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Abstract

While numerous studies on automatic speech recognition have
been published in recent years describing data augmentation
strategies based on time or frequency domain signal process-
ing, few works exist on the artificial extensions of training data
sets using purely synthetic speech data. In this work, the Ger-
man KIEL corpus was augmented with synthetic data generated
with the state-of-the-art articulatory synthesizer VOCALTRACT-
LAB. It is shown that the additional synthetic data can lead to
a significantly better performance in single-phoneme recogni-
tion in certain cases, while at the same time, the performance
can also decrease in other cases, depending on the degree of
acoustic naturalness of the synthetic phonemes. As a result, this
work can potentially guide future studies to improve the quality
of articulatory synthesis via the link between synthetic speech
production and automatic speech recognition.

Index Terms: automatic speech recognition, phoneme recogni-
tion, articulatory speech synthesis, data augmentation

1. Introduction

In contrast to the current situation in the field of computer
vision research, where state-of-the-art results could often be
achieved through a systematic synthesis of training data [1-8],
the use of synthetic data for speech recognition purposes [9-11]
is rare, despite some recent success of data augmentation strate-
gies [12-19]. This situation may seem perplexing, as numer-
ous ways to improve speech recognition systems through the
use of synthetic data are reasonable: (i) Specific synthesis of
underrepresented phonemes in order to balance out and/or ex-
tend a training data set. (ii) Synthesis of specific domain related
words that rarely occur in common language. (iii) Synthesis
of underrepresented speaking styles, such as emotional speech
or speech dialects. (iv) Synthesis of underrepresented voices,
such as young speakers, old speakers or speakers with speech
or voice disorders.

The low interest in synthetic augmentation methods may be ex-
plained by the lack of versatility and variability [11] in current
state-of-the-art speech synthesis systems. While neural synthe-
sis systems are often characterized by the fact that they pro-
vide remarkable synthesis results [20-22], they often leave lit-
tle control over the synthesis process due to their end-to-end
nature. All in all, these systems are not flexible enough to
cope with the versatile applications of synthetic augmentation
mentioned earlier. For each application, systems would ei-
ther have to be newly developed, which is usually more costly
than directly recording speech data for recognition, or, voice-
conversion techniques [23-26] would have to be used in order to
convert existing systems to domain-appropriate systems. How-
ever, such techniques may introduce unnatural speech conver-
sion artifacts. An adequate solution to these problems would
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be to use a true speech synthesis system that allows full control
over the complete speech production process. An ideal can-
didate for such a system is articulatory speech synthesis [27],
which aims to replicate the human speech mechanism, i.e. to
simulate the vocal tract dynamics. A disadvantage of articu-
latory synthesis is that it requires a precise knowledge of hu-
man speech production, and even the most advanced articula-
tory synthesizers are under continuous active development [28],
as there are still open questions and uncertainties regarding
the fundamental mechanisms of speech production. Neverthe-
less, the state-of-the-art articulatory synthesis software VOCAL-
TRACTLAB [29] (VTL) provides a compelling tool to explore
the use of synthetic data for speech recognition. The phoneme-
to-speech functionality [28, 30] introduced in VTL version 2.3
is of particular interest as it allows the generation of large syn-
thetic data sets in a simple way. This study makes the following
contributions to the state of research:

(i) It is shown by single-phoneme recognition that natural
speech data can be augmented with synthetic phonemes
to increase the recognition rate of certain rare events.

(ii) It is shown that the recognition rate of certain phoneme
classes can also decrease due to the augmentation, which
points to directions in which the artificial speech gener-
ation must be improved in the future.

Single-phoneme recognition is thereby chosen over continuous
phoneme recognition on the word or sentence level for several
reasons. First, models that capture the temporal structure of
utterances can learn both, acoustic recognition as well as lan-
guage model-like pattern recognition from the frequency dis-
tributions of phonemes within utterances. However, the pure
acoustic information is of particular interest in this case, as indi-
vidual phonemes represent the smallest units of speech. Hence,
synthetic phonemes must at least partially capture the degree
of the natural acoustic realization in order to successfully aug-
ment natural data. If the augmentation does not work for cer-
tain phonemes, this is an indication of an unnatural realiza-
tion of these sounds. This interplay of production and recog-
nition can be a valuable tool for the development of articulatory
synthesizers as it can point the direction in which the synthe-
sis should be improved. Second, the synthesis of larger utter-
ances involves further sources of unnaturalness, e.g. via speech
flow [28], which should be avoided for now.

2. Methods
2.1. Kiel Data Set

As the main training data set, the Read Speech section of the
Kiel Corpus of Spoken German (31, 32], New Edition 2017
(KIEL) was used. The set contains speech data from 53 speakers
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Figure 1: The phoneme frequency distributions of the KIEL, BITS and VTL data sets, ordered based on the KIEL distribution.

(27 male, 26 female) and has a total duration of 4.25 h (includ-
ing silence), which makes it a low-resource corpus. The cor-
pus contains segmental labelling, which means a manual time
alignment of the actually realized phonemes is provided. This
annotation was carried out by phonetically trained students un-
der the supervision of phonetic experts. The audio files of the
KIEL corpus have a native sampling rate of 16 kHz.

2.2. BITS Data Set

As the main validation and test data set, the BAS Infrastruc-
tures for Technical Speech Processing unit selection corpus [33]
(BITS), version 1.7 was used. Even though this data set has a
longer duration (approximately 13.5 h, including silence) com-
pared to the KIEL corpus, it provides speech data from only 4
speakers (2 male, 2, female) due to its intended use in unit se-
lection synthesis rather than speech recognition. Nevertheless,
the BITS speech data is of high quality as the speakers were re-
cruited in an elaborate process. The corpus provides a manual
segmentation of the phonemes which were carefully annotated
by phonetic experts in a multi-stage process. The audio files of
the BITS corpus have a native sampling rate of 48 kHz.

2.3. Data Processing

First, the segment boundaries corresponding to the vowels'
/a, e, i,0,u,E, 1,O,U, 2,9,y Y, @ 6/, the plosives /p, t,
k, b, d, g, 7/, the fricatives /f, v, s, z, S, Z, j, C, X, R, h/ and
the nasals /m, n, N/ as well as the lateral /1/ were extracted
from the KIEL and BITS data sets. The corresponding audio
segments were extracted by extending the phoneme segments
with a context duration of 32 ms in each direction, see Figure 2.
Such a context is long enough to capture the relevant formant
transitions that characterize certain phonemes, and short enough
to ensure that only a small part of the preceding and succeeding
phoneme is visible as the context in most cases. The extracted
audio sections were then resampled to a sampling rate of 16 kHz
and 16 ms of silence were concatenated at the beginning and at
the end of each audio sample, respectively. Thereby, the signal
was faded in and out using a cosine window in order to avoid
discontinuities in the time signal. These transitions between
silence and signal parts were realized at a length of 1 ms. Sub-
sequently, 80 dimensional mel-scaled spectrograms were calcu-
lated from the audio samples as input features to the phoneme
recognition model presented in Section 2.5. A window length
of 256 samples (16 ms) and a hop length of 40 samples (2.5 ms)
were used. The mel-spectrogram intensities were converted to
the dB scale. The number of spectrogram time frames was re-
quired to be between 50 and 125, which corresponds to a restric-

I'SAMPA notation is used throughout this work.

2Due to the small acoustic and articulatory contrast, the categories
/a:/ and /E:/ were folded into /a/ and /E/, respectively.
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Figure 2: Each extracted phoneme is extended by an adjacent
context of 32 ms in both directions. The plot shows this process
exemplified by a phoneme /g/. The annotated phoneme bound-
aries are shown as dashed lines, the boundaries extended by
the context are shown as solid lines. The lower plot shows the
spectrogram, in which the important formant transitions can be
clearly seen in the context area.

tion of the annotated phoneme length to a range between 29 ms
and 216.5ms. Spectrograms with less than 125 frames were
accordingly right-padded with zero entries. The total signal du-
rations of the processed data sets were 2.25h (109, 810 sam-
ples) and 5.7h (256, 877 samples) in case of KIEL and BITS,
respectively (without silence and contexts). The BITS data was
split into a validation set and a test set via a randomly shuffled
and stratified split, with 10 % of the total samples in the vali-
dation set and 90 % in the test set. This way, the ratio of the
KIEL training data to the BITS validation data is about 4:1. The
phoneme frequency distributions of the final sets are visualized
in Figure 1.

2.4. Synthetic Data
2.4.1. VocalTractLab

VTL features a one-dimensional aerodynamic-acoustic simula-
tion of the vocal tract dynamics. It uses a realistic model of the
human vocal tract geometry derived from magnetic resonance
imaging (MRI) data and a geometric vocal fold model [34]. The
VTL synthesis process can be driven by a high-level control via
gestural scores. The dynamics of the gestural scores are gov-
erned by the TARGET-APPROXIMATION-MODEL [35,36].

2.4.2. Data Generation

For the generation of synthetic speech data, the VTL
synthesis backend was accessed via the PYTHON library



VOCALTRACTLAB-PYTHON® [37] (VTL-Python), which al-
lows fast parallel synthesis via multiprocessing. Each of the 37
phonemes was generated 3 - 10% times using the VTL-Python
speaker file JD3. This makes a total of 11.1 - 10" data samples,
which is approximately similar to the number of natural sam-
ples from the KIEL data set. During generation, the phonemes
of interest were embedded in a random context sequence /V,
X1, X, XR, V/, where V means a random vowel with a duration
of 96 ms. X denotes the phoneme of interest and X, and X are
randomly drawn from a uniform distribution of the 37 available
phonemes. This is done to provide a well defined context for the
phoneme of interest. The inner context is subject to the follow-
ing constraints to avoid implausible combinations: Not more
than two consonants must be in the sequence, voiced plosives
must not follow their unvoiced counterparts and vice-versa, if
the phoneme of interest is a glottal stop it must be succeeded
by a vowel. For the three inner phonemes of the sequence,
appropriate duration values were sampled from gamma distri-
butions that were previously fitted to the BITS validation set
duration distributions. Thereby, several different groups with
different duration distributions were identified and fitted indi-
vidually: the tense vowels, the lax vowels, the voiced plosives
plus glottal stop, the unvoiced plosives, the nasals, the lateral,
aswell as /f,s,S/, /z,Z, C, x/ and /v, j, R, h/. Subsequently,
gestural scores were calculated from the phoneme sequence and
the respective duration information via the VTL phoneme-to-
speech functionality. The gestural scores describe the dynamics
of individual articulatory tiers during speech production. How-
ever, the default plain pitch tiers [28] were replaced with a pitch
contour, specifically adjusted to augment the KIEL speech data.
For each contour, four pitch targets were determined, whereby
the duration of the first three targets was sampled from uniform
distributions between 48 ms and a quarter of the total gestural
score duration, while the duration of the last target was set to
the remaining time until the end of the gestural score. The tar-
get offset parameters (see e.g. [38]) were determined by ran-
dom sampling a mean fundamental frequency value fo from a
uniform distribution between 50 Hz and 250 Hz. Subsequently,
the target offsets were drawn from a uniform distribution within
the interval of the mean pitch 4= 6 semitones. The correspond-
ing target slope parameters were set to 0 and the time constants
were set to 20 ms. Afterwards the synthetic speech data was
generated using the respective VTL-PYTHON functionality. Fi-
nally, the phonemes of interest were extracted with a respective
context duration as previously described in Section 2.3.

2.5. Phoneme Recognition Model

For the purpose of phoneme recognition, a deep recurrent neural
network was used to capture the temporal structure of the input
spectra. Thereby, 5 bidirectional gate recurrent unit (Bi-GRU)
layers with 256 neurons each and fanh activation function were
followed by a dense layer with 37 neurons and a softmax activa-
tion function, see Table 1. The recurrent layers were preceded
by a masking layer (in order to make the network ignore the
spectral padding) and a batch normalization layer. As a whole,
this structure acts as a simple encoder which directly trans-
forms the spectral time series into a 37 dimensional probability
distribution where each dimension corresponds to a particular
phoneme. The architecture of the recurrent neural network was
broadly optimized with respect to the number of trainable model
parameters, see Figure 3. Thereby, recurrent layers seemed to

3https://github.com/paul-krug/Vocal TractLab-Python
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Layer Shape Nparams
Input (B, 125, 80) 0
Masking (B, 125, 80) 0

Batch Normalization (B, 125, 80) 320
Bi-GRU (B, 125,256) 519168
Bi-GRU (B, 125,256) 1182720
Bi-GRU (B, 125,256) 1182720
Bi-GRU (B, 125,256) 1182720
Bi-GRU (B, 256) 1182720
Dense (B, 37) 18981

Table 1: Structure of the phoneme recognition network, ordered
Jfrom the input (top) to the output (bottom). The columns de-
scribe the layer type, the shape of the corresponding output ten-
sor and the number of model parameters provided by the layer,
respectively. Thereby, B denotes the batch size.
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Figure 3: Phoneme recognition performance measured via the
F1 score as a function of trainable model parameters.

be beneficial over dense layers and gate recurrent units showed
improved performance compared to long short term memory
cells (probably due to less overfitting). As a consequence, the
final model consisted only of Bi-GRU layers and has around
5 - 10° trainable parameters. As for the hyper parameter opti-
mization, the batch size was varied between the values 16, 32,
64, whereby 32 was found to be the optimal value with respect
to performance and training speed. The learning rate was varied
between the values 10™%, 10™* and 10>, whereby 10~* gave
optimal performance.

2.6. Experiments

Several experiments were conducted: (i) The phoneme recog-
nition model was trained on the KIEL data and tested on BITS.
(ii) The model was trained on the KIEL + VTL data and tested
on BITS. (iii) The model was trained on the synthetic data only
and tested on the natural data (KIEL + BITS test set). (iv) The
model was trained on the natural data and tested on VTL data.

Model performances were evaluated in terms of F score and
recall (R). Each model was trained 5 times in order to ob-
tain adequate statistical power, the mean and standard devia-
tions over the individual instances are reported. Performances
are also reported for the sub sets of male and female speakers.
Each training was done for 25 epochs using early stopping on
I with a patience of 5 epochs and a minimum delta of 0.001.

3. Results

The phoneme recognition results from the different experiments
are listed in Table 2. One can see that the overall performance
in terms of recall and F} score actually slightly decreases when



Training data  Test data Fy [107%] R [1077]
KIEL BITS 71.0 £ 0.5 70.3 £ 0.6
L (m) 742 4+0.3 7344+ 0.6
@) 67.7+£0.7 67.2+0.7
KIEL + VTL BITS 70.3 = 0.6 69.5+0.9
L (m) 73.54+0.8 72.54+0.8
@) 66.8 £ 1.2 664+ 1.5
VTL KIEL + BITS 226404 26.1 £0.2
L (m) 238+04 281404
L@ 20.8 0.3 240+04
Kiel + BITS VTL 42.0 + 0.1 422403

Table 2: The Fy and R values are shown for different training
and testing data scenarios. The data subsets with male and fe-
male speakers only are denoted with “m” and “t”, respectively.

the recognition model is trained on KIEL + VTL data compared
to the case without VTL data. A more detailed look at the re-
sults reveals significant differences in case of certain phoneme
classes, see Figure 4. For phonemes /o, O, Z/ an improved
recognition rate was observed, however, in case of /y, s, h/
the performance decreased. With the exception of /s/, these
phonemes are classes which are rather underrepresented in the
KIEL data set, see Figure 1. This makes sense, since in these
cases there is a preponderance of synthetic training data com-
pared to natural data. Hence, the performance will be influ-
enced accordingly into the positive or negative depending on
the degree of acoustic naturalness among the synthetic samples.
Strong changes were observed for the recognition rates of /y/
and /Z/, which saw an absolute decrease of 0.136 and an in-
crease of 0.284, respectively. However, the results from ex-
periments (iii) and (iv), involving models trained on synthetic
or natural data only, see Table 2, indicate a significant lack of
naturalness and variability within the synthetic data. In fact,
when training was performed on VTL data only, strong confu-
sion among the vowels, as well as among the plosives can be
observed, see Figure 5 (left). While the recognition of fricatives
/f, s, z, S, Z/ performs comparatively well, the recognition of
nasals generalizes poorly to the natural data. A reason for this
may be found within the spectral content of the phoneme sam-
ples. The top and bottom plots in Figure 6 show the mean spec-
traof all /Z/ and /N/ samples, respectively. In the former case,
the synthetic spectral contour roughly coincides with the natu-
ral contour while strong deviations of up to 23 dB are observed
in case of the synthetic and natural nasal spectra. Conversely,
when training on the natural data and testing on the synthetic
data, there is a much stronger concentration of events on the
main diagonal of the confusion matrix, see Figure 5 (right).
This implies that the natural data are diverse enough so that the
recognition model at least roughly generalizes to the synthetic
data and that the synthetic data may be considered outliers with
regard to the distribution of natural data.

4. Discussion and Conclusion

In this study, it was shown that the recognition of certain un-
derrepresented phonemes can be improved by augmenting the
underlying training data via articulatory synthesis. However, it
was also observed that the recognition rates decrease in some
cases, probably due to an insufficient realization of acoustic
naturalness. In addition, it was found that the recognition of
natural phonemes was poor when models were trained only on
synthetic data. While recognition was better when trained on
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Figure 4: Phoneme recognition performance measured via the
recall score, shown for models trained on KIEL data (dark) and
KIEL + VTL data (bright). Shown classes have p < 0.1 in
respective t-tests between the KIEL and KIEL + VTL results.
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Figure 5: Average confusion matrices, shown for models trained
on VTL data and tested on natural data (left) vs. trained on
natural data and tested on VTL data (right).
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Figure 6: Average spectra of the phonemes |7/ and /N/ ex-
tracted from KIEL + BITS (Natural) and VTL data.

natural data only and tested on synthetic data, overall, a large
gap between recognition rates of natural and synthetic data was
still observed. These findings may be explained by two causes:
(1) The lack of variation among the synthetic data and (ii) the in-
trinsic unnaturalness of the synthetic speech sounds. Solutions
to the former problem may be, first, to create inter-speaker vari-
ability either by MRI recordings of new vocal tract geometries
or by acoustic-data driven methods such as vocal learning sim-
ulations [39—41], and second, to increase intra-speaker variabil-
ity, e.g., by stochastic variation of preset vocal tract shapes, e.g.,
using PCA transformations [41], as well as by changing voice
quality [42], target-time constants, etc. To solve the second
problem, the physical modeling of the vocal tract itself must be
improved. Starting points are the improved modeling of frica-
tive noise sources, loss mechanisms (for more realistic formant
bandwidths), sound radiation, as well as articulatory dynamics.
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