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Strongly convergent unitary representations
of limit groups

Larsen Louder and Michael Magee
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Abstract

We prove that all finitely generated fully residually free groups
(limit groups) have a sequence of finite dimensional unitary rep-
resentations that ‘strongly converge’ to the regular representa-
tion of the group. The corresponding statement for finitely gen-
erated free groups was proved by Haagerup and Thorbjgrnsen in
2005. In fact, we can take the unitary representations to arise
from representations of the group by permutation matrices, as
was proved for free groups by Bordenave and Collins.

As for Haagerup and Thorbjernsen, the existence of such rep-
resentations implies that for any non-abelian limit group, the
Ext-invariant of the reduced C*-algebra is not a group (has non-
invertible elements).

An important special case of our main theorem is in appli-
cation to the fundamental groups of closed orientable surfaces
of genus at least two. In this case, our results can be used as
an input to the methods previously developed by the authors of
the appendix. The output is a variation of our previous proof of
Buser’s 1984 conjecture that there exist a sequence of closed hy-
perbolic surfaces with genera tending to infinity and first eigen-
value of the Laplacian tending to i. In this variation of the
proof, the systoles of the surfaces are bounded away from zero
and the surfaces can be taken to be arithmetic.
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1 Introduction

A discrete group I is fully residually free (FRF) if for any finite set S C T,
there exists a homomorphism I' — F that is injective on S where F is
a free group. Finitely generated FRF groups are known to coincide with
Sela’s limit groups [Sel01], so we use these two notions interchangeably in
the sequel.

For N € N let U(N) denote the group of N x N complex unitary
matrices. For a discrete group T', A\p : I' — End(¢?(T")) is the left regular
representation. It was an open problem for some years, popularized by
Voiculescu in [Voi93, Qu. 5.12], whether for a finitely generated free group
F, there exists a sequence of unitary representations {p; : F — U(N;)}3°,
such that for any element z € C[F],

timsup [los(2)]| < [Ar(2)]].
1— 00
The norm on the left is the operator norm on CVi with respect to the
standard Hermitian metric, and the norm on the right is the operator norm



on ¢2(T"). This problem was solved in the affirmative in a huge breakthrough
by Haagerup and Thorbjgrnsen [HT05].

In fact, following [Voi93], given that the reduced C*-algebra of F is
simple by a result of Powers [Pow75], the inequality above can be improved
automatically® to

lim [loi()]) = re(z)| ¥z € CIE. (1)

This notion of convergence of a sequence of finite dimensional unitary rep-
resentations given by (1.1) applies equally as well to any discrete group I'
and we refer to this as strong convergence.

Theorem 1.1. Any limit group I' has a sequence of finite dimensional uni-
tary representations that strongly converge to the regular representation of
I'. In fact, these unitary representations can be taken to factor through

I'— Sy 24 U -1) (1.2)

for some varying N, where Sy is the group of permutations of N letters,
and std is the N —1 dimensional irreducible component of the representation
of Sy by 0-1 matrices.

It was proved by G. Baumslag in [Bau62] that the fundamental groups A,
of closed orientable surfaces are FRF, and it is also known [Bau67, pp. 414-
415] that the fundamental groups of non-orientable surfaces S with y(5) <
—2 are FRF. This gives the following corollary of Theorem 1.1.

Corollary 1.2. Let I' denote the fundamental group of a connected closed
surface S that is either orientable with no constraint on x(S), or non-
orientable with x(S) < —2. Then T' has a sequence of finite dimensional
unitary representations that strongly converge to the regular representation.
Moreover, they can be taken to be of the form (1.2) for some varying N.

Corollary 1.2 leaves open the cases of connected non-orientable surfaces
with x = 1 (RP?), x = 0 (the Klein bottle), and x = —1. In all these
cases the corresponding fundamental groups are not FRF2. The fundamental
group of RP? is Z/27Z, and its regular representation is finite dimensional.
We prove the following.

1See proof of Theorem 1.1 below for details.
2The first two cases are easy to check, and the case of Y = —1 is due to Lyndon [Lyn59].



Proposition 1.3. The Klein bottle group {a,b|b~" = aba™') has a sequence
of finite dimensional unitary representations that strongly converge to its
regular representation.

This leaves open the seemingly significant problem of extending Theorem
1.1 to the fundamental group of the connected sum of three copies of the
real projective plane.

The proof of Theorem 1.1 revolves around the following potential prop-
erty of discrete groups that we introduce here.

Definition 1.4. A discrete group I' is C*-residually free if for any finite set
S and € > 0, there is a homomorphism ¢ : I' -+ F with F free such that

[Ar (@) < [Ar(2)]| + e

for all z € C[I'] supported on S with unit £* norm.

Example 1.5. Any extension N — G 3) F of a free group by an amenable
group N is C*-residually free. Indeed, since N is amenable 1 is weakly
contained in the regular representation of N. Then by Fell’s continuity of
induction ([Fel62], [BAIHVO08, Thm. F.3.5]) we have that the quasi-regular
representation of G on £?(G//N) is weakly contained in the regular represen-
tation G, hence by [BdIHV08, Thm. F.4.4] for any z € C[F]

Aa/n (NI = [[Ar(6(2))]| < [[Aa(2)]-
Here we prove the following.
Theorem 1.6. Limit groups are C*-residually free.

The converse to Theorem 1.6 does not hold: Example 1.5 shows that
Z x F is C*-residually free, but it is easy to see that it is not FRF. It is,
however, also easy to see that it is residually free3.

Given a free group F, and a basis X of F, we write |f|x for the word
length of f in the basis X. In any discrete group I' with generating set we
write By (r) for the elements of I' that can be written a product of as most
r elements of Y UY ~!. The proof of Theorem 1.6 relies on the following key
proposition.

3Tt is an interesting question, not pursued here, to give an alternative characterization
of a group being C*-residually free.



Proposition 1.7. Let I' be a limit group with a fized finite generating set
Y. Thereis D = D(I',Y) >0 and C = C(I',Y) > 0 such that for any r > 0
there is an epimorphism f : I' — F with F free, which is injective on By (r),
and a basis X of F such that

max < crP.
. [f(g)lx <

1.1 Further consequences I: Spectral gaps

A hyperbolic surface is a complete Riemannian surface (without boundary)
of constant curvature -1 . Given a hyperbolic surface X, we write A x for the
Laplace-Beltrami operator on L?(X). If X is closed this operator’s spectrum
spec(Ax) consists of eigenvalues 0 = A\p(X) < A (X) < -+ < (X)) < -+
with A\ (X) — oo as k — oo. It was a conjecture of Buser [Bus84] whether
there exist a sequence of closed hyperbolic surfaces X; with genera tending
to infinity and with
1

where \; denotes the first non-zero eigenvalue of the Laplacian. The value
% is the asymptotically optimal one by a result of Huber [Hub74]. See [HM,
Introduction] for an overview of the rich history of this problem. Buser’s
conjecture was settled in [[{M]. One interesting feature of the proof therein
is that the surfaces constructed may have very short closed curves, so there
is no control on the systole: the shortest closed curve on the surface. The
results of this work in conjunction with the ideas in [[{M] allow us, along
with Hide, to prove:

Theorem 1.8. There exists a sequence of closed hyperbolic surfaces {X;},;cn
with g(X;) — oo, systoles uniformly bounded away from zero, and with

1

In fact the X; can be taken to be covering spaces of a fixed hyperbolic surface
X. This base surface X, and hence all the X;, can be taken to be arithmetic.

Theorem 1.8 is proved in the Appendix* by the second named author
(MM) and Hide, as a consequence of the following corollary of Theorem 1.1.

“In fact, the Appendix proves a more general statement about coverings of any hyper-
bolic surface; see Theorem A.1.



Corollary 1.9 (Matrix coefficients version of Theorem 1.1). Let T' be a
non-abelian limit group. There exist a sequence of finite dimensional repre-
sentations p; of the form (1.2) such that for any r € N and finitely supported
map a : I' — Mat, . (C), we have

limsup [| Y " a(y) @ g < 11> a(y) @ A()|I-

oo yel’ yerl

The norm on the left hand side is the operator norm for the tensor product
of (r and Nj-dimensional) £> norms. The norm on the right is the operator
norm for the tensor product of * and the inner product on £*(T).

The proof of Corollary 1.9 from Theorem 1.1 is explained in §7.

1.2 Further consequences II: Ext(I') is not a group

In [BDE73, BDE77], Brown, Douglas, and Fillmore introduced and studied
a homological /K-theoretic invariant Ext(.A) of a unital separable C*-algebra
A. By definition, Ext(.A) is the collection of *-homomorphisms

m: A— B({*(N))/K

modulo conjugation of unitary operators on ¢?(N), where B(/?(N)) is the
bounded operators on £2(IN) and K is the ideal of compact operators therein.
This is naturally a semigroup with multiplication arising from (7, m2) —
71 @ 7y composed with an isomorphism ¢2(IN) @ £2(N) = (2(N).

One of the motivations of the work of Haagerup and Thorbjgrnsen
[HT05] was to prove that there are non-invertible elements of Ext(C} (F))
when F is a finitely generated non-abelian free group, i.e., Ext(C}(F)) is
not a group.

The passage from the existence of strongly convergent unitary represen-
tations of F to this statement uses the following result proved by Voiculescu
in [Voi93, §85.14] (see [HT05, Rmk. 8.6] for another exposition).

Proposition 1.10. If I is a discrete, countable, non-amenable group with a
sequence of finite dimensional unitary representations that strongly converge
to the reqular representation of T', then Ext(C}(T")) is not a group.

Since non-abelian limit groups I are C*-simple (Lemma 5.2), they are
non-amenable. Indeed, an amenable group I'" has a C*-algebra morphism
CH(T') — C by [BdIHV08, Thm. F.4.4] whose kernel contradicts simplicity.
Hence combining Theorem 1.1 with Proposition 1.10 we obtain the following
extension of ‘Ext(C}(F)) is not a group”



Corollary 1.11. If I is a non-abelian limit group, then Ext(C;(I')) is not
a group.
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2 Background

Groups

We write e for the identity in any group. For any group I', C[I'] denotes
the group algebra of I' with complex coefficients. For a free group F with
a fixed set of generators X, for each h € F, we write |h|x for the reduced
word length of h with respect to X. If Y is a symmetric generating set of
any group I', we write By (r) C I" for the elements of I that can be written
as the product of at most r elements of Y.

Analysis

Given a discrete group I', Ar : I' = End(¢2(I")) is the left reqular represen-

tation
def

Ar(9)Lf1(h) = flg™ h).
This representation extends by linearity to one of the convolution algebra
(Y(T). For v € £1(T), since A is unitary we have the basic inequality

A < Mlller (2.1)

where the norm on the left is operator norm. The reduced C*-algebra of T,
denoted C(T), is the closure of A(¢}(T")) with respect to the operator norm
topology. A tracial state on a unital C* algebra A is a linear functional 7
such that 7(1) = 1, 7(a*a) > 0 (in particular, is real) for all @ € A , and
7(ab) = 7(ba) for all a,b € A.

An important inequality due to Haagerup [[1aa79] links the operator
norm in End(¢?(F)) and the ¢? norm in C[F].



Lemma 2.1 (Haagerup). Let X denote a finite generating set for a free
group F. Suppose that a € C[F] is supported on Bx(r). Then

3
[Ar(a)]l < (r+1)2]al|e.

Proof. Haagerup in [Haa79, Lemma 1.4] proved that

e (@)l < DG+ 1)laille
1=0

where a; is the function ¢ multiplied pointwise by the indicator function of
Bx(i)\Bx(i—1), i.e. the sphere of radius i. If a is supported on Bx (r) then
using Cauchy-Schwarz above gives the result, since ., ||aiH?2 = ||a\|?2. O

There is also a more basic inequality in the reverse direction that holds
for arbitrary discrete groups. Suppose that I' is a discrete group. Then
let 6, € ¢*(T') denote the indicator function of the identity. We have for
a € C[T]

lallZ = (Ma)de, Ma)de) < [|Ar(a)|*. (2.2)

3 Proof of Proposition 1.7

The proof of Proposition 1.7 relies on the deep fact that any limit group
embeds in an iterated extension of centralizers of a free group, and quantified
versions of theorems of Gilbert and Benjamin Baumslag.

Definition 3.1. Let I" be a limit group, A < I' a maximal abelian subgroup.
A group IV =T x4 B, B = A x (t) is an extension of centralizers of I'. A
group I' is an iterated extension of centralizers if there is a chain of subgroups

F=Ty<Ih<.---<I',=T

such that I';;1 is an extension of centralizers of I';. The height of the exten-
sion is n.

Any iterated extension of centralizers is fully residually free, and so are
their finitely generated subgroups, hence such subgroups are limit groups.
Amazingly, the converse holds: any limit group actually embeds in a (finitely)
iterated extension of centralizers. This was first claimed by Kharlampovich
and Myasnikov in their papers on the Tarski problem [[KXM98, Theorem 4].
For a proof following Sela see [CG05, Theorem 4.2]. The forward implica-
tion seems to be contained in Lyndon’s original paper on his free exponential



group [Lyn60, last two paragraphs, page 533|, which is the direct limit over
the family of all iterated extensions of centralizers of F, ordered by inclusion.
See also [BMR02, Theorem C1].

Let I" be a limit group with some fixed generating set Y. The distortion
function of I' with respect to Y is the function

dy(r) = (i mmax 1f(9)|x
XCF

where the minimum is over all f: I' — F which are injective on By (r) and
X which are bases of F. The proof of Proposition 1.7 is a recapitulation
of the proof that an iterated extension of centralizers is fully residually free
in a way that lets us bound the distortion function by a polynomial whose
degree depends on the height. We start with an improvement of Baumslag’s
power lemma.

Lemma 3.2 (cf. [Bau62, Proposition 1]). Let u,by,...,b,, reduced words
in F, with u also cyclically reduced, nontrivial, and not a proper power of
another element. If

w= Hukibi =e (3.1)
=0

for
min{|k;[} > (8n +2) - Igl;g{l, 103 /|ul}

then [u,b;] = e for some i.

G. Baumslag proved the same thing if w = e for infinitely many integral
values of each of the k;. See also the proof of [Wil09, Lemma 4.13], which
has, implicitly, an effective version of Lemma 3.2 in it.

Proof. The proof is by induction on n. Clearly for n = 0, if ©*0by = e then
by is a power of u and hence commutes with u.

We begin by manipulating our hypothesis to a more convenient form for
the induction. If

min{|ki[} > (8n +2) r?gg{l, 10 /ul}

then
[w] > Ju] §>% kil > (8n +2) - max{ul, [bi]}. (3.2)

(Here |w] is the non-reduced length of w.)



Let T be the tree of cancellations for w. A vertex of T is special if it
either corresponds to an endpoint of one of the subwords ¥, one of the
b;, or has valence at least three. An embedded segment in 7" with special
endpoints and no special vertices in its interior is a long edge.

Every valence one vertex in T is special, so there are at most 2n + 2 of
them. We now work out the maximal number of long edges in a tree with
at most 2n + 2 valence one vertices, which will happen when the number
g>3 of vertices of valence at least 3 is maximized. Let g, be the number of
valence m vertices in 1. Then

implies g>3 < 2n, there are at most 4n + 2 special vertices, and there are at
most 4n + 1 long edges.

The sum of the lengths of the long edges is |w|/2, so there is a long edge
of length at least |w|/(8n + 2), which from (3.2) is at least

bl +1}.
Igl;g{IUI,I i| + 1}

If this is the case, since the endpoints of the b; are special, the long edge
is covered only by subsegments of powers of u. Because u is not a proper
power, the segment (with a fixed direction) corresponds to a unique reduced
expression of the form ugu®u; where ug and u; are proper subwords of u and
a > 0. (Otherwise, one is led to the conclusion that u can be written as a
reduced product of reduced words u = pg = gp, and by [Raz14, Lemma 2.2],
this contradicts u being a proper power.) Let us now fix the direction of the
long edge so a > 0.

The upshot of this unique expression is that the term wug corresponds to
a terminal subsegment of a u as written in (3.1) (part of a u¥i with k; > 0),
for each time the long edge is traversed in its given direction. If the long
edge is traversed in the other way by the path of w, then the uy segment
corresponds to an initial subsegment of a u™! in a u* with k; < 0.

Fix an endpoint v of the uy segment in the long edge. Consider the
subpaths of the path of w punctuated by returns to v. After cutting the
tree at v, there must be at least one b; subpath on either half of the resulting
forest. So there must be some closed subpath of w beginning and ending at
v and corresponding, possibly after cyclic rotation of w, to a subsequence

uFobguFry - ufi u“bjukj+1 e ukl+1_cb[+1 cufnp,

1

10



with [ — 7 < n, and
uabjukf+1 cedlihu = e,

which implies
u‘”’cbju’l‘tf+1 ki = e

Reducing a + ¢, we can use the inductive hypothesis to conclude that for
some j, [u,b;] = e. (Note that this is where the minimum of k; only over
i > 0 is useful in the induction; a + ¢ could in principle be very small.) [

A similar result holds when u is not necessarily cyclically reduced and
is a power, e.g., u = ps'p~!, with s cyclically reduced and |u| = 2|p| + I|s].
Rewrite the expression for w as

e=w= Hpslkip_lbi

, and absorb the p’s into the b’s to get

e=w' = Hslkib;.

Then the same conclusion clearly holds when

conjugate by p~!

min{ki[} > (80 +2) - max(L, (1] + 2|pl)/Is]}

For the applications, since |u| = I|s| + 2|p| > 2|p| so we can use instead the
easier to use yet still sufficient inequality

i 4 > . .
min{|ki|} = (8n +2) - max{|bi] + Jul}, (3:3)

which gives the same conclusion. Note that this minimum of k; is now over
all 4, and not just ¢ > 0. (The latter was just more convenient for the
previous induction.)

In what follows, I' is a limit group with a fixed finite generating set Y, A
is a maximal abelian subgroup in I', and I" is the extension of centralizers
IV =T %4 B, where B = A x (t). Let Y/ =Y Ut. The standard fact about
amalgamated products lets us write any element of I in normal form:

n
118
i=0

with v, € I, 8; € B, so that the only elements which are allowed to be
trivial are By and 7, and if any of them are in A then the expression has

11



length one — if, say, §; € A, then v;5;v;+1 € I' and we group these together.
Normal forms are unique (up to insertion of aa~! pairs), but we will not
use this fact. Given an element as above, write each f; (uniquely) as t"«;

with a; € A
n
[Tt v
=0

and absorb the «; into an adjacent ~; or ;11 to get

n
.
G
=0

with each v; € I'. If this isn’t possible, leave it alone. In this case the word
is of the form
t"a,

for some o« € A. For the purposes of this argument, a word is in normal
form if it is of either of these two types.

Lemma 3.3 (QI lemma). There is a constant K such that if w is a word
inY', then there is a word w' =p w in normal form such that |w'| < K - |w|.

Proof. The word w can be put in normal form by replacing subwords which
are elements of A in one step. Since A is maximal abelian in I' it is quasi-

convex by [Ali05, Theorem 3.4], and the rewritten word can only increase in
length by a factor of K, where 1/K is the shrinking factor of the embedding
A—T. O

Lemma 3.4 (cf. [Bau67, Lemma 7, Theorem 8|). Let K be the constant
from Lemma 3.3, and fir a € A\{e}. Then

dy: (1K) < (872 + 4r)dy (2(r + |a|))? .

If dy(r) is a polynomial of degree D then dy(r) is bounded above by a
polynomial of degree 2D + 2.

This is essentially a version of B. Baumslag’s generalization of G. Baum-
slag’s version of Lemma 3.2 from free groups to limit groups, where we keep
track of the constants and avoid the phrases “sufficiently large” and “as
large as we like.”

12



Proof. Let w: I” — T be the retraction to I' defined by 7 (t) = e, let 7 be
the automorphism of I" fixing I" with

7(t) .

We will find an h: IV — F which is injective on normal forms in Y’ of length
at most r and doesn’t stretch too much.
Suppose first that ¢ has the normal form

H " (%
which is a product of at most [r/2] terms t"iv;. Then
fomor™(g) =] @)™ f(v:).

In order to use Lemma 3.2 we need to choose f so that f([a,v;]) # e. In the
worst case the commutator [a, v;] has length at most

L 2(r + |al).

Choose f: I' = F and a basis X of F such that

dy (L) =
y(L) genégf’((m’f(g)’x

and f embeds By (L) C T'. By (3.3), with k; = mn;, n = [r/2], u = f(a),
and b; = f(v;), as long as

min{|mn;|} > (4r + 2) - max{|f(vi)|x + |f(a)|x}

fomo1™(g) is nontrivial. In the worst case n; = 1 for all i and f(a) and
f(v;) have length dy (L), so choose m = m(r, |a|) = (4r +2)-2dy (L) and let

h=fomor™,

We continue to use the same basis X for F. Now overestimate the length
of h(g): the normal form which can be expanded the most is ¢", so we have
r - m terms whose images have length at most dy (L), and therefore

|h(g)|x <r-(8r+4)-dy(L)-dy(L) = (8% 4 4r)dy (L)?.
— ————

If g is of the form t"«a then the worst that can happen is n = 1 and «
has length at most r — 1, h(g) = f(a)™f(a), but in this case

m-dy (L) = m-|f(a)|x = [h(t)|x =Zm >dy(r—1) = [f(a)]x,

13



so h(g) is nontrivial — A(t) and f(«) cannot fully cancel since m > dy (r—1),
and is not longer than m-dy (L) +dy (r — 1), which is less than r-m-dy (L).
Now by Lemma 3.3 if g € By (r/K), it has a normal form of length at
most 7 and h(g) # e, so h embeds By (r/K), |h(g)|x < (87 + 4r)dy (L)?,
and the first part of the lemma follows.
The statement about degrees is obvious since L is linear in 7. O

Corollary 3.5. Let I be a limit group, and suppose I' embeds in an extension
of centralizers of height n. Then dy (r) is bounded above by a polynomial in
r of degree

D(n)=2""2 —2" _ 2,

Proof. For height 0, the distortion function is just r. Clearly by Lemma 3.4
and induction a polynomial of degree D(n) suffices. Now embed I' in an
iterated extension of centralizers of height n:

'—-I,>I'y1>--->I'1 >F.

Since the embedding I' < I',, expands lengths at most linearly, I" has dis-
tortion function bounded above by a polynomial of degree D(n) as well. [

Proposition 1.7 follows immediately.

4 Proof of Theorem 1.6

Proof of Theorem 1.6. Fix a set Y of generators of I'. It suffices to prove the
theorem for the finite set By (R) for arbitrary R > 0. We are given € > 0.
Let Sy (R) C C[I'] denote the ¢'-unit sphere of the elements supported on
By (R). Our task is to prove that there is a homomorphism ¢ : I' — F with
F free such that

Ar(@(a)ll < [Ar(a)l] + €. (4.1)

for all @ € Sy (R). The set Sy (R) is compact with respect to the ¢! norm.
Take a finite $-net {a;}icz for Sy (R) w.r.t. the ¢! norm.

Due to the inequality (2.1) and triangle inequality, the functions a —
|Ar(a)|| and a ~ ||Ar(a)| are 1-Lipschitz on Sy (R) with respect to the ¢
norm and hence if we can prove the existence of ¢ : I' = F with F free such
that

AR (¢(ai)ll < [[Ar (@)l +

for all i € Z then (4.1) will follow for all a € Sy (R
set out to prove (4.2).

(4.2)

~— Wl

as required. So we now

14



Let C and D be the constants from Proposition 1.7. Choose m = m(e) €
N large enough so that

[C(2mR)P)im <1+ % (4.3)

We apply Proposition 1.7 with » = 2mR to get an epimorphism ¢ : I' = F
injective on By (2mR), and a generating set X of F such that

¢(By(2mR)) C Bx (C(2mR)"). (4.4)
def
Let b; = ¢(a;) for each i € T.
Note that
Ixr (@) P = [Ar (afas) [I™ = [IAr (afai)™ |
and similarly, [[Agr(b;)]|*™ = ||Ar (b70;)™||. Each (bb;)™ is supported on

Bx(C(2mR)P) by (4.4), hence by Haagerup’s mequahty (Lemma 2.1) we
have

AR (B) 1™ = [ Ar (b7b)™ |
< [C@mR)PIZ|| (b7b:)™ 2
= [C@mR)PIZ|| (afai)™ |
< [C(2mR)PIZ||Ar(ai)|*™.

The equality on the third line used that ¢ is injective on By (2mR), and the
final inequality used (2.2). Hence

AR (0)]] < [C(2mR)P]am | Ar(ai)]
< (1+5) IAe(@)l < Irc(a)l +

by our choice of m in (4.3); the last inequality used that ||a;||, = 1 and
(2.1). O

5 Proof of Theorem 1.1

Here we split into cases when I' is abelian or not. Limit groups cannot have
torsion, so abelian limit groups are of the form Z" for some r € N.

15



5.1 Proof when I' =77
The case when I' = Z" must be dealt with by hand here.

Lemma 5.1. Theorem 1.1 holds when I" = Z".

Proof. Let T" o (S1)" be the standard r-dimensional flat torus. The

Fourier transform gives an isomorphism of C*-algebras
F:C(T") — CHZT).

For ¢ € N let T, denote the subtorus (Z/qZ)" C T". We obtain, via
restriction and Fourier transform, a finite dimensional representation

Cx(zn) 2 oIy

that restricts to finite dimensional unitary representation of Z". For any
z € C[Z"] we have

lpg ()| = max F @) = max |[F [ (@)] = Az (2)]

as ¢ — 0o. We have only used here the fact that T}’ Hausdorff converges to
T as ¢ — oo. O

5.2 Proof for non-abelian limit groups

In the following, F will always denote some (not always the same) free group,
and I" will be a fixed limit group.

Lemma 5.2. IfI" is a non-abelian limit group, then the reduced C* algebra
of T is simple (has no non-trivial closed ideals) and has a unique tracial
state.

Proof. We claim that any non-abelian FRF group I' has the P,,; property
of Bekka, Cowling, and de la Harpe [BCdIH94, Def. 4]. This states that for
any finite set S C I'\{e}, there is y € I" of infinite order such that for every
x € S, x and y are free generators of a free rank 2 subgroup of T'.

Proof of Claim. It is easy to check that since I' is FRF, two elements x
and y are free generators of a free rank 2 subgroup of I' if and only if they
do not commute. So to check property P,,; above, it remains to check that
given any finite subset S C I'\{e}, there is an infinite order y not commuting
with any element of S.
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Because I is non-abelian, there are two elements a,b € T with [a, b] # e.
By the FRF condition, there is a epimorphism ¢ : I' — F that is an injection
on SU{e} U{[a,b]}. In particular, the rank of F must be at least 2. Since
¢(9) is a finite subset of F not containing the identity, there is an (necessarily
infinite order) element f not commuting with any element of ¢(S). Then
any preimage of f, say y, is infinite order and does not commute with any
element of S. This ends the proof of the claim.

The proof of Lemma 5.2 now concludes by using [BCdIH94, Lemmas 2.1
and 2.2]. O

Proof of Theorem 1.1. The upshot of Lemma 5.2 is that proving the exis-
tence of a sequence of unitary representations {p; : I' — U(N;)}$°, strongly
converging to the regular representation reduces to proving the existence of
a sequence with
limsup [|p;(2)]| < [Ar(2)] (5.1)
21— 00
for all z € C[I'] of unit ¢! norm. We give a proof of this passage that was
also mentioned in the Introduction.
Suppose (5.1) holds. Then for any non-principal ultrafilter F, we form

the ultraproduct® C*-algebra U o [I7pi(C[I']). There is a natural -
algebra map ¢ : C[I'] = U. The inequality (5.1) implies

le(2)lee < IAr(2)]] (5.2)

for all z € C[I']. If U; denotes the closure of +(C[I']) in U, then inequality
(5.2) implies that the map ¢ extends continuously to C*-algebra map from
Cx(T") to Uy. But since we know C(I") is simple by Lemma 5.2, this map
must be injective. But injective C*-algebra maps are isometries (to their
images), so we have for all z € CJ[I']

e = () e = lim [1pi(2) -

Since this holds for arbitrary non-principal ultrafilters, it holds also that
A (2)]] = limi o0 || i (2)]]-

This reduces our task to proving 5.1, which we begin now. Given ¢ > 0
we will prove that there is a unitary representation p = p(U,€) : I' = U(N)
with N = N(U,¢) such that

() < IAr(2)]| + €

For background on ultrafilters and ultraproducts, see [BO08, Appendix A].
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for = € C[I'] with support in B (1) and ||z||s = 1. By taking € — 0, this
will imply the existence of a sequence p; satisfying (5.1) for any z.

As in the proof of Theorem 1.6 (§4), by taking an g-net of the unit A
sphere of the elements in C[I'] supported on B (%), it suffices to prove

llp(as)|l < Ar(as)]| + %

for a finite collection {a;};c7 of elements of C[I'] with [|a;|[n = 1.
We apply Theorem 1.6 with S = B (%) to obtain a homomorphism

¢ :I' — F with F free such that

AR (¢(ai)) || < f[Ar (@) + é- (5.3)

for all i € 7. Let b; < ¢(a;) € C[F).

The remainder of the proof splits into three cases.
A. If Fisrank 1, i.e. F = Z then Lemma 5.1 tells that there is a finite
dimensional unitary representation m of F such that

@)l < AR @] + (5.4)

for all 1 € 7.

B. Otherwise, if one only wants unitary representations in Theorem
1.1, then by Haagerup and Thorbjgrnsen [HT05, Thm. B| there is a finite
dimensional unitary representation 7 of F such that (5.4) holds for all i € 7.

C. If one wants the full strength of Theorem 1.1 and F has rank at least
2, then unitary representations satisfying 5.4 for all i € 7 exist by the work
of Bordenave and Collins [BC19].

Then let p et o ¢, a finite dimensional unitary representation of I'.
Since p(a;) = w(b;), using (5.3) we obtain

leas)ll = @)l < Ixe @)l + ¢ < Ara)] + 5

for all 7 € Z as required. O

6 Proof of Proposition 1.3

We now turn to the Klein bottle group, K = (t,a | tat™' = a~'). Let
A < K be the rank two free abelian index two subgroup of K generated by
a and t?, and T? = A (a two-torus) the Pontryagin dual of A. By [Tay89,
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Proposition 1], C:*(K) is isomorphic (via an inverse fourier transform F) to
a C*-subalgebra of Matay2(C(T?)) = C(T?; Matay2(C)) with norm defined

by
def
[ fllse = sup || f(2)]lop-
xET?

The norm on the right hand side is the operator norm on Matyy2(C) coming
from the standard Hermitian form on C2. As in the proof of Lemma 5.1,
2 def

forg e N let 7 = Z /qZ. Restriction gives a C*-algebra map

CH(K) 2% O(T2; Matoys(C))

with finite dimensional right hand side. The restriction to K is unitary and
for any z € C[K]| we have as ¢ — oo

lpg(2)|l = max || 7{z](z)llop — max [[Flz](x)llop = [IAx(2)]l-

7 Proof of Corollary 1.9

We wish to appeal to results in the literature to deduce Corollary 1.9 from
Theorem 1.1. To do so, we first establish the following.

Lemma 7.1 (Strong convergence implies weak convergence). Let I' be a
finitely generated discrete group such that C}(I') has a unique tracial state.
If {pi : T — U(N;)}2, are a sequence of finite dimensional unitary repre-
sentations that strongly converge to the reqular representation of I, then for
any z € C[I']
0
11— 00 i

=7(2),

where T is the unique tracial state on C}(I'). tr denotes the usual matriz
trace on U(N;) extended linearly to C[U(Nj)].

We heard this lemma stated by Benoit Collins in a talk in Northwestern
University in June 2022. The proof is to our knowledge not in the literature
so we give it here.

Proof of Lemma 7.1. Consider any non-principal ultrafilter 7 on N, and

form the ultraproduct C*-algebra U o [[7pi(CI']). Let U; denote the
C*-subalgebra in U generated by the images ; in U of the generators ~; of
I'. Strong convergence implies that the natural map from C[I'] to U is an
isometric embedding with respect to the norm on C[I'] coming from C}(T"),
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and hence extends to an isomorphism between C}(I') and ;. On the other
hand,

. trop;
lim
i—F N;
defines a tracial state on U;, and when transferred to C;(I') must coincide
with the unique tracial state there. Since the convergence holds for all non-
principal ultrafilters, the convergence must hold in general. O

Proof of Corollary 1.9. Since non-abelian limit groups I' have unique tracial
states on C}(I") by Lemma 5.2, Lemma 7.1 implies that

lim 22D (7.1)
where 7(z) is the unique tracial state on C}(I') (induced by 7(e) = 1 and
T(g) =0fore#gel).

Note that for unitary matrices, uq,...,u,, any non-commutative poly-
nomial (possibly with matrix coefficients) in the w; is another polynomial
(possibly with matrix coefficients) in the Hermitian matrices u; + u} and
i(u; —u}), and vice versa.

Given this observation, (7.1) together with strong convergence of the
sequence p; provided by Theorem 1.1 used as inputs to [Mall2, Prop. 7.3]
yield Corollary 1.9. O

A Spectral gaps of hyperbolic surfaces

The purpose of this appendix is to explain how the following theorem can
be deduced from Corollary 1.9.

Theorem A.1. Let X be a compact hyperbolic surface. There exists a
sequence of Riemannian covers {X;},cy of X with genera g(i) — oo as
i — 00 such that for any € > 0, for i large enough depending on e,

1 1
spec (Ax,) N [0, 1 €> = spec (Ax) N [0, 1 e) ,

where the multiplicities are the same on either side.

To see that we can take all surfaces to be arithmetic we use the following
argument. Let

To(15) & {( ‘C‘ 2 > € SLy(Z) : ¢ = 0mod 15}.
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The cusped hyperbolic surface Yy(15) def [o(15)\H has no spectrum in (0, 1)

by a result of Huxley [Hux&5, Thm., pg. 250]. Let D35 denote the quater-
nion algebra over Q generated by i, j, k such that

i?=3,42=5ij=—ji=k.

Then D35 is a division algebra with discriminant 15 [Berl6, Ex. 8.27]. Let
O denote a maximal order® in D35 and O! the elements of norm 1 in O.
Then O' embeds as a cocompact subgroup of PSLy(R); let X = O'\H.
By the work of Jacquet and Langlands [JL70] (see [Berl6, Thm. 8.18] for
a convenient concise reference) every eigenvalue of X is an eigenvalue of
Y5(15) and hence X has no eigenvalues in (0, 1).

Taking this X in Theorem A.l, one obtains a different proof of [IHM,
Corollary 1.3] with a slightly stronger conclusion, i.e. there exists a sequence
of compact arithmetic hyperbolic surfaces { X;},; . with genera g (X;) — oo
and A\ (X;) — %. Such a sequence of covering surfaces also have systoles uni-
formly bounded away from 0, also in contrast to the proof of [\, Corollary
1.3] (this conclusion on the systole is independent of arithmeticity).

A.1 Set up

For any n € N, let [n] def {1,...,n} and S,, denote the group of permutations
of [n]. Let X be a fixed compact hyperbolic surface with genus g > 2. We
view X as

X =T\H,

where T" is a discrete, torsion free subgroup of PSLg (R), isomorphic to the
surface group A4. Given any ¢ € Hom (I', S,,) we define an action of I' on
H x [n] by

v (z2) ¥ (2, (7)) -

Then we obtain a degree n covering space X4 of X by

Xy < T\g (H x [n]). (A1)

Let V, & ¢2 ([n]) and V;2 C V,, the subspace of functions with zero mean.
Then S, acts on V,, via std, the standard representation by 0-1 matrices,
and V¥ is the n — 1 dimensional irreducible component. Throughout this

fSee [Berl6, Ex. 8.27] for an explicit maximal order.
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appendix, we let {p;},. be a sequence of N;-dimensional unitary represen-
tations of I' that factor through Sy, by

T2 Sy, 2% End (V1) (A.2)

such that for any r € N and finitely supported map a : I' = Mat,»,(C), we
have

limsup || Y " a(y) @ g < 1Y aly) @ A, (A.3)

oo yerl’ yel’

as provided by Corollary 1.9. Note that by approximation by finite-rank
operators on either side (as in [HM, Proof of Prop. 6.3]) the property in
(A.3) extends easily to the case of

a:I' = K

where IC are the compact operators on a separable Hilbert space. We use
this extension in the sequel.

Then through {p;},.y, We obtain a sequence of degree-N; covering sur-
faces {X;},cy from (A.1).

A.2 Function spaces

For the convenience of the reader we recall the following function spaces
from [\, Section 2.2]. We define L2, (X;) to be the space of L? functions

new

on X; orthogonal to all lifts of L? functions from X. Then

L* (Xi) = Ly

(X)o L* (X).

We fix F' to be a Dirichlet fundamental domain for X. Let C* (H; V&)
denote the smooth Vje,i-valued functions on H. There is an isometric linear

isomorphism between
C%(X3) N Loy (X3)

and the space of smooth ngi—valued functions on H satisfying

fyz)=pi(v) f(2),

for all v € ', with finite norm

def
11y & [ 15 dus (2) < .
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We denote the space of such functions by Cf;? (H; VJQ,Z,). The completion
of C7° (H; Vy.) with respect to || e || 2(p) is denoted by Lii (H; Vy.); the
isomorphism above extends to one between L2 (X;) and Lii (H; VJQ&)'

We introduce the following Sobolev spaces. Let H? (H) denote the com-
pletion of C2° (H) with respect to the norm

def
£ ey = I 2qy + IAFIZ2 -
Let Cg‘(’m (H; V&_) denote the subset of Cf;? (H; VJQ,Z,) consisting of functions
which are compactly supported modulo I'. We let H;Z (H; V]%_) denote the
completion of C’gfm (H; VJ%_) with respect to the norm
def
”f”§1§<H,V1%) = ”f”sz(F) + HAJCH%%F).
We let H? (X;) denote the completion of C2° (X;) with respect to the norm

def
12 2 17 1By + 18 Baxy-

Viewing H? (X;) as a subspace of L? (Xy,), we let

def

Hrzlow (XZ) =

H? (X3) N Ly, (Xg,) -

There is an isometric isomorphism between H2_, (X;) and H;Z (H; V]?fi) that

new
intertwines the two relevant Laplacian operators.

A.3 Operators on H

For s € C with Re(s) > 3, let
Ru(s) : L* (H) — L2(H),
Ru(s) € (Au—s(1—5) 7",

be the resolvent on the upper half plane. Then Rpy(s) is an integral operator
with radial kernel Ry(s;r). Let xo : R — [0, 1] be a smooth function such

that
@ = 0 ift<0,
YW= e >,
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For T > 0, we define a smooth cutoff function yr by xr(t) def Xo(t —
T').We then define the operator R]%IT)(S) : L2 (H) — L? (H) to be the integral
operator with radial kernel
def
R (i) er () Ra(siv).
Following [HM, Section 5.2] we define L[(HIT)(S) : L2 (H) — L? (H) to be the
integral operator with radial kernel

e 0? 1 0 0
L) % (= el = oo el ) Ratoin) = 257 r] S )

It is proved in [I1M, Lemma 5.3] that for any f € C° (H)and s € [3,1], we
have

1. RV (s)f € H? (H).

2. (A—s(1- s))RI(PHT)(s)f =f+ L](HIT)(S)f as equivalence classes of L2
functions.

It is also proved, as a consequence of [[H\, Lemma 5.2], that for any sg > %

we can choose a T' = T(sg) such that for all s € [sg, 1] we have

1
L (s)]] 2 < = (A.4)
4

A.4 Proof of Theorem A.1

Recall that {p;};cy is a sequence of strongly convergent representations of
the form (A.2) that satisfy (A.3) as guaranteed by Corollary 1.9. Asin [\,
Section 5.3], we define

R]g—]ljjz) (S, €z, y) déf R]g—]IT) (87 €, y)IdVI(\), )
Lig ) (53, 9) € L (s, y)ldyy -

We define R]g’.) (s), ng (s) to be the corresponding integral operators. We
have the following analogue of [[{M, Lemma 5.5].
Lemma A.2. For all s € [%, 1],
1. The integral operator R]g:i) (s) is well-defined on C’gfm (H; Vje,i) and ex-
tends to a bounded operator
T
Rig ] (s) : L3, (H:VR,) — H3, (ELVR)
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2. The integral operator ng (s) is well-defined on Co%; (H; VJQ,Z,) and and
extends to a bounded operator on Li (H; V&)-

3. We have
A= s(1= )] RY) (s) = 1+ L{) (s)

as an identity of operators on Léi (H; V&_).

The proof of Lemma A.2 easily follows from the proof of [H), Lemma
5.5], simplified in places by the compactness of the fundamental domain F'
in the current setting.

We have an isomorphism of Hilbert spaces

L7 (H;Vy,) = L* (F)® Vy,,

given by
e (flre) ®e,

where {ej}é-v:ql is some choice of basis for V&_. After conjugation by this

isomorphism, the operator Lg:i) (s) becomes
T)
L) ()2 Y alD ()@ pi (7). (A5)
yES

where
T :L?(F) —>L2( ),

al" (s YL LY (s3va.) £ (y) dps (y)
yeF

Since IL]%IT) (s,vx,y) is only non-zero when d (yx,y) < T+1, in (A.5) one can
take S = S (T") C I to be finite. Since ]LI(HIT) (s;yz,y) is smooth and bounded
it follows that the operators aSYT) (s) are Hilbert-Schmidt and therefore com-

pact. We define
£(T def Z (T )
yES
Under the isomorphism
L2(F) @ (T) = [* (H),
f&®6y— fory T,
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(with f oy~! extended by zero from a function on vF) the operator .CgTo)o is

conjugated to
L (s) : L? (H) — L2 (H).

To prove Theorem A.1, we need to replace the probabilistic bound [,
Lemma 6.3] by a deterministic one.

Proposition A.3. For any sy > 5 there is a T = T(so) > 0 such that for
any fized s € [so, 1] there is an I (so,s) with

N

T)
1) oillL2(m) Figvg S
foralli>1

Proof. Let 59 > § and a fixed s € [so, 1] be given. By (A.4) we can find a

T (so) such that

1
1L L2 (ryee ) < 3 (A.6)

Recall that the coefficients a,(s) are supported on a finite set S = S(T') C T
Because the a(s) are compact, we apply (A.3) (and the following remark)

to the operators L]%ITZ? (s) to find that there is I € N such that for all ¢ > I

Hﬁs@HLZ yevg, S HESOOHLQ(F T 35 <

OOI»—\
»-bl»—\

We can now prove Theorem A.1.

Proof of Theorem A.1. Given € > 0 let 5o = % + /€ so that so (1 —sg) =
% —e. Let T'=T (sg) be the value provided by Proposition A.3 for this sy.

We use a finite net to control all values of s € [sg, 1]. Using [[{)M, Lemma
6.1] as in [FHM, Proof of Thm. 1.1] tells us that there is a finite set Y = Y ()
of points in [sg, 1] such that for any s € [sg, 1] there is s’ € Y with

1) — £ ) < (A7)

>~

for all <.
Combining (A.7) with Proposition A.3 applied to 5921 for every s € Y
we find that there is an I (sg) such that for all s € [so, 1] and i > I(sp)

(A.8)

l\DI»—\

T
HL}%{,? () 2., x,) = ”»C(’@HLz Pevy,
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By Lemma A.2, for s > % R]%IT.) (s) is a bounded operator from L2 (X;)

K new

to H2,, (X;). By Lemma A.2 we have that

(Ax, —s(1—s)) Rgz? (s)=1+ ng (),

52

—1
on L2, (X;). From (A.8) for all i > I (sg) and s € [s, 1] (1 +L]§ﬂT? (8)>

exists as a bounded operator on L2 (X;). We now get that for all i > I (s)
and all s € [so, 1],

(Ax, —s(1—3) RE () (1+ 1) () =1

and we conclude that (Ax, —s(1 —s)) has a bounded right inverse from
L2, (X;) to H2,, (X;), implying that for i > I (sp), Ax, has no new eigen-

values A with A < s (1 —s9) = % — €. O
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