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Abstract

We develop a discrete extension operator for trimmed spline spaces consisting of piecewise polynomial functions of degree
p with k continuous derivatives. The construction is based on polynomial extension from neighboring elements together with
rojection back into the spline space. We prove stability and approximation results for the extension operator. Finally, we
llustrate how we can use the extension operator to construct a stable cut isogeometric method for an elliptic model problem.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Contributions. Consider a function space of Ck piecewise polynomial splines defined on a background mesh. Let
Ω be a domain embedded into the background mesh without requiring that boundary matches the mesh leading
to so-called cut or trimmed elements in the vicinity of the boundary. The span of every basis function that has
a support that intersects Ω form the so-called active spline space associated with Ω . Due to the presence of the
ut elements, this basis is typically very ill-conditioned since the intersection of the domain and the support of
ome basis functions may be very small [1,2]. We, therefore, introduce an extension operator that expresses the ill-
onditioned degrees of freedom in terms of the well-conditioned degrees of freedom in the interior of the domain
n a stable and accurate way. Such a discrete extension operator has many uses, for instance, handling of trimmed
lements [3] in isogeometric analysis [4] in a robust manner and as an alternative to adding stabilization terms to
he weak form in cut and immersed finite elements, see [5–7].

To keep the presentation as simple as possible we consider Ck tensor product splines but the construction
s very general and allows local refinement as well as splines on triangulations. The basic idea is to split the

esh into elements with a large respectively a small intersection with the domain Ω . To each small element, we
ssociate a large element in a neighborhood with a size proportional to the local mesh parameter and we then
se the polynomial extension from the associated large element to the small element. This preliminary extension
anufactures a function, which may be discontinuous at the faces belonging to small elements. We then project back
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to the spline space using an interpolation operator. This construction enables us to handle very general situations
and to prove that the extension is stable and has optimal approximation properties in a systematic way.

Previous work. Extension operators for discontinuous spaces were constructed and analyzed in [8], for continuous
spaces an early approach using cell merging in structured meshes was suggested in [9] and then a more general
agglomeration approach was introduced in [10]. A framework for all nodal finite element spaces, including for
instance the family of Hermite splines, was presented in [11]. Examples of applications of extension operators to
cut finite element methods include [12–15]. Another approach using extension operators, where certain terms in the
finite element formulation are evaluated at an extended polynomial, was proposed for Lagrange multiplier methods
in [16] and in the context of splines using Nitsche type weak imposition of boundary conditions in [17]. Trimmed
elements and immersed methods attract significant interest in isogeometric analysis, see for instance [3,18–21].

Outline. The paper is organized as follows: In Section 2 we introduce the spline spaces including assumptions on
the basis functions, in Section 3 we construct an interpolation operator and establish stability and approximation
properties, in Section 4 we develop the extension operator and establish its stability and approximation properties,
in Section 5 we apply the extension to a cut isogeometric method for an elliptic model problem, and in Section 6
we present some numerical examples based on that method.

2. Spline spaces

• Let T̃h be a uniform tensor product mesh on Rd with mesh parameter h ∈ (0, h0]. Let Ṽh,p,k ⊂ Ck(Rd ) be a
spline space of piecewise tensor product polynomials of order p with regularity parameter 0 ≤ k ≤ p −1. We
also let Ṽh,p,−1 denote the space of discontinuous piecewise tensor product polynomials of order p.

• Let

B̃ = {ϕ̃i }i∈ Ĩ (1)

denote a basis in Ṽh,p,k and define the sub mesh consisting of elements contained in the support of ϕ̃i ,

T̃h,i = {T ∈ T̃h : T ⊂ supp(ϕ̃i )} (2)

and the set of indices ĨT ⊂ Ĩ of the basis functions that contain element T ,

ĨT = {i ∈ I : T ⊂ supp(ϕ̃i )} (3)

and the corresponding basis functions

B̃T = {ϕ̃i : i ∈ ĨT } (4)

• Assume that the basis B̃ satisfies:

A1. The basis functions are locally supported. There is a constant, such that

|T̃h,i | ≲ 1 (5)

A2. The restrictions of the basis functions B̃T whose support contain T is a basis for Qp(T ), the tensor product
of one-dimensional polynomials of degree p on T ,

Qp(T ) = span{ϕ j : j ∈ ĨT } (6)

and the basis B̃T is stable in the sense that there are constants such that

hd
∥̂vT ∥

2
RNT ∼ ∥v∥

2
T , v ∈ Qp(T ) (7)

where NT = dim(Qp(T )) and

v =

∑
i∈ ĨT

v̂T,iϕi |T (8)

is the expansion of v ∈ Qp(T ) in the basis B̃T .

hese two assumptions are standard and non-restrictive. Here and below the a ≲ b means a ≤ Cb where the
onstant C is independent of h and the intersection of the computational mesh and the domain boundary, but may
epend on p and k.
2
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Remark 2.1. The number of elements in Th,i for the standard basis of B-splines with maximum regularity k = p−1
is (p + 1)d .

Remark 2.2. Our constructions and analysis extend to more general spline spaces including local refinements,
splines on triangulations, and tensor products of splines of various order and regularity. The essential assumption is
that we have a piecewise polynomial space and a basis that is local and the restriction of the basis functions to an
element spans a suitable polynomial space. We have chosen the most common situation of uniform tensor product
splines to keep the presentation simple.

• Given a domain Ω ⊂ Rd with Lipschitz boundary ∂Ω we define the active mesh

Th = {T ∈ T̃h : T ∩ Ω ̸= ∅} (9)

nd we let

Ωh = ∪T ∈Th T (10)

We let the active basis B ⊂ B̃ consist of all basis functions that contain an active element in their support,

B = {ϕ ∈ B̃ : ∃T ∈ Th, T ⊂ supp(ϕ)} = ∪T ∈Th B̃T (11)

nd we denote the index set of B by I . The associated active spline space Vh,p,k is defined by

Vh,p,k = span(B) (12)

or T ∈ Th we use the notation B̃T = BT , and ĨT = IT .

. Interpolation

In this section, we construct an interpolation operator πh : L2(Ω ) → Vh,p,k . This operator is based on first
xtending the function outside of the domain, and then using standard interpolation operators for spline spaces.
e establish basic stability and approximation properties. We also show an estimate of the error in the interpolant

f a discontinuous piecewise polynomial function, where the bound is in terms of a jump operator measuring the
ize of the jumps in derivatives across faces. For background on spline (quasi-)interpolants we refer to [22–25].
he word quasi here refers to the fact that these operators are not necessarily interpolating in the classical sense,
ith a pointwise evaluation of data, and instead evaluate data in some smoother sense while still retaining other

undamental properties of interpolation operators.

.1. Definitions

• There is a continuous extension operator

Ec : H s(Ω ) ∋ v ↦→ vEc ∈ H s(Rd ) (13)

independent of s, such that

∥vEc∥H s (Rd ) ≲ ∥v∥H s (Ω) (14)

This continuous extension exists given that the boundary ∂Ω satisfies some minimal smoothness properties,
approximately equivalent to that of a Lipschitz domain, see [26]. When not needed for clarity we simply write
vEc = v.

• For each element T ∈ Th let PT,p : L2(T ) → Qp(T ) be the L2(T ) projection. For v ∈ H s(Ω ) and each
element T ∈ Th we may expand the projection PT,p(vEc |T ) ∈ Qp(T ) in the basis BT ,

PT,pv|T =

∑
i∈IT

v̂T,iϕi |T (15)

Thus for each element T ∈ Th,i we obtain a potential coefficient v̂T,i multiplying basis function ϕi . We finally,
take an average over the coefficients v̂ obtained from each of the elements T in the support of ϕ to get the
T,i i

3
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final coefficient for ϕi . More precisely, we define

πhv =

∑
i∈I

⟨̂vT,i ⟩T ∈Th,i ϕi (16)

where the average is a convex combination

⟨̂vT,i ⟩T ∈Th,i =

∑
T ∈Th,i

κT,i v̂T,i (17)

with arbitrary weights κT,i such that 0 ≤ κT,i ≤ 1 and
∑

T ∈Th,i
κT,i = 1. Note that the weights can be

individually chosen for each basis function.

emark 3.1. Let B∗

T = {ϕ∗

T, j : j ∈ IT } be the dual basis to BT on T , characterized by

ϕ∗

T, j (ϕi |T ) = δi j (18)

hen there is χ∗

T,i ∈ Qp(T ) such that ϕ∗

T, j (w) = (χ∗

T,i , w)T for w ∈ Qp(T ) and we can extend the action of ϕ∗

i,T to
L2(T ). We then have ϕ∗

T, j (PT,pv|T ) = ϕ∗

T, j (v|T ) and therefore

ϕ∗

T, j (v|T ) = ϕ∗

T, j (PT,pv|T ) =

∑
i∈IT

v̂T,iϕ
∗

T, j (ϕi |T ) = v̂T, j (19)

hich allows us to express the interpolant in terms of the dual basis

πhv =

∑
i∈I

⟨ϕ∗

T,i (v|T )⟩T ∈Th,i ϕi (20)

.2. Properties

The spline space Vh,p,k is invariant under the interpolation operator. To see this we consider an element T , clearly
PT,pv = v on T . Expanding v in the spline basis B and restricting to T ,∑

i∈I

v̂iϕi |T = v|T = PT,pv =

∑
i∈IT

v̂T,iϕi |T (21)

ince the expansions are unique we conclude that v̂T,i = v̂i , for all T ∈ Th,i , and therefore ⟨̂vT,i ⟩T ∈Th,i = v̂i . It
follows that πhv = v for v ∈ Vh,p,k . Furthermore, introducing the notation

ωh,T = ∪i∈IT supp(ϕi ) (22)

e note that the restriction of the interpolant πhv to T depends only on v restricted to ωh,T , and since
iam(supp(ϕi )) ≲ h we have

diam(ωh,T ) ≲ h (23)

e now proceed with some basic stability and approximation results for the interpolation operator.

emma 3.1. There is a constant such that

∥πhv∥T ≲ ∥v∥ωh,T , v ∈ L2(ωh,T ) (24)

roof. Starting from the definition (16) of the interpolant and the expression for the coefficients (17) we obtain

∥πhv∥
2
T ≲

∑
i∈IT

|⟨̂vT,i ⟩T ∈Th,i |
2hd ≲

∑
i∈IT

∑
T ′∈Th,i

v̂2
T ′,i h

d (25)

≲
∑
i∈IT

∑
T ′∈Th,i

∥PT ′,p(vEc |
′

T )∥2
T ′ ≲

∑
i∈IT

∑
T ′∈Th,i

∥vEc∥
2
T ′ ≲ ∥vEc∥

2
ωh,T

(26)
here we used the equivalence (7). This completes the proof. □

4
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Lemma 3.2. There is a constant such that for all v ∈ H r (Ω )

∥vEc − πhv∥Hm (Ωh ) ≲ hs−m
∥v∥H s (Ω), 0 ≤ m ≤ k (27)

here s = min(r, p + 1).

roof. We have the invariance

(πhw)|T = w, w ∈ Pp(ωT ) (28)

ince the spline space is invariant under the action of πh and polynomials can be represented exactly in the spline
pace. Therefore, for any w ∈ Pp(ωh,T ) we have,

∥v − πhv∥Hm (T ) ≤ ∥v − w∥Hm (T ) + ∥w − πhv∥Hm (T ) (29)

≲ ∥v − w∥Hm (ωh,T ) + h−m
∥w − πhv∥T (30)

≲ ∥v − w∥Hm (ωh,T ) + h−m
∥πh(w − v)∥T (31)

≲ ∥v − w∥Hm (ωh,T ) + h−m
∥w − v∥ωh,T (32)

≲ hs−m
∥v∥H s (ωh,T ) (33)

here we first used the stability (24) and then choose w according to the Bramble–Hilbert lemma, see [27, Lemma
.3.8]. Summing over the elements and using the stability (14) of the extension operator completes the proof. □

emma 3.3. There is a constant such that

∥v − πhv∥Ωh ≲ ∥v∥ jh , v ∈ Vh,p,−1 (34)

ith

∥v∥
2
jh =

p∑
l=0

h2l+1
∥[∇l

nv]∥2
Fh

(35)

here Fh is the set of interior faces in Th and [∇l
nv] denotes the jump in the l:th normal derivate over a face.

roof. Proceeding in a similar manner as in the proof of Lemma 3.2 we note that for any w ∈ Pp(ωh,T ) we have,
using the L2 stability of πh ,

∥(I − πh)v∥T = ∥(I − πh)(v − w)∥T ≲ ∥v − w∥ωh,T (36)

Finally, taking w ∈ Pp(ωh,T ) such that w = v on T and using standard estimates, see [28,29], for face stabilization
f higher order elements we get

∥v − w∥
2
ωh,T

≲
p∑

l=0

h2l+1
∥[∇l

nv]∥2
Fh,i

(37)

here Fh,i is the set of interior faces in Th,i . □

emark 3.2. Note that the h-scaling in jh is chosen such that we have the inverse inequality

∥v∥ jh ≲ ∥v∥Th , v ∈ Vh,p,−1 ∩ C(Ωh) (38)

emark 3.3. The estimate (34) may be viewed as a generalization of estimates for Oswald interpolation introduced
n [30], from piecewise linear spaces to spline spaces. This type of operator is also used for the analysis of interior
enalty stabilized finite element methods [31,32]. In the case of high-order finite element spaces an hp-analysis
as considered in [33]. In this context, Lemma 3.3 is instrumental for the analysis of the skeleton-based stabilized
ethods proposed in [18].
5



E. Burman, P. Hansbo, M.G. Larson et al. Computer Methods in Applied Mechanics and Engineering 403 (2023) 115707
4. Extension

4.1. Definitions

• To define the extension operator we partition Th into the set of elements T L
h that have a large intersection with

Ω , in the sense that

γ hd
≤ |T ∩ Ω | (39)

for a parameter γ ≥ 0, and the set of elements T S
h = Th \ T L

h with a small intersection. We thus have

Th = T L
h ∪ T S

h (40)

We also define

Ω L
h = ∪T ∈T L

h
T ⊂ Ωh (41)

• Let Sh : T S
h → T L

h be a mapping that associates a large element to a small element such that

diam(Sh(T ) ∪ T ) ≲ h (42)

According to Lemma 2.4 in [11] there is such a mapping for domains with Lipschitz boundary when the mesh
is sufficiently fine. In general, such a mapping is non-unique.

• We let

BL
= ∪T ∈T L

h
BT ⊂ B, BS

= B \ BL (43)

be the set of active basis functions that contain a large element in their support and the set of remaining active
basis functions, respectively. We then have the (interior) direct sum

Vh,p,k = V L
h,p,k ⊕ V S

h,p,k (44)

where

V L
h,p,k = span(BL ), V S

h,p,k = span(BS) (45)

The index sets of BL and BS are denoted by I L and I S , respectively.
• We define the extension operator

Bh : V L
h,p,k → Vh,p,−1 (46)

in such a way that

(Bhv)|T =

{(
v|Sh (T )

)e
|T , T ∈ T S

h

v|T , T ∈ T L
h

(47)

where ve denotes the canonical extension of a polynomial v on T to a polynomial on Rd .
• We define the extension operator

Eh : V L
h,p,k ∋ v ↦→ πh Bhv ∈ V E

h,p,k ⊂ Vh,p,k (48)

where the extended finite element space V E
h,p,k is defined by

V E
h,p,k = Eh V L

h,p,k (49)

• Extending the mapping Sh from T S
h to Th by setting Sh(T ) = T , for T ∈ T L

h , we note that the set valued
mapping S−1

h : T L
h → Th induce a partition Mh of Th into macro elements

MT = ∪T ′∈S−1
h (T )T

′, T ∈ T L
h (50)

that thanks to the property (42) satisfy
diam(MT ) ≲ h (51)

6
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The macro elements MT are invariant under Sh in the sense that if T ′
⊂ MT then Sh(T ′) ⊂ MT . Let V M

h,p,−1 be
the space of discontinuous tensor product polynomials of degree p on Mh . Then it follows from the invariance
of Mh under Sh that V M

h,p,−1 is invariant under Bh ,

w = Bhw, w ∈ V M
h,p,−1 (52)

• If we choose the weights κT,i in the average (17) such that

κT ′,i = 0, T ′
∈ T S

h (53)

for all basis functions ϕi ∈ BL
T , then the extension operator takes the form

Eh : V L
h,p,k ∋ vL

↦→ vL
⊕ (Ehv

L )S
∈ V E

h,p,k ⊂ Vh,p,k (54)

where vL
=

∑
i∈I L v̂iϕi ∈ V L

h,p,k denotes the expansion of v ∈ Vh,p,k in the large basis functions and
vS

=
∑

i∈I S v̂iϕi ∈ V S
h,p,k denotes the expansion of v in the small basis functions. This means that the

component (Ehv)L of Ehv in V L
h,p,k is identical to vL and the extension operator determines a suitable

component in V S
h,p,k . In particular, we note that with weights satisfying (53) the extension operator does not

change v on Ω L
h ,

(Ehv)|Ω L
h

= v|Ω L
h

(55)

.2. Properties

emma 4.1 (Preservation of polynomials). If v ∈ Qp(Ω ), i.e., a tensor product of one-dimensional polynomials of
egree p on Ω , then

Eh
(
v|Ω L

h

)
= v (56)

roof. It follows from the definition of Bh that Bh
(
v|Ω L

h

)
= v and πhv = v. □

Before proving a stability result for the extension operator we show the following technical lemma which provides
bound for the right-hand side of (34) for a function of the form Bhv ∈ Vh,p,−1 with v ∈ Vh,p,k .

emma 4.2. There is a constant such that

∥Bhv∥ jh ≲ hm
∥∇

mv∥Ω , 0 ≤ m ≤ k, v ∈ Vh,p,k (57)

roof. Consider a face F shared by elements Th(F) = {T1, T2}. Let ωδ be a ball of radius δ such that

T1 ∪ Sh(T1) ∪ T2 ∪ Sh(T2) ⊂ ωδ (58)

ince T1 and T2 share a face and Sh satisfies (42) we conclude that there is such a ball with radius δ ≲ h. For
∈ Pp(ωδ) we then have the estimates

h2l+1
∥[∇l

n Bhv]∥2
F = h2l+1

∥[∇l
n(Bhv − w)]∥2

F ≲ h2l
∥∇

l
n(Bhv − w)∥2

Th (F) (59)

≲ ∥Bhv − w∥
2
Th (F) ≲ ∥v − w∥

2
Sh (Th (F)) ≲ ∥vE

− w∥
2
ωδ

≲ h2m
∥vE

∥
2
Hm (ωδ ) (60)

here we used inverse inequalities to pass from the face to elements and to remove derivatives, then we used the
dentity

(Bhv − w)|Ti = (v|Sh (Ti ))e
− (w|Sh (Ti ))e

= ((v − w)|Sh (Ti ))e (61)

ollowed by stability

∥(q| )e
∥ ≲ ∥q∥ , q ∈ Q (S (T )) (62)
Sh (T ) T Sh (T ) p h

7
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of polynomial extension, and finally, in the last inequality we choose w to be the L2(ωδ) projection of the continuous
xtension vEc restricted to ωδ and used a standard approximation result on the ball with diameter δ ≲ h. Note that

we need the continuous extension in the last step since the ball ωδ may not be contained in Ω . Summing over all
faces and using the stability (14) of the continuous extension operator the desired estimate follows. □

Lemma 4.3 (Stability). There is a constant such that

∥∇
m Ehv∥Ωh ≲ ∥∇

mv∥Ω , 0 ≤ m ≤ k, v ∈ Vh,p,k (63)

roof. Using the stability (62) of polynomial extension we get

∥∇
mve

∥MT ≲ ∥∇
mv∥T , v ∈ Qp(T ), T ∈ T L

h (64)

here we recall that MT = ∪T ∈S−1
h (T )T , and therefore

∥∇
m Bhv∥Mh ≲ ∥∇

mv∥T L
h

(65)

dding and subtracting v ∈ Vh,p,k we have

∥∇
m Ehv∥Ωh = ∥∇

mπh Bhv∥Ωh (66)

≲ ∥∇
m(πh − I )Bhv∥Th + ∥∇

m Bhv∥Mh (67)

≲ h−m
∥(πh − I )Bhv∥Th + ∥∇

mv∥T L
h

(68)

where we used the stability (65) of Bh to estimate the second term. For the first term we employ Lemmas 3.3 and
4.2,

h−m
∥(πh − I )Bhv∥Th ≲ h−m

∥Bhv∥ jh ≲ ∥v∥Hm (Ω) (69)

which completes the proof. □

We now define an interpolant π E
h : L2(Ω ) → Vh,p,k by applying the discrete extension operator to the

interpolation operator defined in (16), π E
h v := Ehπhv. This interpolation into the extended space satisfies the

following approximation result.

Lemma 4.4 (Approximation). There is a constant such that for all v ∈ H r (Ω ),

∥vEc − π E
h v∥Hm (Ωh ) ≲ hs−m

∥v∥H s (Ω), 0 ≤ m ≤ k, s = min(r, p + 1) (70)

roof. Let π M
h : L2(Ωh) → V M

h,p,−1 be the element-wise L2 projection. We then have

∥v − π M
h v∥Mh ≲ hs

|v|H s (Mh ), s = min(r, p + 1) (71)

Adding and subtracting πhv and πhπ
M
h v = πh Bhπ

M
h v, where we used the invariance (52), we get the identity

v − πh Bh(πhv) = v − πhv + πhv − πhπ
M
h v + πhπ

M
h v − πh Bh(πhv) (72)

= v − πhv + πh(v − π M
h v) + πh Bh(π M

h v − πhv) (73)

Using the triangle inequality, inverse inequalities, the L2 stability of πh and Bh ,

∥v − πh Bh(πhv)∥Hm (Th ) (74)

≤ ∥v − πhv∥Hm (Th ) + ∥πh(v − π M
h v)∥Hm (Th ) + ∥πh Bh(π M

h v − πhv)∥Hm (Th ) (75)

≲ ∥v − πhv∥Hm (Th ) + h−m
∥πh(v − π M

h v)∥Th + h−m
∥πh Bh(π M

h v − πhv)∥Th (76)

≲ ∥v − πhv∥Hm (Th ) + h−m
∥v − π M

h v∥Th + h−m
∥π M

h v − πhv∥T L
h

(77)

≲ hs−m
∥v∥H s (Ω) (78)

ere we used the interpolation estimate for πh in Lemma 3.2 and the estimate (71) for π M
h . To estimate the third

M
erm in (77) we added and subtracted v and once again used the approximation of πh and πh . □

8
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We end this section with some results on the properties of the extended basis. To that end, let I L
⊂ I be the

ndices for the basis BL , and note that BE
= {Ehϕi : i ∈ I L

} is a basis in V E
h,p,k . Using the notation

ϕE
i = Ehϕi (79)

for the extended basis functions, we then have the expansion

v =

N L∑
i=1

v̂iϕ
E
i (80)

of v ∈ V E
h,p,k . We next present a lemma that collects the basic properties of the extended basis functions and then

we show an equivalence between the degrees of freedom norm and the L2 norm. The latter result is crucial in the
proof of bounds on the condition number of stiffness and mass matrices.

Lemma 4.5 (Properties of extended basis functions). There are constants such that

diam(supp(ϕE
i )) ≲ h, ∥ϕE

i ∥L∞(Ωh ) ≲ 1 (81)

and, with δi j = 1 if supp(ϕE
i ) ∩ supp(ϕE

j ) ̸= ∅ and 0 otherwise,

max
i∈I L

∑
j∈I L

δi j ≲ 1 (82)

hich means that the number of nonempty intersections between the supports of an extended basis function and the
eighboring extended basis functions is uniformly bounded.

roof. We first note that if there is no element T ∈ Sh(T S
h ) in the support supp(ϕi ) then ϕE

i = Ehϕi = ϕi . These
re basis functions in the interior that are not affected by the extension and obviously satisfy the desired properties.
f on the other hand there is T ∈ T S

h such that Sh(T ) ⊂ supp(ϕi ) then ϕE
i ̸= ϕi . Using the definition (48) of the

xtension operator Eh we have ϕE
i = πh Bhϕi . We start by noting that the support of Bhϕi is given by

supp(Bhϕi ) = ∪T ∈T L
h ,T ⊂supp(ϕi ) MT (83)

here MT is the macro element defined in (50). Using the fact that diam(supp(ϕi )) ≲ h and diam(MT ) ≲ h we
onclude that

diam(supp(Bhϕi )) ≲ h (84)

ecalling the definition (22) and properties of the domain ωh,T that influences πhv on T , we finally find that

supp(ϕE
i ) ⊂ ∪ωh,T ∩supp(Bhϕi )̸=∅ωh,T (85)

hich in particular means that

diam(supp(ϕE
i )) ≲ h (86)

ince diam(ωh,T ) ≲ h and diam(supp(Bhϕi )) ≲ h, see (23) and (84).
Next using an inverse estimate to pass from the max norm to the L2 norm followed by the L2 stability of πh

we have for any element T ⊂ supp(ϕE
i ),

∥πh Bhϕi∥
2
L∞(T ) ≲ h−d

∥πh Bhϕi∥
2
T ≲ h−d

∥Bhϕi∥
2
ωh,T

≲ ∥Bhϕi∥
2
L∞(ωh,T ) (87)

sing stability of polynomial extension we may estimate the right hand side as follows

∥Bhϕi∥
2
L∞(ωh,T ) ≲ ∥ϕi∥

2
L∞(supp(ϕi )∩Ω L

h )
≲ ∥ϕi∥

2
L∞(Ωh ) ≲ 1 (88)

Finally, (82) follows from the fact that supp(ϕE
i ), i ∈ I L , is contained in a ball Bδ(xi ) with δ ≲ h and xi the

midpoint of a unique element Ti and therefore ∥xi − x j∥Rd ≳ h. Thus supp(ϕE
i ) ∩ supp(ϕE

j ) ̸= ∅ for a uniformly
L
bounded number of indices j ∈ I . □

9
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Lemma 4.6 (Equivalence with the degrees of freedom norm). Assume that the weights κT ′,i in (17) satisfy (53).
hen there are constants such that

∥v∥
2
Ω ∼ hd

∥̂v∥
2
RN (89)

roof. We recall that since the weights satisfy (17) we have

(Ehv)|Ω L
h

= v|Ω L
h

(90)

ee (55), which means that the extension does not change v on Ω L
h . Then we can apply the equivalence on the

lement level (7) on elements T ∈ T L
h ,

hd
∥̂v∥

2
RN ≲

∑
T ∈T L

h

hd
∥̂v∥

2
RNT ∼

∑
T ∈T L

h

∥v∥
2
T ≲γ

∑
T ∈T L

h

∥v∥
2
T ∩Ω = ∥v∥

2
Ω (91)

here we emphasized the dependency of γ in the last inequality. Conversely, using (81) and (82) it follows that

∥v∥
2
Ω =

∑
i, j∈I L

v̂i v̂ j (ϕE
i , ϕE

j )Ω ≲
∑

i, j∈I L

|̂vi | |̂v j | hdδi j (92)

≲
∑
i∈I L

|̂vi |
2hd

(∑
j∈I L

δi j

)
≲

∑
i∈I L

|̂vi |
2hd (93)

hich completes the proof. □

. Application

To illustrate the application of the extension operator we consider an elliptic model problem with homogeneous
oundary conditions in a domain Ω in R2 with smooth boundary, find u : Ω → R such that

−∆u = f in Ω , u = 0 on ∂Ω (94)

e use Nitsche’s method together with the extended spline space to discretize the problem. Since the below material
s standard and only for illustration we only sketch the main arguments, for simplicity we assume k = 1. The method
akes the form: find uh ∈ V E

h,p,k such that

ah(uh, v) = ( f, v)Ω , ∀v ∈ V E
h,p,k (95)

here

ah(v, w) = (∇v, ∇w)Ω − (∇nv, w)∂Ω − (v, ∇nw)∂Ω + βh−1(v, w)∂Ω (96)

s is well known the key property required to show that ah is coercive on the trial space V E
h,p,k is the inverse

nequality

h∥∇nv∥
2
∂Ω ≲ ∥∇v∥

2
Ω , v ∈ V E

h (97)

e note that for T ∈ Th we have

h∥∇nv∥
2
∂Ω∩T ≲ h|∂Ω ∩ T | ∥∇v∥

2
L∞(T ) ≲ h|∂Ω ∩ T |h−d

∥∇v∥
2
T (98)

ssuming, |∂Ω ∩ T |h−(d−1) ≲ 1 which holds for instance if the boundary is Lipshitz, we get by summation over
T ∈ Th ,

h∥∇nv∥
2
∂Ω∩T ≲ ∥∇v∥

2
Ωh

(99)

hich combined with the stability of the extension operator in Lemma 4.3 directly establish the desired estimate
97). It then follows using standard arguments that for β large enough (depending on the constant in (97)),

|||v|||
2

:= ∥∇v∥
2
Ω + β/h∥v∥

2
∂Ω ≲ ah(v, v), ∀v ∈ V E

h,p,k (100)

f we let eh = uh − π E
h u we immediately see that |||u − uh ||| ≤ |||u − π E

h u||| + |||eh ||| and
2

|||eh ||| ≲ ah(eh, eh) (101)

10
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By the consistency of Nitsche’s method ah(eh, eh) = ah(u − π E
h u, eh). Using the Cauchy–Schwarz inequality and

(97) we see that

ah(u − π E
h u, eh) ≲ (|||u − π E

h u||| + ∥h
1
2 ∇n(u − π E

h u)∥∂Ω )|||eh ||| (102)

Using a trace inequality (see for instance [34]) we see that

|||u − π E
h u||| + ∥h

1
2 ∇n(u − π E

h u)∥∂Ω ≲
2∑

i=0

hi−1
∥Di (u − π E

h u)∥Ωh (103)

here Di is the standard multi-index notation for derivatives of order i . Then we use the approximation property
n Lemma 4.4

∥∇(u − π E
h u)∥Ω + h−1

∥u − π E
h u∥Ω + h∥D2(u − π E

h u)∥Ω ≲ hs−1
∥u∥H s (Ω) (104)

nd obtain the optimal order a priori error estimate for u ∈ H r (Ω ),

|||u − uh ||| ≲ hs−1
∥u∥H s (Ω), s = min(r, p + 1) (105)

e can also show, following the ideas of [35], using Lemma 4.6 and the properties of the extension, that the
ondition number κ of the stiffness matrix associated with the form ah satisfies the estimate

κ ≲ h−2 (106)

emark 5.1. Observe that it is straightforward to design and analyze a similar method in the case of fourth-order
lliptic PDE, indeed the ideas of [36] carry over verbatim if the ghost penalty terms are omitted.

. Numerical experiments

In this section, we present a number of numerical experiments in 2D, where a high-resolution polygonal domain
s immersed in a structured quadrilateral mesh equipped with full regularity B-spline basis functions. For details on
mplementation, see [37].

xtension choices. To construct the extension operator according to the above description, we must make the
ollowing three choices:

• The value of the parameter γ ≥ 0. This parameter determines the partition of the mesh into large elements
T L

h respectively small elements T S
h according to (39), which in turn gives the partition of the active basis

functions into large basis functions BL respectively small basis functions BS . The partition of the elements in
one specific example is illustrated in Fig. 1(b) and the corresponding partition of the basis functions in Fig. 2.

• The small-to-large element mapping Sh : T S
→ T L . This mapping defines the extension operator Bh according

to (47). In our experiments, we construct Sh by associating each small element T with the large element T ′

that minimizes the distance between the center of mass of T ∩ Ω and the center of mass of T ′
∩ Ω . This is

illustrated by the arrows in Fig. 1(b).
• The weights κT,i in the definition of the interpolant. In the extension Ehv = πh Bhv the weights determine the

coefficient for ϕi , defining how much weight (Bhv)|T should be given for all T in the support of ϕi . For our
numerical examples, we choose the weights associated with each basis function ϕi ∈ B as follows. If ϕi is a
large basis function, ϕi ∈ BL , we set the weights for the elements its support, T ∈ Th,i , to

κT,i =

{
|T ∩ Ω |, if T ∈ T L

h
0, if T ∈ T S

h
(107)

If ϕi is a small basis function, ϕi ∈ BS , we set the weights for the elements its support, T ∈ Th,i , to

κT,i = |T ∩ Ω | (108)

We then normalize the weights associated with each basis function ϕi ∈ B such that
∑

T ∈Th,i
κT,i = 1. This

choice of weights fulfills (53), which means that the coefficients for large basis functions are unaffected by
the extension.
11
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Fig. 1. Mesh and element association. (a) The domain Ω and the active mesh Th . (b) The case γ = 0.5 with corresponding large elements
olored purple and small elements colored pink. The small-to-large element association Sh is illustrated by red arrows.

Fig. 2. Large and small basis functions. Partition of basis functions into large and small in the case γ = 0.5. Here full regularity B-spline
asis functions of order p = 2 are used, and hence the support of a basis function will cover a 3 × 3 block of elements in the mesh. In
he plots, each basis function is indicated by shading of its support and a marker at the center of its support.

s an illustration of how this realization of the extension couples small basis functions onto large basis functions,
e present the supports of some extended basis functions in Fig. 3. Note that the above choices directly affect this
utcome, where for instance an average with only a single non-zero entry per basis function would produce fewer
ouplings between any small basis functions and large basis functions.

ork flow. In practice the extension is applied to our method on a linear algebra level, by the following steps:

• Assemble the square linear system of equations for the original method

Âû = b̂ (109)

where û ∈ Rdim(Vh,p,k ) are coefficients for the full approximation space Vh,p,k .
• Given γ ≥ 0, assemble the extension matrix Êh ∈ Rdim(Vh,p,k )×dim(V L

h,p,k ) that maps the large degrees of freedom
onto all degrees of freedom. An example pseudocode description of this assembly is provided in Fig. 4. In
case γ = 0 the extension matrix Êh reduces to the identity matrix.

• Solve the reduced system

(ÊT
h ÂÊh )̂uγ = ÊT

h b̂ (110)

where ûγ ∈ Rdim(V L
h,p,k ) are coefficients for the extended space V E

h,p,k .
• Expand ûγ in coefficients for the full approximation space Vh,p,k via

ûE
= Êh ûγ (111)
12
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Fig. 3. Extended basis support. Illustrations of extended basis functions (γ = 0.5) which incorporate small basis functions with support in
he element indicated in the upper left subplot. In each subplot the center of the original large basis function is indicated by a square and
ts support is shaded in light blue while the centers of associated small basis functions are indicated by circles and their supports are shaded
n light pink. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

odel problem. We consider the non-homogeneous version of the application examined in Section 5, i.e., we solve
he Dirichlet problem

−∆u = f in Ω , u = gD on ∂Ω (112)

sing Nitsche’s method: find uh ∈ V E
h,p,k such that

ah(uh, v) = lh(v) , ∀v ∈ V E
h,p,k (113)

ith ah given by (96) and

lh(w) = −(gD, ∇nw)∂Ω + βh−1(gD, w)∂Ω (114)

n all experiments, we use the Nitsche penalty parameter β = 25p2. Note that this method does not include any
dditional stabilization terms for ensuring optimal stability properties regardless of how the domain cuts through
he mesh, cf. [5,7,38].

In our quantitative experiments, we use the bean-shaped geometry in Fig. 1(a) as our domain Ω , whose boundary
Ω is constructed as the cubic spline interpolation of the periodic angular data points

θ = {0, −π/2, π/20, π/4, π/2, π, 3π/2, 0} (115)

x =
{(

1
0

)
,
(

0
−0.8

)
,
(

0.7
−0.1

)
,
(

0.1
0.1

)
,
(

−0.3
0.7

)
,
(

−0.8
0

)
,
(

0
−0.8

)
,
(

1
0

)}
(116)

problem with a known analytical solution is manufactured by deriving f and gD from the ansatz u =
1

10 (sin(2x) + x cos(3y)), and we present a numerical solution to this problem in Fig. 5.

Worst case mesh. We embed the domain Ω in a structured quadrilateral mesh equipped with B-spline basis functions
of order p and maximum regularity k = p − 1. To mitigate the effect of chance in the cut situations generated in
our convergence and stability studies we for each mesh size h generate a sequence of 100 meshes by translating
the original background mesh by sh

( 1
1/3

)
, where s incrementally goes from 0 to 1, and then report the worst result

from this sequence.

Convergence. In Fig. 6 we collect our convergence studies:

• Firstly, in (a)–(b) we consider convergence using p = 2 basis functions and extension for a wide range of
γ ∈ [0, 1]. We note poor convergence results in the case without extension (γ = 0), likely due to loss
of coercivity in the method in the worst cut situation. We also note that for larger γ the errors are initially
somewhat higher, which seems reasonable since then more basis functions close to the boundary are extended.
13



E. Burman, P. Hansbo, M.G. Larson et al. Computer Methods in Applied Mechanics and Engineering 403 (2023) 115707
Fig. 4. Extension matrix assembly. For a convenient description we here assume that Bh extends into a discontinuous Galerkin version of
the space Vh,p,k , discontinuous between all elements. We let previously used notations extend to this dG-space, signified by superscript ‘dG’.

The local ordering of the basis functions in the elementwise index sets is assumed fixed.

14



E. Burman, P. Hansbo, M.G. Larson et al. Computer Methods in Applied Mechanics and Engineering 403 (2023) 115707

C
t
I

I
u

m

I
s
v
l
Ω

w
w

Fig. 5. Numerical solution. Model problem solution using extension with γ = 0.5 and full regularity B-spline basis function of order p = 2.

• Secondly, in (c)–(d) we consider convergence using p = 1, 2, 3 basis functions and extension with γ = 1 and
note that optimal order convergence seems to be asymptotically obtained.

ondition number scaling. To ensure stable computation of the condition number we convert our sparse matrix A
o a full storage matrix and employ dense linear algebra for the computation, i.e., using cond(full(A)) in Matlab.
n Fig. 7 we collect studies of how the condition number scales with h:

• Firstly, in (a)–(b) we consider the condition number h-scaling using p = 2 basis functions and extension for a
wide range of γ ∈ [0, 1]. We note that without extension (γ = 0) the condition number seemingly can become
unbounded. Also, for γ > 0 the size of γ seems to have the effect that for larger values, a smaller mesh size
is required before entering the desired asymptotic h−2 scaling found in (106). This delay we attribute to the
dependence of γ in the bound (91).

• Secondly, in (c) we consider condition number h-scaling using p = 1, 2, 3 basis functions and extension with
γ = 1 and note that the desired h−2 scaling is plausibly asymptotically obtained in all cases, even though that
stage in not quite reached in the case of p = 3.

n (d)–(f) we consider the same studies as in (a)–(c) albeit including simple preconditioning of the stiffness matrix
sing diagonal scaling.

The remaining h−2 dependence of the condition number we see in these studies is analogous to that of
esh-conforming methods and can be resolved by means of further multigrid preconditioning [39].

sogeometric example on a surface. As an illustration that extension is directly applicable in an isogeometric
etting [4], we consider the following problem posed on a curved surface. Let Γ ⊂ R3 be a surface described
ia the parametric mapping Φ : Ω → Γ ⊂ R3 with induced Riemann metric G ∈ R2×2, G i j = ∂iΦ · ∂ jΦ. Using the
ifting vℓ

= v ◦Φ−1 we can formulate the Dirichlet problem on Γ as seeking an unknown on the reference domain
; find u : Ω → R such that

−∆Γuℓ
= f in Γ , uℓ

= g on ∂Γ (117)

here ∆Γ is the Laplace–Beltrami operator on Γ . Transforming this problem back to Euclidean coordinates in Ω
e can derive a Nitsche’s method for the problem defined by the forms

ah(v, w) =
(
|G|

1/2
∇v, G−1

∇w
)
Ω

(118)

−
(
|G|

1/2n · G−1
∇v, w

)
∂Ω

+
(
|G|

1/2v, βh−1
− n · G−1

∇w
)
∂Ω

l (v) =
(
|G|

1/2 f ◦ Φ, v
)

+
(
|G|

1/2g ◦ Φ, βh−1v − n · G−1
∇v

)
(119)
h Ω ∂Ω

15
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Fig. 6. Convergence. In these experiments, the largest error among 100 different cut situations is presented for each mesh size h. (a)–(b) Errors
in L2-norm respectively in H1-seminorm when using extension for a wide range of γ ∈ [0, 1] and full regularity B-spline basis functions
of order p = 2. (c)–(d) Errors in L2-norm respectively in H1-seminorm using full regularity B-spline basis functions of orders p = 1, 2, 3
and extension with γ = 1.

Since the mesh Th and approximation space in this isogeometric setting are naturally defined on Ω , rather than on
the curved surface Γ , we can directly apply the extension to the resulting system of equations. An example solution
is presented in Fig. 8, where a circular reference domain is mapped onto a cone.

7. Conclusions

We provide a recipe for the construction of a family of extension operators for trimmed spline spaces that feature:

• Proven approximation and stability properties. The extension gives additional stabilization by eliminating
the ill-conditioned ‘small’ degrees of freedom, expressing them in terms of well-conditioned ‘large’ degrees
of freedom while maintaining optimal order accuracy for the extended space. This is reflected in a good
performance in our numerical experiments.

• Convenient implementation. The extension describes a mapping from large degrees of freedom onto all degrees
of freedom and is conveniently applied to the linear algebra formulation of the method. Also, since the
extension induces the necessary stability, special stabilization terms or other forms of manipulation are not
required to ensure robustness with respect to how the spline space is trimmed.

• Natural choices in the construction. The choices needed for the construction of the extension operator are
quite natural; the parameter γ ≥ 0 determining the partition into large and small elements that in turn gives
the partition into large and small basis functions, the mapping Sh onto large elements, and the weights wT,i
in the interpolation operator. During our numerical testing, we found no particular sensitivity in how these

choices seem to affect performance.
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Fig. 7. Condition number h-scaling. In these experiments the worst stiffness matrix condition number among 100 different cut situations is
presented for each mesh size h. (a) Condition numbers when using extension for a wide range of γ ∈ [0, 1] and full regularity quadratic
B-spline basis functions. (b) Detailed view of the study in (a) limited to the three largest values of γ . (c) Condition numbers using full
regularity B-spline basis functions of orders p = 1, 2, 3 and extension with γ = 1. (d)–(f) Studies corresponding to (a)–(c) when the stiffness
matrices are also preconditioned using diagonal scaling.

Fig. 8. Extension on a mapped domain. In this example, the domain is a curved surface Γ constructed as a map from the unit square
onto the surface of a cone, and a circular trim curve in the reference domain Ω . (a) Reference domain Ω and the mesh on which the
approximation space is defined. (b) Numerical solution for a Dirichlet problem using extension (γ = 0.5).
17
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Overall, we find discrete extension a very attractive technology for stabilizing trimmed spline spaces, with solid
performance and a most convenient implementation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

This research was supported in part by the Swedish Research Council Grants Nos. 2017-03911, 2018-05262,
021-04925, and the Swedish Research Programme Essence. EB was supported in part by the EPSRC grant
P/P01576X/1.

eferences

[1] F. de Prenter, C.V. Verhoosel, E.H. van Brummelen, Preconditioning immersed isogeometric finite element methods with application
to flow problems, Comput. Methods Appl. Mech. Engrg. 348 (2019) 604–631, http://dx.doi.org/10.1016/j.cma.2019.01.030.

[2] F. de Prenter, C.V. Verhoosel, G.J. van Zwieten, E.H. van Brummelen, Condition number analysis and preconditioning of the finite
cell method, Comput. Methods Appl. Mech. Engrg. 316 (2017) 297–327, http://dx.doi.org/10.1016/j.cma.2016.07.006.

[3] B. Marussig, T.J.R. Hughes, A review of trimming in isogeometric analysis: challenges, data exchange and simulation aspects, Arch.
Comput. Methods Eng. 25 (4) (2018) 1059–1127, http://dx.doi.org/10.1007/s11831-017-9220-9.

[4] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons Ltd,
Chichester, 2009, http://dx.doi.org/10.1002/9780470749081.

[5] E. Burman, Ghost penalty, C. R. Math. Acad. Sci. Paris 348 (21-22) (2010) 1217–1220, http://dx.doi.org/10.1016/j.crma.2010.10.006.
[6] A. Massing, M.G. Larson, A. Logg, M.E. Rognes, A stabilized Nitsche overlapping mesh method for the stokes problem, Numer.

Math. 128 (1) (2014) 73–101, http://dx.doi.org/10.1007/s00211-013-0603-z.
[7] E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, CutFEM: discretizing geometry and partial differential equations, Internat.

J. Numer. Methods Engrg. 104 (7) (2015) 472–501, http://dx.doi.org/10.1002/nme.4823.
[8] A. Johansson, M.G. Larson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary, Numer.

Math. 123 (4) (2013) 607–628, http://dx.doi.org/10.1007/s00211-012-0497-1.
[9] P. Huang, H. Wu, Y. Xiao, An unfitted interface penalty finite element method for elliptic interface problems, Comput. Methods Appl.

Mech. Engrg. 323 (2017) 439–460, http://dx.doi.org/10.1016/j.cma.2017.06.004.
[10] S. Badia, F. Verdugo, A.F. Martín, The aggregated unfitted finite element method for elliptic problems, Comput. Methods Appl. Mech.

Engrg. 336 (2018) 533–553, http://dx.doi.org/10.1016/j.cma.2018.03.022.
[11] E. Burman, P. Hansbo, M.G. Larson, CutFEM based on extended finite element spaces, Numer. Math. 152 (2) (2022) 331–369,

http://dx.doi.org/10.1007/s00211-022-01313-z.
[12] S. Badia, A.F. Martin, F. Verdugo, Mixed aggregated finite element methods for the unfitted discretization of the Stokes problem,

SIAM J. Sci. Comput. 40 (6) (2018) B1541–B1576, http://dx.doi.org/10.1137/18M1185624.
[13] E. Burman, P. Hansbo, M.G. Larson, Explicit time stepping for the wave equation using cutFEM with discrete extension, SIAM J.

Sci. Comput. 44 (3) (2022) A1254–A1289, http://dx.doi.org/10.1137/20M137937X.
[14] S. Badia, E. Neiva, F. Verdugo, Robust High-Order Unfitted Finite Elements by Interpolation-Based Discrete Extension, 2022,

http://dx.doi.org/10.48550/arxiv.2201.06632, arXiv.
[15] K. Höllig, U. Reif, J. Wipper, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal. 39 (2) (2001)

442–462, http://dx.doi.org/10.1137/S0036142900373208.
[16] J. Haslinger, Y. Renard, A new fictitious domain approach inspired by the extended finite element method, SIAM J. Numer. Anal. 47

(2) (2009) 1474–1499, http://dx.doi.org/10.1137/070704435.
[17] A. Buffa, R. Puppi, R. Vázquez, A minimal stabilization procedure for isogeometric methods on trimmed geometries, SIAM J. Numer.

Anal. 58 (5) (2020) 2711–2735, http://dx.doi.org/10.1137/19M1244718.
[18] T. Hoang, C.V. Verhoosel, F. Auricchio, E.H. van Brummelen, A. Reali, Skeleton-stabilized isogeometric analysis: high-regularity

interior-penalty methods for incompressible viscous flow problems, Comput. Methods Appl. Mech. Engrg. 337 (2018) 324–351,
http://dx.doi.org/10.1016/j.cma.2018.03.034.

[19] B. Marussig, J. Zechner, G. Beer, T.-P. Fries, Stable isogeometric analysis of trimmed geometries, Comput. Methods Appl. Mech.
Engrg. 316 (2017) 497–521, http://dx.doi.org/10.1016/j.cma.2016.07.040.

[20] H. Casquero, C. Bona-Casas, H. Gomez, A NURBS-based immersed methodology for fluid–structure interaction, Comput. Methods

Appl. Mech. Engrg. 284 (2015) 943–970, http://dx.doi.org/10.1016/j.cma.2014.10.055.

18

http://dx.doi.org/10.1016/j.cma.2019.01.030
http://dx.doi.org/10.1016/j.cma.2016.07.006
http://dx.doi.org/10.1007/s11831-017-9220-9
http://dx.doi.org/10.1002/9780470749081
http://dx.doi.org/10.1016/j.crma.2010.10.006
http://dx.doi.org/10.1007/s00211-013-0603-z
http://dx.doi.org/10.1002/nme.4823
http://dx.doi.org/10.1007/s00211-012-0497-1
http://dx.doi.org/10.1016/j.cma.2017.06.004
http://dx.doi.org/10.1016/j.cma.2018.03.022
http://dx.doi.org/10.1007/s00211-022-01313-z
http://dx.doi.org/10.1137/18M1185624
http://dx.doi.org/10.1137/20M137937X
http://dx.doi.org/10.48550/arxiv.2201.06632
http://dx.doi.org/10.1137/S0036142900373208
http://dx.doi.org/10.1137/070704435
http://dx.doi.org/10.1137/19M1244718
http://dx.doi.org/10.1016/j.cma.2018.03.034
http://dx.doi.org/10.1016/j.cma.2016.07.040
http://dx.doi.org/10.1016/j.cma.2014.10.055


E. Burman, P. Hansbo, M.G. Larson et al. Computer Methods in Applied Mechanics and Engineering 403 (2023) 115707
[21] H. Casquero, Y.J. Zhang, C. Bona-Casas, L. Dalcin, H. Gomez, Non-body-fitted fluid–structure interaction: divergence-conforming
B-splines, fully-implicit dynamics, and variational formulation, J. Comput. Phys. 374 (2018) 625–653, http://dx.doi.org/10.1016/j.jcp.
2018.07.020.

[22] C. de Boor, G.J. Fix, Spline approximation by quasiinterpolants, J. Approx. Theory 8 (1973) 19–45, http://dx.doi.org/10.1016/0021-
9045(73)90029-4.

[23] B.-G. Lee, T. Lyche, K. Mørken, Some examples of quasi-interpolants constructed from local spline projectors, in: Mathematical
Methods for Curves and Surfaces, Oslo, 2000, in: Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2001, pp. 243–252.

[24] T. Lyche, L.L. Schumaker, Local spline approximation methods, J. Approx. Theory 15 (4) (1975) 294–325, http://dx.doi.org/10.1016/
0021-9045(75)90091-x.

[25] L. Beirão da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Mathematical analysis of variational isogeometric methods, Acta Numer. 23
(2014) 157–287, http://dx.doi.org/10.1017/S096249291400004X.

[26] E.M. Stein, Singular integrals and differentiability properties of functions, in: Princeton Mathematical Series, vol. 30, Princeton
University Press, Princeton, N.J, 1970.

[27] S.C. Brenner, L.R. Scott, The mathematical theory of finite element methods, second ed., in: Texts in Applied Mathematics, vol. 15,
Springer-Verlag, New York, 2002, http://dx.doi.org/10.1007/978-1-4757-3658-8.

[28] P. Hansbo, M.G. Larson, K. Larsson, Cut finite element methods for linear elasticity problems, in: Geometrically Unfitted Finite Element
Methods and Applications, in: Lect. Notes Comput. Sci. Eng., vol. 121, Springer, Cham, 2017, pp. 25–63, http://dx.doi.org/10.1007/978-
3-319-71431-8_2.

[29] A. Massing, M.G. Larson, A. Logg, M.E. Rognes, A stabilized Nitsche fictitious domain method for the stokes problem, J. Sci.
Comput. 61 (3) (2014) 604–628, http://dx.doi.org/10.1007/s10915-014-9838-9.

[30] P. Oswald, On a BPX-preconditioner for P1 elements, Computing 51 (2) (1993) 125–133, http://dx.doi.org/10.1007/BF02243847.
[31] J. Douglas Jr., T. Dupont, Interior penalty procedures for elliptic and parabolic galerkin methods, in: Computing methods in applied

sciences (Second Internat. Sympos., Versailles, in: Lecture Notes in Phys., vol. 58, Springer-Verlag, Berlin, 1975, pp. 207–216,
http://dx.doi.org/10.1007/BFb0120591.

[32] E. Burman, P. Hansbo, Edge stabilization for galerkin approximations of convection–diffusion-reaction problems, Comput. Methods
Appl. Mech. Eng. 193 (15-16) (2004) 1437–1453, http://dx.doi.org/10.1016/j.cma.2003.12.032.

[33] E. Burman, A. Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations, Math.
Comp. 76 (259) (2007) 1119–1140, http://dx.doi.org/10.1090/S0025-5718-07-01951-5.

[34] H. Wu, Y. Xiao, An unfitted hp-interface penalty finite element method for elliptic interface problems, J. Comput. Math. 37 (3) (2019)
316–339, http://dx.doi.org/10.4208/jcm.1802-m2017-0219.

[35] A. Ern, J.-L. Guermond, Evaluation of the condition number in linear systems arising in finite element approximations, M2AN Math.
Model. Numer. Anal. 40 (1) (2006) 29–48, http://dx.doi.org/10.1051/m2an:2006006.

[36] E. Burman, P. Hansbo, M.G. Larson, Cut bogner-fox-schmit elements for plates, Adv. Model. and Simul. in Eng. Sci. 7 (1) (2020)
http://dx.doi.org/10.1186/s40323-020-00164-3.

[37] T. Jonsson, M.G. Larson, K. Larsson, Cut finite element methods for elliptic problems on multipatch parametric surfaces, Comput.
Methods Appl. Mech. Engrg. 324 (2017) 366–394, http://dx.doi.org/10.1016/j.cma.2017.06.018.

[38] K. Larsson, S. Kollmannsberger, E. Rank, M.G. Larson, The finite cell method with least squares stabilized Nitsche boundary conditions,
Comput. Methods Appl. Mech. Eng. 393 (2022) http://dx.doi.org/10.1016/j.cma.2022.114792, Paper (114792) 17.

[39] F. de Prenter, C.V. Verhoosel, E.H. van Brummelen, J.A. Evans, C. Messe, J. Benzaken, K. Maute, Multigrid solvers for immersed
finite element methods and immersed isogeometric analysis, Comput. Mech. 65 (3) (2020) 807–838, http://dx.doi.org/10.1007/s00466-
019-01796-y.
19

http://dx.doi.org/10.1016/j.jcp.2018.07.020
http://dx.doi.org/10.1016/j.jcp.2018.07.020
http://dx.doi.org/10.1016/j.jcp.2018.07.020
http://dx.doi.org/10.1016/0021-9045(73)90029-4
http://dx.doi.org/10.1016/0021-9045(73)90029-4
http://dx.doi.org/10.1016/0021-9045(73)90029-4
http://refhub.elsevier.com/S0045-7825(22)00662-4/sb23
http://refhub.elsevier.com/S0045-7825(22)00662-4/sb23
http://refhub.elsevier.com/S0045-7825(22)00662-4/sb23
http://dx.doi.org/10.1016/0021-9045(75)90091-x
http://dx.doi.org/10.1016/0021-9045(75)90091-x
http://dx.doi.org/10.1016/0021-9045(75)90091-x
http://dx.doi.org/10.1017/S096249291400004X
http://refhub.elsevier.com/S0045-7825(22)00662-4/sb26
http://refhub.elsevier.com/S0045-7825(22)00662-4/sb26
http://refhub.elsevier.com/S0045-7825(22)00662-4/sb26
http://dx.doi.org/10.1007/978-1-4757-3658-8
http://dx.doi.org/10.1007/978-3-319-71431-8_2
http://dx.doi.org/10.1007/978-3-319-71431-8_2
http://dx.doi.org/10.1007/978-3-319-71431-8_2
http://dx.doi.org/10.1007/s10915-014-9838-9
http://dx.doi.org/10.1007/BF02243847
http://dx.doi.org/10.1007/BFb0120591
http://dx.doi.org/10.1016/j.cma.2003.12.032
http://dx.doi.org/10.1090/S0025-5718-07-01951-5
http://dx.doi.org/10.4208/jcm.1802-m2017-0219
http://dx.doi.org/10.1051/m2an:2006006
http://dx.doi.org/10.1186/s40323-020-00164-3
http://dx.doi.org/10.1016/j.cma.2017.06.018
http://dx.doi.org/10.1016/j.cma.2022.114792
http://dx.doi.org/10.1007/s00466-019-01796-y
http://dx.doi.org/10.1007/s00466-019-01796-y
http://dx.doi.org/10.1007/s00466-019-01796-y

	Extension operators for trimmed spline spaces
	Introduction
	Spline Spaces
	Interpolation
	Definitions
	Properties

	Extension
	Definitions
	Properties

	Application
	Numerical Experiments
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


