'Multitissuegeneexpr1000Gv3' and 'Multitissuechromatin1000Gv3' databases in LDSC
915	software. The TF binding site annotations were extracted from ChIP-seq data of 161 TFs
916	from ENCODE, and their LD scores were estimated from 1000 Genomes Phase 3 European
917	samples using 'ldsc.pyl2'. We first converted the summary statistics for each phenotype to
918	LDSC-formatted summary statistics using 'munge_sumstats.py'. Second, we ran 'ldsc.py'
919	using the baseline_v1.2 baseline model on each annotation to estimate enrichment of
920	heritability. For primary analyses, we used multi-population GWAS summary statistics and
921	LD scores estimated from 1000 Genomes Phase 3 European samples. For secondary analyses
922	on East Asian GWAS alone, we obtained EAS-specific LD scores for the same epigenomic
923	annotations ³⁶ .
924	

GREGOR analysis

927We used GREGOR 37 to estimate enrichment of sentinel variants for each lipid phenotype in928TF binding sites for 161 TFs from ENCODE compared to a null distribution of variants929matched for allele frequency. We ran GREGOR with default parameters, specifying 0.8 as930the R² threshold, window size of 1Mb, and 'EUR' as the population. Annotations with FDR-931adjusted P-value < 0.05 were considered significant.</td>

933 Enrichment in single-cell expression data

935	We overlapped our list of colocalized genes with publicly available single-cell RNA-
936	sequencing data of 8,444 cells from liver ³⁸ and 38,408 cells from adipose (Web resources) in
937	humans. For both datasets, we downloaded normalized TPM data and existing tSNE cluster
938	annotations for each cell. For each cluster, we defined median expression for each gene
939	across all cells in that cluster. Then for each cluster, we calculated the enrichment P-value for
940	our list of colocalized genes using the 'fgsea' R package v1.4.1, which looks for
941	overrepresentation of our gene list in ranked genes for each cluster ³⁹ , implemented in R
942	3.4.3.
943	
944	Results
945	
946	We systematically integrated lipid GWAS results ¹² with multiple layers of functional
947	genomic data from diverse tissues and cell types to understand regulatory mechanisms at
948	lipid-associated loci (Figure 1). Specifically, we overlaid GWAS loci with eQTL and
949	chromatin-chromatin interactions to identify causal genes. We assessed polygenic
950	enrichments of tissue-specific histone marks to prioritize relevant tissues and examined
951	GWAS loci at transcription factor (TF) binding sites to detect lipid-relevant TFs. Finally, we
952	combined all these layers to prioritize functional variants at GWAS loci, providing a holistic
953	view of gene regulation at lipid loci in relevant tissue and cell types.
954	
955	Figure 1: Schematic overview of the multi-layer functional genomic analysis. We first
956	integrate GWAS summary statistics for five lipid phenotypes with eQTL and chromatin
957	interaction data to identify potential genes mediating the GWAS association, and then

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.07.470215; this version posted December 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 958 incorporate epigenomic annotations to identify regulatory mechanisms at these loci. For any
- 959 lead variant 'X', A, B, and C represent nearby eGenes, and SNPs around SNP X represent
- 960 *variants in the credible set.*

961

962

963 Colocalization with eQTLs identifies candidate lipid-relevant genes

964

974 mechanisms as opposed to coding variation. In particular, we excluded all loci with credible

975	sets containing at least one missense variant (369 of 1,750 loci, 21% of credible sets). Of the
976	remaining 1,381 GWAS loci, 696 significantly colocalized with eQTLs (the ratio of posterior
977	probability of a shared signal to the posterior probability of two signals being $> 0.9^{-19}$;
978	Methods) in at least one of 49 tissues for at least one lipid phenotype. This resulted in 1,076
979	colocalized eGenes ranging from 1 to 16 genes per locus (Figure 2A; Table S1). Since with
980	eQTL data alone it is difficult to disentangle a single functional gene from multiple functional
981	(and likely coregulated) genes at a locus ⁴¹ we performed all downstream analyses with all
982	1,076 colocalized genes, to further prioritize functional genes at loci with multiple eGenes.
983	
984	To acquire additional functional insights into the 1,076 colocalized genes, we assessed their
985	enrichments across existing biological and clinical gene sets. Colocalized genes showed
986	enrichments in (a) 20 KEGG pathways ³⁰ at FDR 5% (Table S2), including known lipid-
987	related processes such as cholesterol metabolism, PPAR signaling, and bile secretion; (b) 33
988	Mendelian genes from ClinVar ³² associated with lipid-related ICD10 codes, (11 fold
989	enrichment at P=2.08e-06, including APOB, LPL, and APOE; Figure 2B), suggesting the
990	shared genetic basis of Mendelian and complex lipid phenotypes ⁴² ; (c) 35 genes with rare-
991	variant burden for lipid phenotypes in a recent multi-ancestry analysis ³⁴ (30-fold enrichment,
992	P = 1.77e-16, including APOB, LPL, LIPG and ANGPTL4), confirming shared mechanisms
993	of rare and common variation underlying lipid traits ^{42,43} . Colocalized genes also showed
994	enrichment with genes implicated in TWAS run on the same GWAS and eQTL summary
995	statistics (20-fold enrichment, P<2.22e-308). These enrichment results demonstrate the
996	biological relevance of candidate functional genes prioritized by our approach.
997	
998	Figure 2: Overlap between eQTL colocalized genes and capture-C prioritized genes, and

999 their enrichment in known lipid-associated genes. A. Numbers of genes identified by two

- 1000 approaches: eQTL colocalization (upper half) and promoter capture-c interactions (lower
- 1001 *half*) B. Overlap between our list of prioritized genes (left: capture-C prioritized genes; right:
- 1002 *eQTL colocalized genes) with three sets of genes previously associated with lipid biology*
- 1003 (ClinVar lipidemia-associated genes, genes implicated in rare burden of lipids, and genes
- 1004 from a lipid TWAS). C. Enrichment in overlap between eQTL colocalized genes and capture-
- 1005 *C prioritized genes against what is expected by chance, assuming both gene sets are*
- 1006 independent. Enrichment estimates and confidence intervals shown in Panels B and C were

1007 *obtained using Fisher's exact test.*

1008

1009

1010 Chromatin-chromatin interactions improve eQTL-based colocalization

1011

1012 Our eQTL-based colocalization analysis uses a linear sequence of DNA, and ignores physical 1013 interaction between non-adjacent DNA segments, another regulatory layer underlying complex human traits ⁴⁴. To add this layer to our analysis, we generated Capture-C data from 1014 1015 HepG2 liver carcinoma cells (denoted as HepG2.1) and hepatocyte-like cells (HLC) derived from differentiating iPSCs (the latter is described in ²²), as well as publicly-available Capture-1016 C datasets from HepG2 21,43 (denoted as HepG2.2) and adipose tissue 23 . We defined a 1017 1018 GWAS-relevant interaction as any Capture-C interaction between any gene and a variant in the 95% credible set for a GWAS locus⁴⁵. Credible set sizes ranged from 1 to 417 variants at 1019

1020	the 1,750 examined loci, with a median size of 5 variants per credible set. In total, 1,079
1021	GWAS loci had at least one variant in the credible set with a physical interaction with a gene
1022	promoter and 3,543 of 26,621 genes with promoter-interactions had promoters physically
1023	interacting with at least one GWAS credible set variant (Figure 2A; Table S3). Unlike eQTL-
1024	colocalized genes, these genes interacting with their credible sets showed limited enrichment
1025	in relevant KEGG pathways (Table S2) and lipid-related genes from ClinVar (Figure 2B),
1026	though we see 5-fold enrichment (compared to greater than 10-fold enrichment for eQTL-
1027	colocalized genes) in genes with rare-variant lipid associations (P = $2.8e-05$) and TWAS
1028	genes (P=2.5e-288).
1029	
1030	Genes physically interacting with GWAS loci helped shortlist functional genes from eQTL
1031	colocalization despite their reduced enrichments in known gene sets. Of 1,079 credible sets
1032	with promoter interactions, 224 also colocalized with eQTLs for the same gene. At the gene
1033	level, 233 genes were implicated in both eQTL colocalization and Capture-C interactions
1034	(Figure 2C), representing an enrichment of 3-fold compared to random chance ($P = 3.11e-38$).
1035	Among these loci with concordant eQTL colocalizations and Capture-C interactions, only
1036	39% of them mapped to a single gene using eQTL data alone, whereas adding Capture-C
1037	information increased this fraction to 80%. These results showcase the potential value of
1038	combining eQTLs with physical chromatin interactions to prioritize functional genes at
1039	GWAS loci.
1040	
1041	Since eQTLs are likely to reside in the same topologically associated domain (TADs) as the
1042	genes they regulate ⁴⁶ , we examined TAD structure from independent datasets at lipid GWAS

- 1043 loci with eQTL colocalizations. Of eQTL-GWAS colocalizations in which the sentinel
- 1044 variant resided within a liver TAD 28 , the colocalized gene resided in the same liver TAD

1045	84.8% of the time (P $<$ 0.001 with 1000 permutations; Methods). When we restricted
1046	colocalizations to those supported by Capture-C data in any cell type, 91.2% fall in the same
1047	TAD. These results add to the existing evidence for TAD boundaries being regulatory
1048	insulators in the cell ⁴⁷ and confirm our integration of chromatin interactions with eQTL
1049	colocalizations as an effective strategy to hone in on functional genes.
1050	
1051	Tissue-specific enrichment of GWAS signals differentiates lipid traits
1052	
1053	Regulatory variants often affect complex traits in a tissue-specific manner ⁶ , as shown in our
1054	eQTL colocalization analysis. Specifically, by computing the ratio of the number of
1055	colocalizations in a tissue to eQTL sample size in that tissue, we found that the liver was
1056	universally enriched for colocalized eGenes with respect to sample size across all lipid traits
1057	whereas adipose was selectively enriched in HDL and TG only (Figure S1). Motivated by
1058	these findings, we leveraged systematic approaches and additional data to identify relevant
1059	tissues and cell types for each lipid trait.
1060	
1061	We implemented stratified LD score regression (S-LDSC), a polygenic approach not
1062	restricted to genome-wide significant variants, on tissue-specific transcriptomic and
1063	epigenomic annotations across 204 datasets from more than 170 tissues and cell types, to
1064	identify relevant tissues for each lipid trait (Methods). Consistent with previous studies and
1065	our eQTL-based analysis, liver-related tissues (Table S4) showed strong enrichments across
1066	all lipid traits (S-LDSC enrichment p-values ranging from .001 in TG to .0001 in TC), for
1067	both expression (Figure 3A) and chromatin annotations (Figure 3B). This result was
1068	confirmed by analysis using two other approaches: DEPICT 48 (Figure S2) and RSS-NET 49
1069	(Table S5). To assess the robustness of our S-LDSC results based on multi-population

- 1070 GWAS, we applied S-LDSC to population-specific GWAS in European and East Asian
- 1071 ancestry participants together with population-specific LD scores (Methods) and obtained
- 1072 similar results (Table S6).
- 1073
- 1074 Figure 3: Tissue relevance based on lipid GWAS and functional annotations. Partitioning
- 1075 heritability of GWAS summary statistics for five lipid traits on gene expression (A) and
- 1076 chromatin mark (B) annotations across tissues. Each plotted point represents a tested dataset
- 1077 for enrichment of heritability, with larger dots representing datasets with P-value < 0.05;
- 1078 multiple annotation datasets are tested for the same tissue group. Each color represents a
- 1079 tissue group, and the y-axis represents -log10 P-value of enrichment of heritability.

- 1081
- 1082

1083 The S-LDSC results also highlighted tissues selectively enriched in certain lipid traits as 1084 shown in the eQTL-based analysis. The most enriched category for HDL using chromatin 1085 annotation is 'Adipose H3K4me3' (P-value 7.6e-04); for TG, enrichment in liver-related

1086	tissues (P-value 1.2e-03) is similar to enrichment in adipose (P-value 2.7e-03). For LDL, TC,
1087	and non-HDL, enrichment P-values for the liver were much more significant than for all
1088	other tissues including adipose (Figure 3B). We observed the same pattern in S-LDSC results
1089	based on gene expression (Figure 3A). This finding is consistent with the known influence of
1090	adipose on plasma HDL levels ⁵⁰ , and the role of adipose as TG deposits ⁵¹ . These results
1091	were corroborated by eQTL colocalizations stratified by phenotype (Figure S1) and DEPICT
1092	analysis on gene expression 48 (Figure S2). Together, these results confirm the liver as the
1093	tissue of action for all five lipid traits, and highlight the additional role of adipose in HDL and
1094	TG only.

1096 Given the importance of the liver and adipose in modulating lipid levels, we further identified 1097 the relevant cell types within these tissues. Using existing single-cell data from adipose and liver, we performed gene-set enrichment analysis ⁵² to identify cell-type clusters enriched for 1098 1099 genes colocalized with any lipid trait. Out of 11 identified cell types in 20 clusters in the 1100 liver, only hepatocytes were enriched at FDR-adjusted P < 0.05 (Figure S3), consistent with previous results²¹. In adipose, only adipocyte clusters and macrophage-monocyte clusters 1101 1102 showed suggestive enrichment (nominal P < 0.05) in colocalized genes (Figure S4). Of note, 1103 the enrichment in adjocytes was significant when we restricted this analysis to genes that 1104 were colocalized only with HDL and TG (FDR-corrected P < 0.05), consistent with the 1105 selective enrichments of adipose in HDL and TG (but not the other lipid traits) from our S-1106 LDSC analysis. Evaluations at cellular resolution are required to understand the cell-type 1107 specific mechanisms underlying lipid GWAS loci, but our results could form a useful basis 1108 for future studies.

1109

1110 Overlapping GWAS signals with binding sites highlights lipid-relevant TFs

1112	TFs have been implicated as a key mediator of linking genetic variation to complex traits ⁵³ .
1113	To understand lipid GWAS in the context of TF activity, we assessed enrichment of genome-
1114	wide significant variants at TF binding sites using GREGOR ³⁷ and performed polygenic
1115	enrichment analysis of TF binding sites using S-LDSC.
1116	
1117	Using ChIP-Seq data from 161 TFs across 91 cell types from the ENCODE project ⁷ , 70.7%
1118	of lipid credible sets overlapped with at least one TF binding site. Using GREGOR ³⁷ , we
1119	identified 137 TFs whose binding sites were significantly enriched in GWAS lead SNPs for
1120	at least one lipid phenotype (enrichment > 2; FDR adjusted P-value < 0.05; Figure S5; Table
1121	S7). Among these 137 enriched TFs, 69 of them (50%) showed significant enrichments
1122	across all five lipid phenotypes, suggesting a potential core regulatory circuit shared by all
1123	lipid traits (Figure S5). The TF with the strongest enrichment in all phenotypes was ESRRA
1124	(estrogen-related receptor alpha), a nuclear receptor active in metabolic tissues ⁵⁴ ; ESRRA
1125	has been implicated in adipogenesis and lipid metabolism, and ESRRA-null mice display an
1126	increase in fat mass and obesity ⁵⁴ .
1127	
1128	The GREGOR analysis also highlighted 68 TFs significantly enriched in specific subsets of
1129	(but not all five) lipid phenotypes (Figure S8). For example, we found 4 TFs (FOXM1,
1130	PBX3, ZKSCAN1, ZEB1) enriched in HDL and TG only, 4 TFs (EZH2, NFE2, NFATC1,
1131	KDM5A) enriched in HDL only and 11 TFs (FOSL1, IRF3, JUN, MEF2C, NANOG,
1132	PRDM1, RUNX3, SIRT6, SMC3, STAT3, ZNF217) enriched in TG only. Of these TFs, the
1133	central role of ZEB1 in adiposity ⁵⁵ and fat cell differentiation has been demonstrated ⁵⁶ .
1134	Taken together, these TF-centric findings corroborate the selective enrichments of adipose in

1135 HDL and TG (but not the other lipid traits) identified in our previous tissue prioritization

analyses.

1137

1138	Similar to tissue prioritization, we also performed polygenic enrichment analysis of TF
1139	binding sites using S-LDSC (Table S8), which differed from GREGOR analysis by looking at
1140	not only the genome-wide significant associations but also the polygenic signal irrespective
1141	of GWAS P-values. On the same 161 ENCODE TFs, this polygenic analysis identified 25
1142	TFs whose binding sites were significantly enriched in heritability (nominal P < 0.05) for at
1143	least one lipid phenotype (Figure S6); reassuringly, 24 of 25 TFs were also significant in
1144	GREGOR analysis. Among these enriched TFs, eight (34%) were significantly enriched in all
1145	five lipid traits (CEBPB, CEBPD, FOXA2, HDAC2, HNF4G, NFYA, RXRA, SP1; P <
1146	0.05). Of those TFs significant in both analyses, RXRA (retinoid X receptor alpha) is also
1147	encoded by a colocalized gene (RXRA) near a GWAS hit (chr9:137,268,682). RXRA is a
1148	ligand-activated transcription factor that forms heterodimers with other receptors (including
1149	PPARG) and is involved in lipid metabolism ⁵⁷ and homeostasis. Moreover, 145 GWAS loci
1150	(Table S9) overlap RXRA binding peaks, suggesting that the GWAS variants might affect
1151	lipids (partially) through affecting the binding activity of RXRA. While the RXRA-associated
1152	variant has been previously implicated as a GWAS locus ⁵⁸ , our study demonstrates its role in
1153	lipid biology through its regulatory influence on other lipid-associated genes.
1154	
1155	Multi-layer functional integration reveals regulatory mechanisms at GWAS loci
1156	
1157	Motivated by our finding that integrating chromatin interaction improved eQTL

1158 colocalizations, we further brought together multiple lines of functional evidence at each

1159 GWAS locus for mechanistic inference. We started with the list of genes with evidence for

1160	both eQTL colocalization in the liver or adipose and credible set physical interactions. We
1161	next annotated each variant in the 95% credible set with various indicators of regulatory
1162	function, including its open chromatin status in liver or adipose-related cell types, its
1163	proximity to a promoter or an enhancer, and its RegulomeDB regulation probability ⁵⁹ (see
1164	Table S10 for the complete list of annotations used). To account for complexities of
1165	regulatory mechanisms and limitations of functional datasets, we combined evidence across
1166	these datasets to prioritize variants at GWAS loci (Figure 4A). Specifically, we prioritized
1167	variants with at least three independent lines of functional evidence (chromatin openness,
1168	physically interaction with target genes, and promoter/enhancer status in liver or adipose),
1169	with at least two being in the same tissue with colocalization with the target gene, and with a
1170	RegulomeDB score > 0.5 . Applying this simple procedure to lipid GWAS we identified 13
1171	candidate loci, each with the strongest multi-layer evidence pointing to a single functional
1172	variant (Table 1). Below we describe two examples to highlight key features of this multi-
1173	layer integration framework.
1174	
1175	RRBP1 (ribosomal binding protein 1) could be identified from eQTL colocalization alone,
1176	but our multi-layer integration approach strengthened the conclusion via convergent evidence
1177	from various sources (Figure 4B). The RRBP1 eQTL signals in the liver colocalize with LDL,
1178	TC, and nonHDL GWAS signals. The 'T' allele of the lead variant (chr20:17,844,684, hg19)

1179 decreases *RRBP1* expression levels and increases LDL, TC, and nonHDL levels. This lead

1180 variant is in open chromatin in HLC, and physically interacts with the *RRBP1* promoter

1181 (250kb away) in adipose and HepG2. All these data consistently point to *RRBP1* as the

- 1182 functional gene underlying this locus. RRBP1 specifically tethers the endoplasmic reticulum
- 1183 to the mitochondria in the liver--an interaction that is enriched in hepatocytes--and regulates

1184 very low density lipoprotein (vLDL) levels ⁶⁰. Rare variants in *RRBP1* are associated with

- 1185 LDL in humans 61 and silencing *RRBP1* in liver affects lipid homeostasis in mice 60 .
- 1186
- 1187 Figure 4. An easy-to-implement multi-layer framework to prioritize functional variants at
- 1188 *GWAS loci. A. Variant annotation and prioritization scheme at each credible set. B. Evidence*
- 1189 for gene RRBP1 from functional genomics data. The LDL GWAS locus at this region is an
- 1190 *eQTL for gene RRBP1 in the liver (second row). Variants in the credible set of this locus*
- 1191 *interact with the gene promoter in both adipose and HepG2 Capture-C data. The interacting*
- 1192 variant is also in an open chromatin peak in three liver-related cell types. C. Multiple
- 1193 sources of functional genomics data support CREBRF as a gene contributing to HDL levels.
- 1194 The HDL GWAS locus at this region is an eQTL for gene CREBRF in adipose (second row).
- 1195 Variants in the credible set at this locus interact with the CREBRF promoter in adipose. The
- 1196 *interacting variant is also in open chromatin in liver-related cell types.*

1199	CREBRF (CREB3 regulatory factor) demonstrates the power of our multi-layer integration
1200	framework in prioritizing functional variants (Figure 4C). The eQTL signals of CREBRF
1201	colocalized with a GWAS locus for HDL with 30 candidate variants. In contrast, our multi-
1202	layer approach identified a single candidate variant (chr5:172,566,698) at this locus that
1203	physically interacts with the CREBRF promoter in adipose, was predicted to be a regulatory
1204	element (RegulomeDB score=0.91). Consistent with the index variant (chr5:172,591,337),
1205	the allele 'A' at this functional variant increased HDL levels and increased CREBRF
1206	expression in adipose. Missense variants in CREBRF have been linked to body mass index,
1207	and the gene has been linked to obesity risk in Samoans ⁶² .
1208	
1209	Finally, to compare the power of functional fine-mapping with trans-ancestry fine-mapping,
1210	we applied our prioritization rule to credible sets derived from European-only meta-analysis.
1211	The 111 variants prioritized by our rule described above (including multiple variants in the
1212	same credible set) were all found in the multi-ancestry credible sets, representing a 3.7 fold
1213	enrichment (P < 1e-04 derived from 10000 permutations randomly sampling variants from
1214	the European-only credible sets). This convergence of complementary approaches to the
1215	same smaller set of variants highlights the power of multi-ancestry datasets as an approach to
1216	narrow in on functional variants.
1217	
1218	Discussion
1219	
1220	Here we integrate the largest multi-population lipid GWAS to date with a wide array of
1221	functional genomic resources to understand how noncoding genetic variation affects lipids
1222	through gene regulation. Specifically, we identify 1,076 genes whose eQTL signals

1223	colocalize with lipid GWAS signals and demonstrate how physical chromatin interaction can
1224	improve standard eQTL-based colocalization. We assess tissue-specific enrichments of lipid
1225	GWAS signals and demonstrate the selective importance of adipose in HDL and triglyceride
1226	biology. We examine binding site enrichments of 161 TFs in lipid GWAS and expand our
1227	understanding of lipid GWAS loci (e.g., RXRA) in the context of TF activity. Finally, we
1228	build a simple and interpretable prioritization framework that automatically combines
1229	multiple lines of evidence from orthogonal datasets, pinpointing a single functional variant at
1230	each of 13 lipid-associated loci (e.g., RRBP1 and CREBRF). While there are studies that
1231	interpret lipid GWAS associations ^{21,63,64} , the size of our multi-population GWAS and multi-
1232	layer functional integration represent a comprehensive effort and an important step forward in
1233	this direction.
1234	
1235	Our multi-layer analysis has two key strengths. First, despite a large array of functional
1236	genomic resources being embedded, our analysis produces results with high consistency. For
1237	example, the selective enrichment of adipose in HDL and TG identified by S-LDSC is
1238	confirmed by our eQTL-based colocalization and TF binding site overlap. Another example
1239	of consistency is the multi-layer prioritization of RRBP1, which can be identified from eQTL-
	based colocalization along and it is further validated by abromatin anonness and interaction
1240	based colocalization alone and it is further variated by chromatin openness and interaction.
1240 1241	Such convergent evidence from various sources improves the confidence of our findings.

1243 improve sensitivity to prioritize functional genes and variants. For example, we refined eQTL

1244 colocalized genes (1,076) to a smaller set of functional genes (233) through integration with

- 1245 promoter Capture-C data. Another example of sensitivity is *CREBRF*, where eQTL-based
- 1246 colocalization implicates 30 candidate variants and adding other regulatory layers points to a

1247 single functional variant. Moving forward, we expect these two features will serve as useful

1248 guidelines for future integrative genomic analyses of other traits.

1249

1250	Our results rely on the breadth and accuracy of functional genomic datasets used in our
1251	analyses. First, unlike our lipid GWAS, current functional datasets ⁶⁵ are limited both in
1252	sample size and ancestral diversity, which can affect discovery and replication of regulatory
1253	mechanisms in diverse populations. Second, some functional datasets are generated at limited
1254	resolution. For example, our colocalizations are based on eQTLs from bulk tissue RNA-seq ⁸ ,
1255	which may miss detailed cell types and biological processes in which lipid-associated SNPs
1256	regulate gene expression ⁶⁶ . Third, some functional datasets are not available across the full
1257	spectrum of human tissues and cell types. For example, our chromatin-chromatin interaction
1258	analysis only examines a few cell types in two known lipid-related tissues, producing results
1259	that may be biased towards known lipid biology. As more comprehensive and accurate
1260	functional genomic resources are becoming publicly available in diverse cellular contexts and
1261	ancestry groups, the resolution and power of integrative analyses like ours will be markedly
1262	increased.

1263

1264 Other limitations of this study stem from computational methods embedded in our

1265 framework. First, the colocalization approach 'coloc' assumes one causal variant per locus,

1266 whereas recent studies suggest extensive allelic heterogeneity ⁶⁷ consistent with a model of a

1267 milieu of related transcription factors binding within a single locus. Accounting for allelic

- 1268 heterogeneity in summary statistics-based colocalization typically requires modelling
- 1269 multiple correlated SNPs through LD matrix ⁶⁸, which is computationally intensive in large-

1270 scale analyses derived from many cohorts with diverse ancestries, like the multi-population

1271 GWAS examined here. Second, due to restricted access to individual genotypes of 201

1272 cohorts, we cannot produce multi-population LD scores within GLGC but have to use

- 1273 European-based LD scores in all S-LDSC analyses. This approach, though less rigorous in
- 1274 principle, provides robust results in practice (as confirmed by our ancestry-specific analysis),
- 1275 largely because 79% of cohorts in GLGC are of European descent ¹². That said, we caution
- 1276 that the same approach might fall short in ancestrally diverse studies with few European
- 1277 individuals ⁶⁹. Third, our multi-layer variant prioritization framework is built on a series of
- 1278 simple rules that are easy to implement on large datasets. This approach could possibly be
- 1279 formalized as statistical models (e.g., priors in Bayesian methods ⁴⁹), but certainly simplify
- 1280 computation and improve scalability of our framework. Despite the technical limitations, our
- 1281 approach here can serve as a useful benchmark for future development of methods with
- 1282 improved statistical rigor and computation efficiency.
- 1283 In summary, mapping noncoding genetic variation of complex traits to biological functions
- 1284 can benefit greatly from thorough integration of multiple layers of functional genomics, as
- 1285 demonstrated in the present study. Although tested on lipids only, our integrative framework
- 1286 is straightforward to implement more broadly on many other phenotypes, yielding functional
- 1287 insights of heritable traits and diseases in humans.
- 1288 Description of Supplemental Data
- 1289 Supplemental data include seven figures and ten tables, and study-specific
- acknowledgements.
- 1291 Declaration of Interests
- 1292 G.C-P. is currently an employee of 23andMe Inc. M.J.C. is the Chief Scientist for Genomics
- 1293 England, a UK Government company. B.M.P. serves on the steering committee of the Yale
- 1294 Open Data Access Project funded by Johnson & Johnson. G.T., A.H., D.F.G., H.H., U.T., and

1295	K.S. are employees of deCODE/Amgen Inc. V.S. has received honoraria for consultations
1296	from Novo Nordisk and Sanofi and has an ongoing research collaboration with Bayer Ltd.
1297	M.M. has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received
1298	honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from
1299	Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk,
1300	Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. M.M. and A.M. are employees of
1301	Genentech and a holders of Roche stock. M.S. receives funding from Pfizer Inc. for a project
1302	unrelated to this work. M.E.K. is employed by SYNLAB MVZ Mannheim GmbH. W.M. has
1303	received grants from Siemens Healthineers, grants and personal fees from Aegerion
1304	Pharmaceuticals, grants and personal fees from AMGEN, grants from Astrazeneca, grants
1305	and personal fees from Sanofi, grants and personal fees from Alexion Pharmaceuticals, grants
1306	and personal fees from BASF, grants and personal fees from Abbott Diagnostics, grants and
1307	personal fees from Numares AG, grants and personal fees from Berlin-Chemie, grants and
1308	personal fees from Akzea Therapeutics, grants from Bayer Vital GmbH, grants from
1309	bestbion dx GmbH, grants from Boehringer Ingelheim Pharma GmbH Co KG, grants from
1310	Immundiagnostik GmbH, grants from Merck Chemicals GmbH, grants from MSD Sharp and
1311	Dohme GmbH, grants from Novartis Pharma GmbH, grants from Olink Proteomics, other
1312	from Synlab Holding Deutschland GmbH, all outside the submitted work. A.V.K. has served
1313	as a consultant to Sanofi, Medicines Company, Maze Pharmaceuticals, Navitor
1314	Pharmaceuticals, Verve Therapeutics, Amgen, and Color Genomics; received speaking fees
1315	from Illumina, the Novartis Institute for Biomedical Research; received sponsored research
1316	agreements from the Novartis Institute for Biomedical Research and IBM Research, and
1317	reports a patent related to a genetic risk predictor (20190017119). S.K. is an employee of
1318	Verve Therapeutics, and holds equity in Verve Therapeutics, Maze Therapeutics, Catabasis,
1319	and San Therapeutics. He is a member of the scientific advisory boards for Regeneron

1320	Genetics Center and Corvidia Therapeutics; he has served as a consultant for Acceleron, Eli
1321	Lilly, Novartis, Merck, Novo Nordisk, Novo Ventures, Ionis, Alnylam, Aegerion, Haug
1322	Partners, Noble Insights, Leerink Partners, Bayer Healthcare, Illumina, Color Genomics,
1323	MedGenome, Quest, and Medscape; he reports patents related to a method of identifying and
1324	treating a person having a predisposition to or afflicted with cardiometabolic disease
1325	(20180010185) and a genetics risk predictor (20190017119). D.K. accepts consulting fees
1326	from Regeneron Pharmaceuticals. D.O.M-K. is a part-time clinical research consultant for
1327	Metabolon, Inc. D.S. has received support from the British Heart Foundation, Pfizer,
1328	Regeneron, Genentech, and Eli Lilly pharmaceuticals. The spouse of C.J.W. is employed by
1329	Regeneron.

1331 Acknowledgments

1332 GMP, PN and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), 1333 1334 European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 1335 HEALTH-F2-2013-601456 (CVGenes@Target) & the TriPartite Immunometabolism 1336 Consortium [TrIC]-Novo Nordisk Foundation's Grant number NNF15CC0018486. JMM is 1337 supported by American Diabetes Association Innovative and Clinical Translational Award 1-1338 19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in 1339 Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular 1340 Research, the Sigrid Juselius Foundation and University of Helsinki HiLIFE Fellow and 1341 Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and 1342 Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral 1343 Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by 1344 Z01HG200362. Zhe Wang, Michael Presuss, and Ruth JF Loos are supported by 1345 R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon 1346 Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by 1347 the University of Bristol NIHR Biomedical Research Centre (BRC-1215-2001), the MRC 1348 Integrative Epidemiology Unit (MC UU 00011) and works within the CRUK Integrative 1349 Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the 1350 MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC 1351 (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health 1352 Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart 1353 Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the 1354 People Programme of the European Union's Seventh Framework Programme grant n° 1355 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a 1356 Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-1357 financed by the European Social Fund. Jian Yang is funded by the Westlake Education 1358 Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation 1359 (BHF) (FS/14/66/3129). Dr. Sander W. van der Laan is funded through grants from the 1360 Netherlands CardioVascular Research Initiative of the Netherlands Heart Foundation (CVON 1361 2011/B019 and CVON 2017-20: Generating the best evidence-based pharmaceutical targets 1362 for atherosclerosis [GENIUS I&II]). We are thankful for the support of the FP7 EU project 1363 CVgenes@target (HEALTH-F2-2013-601456), ERA-CVD program 'druggable-MI-targets' 1364 (grant number: 01KL1802) and the Leducq Fondation 'PlaqOmics'. Study-specific 1365 acknowledgements are available in the **Supplementary Material**.

1367 Web Resources

- 1368 GLGC 2021 summary statistics: http://csg.sph.umich.edu/willer/public/glgc-lipids2021/
- 1369 GTEx v8 summary statistics: https://www.gtexportal.org/home/datasets
- 1370 coloc: https://cran.r-project.org/web/packages/coloc
- 1371 liftOver: https://genome.ucsc.edu/cgi-bin/hgLiftOver
- 1372 HiCUP: https://www.bioinformatics.babraham.ac.uk/projects/hicup/
- 1373 CHiCAGO: https://www.bioconductor.org/packages/release/bioc/html/Chicago.html
- 1374 GenomicRanges: <u>https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html</u>
- 1375 bedtools: https://bedtools.readthedocs.io/en/latest/
- 1376 ClusterProfiler: https://guangchuangyu.github.io/clusterProfiler
- 1377 biomaRt: https://bioconductor.org/packages/release/bioc/html/biomaRt.html
- 1378 ClinVar: <u>https://www.ncbi.nlm.nih.gov/clinvar/</u>
- 1379 S-PrediXcan: https://github.com/hakyimlab/MetaXcan
- 1380 LDSC software: https://github.com/bulik/ldsc
- 1381 LD scores and related annotations: <u>https://data.broadinstitute.org/alkesgroup/LDSCORE/</u>
- 1382 DEPICT: <u>https://data.broadinstitute.org/mpg/depict</u>
- 1383 RSS-NET: https://github.com/SUwonglab/rss-net

- 1384 Adipose single cell data:
- 1385 https://singlecell.broadinstitute.org/single_cell/study/SCP133/human-adipose-svf-single-cell
- 1386 fgsea: http://bioconductor.org/packages/release/bioc/html/fgsea.html
- 1387 GREGOR: https://genome.sph.umich.edu/wiki/GREGOR
- 1388 RegulomeDB: https://regulomedb.org/regulome-search/

- 1390 Data and Code Availability
- 1391 HLC Capture-C data is available at
- 1392 <u>https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189026</u>

1393 References

- 1394 1. Gallagher, M.D., and Chen-Plotkin, A.S. (2018). The Post-GWAS Era: From Association
 1395 to Function. Am. J. Hum. Genet. *102*, 717–730.
- 1396 2. Cano-Gamez, E., and Trynka, G. (2020). From GWAS to Function: Using Functional
- 1397 Genomics to Identify the Mechanisms Underlying Complex Diseases. Front. Genet. 11, 424.
- 1398 3. Schaid, D.J., Chen, W., and Larson, N.B. (2018). From genome-wide associations to
 1399 candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. *19*, 491–504.
- 1400 4. Smemo, S., Tena, J.J., Kim, K.-H., Gamazon, E.R., Sakabe, N.J., Gómez-Marín, C.,
- Aneas, I., Credidio, F.L., Sobreira, D.R., Wasserman, N.F., et al. (2014). Obesity-associated
 variants within FTO form long-range functional connections with IRX3. Nature 507, 371–
- 1403 375.
- 1404 5. Musunuru, K., Strong, A., Frank-Kamenetsky, M., Lee, N.E., Ahfeldt, T., Sachs, K.V., Li,
- 1405 X., Li, H., Kuperwasser, N., Ruda, V.M., et al. (2010). From noncoding variant to phenotype 1406 via SORT1 at the 1p13 cholesterol locus. Nature *466*, 714–719.
- 1407 6. Hekselman, I., and Yeger-Lotem, E. (2020). Mechanisms of tissue and cell-type specificity
 1408 in heritable traits and diseases. Nat. Rev. Genet. 21, 137–150.
- 1409 7. ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the1410 human genome. Nature 489, 57–74.
- 1411 8. The GTEx Consortium (2020). The GTEx Consortium atlas of genetic regulatory effects

- 1412 across human tissues. Science *369*, 1318–1330.
- 1413 9. Loos, R.J.F., and Yeo, G.S.H. (2021). The genetics of obesity: from discovery to biology.
 1414 Nat. Rev. Genet. doi: 10.1038/s41576-021-00414-z

1415 10. Huo, Y., Li, S., Liu, J., Li, X., and Luo, X.-J. (2019). Functional genomics reveal gene 1416 regulatory mechanisms underlying schizophrenia risk. Nat. Commun. *10*, 1–19.

- 1417 11. Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle, L.L., Clarke, R., Heath,
- 1418 S.C., Timpson, N.J., Najjar, S.S., Stringham, H.M., et al. (2008). Newly identified loci that
- 1419 influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169.
- 1420 12. Sarah E Graham, Shoa L Clarke, Kuan-Han H Wu, Stavroula Kanoni, Greg JM Zajac,
 1421 Shweta Ramdas, Ida Surakka, Ioanna Ntalla, Sailaja Vedantam,, Thomas W Winkler, et al.
- (in press). The power of genetic diversity in genome-wide association studies of lipids.
 Nature. doi: 10.1038/s41586-021-04064-3
- 1424 13. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A.R., Teumer, A., Kang,
- 1425 H.M., Fuchsberger, C., Danecek, P., Sharp, K., et al. (2016). A reference panel of 64,976
- 1426 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283.
- 1427 14. 1000 Genomes Project Consortium, and Adam Auton, Lisa D Brooks, Richard M Durbin,
- Erik P Garrison, Hyun Min Kang, Jan O Korbel, Jonathan L Marchini, Shane McCarthy, Gil
 A McVean, Gonçalo R Abecasis (2015). A global reference for human genetic variation.
- 1430 Nature 526, 68–74.
- 1431 15. Mägi, R., Horikoshi, M., Sofer, T., Mahajan, A., Kitajima, H., Franceschini, N.,
- 1432 McCarthy, M.I., COGENT-Kidney Consortium, T2D-GENES Consortium, and Morris, A.P.
- 1433 (2017). Trans-ethnic meta-regression of genome-wide association studies accounting for
- 1434 ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol.
- 1435 Genet. 26, 3639–3650.
- 1436 16. The International HapMap 3 Consortium (2010). Integrating common and rare genetic
 1437 variation in diverse human populations. Nature 467, 52–58.
- 1438 17. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace,
- 1439 C., and Plagnol, V. (2014). Bayesian test for colocalisation between pairs of genetic
- 1440 association studies using summary statistics. PLoS Genet. 10, e1004383.
- 1441 18. Kuhn, R.M., Haussler, D., and Kent, W.J. (2013). The UCSC genome browser and associated tools. Brief. Bioinform. *14*, 144–161.
- 1443 19. Çalışkan, M., Manduchi, E., Rao, H.S., Segert, J.A., Beltrame, M.H., Trizzino, M., Park,
- 1444 Y., Baker, S.W., Chesi, A., Johnson, M.E., et al. (2019). Genetic and Epigenetic Fine
- 1445 Mapping of Complex Trait Associated Loci in the Human Liver. Am. J. Hum. Genet. 105,
- 1446 89–107.
- 1447 20. Chesi, A., Wagley, Y., Johnson, M.E., Manduchi, E., Su, C., Lu, S., Leonard, M.E.,
- 1448 Hodge, K.M., Pippin, J.A., Hankenson, K.D., et al. (2019). Genome-scale Capture C
- 1449 promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat.
- 1450 Commun. 10, 1260.

- 1451 21. Selvarajan, I., Toropainen, A., Garske, K.M., López Rodríguez, M., Ko, A., Miao, Z.,
- 1452 Kaminska, D., Õunap, K., Örd, T., Ravindran, A., et al. (2021). Integrative analysis of liver-
- 1453 specific non-coding regulatory SNPs associated with the risk of coronary artery disease. Am.
- 1454 J. Hum. Genet. 108, 411–430.
- 1455 22. Pashos, E.E., Park, Y., Wang, X., Raghavan, A., Yang, W., Abbey, D., Peters, D.T.,
- 1456 Arbelaez, J., Hernandez, M., Kuperwasser, N., et al. (2017). Large, Diverse Population
- 1457 Cohorts of hiPSCs and Derived Hepatocyte-like Cells Reveal Functional Genetic Variation at
- 1458 Blood Lipid-Associated Loci. Cell Stem Cell 20, 558–570.e10.
- 1459 23. Pan, D.Z., Garske, K.M., Alvarez, M., Bhagat, Y.V., Boocock, J., Nikkola, E., Miao, Z.,
- 1460 Raulerson, C.K., Cantor, R.M., Civelek, M., et al. (2018). Integration of human adipocyte
- chromosomal interactions with adipose gene expression prioritizes obesity-related genes fromGWAS. Nat. Commun. 9, 1512.
- 1463 24. Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder, S., Fraser, P., and 1464 Andrews, S. (2015). HiCUP: pipeline for mapping and processing Hi-C data. F1000Res. *4*,
- 1465 1310.
- 1466 25. Cairns, J., Freire-Pritchett, P., Wingett, S.W., Várnai, C., Dimond, A., Plagnol, V.,
- 1467 Zerbino, D., Schoenfelder, S., Javierre, B.-M., Osborne, C., et al. (2016). CHiCAGO: robust
- 1468 detection of DNA looping interactions in Capture Hi-C data. Genome Biol. 17, 127.
- 1469 26. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F.,
- 1470 Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al. (2012). GENCODE: the reference
- 1471 human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774.
- 1472 27. Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan,
 1473 M.T., and Carey, V.J. (2013). Software for computing and annotating genomic ranges. PLoS
 1474 Comput. Biol. 9, e1003118.
- 1475 28. Leung, D., Jung, I., Rajagopal, N., Schmitt, A., Selvaraj, S., Lee, A.Y., Yen, C.-A., Lin,
 1476 S., Lin, Y., Qiu, Y., et al. (2015). Integrative analysis of haplotype-resolved epigenomes
 1477 across human tissues. Nature *518*, 350–354.
- 1478 29. Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package for
 1479 Comparing Biological Themes Among Gene Clusters. OMICS: A Journal of Integrative
 1480 Biology *16*, 284–287.
- 30. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG
 as a reference resource for gene and protein annotation. Nucleic Acids Res. *44*, D457–D462.
- 1483 31. Durinck, S., Spellman, P.T., Birney, E., and Huber, W. (2009). Mapping identifiers for
 1484 the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc.
 1485 4, 1184–1191.
- 1486 32. Landrum, M.J., Chitipiralla, S., Brown, G.R., Chen, C., Gu, B., Hart, J., Hoffman, D.,
- Jang, W., Kaur, K., Liu, C., et al. (2020). ClinVar: improvements to accessing data. Nucleic
 Acids Res. 48, D835–D844.
- 33. Barbeira, A.N., Dickinson, S.P., Bonazzola, R., Zheng, J., Wheeler, H.E., Torres, J.M.,
 Torstenson, E.S., Shah, K.P., Garcia, T., Edwards, T.L., et al. (2018). Exploring the

phenotypic consequences of tissue specific gene expression variation inferred from GWASsummary statistics. Nat. Commun. 9, 1825.

34. Hindy, G., Dornbos, P., Chaffin, M.D., Liu, D.J., Wang, M.X., Selvaraj, M.S., Zhang, D.,
Park, J., Aguilar-Salinas, C.A., Antonacci-Fulton, L., et al. (2021). Rare coding variants in 35
genes associate with circulating lipid levels – a multi-ancestry analysis of 170,000 exomes.
<u>bioRxiv</u>10.1101/2020.12.22.423783

1497 35. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R.,
1498 Anttila, V., Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by functional
1499 annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228.

1500 36. Kanai, M., Akiyama, M., Takahashi, A., Matoba, N., Momozawa, Y., Ikeda, M., Iwata,
1501 N., Ikegawa, S., Hirata, M., Matsuda, K., et al. (2018). Genetic analysis of quantitative traits
1502 in the Japanese population links cell types to complex human diseases. Nat. Genet. *50*, 390–
1503 400.

37. Schmidt, E.M., Zhang, J., Zhou, W., Chen, J., Mohlke, K.L., Eugene Chen, Y., and
Willer, C.J. (2015). GREGOR: evaluating global enrichment of trait-associated variants in
epigenomic features using a systematic, data-driven approach. Bioinformatics *31*, 2601–
2606.

38. MacParland, S.A., Liu, J.C., Ma, X.-Z., Innes, B.T., Bartczak, A.M., Gage, B.K., Manuel,
J., Khuu, N., Echeverri, J., Linares, I., et al. (2018). Single cell RNA sequencing of human
liver reveals distinct intrahepatic macrophage populations. Nat. Commun. *9*, 4383.

1511 39. Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M.N., and Sergushichev,

1512 A. Fast gene set enrichment analysis. <u>bioRxiv https://doi.org/10.1101/060012</u>

40. Neumeyer, S., Hemani, G., and Zeggini, E. (2020). Strengthening Causal Inference for
Complex Disease Using Molecular Quantitative Trait Loci. Trends Mol. Med. 26, 232–241.

41. Y C Loraine Tung, Giles S H Yeo, Stephen O'Rahilly, Anthony P Coll (2014). Obesity
and FTO: Changing Focus at a Complex Locus. Cell Metab. 20, 710–718.

- 1517 42. Blair, D.R., Lyttle, C.S., Mortensen, J.M., Bearden, C.F., Jensen, A.B., Khiabanian, H.,
- 1518 Melamed, R., Rabadan, R., Bernstam, E.V., Brunak, S., et al. (2013). A nondegenerate code
- of deleterious variants in Mendelian loci contributes to complex disease risk. Cell 155(1):70-80.
- 43. Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou, I.M., Koseki,
 M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C.J., et al. (2010). Biological, clinical
- and population relevance of 95 loci for blood lipids. Nature 466, 707–713.
- 44. David U Gorkin, Danny Leung, Bing Ren (2014). The 3D Genome in Transcriptional
 Regulation and Pluripotency. Cell Stem Cell *14*, 762–775.
- 45. Wakefield, J. (2009). Bayes factors for genome-wide association studies: comparisonwith P-values. Genet. Epidemiol. *33*, 79–86.
- 1528 46. Yu, J., Hu, M., and Li, C. (2019). Joint analyses of multi-tissue Hi-C and eQTL data
- 1529 demonstrate close spatial proximity between eQTLs and their target genes. BMC Genet. 20,

1530 43.

- 47. Matharu, N.K., and Ahanger, S.H. (2015). Chromatin Insulators and Topological
- 1532 Domains: Adding New Dimensions to 3D Genome Architecture. Genes 6, 790–811.

1533 48. Pers, T.H., Karjalainen, J.M., Chan, Y., Westra, H.-J., Wood, A.R., Yang, J., Lui, J.C.,

- 1534 Vedantam, S., Gustafsson, S., Esko, T., et al. (2015). Biological interpretation of genome-
- 1535 wide association studies using predicted gene functions. Nat. Commun. 6, 5890.
- 49. Zhu, X., Duren, Z., and Wong, W.H. (2021). Modeling regulatory network topology
 improves genome-wide analyses of complex human traits. Nat. Commun. *12*, 2851.
- 1538 50. Zhang, T., Chen, J., Tang, X., Luo, Q., Xu, D., and Yu, B. (2019). Interaction between
 1539 adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced
 1540 dyslipidemia and atherosclerosis. Lipids Health Dis. *18*, 223.
- 1541 51. A. D. Sniderman, K. Cianflone, P. Arner, L. K. M. Summers, and K. N. Frayn (1998) The
- Adipocyte, Fatty Acid Trapping, and Atherogenesis. Arteriosclerosis, Thrombosis, andVascular Biology. 18:147–151.
- 1543 Vascular Biology. 18:147-151.
- 1544 52. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
- 1545 Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment
- analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
 Proc. Natl. Acad. Sci. U. S. A. *102*, 15545–15550.
- 1547 FIOC. Nati. Acad. Sci. U. S. A. 102, 15545 15550.
- 1548 53. Degtyareva, A.O., Antontseva, E.V., and Merkulova, T.I. (2021). Regulatory SNPs:
 1549 Altered Transcription Factor Binding Sites Implicated in Complex Traits and Diseases. Int. J.
 1550 Mol. Sci. 22,.
- 1551 54. Tripathi, M., Yen, P.M., and Singh, B.K. (2020). Estrogen-Related Receptor Alpha: An
 1552 Under-Appreciated Potential Target for the Treatment of Metabolic Diseases. Int. J. Mol. Sci.
 1553 21,.
- 1554 55. Saykally, J.N., Dogan, S., Cleary, M.P., and Sanders, M.M. (2009). The ZEB1
- 1555 Transcription Factor Is a Novel Repressor of Adiposity in Female Mice. PLoS One 4, e8460.
- 1556 56. Gubelmann, C., Schwalie, P.C., Raghav, S.K., Röder, E., Delessa, T., Kiehlmann, E.,
- 1557 Waszak, S.M., Corsinotti, A., Udin, G., Holcombe, W., et al. (2014). Identification of the
- transcription factor ZEB1 as a central component of the adipogenic gene regulatory network.Elife *3*, e03346.
- 1560 57. Neuschwander-Tetri, B.A. (2015). Retinoid X receptor: the forgotten partner in regulating
 1561 lipid metabolism? Am. J. Clin. Nutr. *102*, 5–6.
- 1562 58. Peloso, G.M., Demissie, S., Collins, D., Mirel, D.B., Gabriel, S.B., Cupples, L.A.,
- 1563 Robins, S.J., Schaefer, E.J., and Brousseau, M.E. (2010). Common genetic variation in
- multiple metabolic pathways influences susceptibility to low HDL-cholesterol and coronary
 heart disease. J. Lipid Res. *51*, 3524–3532.
- 1566 59. Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A., Kasowski, M.,
- 1567 Karczewski, K.J., Park, J., Hitz, B.C., Weng, S., et al. (2012). Annotation of functional
- 1568 variation in personal genomes using RegulomeDB. Genome Research 22, 1790–1797.

- 1569 60. Anastasia, I., Ilacqua, N., Raimondi, A., Lemieux, P., Ghandehari-Alavijeh, R., Faure, G.,
- 1570 Mekhedov, S.L., Williams, K.J., Caicci, F., Valle, G., et al. (2021). Mitochondria-rough-ER
- 1571 contacts in the liver regulate systemic lipid homeostasis. Cell Rep. 34, 108873.
- 1572 61. Jurgens, S.J., Choi, S.H., Morrill, V.N., Chaffin, M., Pirruccello, J.P., Halford, J.L.,
- 1573 Weng, L.-C., Nauffal, V., Roselli, C., Hall, A.W., et al. (2020). Rare Genetic Variation
- 1574 Underlying Human Diseases and Traits: Results from 200,000 Individuals in the UK1575 Biobank.
- 1576 62. Minster, R.L., Hawley, N.L., Su, C.-T., Sun, G., Kershaw, E.E., Cheng, H., Buhule, O.D.,
- 1577 Lin, J., Reupena, M.S., Viali, S. 'itea, et al. (2016). A thrifty variant in CREBRF strongly
- 1578 influences body mass index in Samoans. Nat. Genet. 48, 1049–1054.
- 1579 63. Klarin, D., Damrauer, S.M., Cho, K., Sun, Y.V., Teslovich, T.M., Honerlaw, J., Gagnon,
 1580 D.R., DuVall, S.L., Li, J., Peloso, G.M., et al. (2018). Genetics of blood lipids among
 1581 ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 50, 1514–
 1523.
- 1583 64. Li, Z., Votava, J.A., Zajac, G.J.M., Nguyen, J.N., Leyva Jaimes, F.B., Ly, S.M.,
- Brinkman, J.A., De Giorgi, M., Kaul, S., Green, C.L., et al. (2020). Integrating Mouse and
 Human Genetic Data to Move beyond GWAS and Identify Causal Genes in Cholesterol
 Metabolism. Cell Metab. *31*, 741–754.e5.
- $1500 \quad \text{Wetabolishi. Cell Wetab. } 51, 141-754.05.$
- 1587 65. Varshney, A., VanRenterghem, H., Orchard, P., Boyle, A.P., Stitzel, M.L., Ucar, D., and
 1588 Parker, S.C.J. (2019). Cell Specificity of Human Regulatory Annotations and Their Genetic
 1590 Effects on Computing 211, 540, 562
- 1589 Effects on Gene Expression. Genetics 211, 549–562.
- 66. van der Wijst, M.G.P., de Vries, D.H., Groot, H.E., Trynka, G., Hon, C.C., Bonder, M.J.,
 Stegle, O., Nawijn, M.C., Idaghdour, Y., van der Harst, P., et al. (2020). Science Forum: The
 single-cell eQTLGen consortium. eLife 2020;9:e52155.
- 1593 67. Arvanitis, M., Tayeb, K., Strober, B.J., and Battle, A. (2021). Redefining tissue
 1594 specificity of genetic regulation of gene expression in the presence of allelic heterogeneity.
 1595 medRxiv 2021.06.28.21259545.
- 68. Zhu, X., and Stephens, M. (2017). Bayesian large-scale multiple regression with
 summary statistics from genome-wide association studies. Ann. Appl. Stat. 11, 1561–1592.
- 1598 69. Wojcik, G.L., Graff, M., Nishimura, K.K., Tao, R., Haessler, J., Gignoux, C.R., Highland,
- 1599 H.M., Patel, Y.M., Sorokin, E.P., Avery, C.L., et al. (2019). Genetic analyses of diverse
- 1600 populations improves discovery for complex traits. Nature 570, 514–518.

Tables

Table 1. Thirteen prioritized loci with highest confidence of a single functional variant in the credible set. The 'sentinel' column represents the lead variant at the locus. 'Prioritized var' represents the prioritized variant in the credible set. Columns 5-8 represent overlap of the functional variant with open chromatin ('Open'), capture-C ('CapC') interactions with the candidate gene, enhancer and promoter marks from Roadmap in liver ('Liver'), adipose ('Ad'), both or none of these datasets. The 'RegDB' column represents the RegulomeDB score of the prioritized variant.

Gene Name	Tissue	Sentinel	Prioritized Var	Open	CapC	Enhance r	Promote r	RegDB
CEP68	Adipose	2:65284231	65279414	Liver	Liver	None	Ad	0.5896
TIPARP	Adipose	3:156797941	156795408	Both	Both	Ad	Liver	0.705
CREBRF	Adipose	5:172591337	172566698	Liver	Ad	None	Both	0.9124
PALM2	Adipose	9:112556911	112556911	Both	Ad	Both	None	0.6091
MEGF9	Adipose	9:123481206	123421556	Liver	Ad	None	Liver	0.9933
GBF1	Liver	10:104142294	104107191	Ad	Ad	Both	Ad	0.705
MICAL2	Liver	11:12071855	12221016	Liver	Liver	Liver	Ad	0.6018
ACP2	Liver	11:47278917	47276350	Ad	Liver	Liver	Ad	0.6091
PTPRJ	Adipose	11:48021778	48011180	Liver	Ad	Liver	Ad	0.8797
NFATC2I P	Adipose	16:28899411	28883327	Liver	Liver	None	Both	0.6091
HELZ	Liver	17:65109591	65156919	Liver	Liver	Both	Ad	0.6090 6
FAM210A	Liver	18:13725674	13725674	Liver	Liver	Both	Ad	0.7571
RRBP1	Liver	20:17844684	17844684	Both	Ad	Both	Ad	0.6091