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THE FOURTH MOMENT OF DIRICHLET L-FUNCTIONS ALONG A
COSET AND THE WEYL BOUND

IAN PETROW AND MATTHEW P. YOUNG

ABSTRACT. We prove a Lindelof-on-average upper bound for the fourth moment of Dirichlet
L-functions of conductor ¢ along a coset of the subgroup of characters modulo d when ¢*|d,

where ¢* is the least positive integer such that ¢2|(¢*)®. As a consequence, we finish the

previous work of the authors and establish a Weyl-strength subconvex bound for all Dirichlet
L-functions with no restrictions on the conductor.

1. INTRODUCTION

1.1. The Weyl bound and cubic moments. This paper continues the previous work of
the authors [PY2] on the Weyl bound for Dirichlet L-functions of cube-free conductor. In
the present paper, we remove the cube-free hypothesis and establish the following theorem
without any restrictions on the conductor of y.

Theorem 1.1. For any primitive Dirichlet character x modulo q and € > 0, we have
(1.1) L(1/2 +it, x) << (q(1+ [t])"/°F.

In another language, for any Hecke character y over Q, we have L(1/2,x) <. C(x)
where C'(x) is the analytic conductor of .

As in our previous work [PY?2] and that of Conrey and Iwaniec [CI], Theorem [[.T]is based
on Lindelof-on-average upper bounds for two closely-related cubic moments, see Theorems
and [L3 below. Let #H;(m, 1) denote the set of Hecke-Maass newforms of conductor m,
central character 1, and spectral parameter it. A key new idea in [PY2] was the shape of
the family of automorphic forms into which we embed yx, motivated by the following fact:
If x is a primitive character modulo ¢, m | ¢ and © € Hy(m,X?), then 7 @ x € Hu(q? 1),
see [JL, Prop. 3.8(iii)] or [AtLi, Thm. 3.1(ii)].

Theorem 1.2. There exists a B > 2 such that for all primitive x modulo q not quadratic
and € > 0 we have

(1.2) >N Y L(1/2,7r®x)3+/_Z|L(1/2+it,x)|6dt <. TBq'*e.

[t;I<T mlq meHir,; (m,X?)

1/6+¢

Theorem 1.3. For all primitive x modulo q, 8, > 0, and T > ¢° we have

T+1
(1.3) Y Y L(1/2,7T®X)3+/ |L(1/2 +it, x)|%dt <5 TP g .
T

T<t;<T+1 m|q WEHitj (m,Xx?)
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These two theorems, with the additional hypothesis that ¢ is cube-free, appeared as The-
orems 1.1 and 1.2 of [PY2]. That 7 ® y has trivial central character is crucial because we
may then rely on deep results of Guo [G], which guarantee that L(1/2,7® x) > 0. We then
may conclude Theorem [L.1] by a standard positivity argument.

The reader may wonder why the cube-free hypothesis arose in our previous work and how
we are able to remove it in this paper. In order to answer these questions, we briefly recall
the proof of Theorems 1.1 and 1.2 of [PY2].

The proof of Theorem begins with several standard steps to estimate (L.2)). We apply
an approximate functional equation to expand L(1/2,7 ® x) as a finite sum, and apply
the Bruggeman-Kuznetsov formula and Poisson summation. The result is a sum of complete
character sums. The archimedean integral can be treated by the method of stationary phase,
and the non-archimedean sum by an explicit elementary calculation. By Mellin inversion,
the result of these steps is that the cubic moment (L.2) is transformed to a main term plus
a reciprocal “dual moment” of the rough shape

(1.4) > L2, g0 ),

¥ (mod q)
where g(x, ) is defined by
(1.5) gbev) = > xOX(E+ DX (w)x(u+ De(ut —1).
u,t (mod q)

The existence of such a formula was first noticed in the case that y is quadratic by the
first author in [P1]. There have been several other examples of such reciprocal dual moments
that have underpinned many other results in the literature. For instance, Motohashi [Mo]
proved a formula of the rough shape

/w(t)|g(1/2 it)|tdt Y > w(ty)L(1/2,7)°,
tj TEH 1, (1,1)
with an explicit transform w of the test function w. See also [MV] for an elegant geometric

proof of a special case and [Nel| for the generalization of their work to a wide class of test
functions. In [Y1] the second author derived a similar duality in g-aspect:

o2t e ) > AL1/2,7)°
x (mod p) tj meMir, (1,1)
We also mention the more recent papers [AKIBEKIL[FY,Z] giving additional reciprocity results
for moments of L-functions.
To prove the estimates in Theorems and [[.3] it suffices to show for all € > 0 that

(1.6) S ILO/2.9) g0 0) <.
¥ (mod q)

The sum g(x, ) is multiplicative, so it suffices to consider g(x, ) for ¢ a prime power. If
q = p is prime then the bound ¢(x, ¥) < p follows from the theory of ¢-adic sheaves and trace
functions, and in particular the Riemann hypothesis of Deligne. If ¢ = p* then g(x, ) < p?
by an elementary calculation (see [PY2, §9.2]). In these cases, we have for all € > 0

> L2000 v) < ¢t > [L(1/2,9)|" <. g7

¥ (mod q) ¥ (mod q)
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by a standard large sieve-type inequality. This suffices to finish the proof of Theorems
and in the case that g is cube-free.

If ¢ = p> with p=1 (mod 4) then (surprisingly!) there exist 2(p—1) characters 1) modulo
q such that |g(x, )| = p*/2q. These 2(p — 1) “singular” characters v form two cosets of the
subgroup of characters modulo p sitting inside the group of all characters modulo p®. So, we
need to bound for two choices of a primitive modulo p? the sum

1
L2, 00900 ) <prg Y [L(1/2,¢.a)]
% (mod p) ¥ (mod p)
2ep3/4.
2epl/2,

At this point, applying the Burgess bound individually to each L(1/2,.a) gives <. ¢
while over-extending to all characters modulo p? and using a large-sieve bound gives ¢
Neither of the bounds is sufficient. We would need a bound of the strength

(1.7) > IL/2, )|t <. p*re

¥ (mod p)

for all ¢ > 0, which already gives a subconvex bound (though not even as strong as the
Burgess bound), so one needs a treatment of moments of the rough shape (L1) that goes
beyond a large-sieve type inequality. We solve this problem of bounding fourth moments of
Dirichlet L-functions along cosets by proving the following theorem.

1.2. The fourth moment problem along subgroups. Let 7' > 1, and ¢, d > 1 be integers
with d|q. Let ¢* = Hp,gqu(%h so that ¢* is the least positive integer so that ¢?|(g*)>.

Theorem 1.4. For all primitive x modulo q and € > 0 we have

(1.8) / Z L(1/2 4 it,y.x)|* <. Tlem(d, ¢*)(¢T)°.

¥ (mod d)

Note that the set of characters {1.x : ¢ (mod d)} is a coset of the subgroup of characters
modulo d inside the group of all characters modulo ¢. For example, if ¢ = p* and d = p?,
(LY) is a Lindel6f-on-average upper bound, and more than suffices to establish the required
estimate ([L7)). This proves Theorems and [[.3 in the case ¢ = p3.

In fact, Theorem [[.4] is strong enough to establish (L.6]), and hence Theorems and [L.3]
in general. To see this, we perform an exhaustive calculation of the complete sums g(x, v)
in Sections 2] and Bl culminating in Theorems and 34l These two theorems form one
of the main achievements of this paper, describing completely the structure of the cosets of
singular characters ¢ for which |g(x, )| is exceptionally large.

Theorem [[L4] may be viewed as a g-aspect variant on Iwaniec’s [Iwl] short interval fourth
moment bound

T+T12/3
(1.9) / 1C(1/2 + it)|*dt <. T3+,
T
See Section below for more discussion on why these results are analogous. Iwaniec proves
a number of other bounds on moments of zeta beyond (L9, and it would be interesting to
prove g-aspect variants of those bounds also. The second moment problem along cosets has
been studied in some cases by Nunes [Nun| and recently by Mili¢evi¢ and White [MW].
There are many other works in the literature on different variants of the fourth moment
problem for Dirichlet L-functions and the zeta function. To name just a few, we mention
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w1 [H-B2] [IMI1] [Y1] [BM] [KMS] BHKM]. Many of these papers focus on the problem
of obtaining an asymptotic formula for the fourth moment, which leads to some difficult
analytic problems that may be circumvented in the proof of Theorem [[.4] which is an upper
bound. The asymptotic moment problem requires solving a shifted convolution sum in an
unbalanced range, where the shift is very large compared to the length of summation. Since
we are only interested in an upper bound, a simple Cauchy-Schwarz argument is able to
completely sidestep this unbalanced problem (see Section [).

It is also interesting to compare the subgroup structure of the family of Dirichlet characters
appearing in (L&) with the thin Galois orbits studied in [KMN].

1.3. Shifted divisor sum with character. The main problem faced in the proof of The-
orem [[.4] is a strong bound on a shifted divisor sum with characters. We now discuss this
problem. Suppose that w(x) = wy(x) is a smooth weight function supported on x < N. Let
X be a primitive Dirichlet character modulo q. For h > 1, consider

(1.10) > x(n+ h)r(n+ h)x(n)r(n)w(n).

For analytic reasons, it is preferable to study a closely-related variant of the form
(111) SOk = S o+ e+ hx(n) S win,na),
n>1 nin2=n

where w(z,y) is smooth of compact support. One can always apply a partition of unity
to write (LI0) as a short linear combination of sums of this form. We suppose w(x,y) is
supported on x =< Ny, y < Ny, with NNy, = N. We also assume

h < N,

to avoid the more analytically difficult unbalanced shifted divisor sum.
We will also gain additional savings summing over h. Let

(1.12) S =Y. D xtn+h)rn+hx(n) Y wngng,h),
h=0 (mod d) n>1 ning=n

where w is part of a smooth family of functions of z,y, h, supported on x =< Ny, y < Ny,
and h < H < N. The range relevant for proving Theorem [[.4lis N < q. We suppose that
w satisfies

(1.13) Dyt riw O (@, y,r) a1
Note that we can view S(x) as a sum over h of S(x, h), provided we allow w(z, y) appearing
in (L.I1)) to also depend on h.

Theorem 1.5. Suppose d|q and ¢*|d®. Then for all € > 0
H
(1.14) S(x) <. N(1 + E> (gN):.

Applying an approximate functional equation and orthogonality of characters, Theorem
L4 follows quickly from Theorem The reduction step is detailed in Section

A pleasant technical feature of Theorem is that the bound in (LI4]) does not include
any factors that are sensitive to the current progress towards the Ramanujan conjecture
(typically, the spectral analysis of shifted convolution sums with an individual shift will give
rise to such dependence). The work of Blomer and Mili¢evi¢ [BM] also has this feature,
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which in the proof arose from a clever arrangement of Holder’s inequality after the spectral
decomposition of the shifted convolution sum, and we were able to adapt their idea to our
present setting.

1.4. A sketch. Recall that ¢ is our main parameter, and d is an integer with d|q and ¢?|d®.
This hypothesis ensures that d and ¢ share the same set of prime factors. In this sketch, we
restrict ourselves to the special case ¢ = p* and d = p?, which illustrates the nature of the
argument in a relatively simple situation.

A main idea of the proof of Theorem [[[Hlis that the sum S(x) exhibits a conductor dropping
phenomenon: writing h = h/p?, we have

(1.15) Tn)x(n -+ h) = x(1+ HAp?) = e, (£,H7)

for some integer ¢, with (/,,p) =1, since x has conductor p*. Thus

(1.16) S~ Y Y T(n+ WpP)T(n)e, (L 0'T).

h/<<p£2 n=xN

(In this sketch, we use the symbol &~ merely to mean that the left hand side may be trans-
formed into an expression resembling the right hand side, plus an acceptable error term.)
Observe that in (II6), there is no possible cancellation in the interior sum when p | /.
However, these terms make a contribution of at most <, N %pe, which is acceptable, so
we may assume that (h/,p) = 1 from here on. This step corresponds to the factorization

q¢ = q1q2 in Corollary B0 i.e. in the present sketch we may assume that ¢ = ¢ = p® and

hg, = 2.

Next we solve the shifted convolution problem in ([LI6]). There are many ways to do this,
and we opt to use an approximate functional equation-type formula for the divisor function
of the rough form

S(n+h,0;c)
(1.17) T(n+h) = Z —
c<VN

a method which is similar to using either the delta method or the circle method. After using
(LI7) to separate n and h, we apply a double Poisson summation (i.e. Voronoi summation)
to the sum over n.

It is technically more convenient not to use the formula (IL.T5]) at the outset, and instead to
first apply an approximate functional equation-type formula similar to (LI7) for 7(n)x(n)
(see Lemma [I3)). We then use the conductor dropping formula (LIH) in the course of
computing the complete character sums that result from Poisson summation (see also the
remarks following Corollary B.7]).

Either way, the result of these steps is a formula of the shape

N
(1.18) S~ > e > Y S, —PPnang; o)Kls(6h Eny, Ena; p).
c<VN hl<<p£2 n1n2<<%

(e,p)=1 (W p)=1

The formula (II8) is a simplified form of (8I4)). Note that the dual sum after Poisson

summation is of length % < p?, while the original length was of size N < ¢ = p?, so this
represents a significant savings. At this point, if one uses the Weil bound for Kloosterman
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sums and Deligne’s bound for hyper-Kloosterman sums, we obtain only S(y) < pN%/ 4}% =

HY ;/4, which is far from what is needed for Theorem [[.5 or even the weaker goal of ([L.T).

To go further, we apply spectral methods from the theory of automorphic forms to the
sum over c¢ in the guise of the Bruggeman-Kuznetsov formula (see section [6]). We first must
resolve the ¢ inside the argument of the Kls, and do so by expanding into multiplicative
characters, i.e. using the formula

1
Klg(x,y,z;p) = N Z T(ﬁ)gﬁ(fy'z%
o) | o

when (zyz,p) = 1 (see Lemma 8.8 for the general version). This leads to

N 3 : () ap i =

(119) S() =~ 5 z; n(ly)7(7) ZH > 2 n(hnng) Y =S, —prans; o),
7 (mod p) W5 ningp< B2 (cc<<ps/zﬁl

where we also used S(p?h’, —p*ning; c) = S(ph’, —pniny; ¢). Now we may apply the Bruggeman-
Kuznetsov formula for T'g(p) with central character n* at the cusps oo, 0 to the sum over ¢ in
(LI9). After some careful analysis of test functions, we obtain a spectral reciprocity formula
for S(x) of the rough shape
(1.20)

S(X)z% S 3/2 S~ S () L(1/2.7 @ ) + (Hol) + (Eis.)

1 (mod p) t; <1 WE’Hn (p,m?)

where (Hol.) and (Eis.) represent similar contributions from holomorphic cusp forms and
Eisenstein series, respectively, and €(m)g, is the finite part of the root number of m. See

([@.39) for the closest cousin to (L.20]).

Applying Holder’s inequality, we are reduced to the problem of bounding

(1.21) X Y jrazment

1 (mod p) t; <1 reHe, (p.1?)

Using that @ @ n € Hy, (p%,1), we can bound this with a standard spectral large sieve
inequality for level p?. The restriction to ¢ = p* and d = p? in this sketch has led to (L.21))
being an overly-simplistic fourth moment problem. In Theorem below, we bound the
more general and difficult moment that arises. See the remarks following Theorem for
further discussion on this independently-interesting problem.

It is also instructive to compare the above sketch with Motohashi’s spectral decomposition
of the (smoothed) fourth moment of the zeta function over a short interval. Theorem 5.1
of [Mo| gives, roughly,

A N4 . H 3,-1/2 .
(1.22) /T |C(1/2 +it)|*dt <> (main term) + JT Z L(1/2,u;)"t; /" sin(0;),

where 6; ~ t;logt;. Motohasi derives (L.22) from an exact formula for the weighted fourth
moment of zeta, and the sequence of steps used in the proof is similar to that presented in
the above sketch. In particular, the dual family of Maass cusp forms arises from a spec-
tral decomposition of the shifted divisor problem. In Motohashi’s case, the shifted divisor
problem includes a t-aspect oscillatory factor, as in Y, 7(n)7(n + h)("2)"; this should be

tj<<%
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compared with (LI0). The fact that h is small means that ()T ~ exp(iT'2), which is
an archimedean analog of the conductor-dropping phenomenon of (LTH). It is pleasant to
compare ([.22) with (L20); taking H = T%* gives the closest comparison. The archimedean
oscillatory factor sin(f;) is analogous to the argument of 7(7)?, which is in line with Stirling’s
approximation, and the analogy between Gauss sums and the gamma function.

1.5. Remarks on close-knit families. A key idea going into the proof of Theorem [T
is the shape of the family of automorphic forms in Theorems and [L3l This is yet
another example of the by now well-known and powerful technique of deforming in a family
of automorphic forms or L-functions (see [SST] for more discussion). To this end, we now
offer some brief remarks on families in an ad-hoc context, which may be useful for interpreting
the moment problems considered in this article and our previous work [PY2].

To fix ideas, let us work in the context of some ambient family of automorphic forms F.
Let my € F and suppose that one wishes to prove subconvexity for L(mg, 1/2). A typical
strategy is to choose a sub-family Fy C F containing 7y, and consider, for example, a second
moment of L-functions of the form Y - [L(m, 1/2)[*. It is then advantageous to choose
the family Fy to have high spectral completeness, while at the same time to be as small as
possible.

A natural way to quantify the closeness of two automorphic forms or representations is
through the quantity

C(m ®7)
C(m @ m)Y2C (my @ 73)1/2’

(1.23) D(my,mg) =

where C' is the analytic conductor. Given a family F,, one can reasonably speak of the
diameter of Fy with respect to D(my, m2). Alternatively, one can define a sub-family Fy C F
by Fo = Fo(r) = {m € F: D(m,m) < r}. Such small families fit into the framework of har-
monic families of [SST], since the analytic conductor is a local invariant and Rankin-Selberg
convolutions may be computed locally. Informally, we call families with small D(7my,m)
‘close-knit’.

Working locally we can be a bit more precise. Let k be a non-archimedean local field with
finite residue field. It follows easily from much more general work of Bushnell-Henniart [BH]
(see |[Lal Thm. 1]) that the function

(1.24) d(my,m2) == c(m @) — 3¢(m ®71) — 3¢(m @ ),

where ¢ is the conductor exponent, defines a pseudometric on the space of irreducible super-
cuspidal representations of GL, (k).

We now consider some simple examples. Let F be the set of Dirichlet characters and
let 1y = x € F be of conductor ¢q. For d | g, the set F(d) = {x.¢ : ¢ (mod d)} is an
example of a close-knit family of diameter d around x. The family F,(d) is precisely the
family considered in Theorem [[.4] (see also [Nun] and [MW]).

Considering the archimedean aspect, one finds many examples of families grouped accord-
ing to D(m,m2) in the literature. The short-interval t-aspect integral found in (L9) is such
an instance. To describe a slightly more advanced example, let F be the set of Hecke-Maass
eigenforms for SLy(Z). Given u € F, write t, for its spectral parameter. For parameters
1< AT, let Fr(A) ={ue F: :T < t, <T+ A}. The conductor of u ® u' is
= (14 |ty — tw])?(1 + |ty + tw])? < A2T?, so that the close-knit family Fr(A) has diameter
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< A% The cubic moment of L-functions over this family 37,z ) L(1/2,u)? was studied
by Ivi¢ [Iv], from which he derived Weyl-strength subconvexity in the spectral aspect.

The family of automorphic forms appearing in Theorem provides another example.
Let F = Hi:(q?,1). For x a primitive character modulo ¢ that is not quadratic, consider the
family of twists

(1.25) Fo=A{r@x:meHy(m,X*), m|q} CF.

The family F, admits a simple interpretation in terms of local representation theory. The
local components of 7 ® x € F, are principal series at all finite places. Precisely, (7 ® x), =~
7(Xp; Xp) for all p < oo, where ¥, is a quasi-character of Q) whose restriction to Z matches
the restriction of x to Z;. Thus, the family F, could also have been described by specifying
the local component at finitely many places of ramification to be a single principal series
representation (up to unramified twists). Locally at p, we have d(m p, ma,) = 0 for any
1, o € Fy, so the family F is as close-knit as possible at finite places.

Another interesting example occurs for thin Galois orbits of Dirichlet L-functions; see
[KMN], pp. 6961-6963] for more details.

It is illuminating to view many families of L-functions under this lens, and the authors
hope that this way of thinking may lead to beneficial choices of families of L-functions for
problems in analytic number theory.

1.6. Bounds on character sums. Theorem [[.I] leads to an improvement on the Burgess
bounds for character sums in some ranges.

Theorem 1.6. For all primitive Dirichlet characters x modulo q, x > 1, and € > 0 we have

11/64+¢

212
(1.26) Z x(n {x8/15q7/45+e.

n<x

Remarks. The former bound is better than the latter for z > ¢*/?. Recall the Burgess
bound states Zy@gyﬂ, x(n) < zl_%q%ﬁ, for r = 2,3, and for any r > 1 if ¢ is cube-free
(see [IKL Thm. 12.6]). Theorem [[.6l improves on the Burgess bounds with y = 0 and r = 2
or 3 in all non-trivial ranges.

Sketch of proof. Let 0 < h < x be a parameter to be chosen later. Let w be a smooth weight
function so that w(t) = 1 for 0 <t < z, w(t) = 0 for t > x+h, and satisfying w" () <; h™,
for all t > 0. Then

1 ~
ZX 2m/()w(s)L(s,x)ds.

Integration by parts shows that the integral may be essentially truncated at Im(s) < z/h.
Taking ¢ = 1/2 and using Theorem [[T] gives a bound on the smoothed sum, showing
S(x.w) < 225+ (e [h)0. Next, we have 3, X(n) = S0 0) = 3y pcpun (M) ().
For the latter sum, we may use summation by parts and the Burgess bound with » = 2 or
r = 3. Choosing h optimally then gives the two bounds. U

The interested reader may derive additional bounds for cube-free conductors using the
Burgess bound for larger values of r in the final step of the above proof. The authors thank
Roger Heath-Brown for suggesting the use of the Burgess bound on the short interval.
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1.7. Organization of the paper. This paper is divided into two parts that are almost
entirely independent of each other, and the notation is not necessarily consistent between
the two parts. The authors believe this is a feature and not a bug.

The first part of this paper is devoted to the cubic moment problem and its reduction
to the bound on the fourth moment along subgroups (i.e., Theorem [[.4]), and is contained
in Sections 2H4l Specifically, Section 2] contains a variety of character sum lemmas, Section
has a full analysis of g(x, ), and Section M finishes the proof of Theorem [L.1] given the
veracity of Theorem [[.4

The second part gives the proof of Theorem [[L4] and is contained in Sections BHIl Section
briefly deduces the proof from the shifted sum bound (Theorem [[5]). In Section [, we
present the background from the theory of automorphic forms,with an emphasis on the use
of canonically-normalized Fourier expansions in the style of [MV]. Section [ contains some
tools from analytic number theory. The proof of the shifted sum bound begins in earnest in
Section [8 and is completed in Section [9l

1.8. Notation.
e We denote by N the set of natural numbers {1,2,...} without zero.

e For a finite abelian group G, we denote by G its unitary dual. Exception: in Sections
and [0 we write Z = [ [, Z, ~ I'&nZ/nZ.

e For 7w a newform/automorphic representation on GLs and y a Dirichlet character,
there are (at least) two standard conventions for the meaning of L(s,m ® x). One
convention is that it equals the straightforward Dirichlet series ) Ar(n)x(n)n=%,
and the other is that it equals the automorphic L-function associated to the twist of
7w by the Hecke character corresponding to x. In this paper, all L-functions of the
form L(s, ™ ® x) use the automorphic definition. However, since the two conventions
can only differ at Euler factors corresponding to primes dividing the conductor of 7
or the conductor of x, all statements of theorems or lemmas involving L(s, 7™ ® x)
remain equally valid using either convention.

e For x a Dirichlet character, we use L(s, x) to denote the classically-defined Dirichlet
series Y x(n)n~°. If x is primitive, this agrees with the automorphic convention. If
X is not primitive, but is induced by x*, then it is easy to convert between L(s, x),
and L(s, x*).

1.9. Acknowledgements. The authors thank Roger Heath-Brown, Rizwan Khan, Em-
manuel Kowalski, Djordje Mili¢evi¢, and Lillian Pierce for comments and encouragement.
We also thank the referees for many corrections and helpful suggestions.

2. CHARACTER SUMS TO PRIME POWER MODULUS

In this section we collect some lemmas that are useful for evaluating the character sums
to prime-power modulus that arise in our work.

2.1. The Postnikov formula.

Lemma 2.1. Let p be an odd prime, and > 2. There exists a unique group homomorphism

0:(Z)p°ZL)* — Z|p°~'Z, x — Ly, such that the Postnikov formula holds: for each Dirichlet
character x modulo p® and t € 7. we have

(2.1) X(1+ pt) = eps(€y log, (1 + pt)).
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The map { is surjective, and for 1 < a < 8 we have that {,, = {,, (mod p?~*) if and only
if x1X2 s a character modulo p®.

Proof. For 1 < o < 3, consider the reduction modulo p® map
(Z/p°Z) — (Z/p"L)",

and denote its kernel by U,. Let e(z) be the continuous character of QQ, agreeing with e
for € Q, and let eys(2) = e(p~Px). Let log, : 1+ pZ, — pZ, be the p-adic logarithm
defined by the convergent power series expansion

log,(1+xz)=z—2"/24+2°/3F....
It is easy to check that log, (1 + p°Z,) C p°Z,, and in fact
(2.2) log,(1+ p’z) = p’z  (mod p*),

2mix

since p is odd.
Consider the map f : U; — S* defined by

[t eys(log,(t)).

The function f is well-defined by (22), and is a group homomorphism since log,(zy) =
log, () t\logp(y) for x,y € 1+ pZ, (see e.g. [Neu, Prop. 5.5]). We claim that f has order
p*~Vin Uy. Indeed, if t = 1 + pz € Uy, then we have f(t)”" " = ep2(log,(t)) = ep(x), so
f”ﬁ*2 is not trivial in a, yet U, has order p®~!. Therefore @'\1 is cyclic and f is a generator.
Define ¢, to be the unique integer modulo p”~! such that x|, = f%, which is equivalent to

the Postnikov formula (2.I). We easily see that ¢ is a group homomorphism. Next we show
this map is surjective. The kernel of ¢ is the subgroup of characters trivial on Uy, which is

isomorphic to (Z/pZ)*. Hence by comparing cardinalities, we see ¢ is surjective.

We claim that f|y, has order p°~¢ in the group @ Indeed, writing t = 1 + p®zx, we
have f(t)P" """ = eps (P21 og, (1)) = ept1(log,(t)) = e,(x), showing the claim. Then
Xlv., = f|§‘a, and we deduce that ¢, = 0 (mod p®~) if and only if x|y, = 1, which in turn
is equivalent to the condition that x is a character modulo p*. The final statement of the
lemma now follows, since ¢ is a group homomorphism. O

2.2. Character sums. A rational function f € Z(t) is an equivalence class of pairs of
polynomials f;/fs with integer coefficients and f> not identically zero. An integer ¢, is said
to be in the domain of f if fo(tg) # 0 with f = fi/f2 written in lowest terms (i.e., with
f1 and f; coprime). Meanwhile, a rational function f € (Z/p’Z)(t) is an equivalence class
of pairs of polynomials f;/f, with coefficients in Z/p°Z and with p not dividing all of the
coefficients of f,. Similarly, to € Z/p°Z is said to be in the domain of f if p { fa(to) with
f = fi/f2 in lowest terms. (Recall that in a commutative ring A, two elements a,b € A are
called coprime if (a) + (b) = A.) If p does not divide x € Z/p°Z then we call x a “p-adic
unit”. The above notions also extend naturally to several variables. Lastly, in the character
sums of the form Z*t X(f(£)¥(g(t)) that we study in Sections 2l and Bl of this paper, the
x is always taken to mean that we sum over those t lying in the intersection of the domains
of f and g.

Let g € Z(t) be a rational function whose reduction g modulo p? exists. Let t, be an
integer whose reduction modulo p? lies in the domain of §g. Then, it is easy to see that
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g"™(to) € Z, for all n > 0. In particular, this shows that

(2.3) g(zo + p’21) = g(20) + p°¢' (wo)z1  (mod p*’)

for any integer zy reducing to the domain of g.

More generally, suppose that p does not divide the whole denominator of g € Z(t4, ... ,t,)
and xy € Z" reduces modulo p” to lie in the domain of g. Then, the Taylor expansion of g
at o has coefficients in Z, and we have

(2.4) g(xo + p°x1) = g(20) + P9 (x0) 71 + P%%g”(ﬂfo)[%] (mod p*?),

where ¢’ denotes the gradient of g, ¢” is the Hessian matrix, and A[x] = 2T Az is the quadratic
form associated to a square matrix A and evaluated at x.

For fi € Z(ty,...,tn), i = 1,...d, let f = (f1,..., f1) € Z(t1,...,t,)?* be the associated
d-tuple of rational functions. For such an f we have the associated d x n Jacobian matrix,
which we denote by f' € Myy,(Z(ty,...,t,)). Similarly, we have the logarithmic Jacobian
(log f)', where the ij entry is given by 0, f;/ fi.

Define an additive character # modulo ¢ = (q1,...,qs) € N% as a group homomorphism
72 /q7? — C*, lifted to Z¢ by periodicity. By the Chinese remainder theorem, 6 can be
expressed uniquely as 0(n) = 01(ny) . ..04(ng), with 6;(n) = e,, (ag,n) for some ay, € Z. If q is
diagonal, we may abuse notation and write simply 0(n) = e,(agn) where agn is the standard
scalar product.

Likewise, a Dirichlet character modulo ¢ = (qi,...,qq) is a map (Z?/qZ%)* — C* ex-
tended to Z? in the natural way. Again, Y may be expressed uniquely as x((ni,...,nq4)) =
x1(n1) - - xa(ng), where x; is modulo ¢, i = 1,...,d. If pis odd, ¢ = (p°,...,p") with
p > 2, we define ¢, = ({,,,...,¢,,) with ¢,, as in Lemma 211 Note that the Postnikov
formula generalizes to give for n = (ny,...,ng) with each n; =1 (mod p) the formula x(n) =
eps (£y log,(n)), with the standard scalar product and where log,(n) = (log,(n1), .. .,log,(na4)).

Lemma 2.2. Let p be an odd prime, x be a Dirichlet character modulo (p**,...,p**), 0 be
an additive character modulo (p**,...,p**) and f,g € Z(t1,...,t,)¢ as above. Consider the
congruence

(2.5) 0, (log f)'(to) + agg'(to) =0 (mod p®).

We have

(2.6) S = Z x(f(1)0(g(t)) = p™ Z X(f(t0))0(g(to))-
el e

The right hand side does not depend on the choice of lift of to to Zg.
Remark. This is a natural multi-variable generalization of [IK| Lem. 12.2].

Proof. Write t = to + p®t1, and x(f(¢)) = x(f(to))x(f(t)/f(to)). Then, by the Postnikov
formula (7)), (Z2), and (24]), we have

X(f(t)/ f(to)) = epaa(ly1og,(f()/ f(t))) = epe(£y(log, [) (to)tr).
Similarly, 6(g(t)) = 0(g(t0))0(g(t) — g(to)), and
0(g(t) — g(to)) = epa(ang’(to)t1)
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Then
S = Z X(f(t)0(g(ta)) D epal(ly(log ) (to)ts + ang'(to)t).
to (mod p<) t1 (mod p®)

The inner sum vanishes unless (7)) holds, giving the formula stated in the lemma. The
proof shows that the right hand side of (2.6) is independent of choice of lifts. O

Next we generalize the odd exponent case of [IKl Lem. 12.3]. To this end, we introduce
multi-variable Gauss sums. Let L : Z™ — Z be a linear form with integer coefficients, and
Q : 7" — Z be a quadratic form (see e.g. [Se, Ch.IV Def. 1]). Define

(2.7) Gp(Q, L) = Z ep(Q[t] + Lt).
teFn
Lemma 2.3. Let p be an odd prime, x be a Dirichlet character modulo (p2“+1, oL peth) e
be an additive character modulo (p****,... p***™Y), and f,g € Z(t1,...,t,)? as above Then
S= > xXU@g®)=p™ D x(f(te)b(g(t0)Gp(Q, L),
te(Z/p2etiz)™ to€(Z/p°Z)"
E3) holds

where
(2.8) L =p*(£y(log f)'(to) + asg'(to))
and Q is the quadratic form with associated matriz (in the standard basis for 7" ) given by
(2.9) Q = 30, (log f)"(to) + 59" (to)-

The right hand side does not depend on the choice of lift of to to ZZ.

Proof. Write t = to + p®t1, and x(f(¢)) = x(f(t0))x(f(t)/f(to)). Then, by the Postnikov
formula (21)), (Z2), and (24]), we have

X(f(t)/ f(to)) = eppara(Cy log,(f(t)/f(to)) = epasi(x(log f) (to)t)ep(56x (log f) (to)[tr])-
Similarly, 6(g(t)) = 0(g(t0))0(g(t) — g(to)), and
0(g(t) — g(to)) = epori(agg'(to)t1)ep(39" (o) [t1])-

Changing variables ¢; — ¢, + pe;, where e; is the j-th standard basis vector, leaves the
quadratic terms unchanged. Hence the inner sum vanishes unless (2.1) holds, in which case
we obtain the claimed result. U

In view of Lemma [2.3] it will be useful to estimate quadratic Gauss sums.

Lemma 2.4. Let p be an odd prime, let ) be a quadratic form over F,, and L a linear form,
as above. Let V' be the isotropic subspace of Q). Let rq denote the rank of Q. Then G,(Q, L)
vanishes unless L|y = 0, in which case

9 (n—r
|Gp(@. L) =p2p" .

Proof. Tt is well-known that one can change basis for ) so that the quadratic form @ is
orthogonal with respect to this basis (e.g. see [Se, Ch.IV.1.4 Thm. 1]). In particular, we have
F; =V @& U where V is the isotropic subspace of (), and U is a complementary subspace.
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Therefore, if v € V and u € U, then Q[v+u] = Q[u]. Using this basis to calculate the Gauss

sum, we have
Go(@: L) = (D ep(20)) (D (@l + Lw)).
veV uelU
Note that the sum over v vanishes unless L|y, = 0, while the sum over u has absolute
value p'@/2, where rq is the rank of the quadratic form, since U has a basis on which Q is
diagonalized, and by the standard one-variable evaluation of quadratic Gauss sums. This
completes the proof. O

Motivated by an application (namely, Lemma 2.8)), we wish to mildly generalize Lemmas
2.2 and 2.3 as follows. Let p be an odd prime and suppose 1 < § <. Let f,g € Z(t1,...,t,)
with p not dividing every coefficient of the denominators of f,g. Let V be the subset
of x € (Z/p°Z)" for which p*~Px modulo p” lies in the domain of f modulo p”. Then
F(x) = f(p"~Pz) defines a function F : V — Z/p'Z and we call V the domain of F. Let us
write G for the same construction applied to g.

These definitions extend component-wise, as follows. Let v = (71,...,74) with each
vi>B>1andp” = (p*,...,p"). Given f = (fi,..., fa),g = (91, -, 9a) € L(x1,...,24)",
define F' = (Fy,..., F;) and G = (Gy,...,Gy) by F(z) = fi(p*Px) and Gy(z) = g:(p?Px)
for all 1 < i < d. Then F,G define functions with domains given by the intersection of
the domains of the F;, G;, as above. Let x be a Dirichlet character modulo p” and 6 an
additive character modulo p?. If F' and G are two such d-tuples of rational functions, then
the functions x(F(t)) and 0(G(t)) are well-defined on the domains of F' and G.

Lemma 2.5. Let v = (7,...,74) with each v; > 2a > 2. Write § = 2. Let p be an

odd prime, x a Dirichlet character modulo (p™,...,p") , 0 an additive character modulo
(p™,...,p") , and F,G as above. Define the congruence condition
(2.10) ¢, (log £) (p"Pto) + agg’ (p"Pto) = 0 (mod p®).
We have
(2.11) Si= > xX(F@)IGWH))=p™ > x(F(t))b(G(t)).
te(Z/pPZ)" toE(Z/p*Z)"
@I0) holds

Proof. The proof is very similar to that of Lemma We have

(F(t +°00)) = XF )X = 0 (B ) (0 (o),
and similarly

Therefore,

where (2.12)) is the congruence condition
/

r TR
(2.12) ﬁxF(to)patl + apG'(to)p°t; =0 (mod p”).

Note that G'(ty) = p"= P f'(p?Pty), and likewise %/(to) = pP(log f)(p""t;). Hence the
congruence condition (ZI2) is seen to be the same as (2.10). O
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Similarly, the generalization of Lemma 2.3 is given by:

Lemma 2.6. Let v = (71,...,7a) with each v; > o« > 1. Write 8 = 2o+ 1. Let p be
an odd prime, x a Dirichlet character modulo (p™*,...,p), 6 an additive character modulo
(p,...,p"), and F,G as above. We have

(2.13) Si= Y XEMIGH) =" Y X(F(t)0(C(t))Gr(Q. L),
te(Z/pPT)" to€(Z/p L)
@I0) holds

where
L =p*(ty(log f) (0" to) + asg'(p""t)),
and Q is the quadratic form with associated matriz (in the standard basis for 7" ) given by
Q = 500" P (log £)"(p"Pto) + 507 9" (07 o).

Since the proof is similar to those of Lemmas and 2.5 we omit the details. For the
sake of clarity, we remark that ¢ p“/_ﬁ(log ") (p"P1y) is shorthand for

Zﬁ 27 (log £,)" (07 Pto),

and similarly for ¢”. It will be useful later, in the proof of Lemma 2.8, to observe that if
~; > [ then the i-th component makes no contribution to the quadratic form Q.

The following lemma, with its easy proof omitted, will be helpful for solving the linear
congruence in (2.5]) in future applications.

Lemma 2.7. Let R be a commutative ring, with group of units R*. Let M = (a;;) €
Msyo(R) with a;; € R* for all i,j. Then there is a solution to (x1,z2).M = (0,0) with
x1, Ty € R* if and only if det(M) = 0, in which case the solutions are given by r1a11+T2a9 =
0 (whence x1 = agr, To = —ayr, for somer € R*).

2.3. Application. In [PY2, Conj. 6.6], we left the estimation of a certain character sum as
a conjecture, which we prove here aided by Lemmas and

Lemma 2.8. Let p be an odd prime, let x be a multiplicative character of conductor p?,
v > 2, and suppose v is a multiplicative character with conductor p°®, 1 < B < ~. Then

(2.14) S X Py + x4 p Py x (1 = P Pu)(u)(y) < pP.
y (mod p#) u (mod p?)
Proof. This is an instance of S defined by 2I1)), [2I3]), where d =2, v1 = v, 72 = 3,
_(A+y)(d—w) _
(Bl oy ) = (7 wn)s () = (00)

Fi(y,u) = fi(p?" Py, p"~Pu), Fy(y,u) = fo(y,u), and of course the additive character is not
present. A short calculation shows

v u
The summations in Lemmas and run over tg such that
U (log ) (p" 1) =0 (mod p%),

1—p7— By —1—pY—By
(logf)’(p'y_ﬂt): (1+p”*ﬁy)(1+lp2(”*ﬁ)yU) (1—p”*%)(1+1p2(”*ﬁ)yw .
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where o = /2 for § even and o = (8 — 1)/2 for § > 3 odd, so we write ty = (ug, yo) and
work out what this means in terms of conditions on uy and yo. Some simple algebra (cf.
Lemma [2.7]) shows that this reduces to ug = —yo (mod p®), which uniquely determines ug
in terms of ¥y, and then

4 —0,,

(2.15) % T 2092 — 0By

(mod p®),

which uniquely determines yo (mod p®), by Hensel’s lemma. Hence, when (3 is even, |S| < p?,
by Lemma 2.5 giving the bound (2.14)).

Now consider the case that § = 2o+ 1 > 3 is odd; it was already shown above that ug
and gy are uniquely determined modulo p®, so the only remaining question is the size of
the Gauss sum G,(Q, L). It is easy to see that () is non-singular, since only the fy-aspect
enters into the calculation , and the Hessian of log f is diagonal with entries —yg 2, —ug 2.
Therefore, |G,(Q, L)| = p, and (2.14) follows immediately.

Finally, we consider the case 8 = 1. In this case, we have x(1+4 p’~'a) = e,(¢,z), for any
x € Z, so it is easy to directly evaluate (2I4) as a product of two Gauss sums, giving the
desired bound. U

2.4. The case p = 2. The previous work in this section largely assumed p # 2. The case
p = 2 has some minor differences, and for clarity we treat this case separately.

Lemma 2.9. Let p = 2, and > 3. There exists a unique group homomorphism { :

—

(Z)pPZ)* — ZJp°~*Z, x + L, such that the Postnikov formula holds: for each Dirichlet
character x modulo p® and t € 7 we have

(2.16) X(144t) = eyp(y logy(1 +4t)).

The map € is surjective, and for 2 < a < B we have that {,, = {,, (mod 2°=%) if and only
if x1Xz2 s a character modulo 2¢.

The proof is very similar to the case p > 2, so we give only a brief outline of the proof. Using
the notation U, from the proof of Lemma 1], define f : Uy — S* by f(t) = egs(log,(t)).

One easily checks that f is well-defined and has order 2°72, so @'\2 is cyclic generated by f.
Therefore, (2.16) holds for some ¢,. The final statement of the lemma is easy to check.

Lemma 2.10. Let p = 2. Let x be a Dirichlet character modulo p®, and ¢ be an additive
character modulo p?, where 8 > 3. Let f,g € Z(t1,...,t,)* as in LemmalZ3. Let a = L%j
Then

(217)  S:= Y x(f®))(g(t) =p" > X(f(t0))1(g(to)),
te(z/pPz)" toe(z/pP—oz)"
£x(log f)' (to)+ay g’ (to)=0 (mod p=)
where the star indicates that the sum runs over numbers for which fi(t) € 25, gi(t) € Zy.
The right hand side does not depend on the choice of lifts of f(to) and g(to) to Z.

Remark. For our later purposes, this result is a suitable replacement for Lemmas and
2.3l In practice, the linear congruence almost entirely determines ¢, (mod p®) (which then
almost entirely determines o (mod p~%), since 3 — a = a + O(1), and p°Y = O(1) for
p=2).
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Proof. Let t =ty + 2°7°t;. Since 8 > 3, we have a < 3 — 2, so % =1 (mod 4). Then

X(f(1) = x(f(to))x(f()/ f(to)) = x(f(to))eas (£x logy(f(1)/ f(to)))-
Next we note
log,(f(t)/f(to)) = (log f)'(£6)2° 1 (mod 27),

under the assumption 2(5 — «) — 1 > (3, equivalently, a < % Note % < 8 — 2 since

B > 3. The rest of the proof then proceeds exactly as in Lemma 221 O
Lemma 2.11. The bound in Lemmal2.8 holds for p = 2.

The proof is similar to the odd p case, so we omit the details.

3. THE BEHAVIOR OF ¢g(x, )

3.1. Introductory lemmas. Let A € Z, and let
Q(z) = Qa(z) =2 + Av — 1 € Zx].
For an odd prime p and integer 5 > 1, define
r(A,p”) = #{z (mod p’) : Qa(z) =0 (mod p”)}.
Let A = A2 + 4 be the discriminant of Q4. By completing the square, note
(3.1) Q) = (z+ %) - 4.
We then have r(4,p%) = p(A, p?), where
p(A,p%) == #{z (mod p’) : 2> = A (mod p”)}.

Lemma 3.1. Let p be an odd prime, and > 1. If pt A, then

p(A,p%) = p(A,p) =1+ ().

If p°|A, then
3 B even,
MAmﬂszHZ{?;’ 5 odd
If p|A, but pP 1 A, then
(3.2) p(A,p%) < 2(8,p%)%((p°, A) = O0).

Proof. The case p ¥ A follows from Hensel’s lemma. The conclusion when p®|A is easy to
verify directly.

Now suppose (A, p?) = p®, with 1 < a < 8. Write A = p*A’ with (A’,p) = 1. It is easy
to see that if a is odd then p(A,p?) = 0. If « is even (which means (p?, A) = 0) then we
write & = p®/?z;, say, where 21 runs modulo p?~2. Then z; solves the congruence

r2=A" (mod p’®).

By Hensel’s lemma, there are 1 + (%l) solutions z; (mod p?~%) to this congruence, and so

a/2

in total there are most 2p®/? values of z; modulo p®~2, giving (3.2). O
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3.2. The bounds on g(x,®). Recall that g(x,®) is defined by (ILH]), and that both y and ¢
are primitive characters modulo ¢ = p®. Anticipating some future simplifications, we apply
the simple change of variables t — ¢t — 1 and u — u — 1 giving

(3.3) g = > x(u(t 1

t,u (mod pP) t(u N 1)

where we recall that the asterisk on the sum means that the sum is restricted to u,t such

that the denominator of ;L((ZB is coprime to p.

Jotut —t — ),

Remark 3.2. Note that if p =2 and q = p°, B > 1, then g(x, ) trivially vanishes, since
t(t+1) is even for all t € Z.

Theorem 3.3. Suppose ¢ = p® with p odd and B = 2c.. Then

190 Y] < ap(A,p™),
where A = A2+ 4 and A = (,¢,, (mod p°~1).
Theorem 3.4. Suppose q = p® with p odd and B =2a +1, a > 1. Then

2q, PiA
3.4 Y=
(3.4) lg(x; V)| {qpl/zé(p2|A)p(p_2Aapo‘_l), p|A.

where A = A% + 4 with A = (, 0, (mod p’~1).
Proof of Theorem[3.3. The sum (3.3) falls into the template of Lemma 2.2 with

(it ) = (= b=t =), () = (0 )

No additive character is present, of course. A short calculation gives

1 —1
(3.5) (log f) = (tﬁff:P “Sz‘:l”) :

ut—t—u ut—t—u

Note that the vanishing (mod p®) of the determinant of (log f)’ is equivalent to

(3.6) u=—t (mod p%),
and that
1 —1

(3.7) (log f)|u=—i = <t(f;11) t(fJ_rtl)) .

2 2

By Lemma 2.7] the condition (2.3]) is seen to be equivalent to (3.6]) combined with
14 t+1

3.8 X l =0 d p®).
( ) t(t—l)_l—w 12 (IIlO p)
Simplifying (B8], we obtain the equivalent congruence
(3.9) t*+At—1=0 (mod p“), A=1(,0, (mod p®).

Hence, [g(x, )| < gp(A, p®), as claimed. O
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Proof of Theorem[3.4]. The beginning steps of the proof are identical to those of Theorem
B3} the linear congruences in both cases are the same, so we obtain that

gOev) =" N X(filte, uo) b falto, u))Gy(Q, L),
to,up (mod p<)

B6) and (9) hold

What is new is the presence of the quadratic Gauss sum G, so we next focus on this aspect.
Note that the quadratic form @) present in G,(Q, L) is given with respect to the standard
basis by

(3.10) 2Q = (,(log f1)" + Ly (log fa)"
Working in F,, until further notice, the Hessian of log f; is

72— (t —1)2 0 (e O
0 —u2+ (u—1)"2 0 7:52_(?1_1;2 ’

by simplifying with (8:6]). The Hessian of log f5 is

(w12 -1 —(t+1)2 44
(tu—t—u)? (tu—t—u) | T
-1 R () - e —(t=1)?2 |-
(tu—t—u)? (tu—t—u)? t4
Therefore,

gy [ ) Ay
(311) 2@ = t—2 [( tf2 (t—21)2 + g 01) A(2t41) :
t

(t+1)2

NN

=

Using a computer algebra package, we evaluate the determinant of the expression in square
brackets above as
4A 2 A4 -1) 1 2 — At
P e 2 —1)2 ¢ 2
using t? — 1 = —At. Therefore, the determinant vanishes if and only if t = 2/A.

By Lemma[2.4] to determine the size of |G,(Q, M)| we need the rank of Q. It is clear from
BII) that @ does not have rank 0. Therefore, () has rank 1 if the determinant vanishes,
and rank 2 otherwise.

Next we note that the two algebraic equations t? 4+ At—1 = 0 and ¢ = 2/A have a common
solution in T, if and only if A2+4 =0 in F,, i.e. p|A. Hence, if pt A, then |G,(Q, M)| = p,
and so |g(x, V)| < gp(A,p*) < 2q, as desired. If p|A, then @) has rank 1, so we obtain

l9(x, )| < p* > P = qpPp(A, p*).

to (mod p*)
24+ Ato—1=0 (mod p%)

1+ (5% + 4At — 3) =

This bound is not as strong as (3.4]); we will next gain some extra information by studying
the behavior of the linear form L restricted to the isotropic subspace of ). Note that A =0
means A? = —4, whence t = —A/2 = 2/A and so t* = —1. Therefore (¢t + 1)* = 2t and
(t — 1) = —2t, and we can simplify (3.I1]) as

—9t —1 el 1 -1
20 ="ty [(—1 2t)+< St A@L+) :%(_1 —1)‘

Hence the isotropic subspace of ) is spanned by the vector (1, —1)T.
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Next we work out an easily-checked characterization for the linear form L to be trivial on
this isotropic subspace. By (2.8)), (817), and the above calculation of the isotropic subspace,
this means

p_Ol(t%l * %(1; t)> _p_a<t—fx1 i %(lt_ t)) =0 (modp),

which reduces to ¢ satisfying
2+ At—1=0 (mod p*™).
Thus the number of ¢, to be estimated is
(3.12) #{to (mod p) : (fo+ A/2)? = A (mod p°*),

and we study this a bit more closely (which along the way will confirm this quantity is well-
defined). This count equals #{z (mod p®) : 22 = A (mod p>™)}. Since p|A, then p|x also,
so (B12) equals #{z; (mod p*~!): 22 = z% (mod p>~1)}, which is well-defined. Therefore,
we obtain a more refined bound

1906, ¥)| < gp* 20 (p*|A)p(p~2A, p 7). O

4. BOUNDING THE CUBIC MOMENT

In this section, we prove [PY2, Conj. 8.2] assuming Theorem [[L4l Conjecture 8.2 of
[PY?2] implies the cubic moment bounds (Theorems [[.2] and [L.3]) and hence the Weyl bound
(Theorem [I.T]). The precise statement of [PY2, Conj. 8.2] appears as Lemma [£.2] below.
The proof of Theorem [[.4 is deferred to Sections [§ and [

We begin by reviewing the notation and re-stating this conjecture. We have a Dirichlet
series

1
(41) Z(81,82,83,84) = ﬁ Z
vid ¢ (mod q)

L(s1,v)L(s2,%)L(s3,1)L(s4, @)
g(Q) (31 + 54)

Zﬁm

where Zg, = Zan(X, V), | Zn| = | Hp| . Zinpl|, and Zg, ,, is a certain Dirichlet series supported
on powers of p. Its precise definition is not necessary here, but rather we quote Lemma 7.1
from [PY?2].

Lemma 4.1. Let g = p®, and let x = x, be primitive modulo q. The series Zg,, converges
absolutely when Re(s;) = 0; >0 for all j =1,2,3,4. If 0; > 0 > 1/2 for all j, then

(4.2) Zinp(51, 52, 53, 54) <o 630" ?|g(x, )| + ¢**7,

where 0y = 1 if ¢ is primitive, and 0 otherwise. If o; > o > 1 for all j, and 1, is the trivial
character, then

(43) Zﬁn,p(Sb 52, 83, 84) <z q1+6'

We remark that Lemma [l appeared as [PY2], Lem. 7.1], however there it was conditional
on [PY2 Conj. 6.6] which has been proved here as Lemma 2.8

As in [PY2], it is helpful to treat the trivial character separately. To this end, write
Z = Zy+ Zy, where Z is the contribution to Z from the trivial character. Now we state the
main lemma.
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Lemma 4.2. The functions Zy and Z satisfy the following properties. Firstly, Zy is mero-
morphic for Re(s;) > o > 1/2 for all j and analytic for Re(s;) > o > 1 for all j. In

this domain, it may only have polar divisors on the hyperplanes s; = 1. In the region
Re(s;) > o > 1 it satisfies the bound
(44) ZO(Slv S2, S3, 84) <<0 qE
Secondly, Zy is analytic for Re(s;) > o > 1/2 for all j, wherein it satisfies the bound
T
(4.5) / | Zy (0 + it, 0 + it, 0 +it, 0 — it)|dt < ¢/*FETE,
-7

for T"> 1. The same bounds stated for Zy also hold for Zy (in an even stronger form),
provided 1/2 < Re(s;) < 0.99.

Remark. Theorem [[.4]is the crucial new ingredient in the proof of Lemma in the case
that ¢ is not cube-free.

Proof. The holomorphic (resp. meromorphic) continuation of Z; (resp. Zy) follows from the
definition (4.1 and Lemma [l All the required properties of Z; follow from Lemma [A.T],
so we now focus on 7.

Supposing that Re(s;) > 1/2 for j =1,2,3, 4, we have

1—|— t _
(46)  Zalsr, 52,50, 54) < " S LG50, ) L2, 6) L35, ) L, B)] [T Zinpl-
#ho plg

From Lemma ] we have for y,, 1, the p-parts of x, 1 respectively, each modulo p?,

B4 19(Xp, V)]
‘Zﬁn,p‘ <<p(2+ ’ <5¢p# +1).

Recall from RemarkB.2/that g(x,,¢,) = 0if p = 2, so for the forthcoming analysis of Zg, , we
largely assume p is odd. In [PY2, Thm. 6.9] it was shown that if 5 = 1 then |g(x,, ¢,)| < Cp
for some absolute constant C' > 2. On the other hand, when § > 2, we see from Theorems
and 3.4 that | Zg, | is controlled by the quantity A, = A% +4 = (£, £,)? +4 (mod p°~?)
where p”||q. Therefore it is natural to parametrize the sum in (6] over the possible values
of the parameters A,. To this end, for 3 —1 > a > 0 and C' the above absolute constant, let

m(a, 8) = inf{m € %Z : max 7|9(Xpaﬁ¢p)| < Cp™},
#p (mod p?) prim. P
vp(Ap)=a

which depends on p and x,, but we suppress this from the notation. For p = 2, m(«, ) =
—o0. For a | % with ¢ = Hp‘qp, let

a,q) = Hpm("’ﬁ), where o = v,(a).
pPllq
Write A = A(y) € [1, 1] € Z with A = A, (mod p°~1) for each p | q¢. Note the condition

that v,(A,) = «a for all p | ¢ is equivalent to a||A. Then we have
(4.7)

Zi(s1,52,50,50) € T (LIS M(ag) S |Lls1, ) L(saaw)L(ss, ) L(ss, 0)],

a|% Y:A(¥)=0 (mod a)
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where we over-extended the condition al|A to A =0 (mod a). With an eye towards applying
Theorem [[.4] we next break up (A7) over cosets. Let G = {¢ (mod ¢)}, and H, be the
subgroup H, = {¢ (mod ¢/a)}.

Lemma 2] implies that ¢,¢" € G are in the same H,-coset if and only if ¢, = (y
(mod p*»(@) for each p|lg. Hence if 1,7’ are in the same H,-coset, then A(z)) = A(y))
(mod a). Thus

Z1(817 S2, 53, 84)

l £ €
<L (1 + |t|) E M/(a,q) g E |L(s1,n.0)L(s2,n.0)L(s3,1n.0)L(s4,n.0)|.
all 0ecG/H, H,
lq A(O)io (/mod a) "

Next, we introduce an integral as in (4.3]), and apply Theorem [[.4] to find

I 1. .
(48) = [zl Y e Y lem(g/ag),
-T al ¢ 0eG/H,
A(0)=0 (mod a)

where Z; is shorthand for Z(o + it, o +it,o + it,0 — it).

The right hand side of (4.8)) is a multiplicative function of ¢, and so is the desired bound of
¢*/**¢ so it suffices to work with ¢ = p® an odd prime power, which we henceforth assume.
Note that there are at most two # € G/H,. satisfying the condition A = 0 (mod p®).
Indeed, A =0 (mod p*) means that (2 = —4(7 (mod p*), which has at most two solutions
ly (mod p®), since (¢,,p) = 1. Thus the right hand side of (48] takes the form

B—1
(4.9) p+o8 Z pr(eB)rmax(8—a,[5)
a=0

To finish the proof of the lemma, it suffices to show for all 0 < o < § — 1 the inequality

(4.10) m(a, B) +max(8 — a, [3]) < 5.
By [PY2, Thm. 6.9], and Theorems and 3.4] we have
p(A, pP/?) for B even,
19(Xps ) C for g =1,
3 < 12 A 52 2
p b p(F?]j 2 ) fOfﬁOdd,ﬁZ?),p ‘Av
2 for 8 odd, 8 > 3, p*t A.

By Lemma B we get for 8 even
—00 for a odd, a0 < 3/2,
(4.11) m(e, B) < < a2 for av even,a < 3/2,
|B/4] for a > B/2,
and for  odd,

[en}

for a =0,
—0 for a odd, a < %,

|
0

[
A

for a even, 2 < a < %,
for a > %

,_
™ o

|+
—_

| I—

I
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We proceed to prove ([@I0). First suppose § is even, so m(«, ) is bounded by (@IT]). If
a > /2, then max(5—a, [26/3]) = [28/3], and it reduces to checking |5/4] +[28/3] < 5.
To show this last inequality, it suffices to check it for each 5 € {0,2,4,6,8,10}, which may
as well be done by brute force using a computer. For a < /2, we have a/2 + (§ — a) < 3,
as well as a/2 4 [23/3] < |5/4] + [28/3] < B, so we are done. Similarly easy arguments
hold when § is odd, and we omit the details. O

5. REDUCTION OF THEOREM [I.4] TO THEOREM

In this section, we prove Theorem [L.4l subject to the veracity of Theorem [ILH. The rest
of the paper is then devoted to the proof of Theorem

First note that by positivity, to prove Theorem [[[4] it suffices to consider the case ¢*|d,
which means ¢?|d®. By an approximate functional equation, dyadic partition of unity, and
Cauchy’s inequality applied on the dyadic sum, it suffices to show

M(N,d,q,T) = / h wo(%> w(% d) %‘ Zn:wN(n)T(n)@b(n)X(n)n_it “dt < NdT(qT,

—00

where wy () is a smooth function supported on [N, 2N], satisfying w](\]}) (r) < a7, for all
Jj >0, and wy is a fixed smooth nonnegative function. Moreover, we may assume

(5.1) N < (¢T)*e.
Opening the square and executing the ¢ sum and ¢-integral, we have
T m
M(N.d,q.T)=dT 3" r(m)x(m)r(m)x(n)io( 5= log (=) Jw(m)wy(n).

m=n (mod d)

where Wo(y) = [~ wo(t)e(—ty)dt is the standard Fourier transform. The contribution from
the diagonal terms m = n give a main term of size O(NdT N¢), which is acceptable.

Next consider the off-diagonal terms. By symmetry, it suffices to consider the terms with
m > n, in which case we write m = n + h, with h > 1, and d|h. By the rapid decay of
W, the sum over h may be truncated at h < H where H = %(Nq)e. By the positivity in
([LH), we may also assume T' > (¢N)° so that H < N. We also open 7(n) = > _ 1
and employ dyadic partitions of unity to the sums over n; and ny. Let M1(Ny, Na,d, q,T)
denote the contribution of these terms to M(N,d, ¢, T'), where NyN; < N and n; < N; for
7 =1,2. Then

(dT) " My(N,d,q,T) = S(x),

where the weight function w(ny, ns, h) is given by

(T Ty + 2
’UJ(.CL’,y,Z) = w0<_ IOg (

o ))wN(fCZ/ + 2)wn (zy)wi(2)ws(y),

Yy

where w; and wy are part of the dyadic partitions of unity. It is easy to check that w(x,y, z)

satisfies ((LI3).

Theorem [L.5] will complete the proof of Theorem [I.4] since % < qﬁT(qN e < (qT)e.



FOURTH MOMENT ALONG COSETS AND THE WEYL BOUND 23

6. AUTOMORPHIC FORMS

6.1. Fourier expansion. In this section we recall the Fourier expansions of automorphic
forms on GLy over Q. Using canonical inner products on Whittaker models as in [MV], we
obtain particularly pleasant normalizations of Fourier expansions and Bruggeman-Kuznetsov
formulas. To discuss these, we work in greater generality than is strictly required for the
other sections of this paper.

Let (7, V') be a standard generic automorphic representation of GLs /Q of conductor ¢(m)
and analytic conductor C(m) (for a definition, see [MV] 3.1.8]). By “standard” here we
mean, following [MV] 2.2.1], that 7 occurs in the spectral decomposition of the space of
automorphic forms. In particular, it is abstractly unitarizable. For ¢ € N, let

Kl(q):{(‘c’g) EGLQ(z) 1cE (q), de 1+(q)} CGLQ(A)

The subspace of V' consisting of right Kj(¢(m))-invariant vectors of minimal non-negative
SO4(R)-weight is 1-dimensional (see [C], [Dell, §2.2]). Any ¢ belonging to this 1-dimensional
subspace is called a newvector. In Theorem [6.1] we make an explicit choice of a distinguished
newvector in this 1-dimensional space using canonical inner products on Whittakers models.

To give the precise statement, we must set up some notation. Fix ¢ : A/Q — C* the
unique additive character which coincides with e(z) on R. For any place v of Q, let us
denote by v, the restriction of ¢ to Q,. Let X = PGL2(Q)\ PGL2(A). The space X has
finite measure, which we normalize to be probability measure. Warning: Michel-Venkatesh
use the push-forward measure on X, under which it has volume 2£(2) = 7/3, see [MV], 4.1.2].

Given m = @), 7, unitary, for v = p < oo let ¢, : Q, — C be a local newvector for m, in
the Kirillov model W(m,, 1,), normalized so that ¢,(1) = 1. Explicit formulas for ¢, are well-
known, see e.g. [Schl §2.4 Summary]| for a nice presentation. In particular, supp(¢,) C Z,,
¢p(x) only depends on |z|,, and Ar(n) = [n|'?T], ¢p(p*™) coincides with the nth Hecke
eigenvalue of 7 normalized so that the Ramanujan conjecture predicts that |A:(p)| < 2. We
also have |¢,(z)| < |z|*/? for all z € QX if m, is ramified, and in particular,

(6.1) Ap) <1 i ple(m).

Following the notation in [MV] 4.1.5], for L a meromorphic function, we write L*(s) for
the leading coefficient in the Laurent series of L(s) at s = sg. By the analytic continuation
of Rankin-Selberg L-functions, the series

(6.2) Le(s) = %

n>1

admits a meromorphic continuation to Re(s) > 1/2, with no poles except at s = 1. We
have [[w2,HL]

(6.3) Z5(1) = C(m)°W.

Lastly, for ¢ € 7 recall from [MV] §2.2.2] the canonical norm ||¢|| ., on the space of .
(Note that there is a missing factor of £5(1)/&r(2) on the right hand side of [MV] (2.3)].
That this factor is missing is suggested by the notational conventions for infinite products
in section 4.1.5; also compare (2.3) to e.g. (4.16) or (4.28) for a precise check.)

Let W) (%) be the Whittaker function defined and normalized as in [GRI, 9.220.4] and K,
be the standard K-Bessel function, as in [GR] 9.235.2]. Let a be the character of R* given
by x + |z| and sgn be the character of of R* given by = — z/|x|.
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Theorem 6.1. Let m = ), 7, be a standard generic automorphic representation of GLy /Q
with finite-order central character.

(1) For (V1) € GL3 (R) <= GILy(A), a newvector ¢ for m admits a Fourier ezpansion of
the form

S D) = o) + 3 PETIW (o) (),
n#0

where c4(y) is a (possibly vanishing) constant term, the coefficients ps(n) = py(1)Az(|n|),
the function W is a minimal non-negative weight vector in the Kirillov model VYW =
W(Toos Yoo) with W |72y = 1, and

(6.4) 61170n = 26(2)|ps(1)[*Z; (1).
(2) A Whittaker function W satisfying the hypotheses of the previous point can be given
explicitly as follows.
(a) If Too =~ m(a®sgn®, o *sgn®) with € € {0,1} and s € iIRU (—1/2,1/2), then we
have

W) = (senw) (72w (arlyl) = smooy (C52) " 2y WIK (2l

(b) If moo >~ m(a®sgn, a™®) with s =it € iR, then we have

W () = <smhm)1/2

ity
(¢) If moo =~ m(a®sgn, a~*®) with s € (—=1/2,0)U (0,1/2), then we have

COS TS COS TS

Wi sgn y,it(47r|y|)‘

2

s 1/2
COS —+
W) = <T) W s (47151

2

~—~

(d) If oo ~ (X1, X2) With x1x5"' = a®sgn™, m € {0,1} and s —m € 1+ 2Z>¢ or
= (0,1), then writing k = s + 1 we have

(4my)*
T(k)

There is a unique newvector ¢ in 7 with W as above, ||¢||%,, =1, and py(1) > 0.

1/2
W () = D)2, s (st > 0) = (L7208 ey o)

Remark 1: The Selberg eigenvalue conjecture predicts that the cases (2a) and (2d) above
with s real and non-zero never occur as local components of any automorphic representation,
but one cannot at present rule out this possibility.

Remark 2: The explicit choice of W given in part (2) of the above theorem is used later to
justify the choice of normalization in Theorem (see the remarks following it). In addition,
we believe it could be valuable to record Theorem for the sake of reference.

Remark 3: In addition to ||¢||can, Michel-Venkatesh define an Eisenstein norm ||¢||gs on
the space of m, see [MV] §2.2.1]. Correcting [MV\ (2.3)] as pointed out following (6.3), for
a number field F' and ¢ € m, we have ||¢||%,, = 25(1)||¢]|4, if 7 is Eisenstein and non-
singular, and ||¢||%,, = ||¢/|3. (x).push 1 7 1s cuspidal and X is given the push-forward measure
(cf. [MV) Lem. 2.2.3]).

Let S.(q, x) denote either S;;, (g, x) or Sk(q, x), the vector space of Maass (resp. holomor-
phic) cusp forms of level ¢, central character x and spectral parameter t; (resp. weight k).
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There is a natural embedding f — ¢, of S.(¢, x) in the space of automorphic forms. We
have in particular for f € S.(q, x) that

(6.5) Y3 f(x+iy) = op (V1))

and (f, f) = ||o7|72 (X)° where the Petersson inner product is defined with respect to prob-
ability measure on I'g(¢)\H (for details, see e.g. [KLI1, Prop. 12.5]). We continue to write
S.(q, x) for the image of this space under the map f +— ¢ despite the abuse of notation.

Let £:(q, x) denote the vector space of Eisenstein series of level ¢, central character xy and
spectral parameter ¢, as in [Y2, §8.1]. As with cusp forms, the space (g, x) embeds in the
space of automorphic forms by F — ¢g. The second author defined a formal inner product
(*, Yorma1 00 Eit(q, ) in loc. cit. by setting ﬁ(Ea, Eb) formal = dap for Eisenstein series attached
to singular cusps a, b, and extending linearly. By chasing definitions in [KL2 §5] and [Y2),
(3.3), Lem. 8.3], one finds that =(E, E)ormal/v(q) = |05 |Eis where v(q) = [SLa(Z) : To(q)].

If f is an even (resp. odd) weight 0 Maass form or Eisenstein series f of spectral parameter
t, then Theorem [6.II2a) applies to ¢y with s = 2it and € = 0 (resp. 1). If f is a weight
k holomorphic cusp form, then Theorem G.II2d) applies to ¢¢. Theorem G.I(20) and (2d)
pertain to weight 1 Maass forms.

Proof sketch. If 7 is generic, then ¢ € m admits a Whittaker-Fourier expansion

3(9) = on(g)+ Y W((*1)9),

acQX*

where ¢n(g9) = [ /0 ¢(n(x)g) dr and W is a global Whittaker function. By expressing W

in terms of local Whittaker functions W, and restricting to g = (Y 7) X lg, we derive the
Fourier expansion found in part (1) of Theorem [l From the product over v < oo of W,
one extracts the Hecke eigenvalue \,. Following [MV] §2.2.2], the canonical norm ||¢||?,, is
given by a regularized infinite product of local norms on Whittaker models, which leads to
the relation (6.4)).

If 7 is a unitary principal series, the formulas for the Whittaker function W, in part
(2) of the Theorem can be derived from the explicit isometry between the induced model
and the Whittaker model given by [MV] (3.10)] and the integral formula |[GRI 3.384.9] for
Wi u(2). If 1o is complementary series or discrete series, then [MV] (3.10)] still intertwines
the induced model and Whittaker model but may no longer be an isometry. In these cases,
we may compute ||Wy H%Q(W) by hand using [GR], 7.611.4] for complementary series and using

the definition of I'(s) for discrete series. O

6.2. Twisting. Let F' be a non-archimedean local field, and 7 an irreducible, admissible,
generic representation of GLg(F') with central character w,. Writing ¢ for the conductor
exponent, we say that = is twist-minimal if ¢(m) < ¢(m ® x) for all quasi-characters x of F*.
The following lemma appears in e.g. [BLS|, Lem. 1.4] or [CS|, Lem. 2.7], and relies principally
on [T, Prop. 3.4].

Lemma 6.2. For all quasi-characters x of F* we have

o(m ® x) < max(c(m), ¢(x) + c(wnx)),

with equality if © is twist-minimal.
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If 7 is a global automorphic representation of GLs, then we say that 7 is twist-minimal
at p if the associated local representation is twist-minimal. We say that 7 is (globally)
twist-minimal if it is twist-minimal at all primes dividing its conductor. In that case, we
have

(6.6) o(m @ x) = [¢(m), c(0) e(wn)],
where [m,n| denotes lem(m,n).

6.3. Cusps. Our presentation of cusps and scaling matrices in this subsection is inspired
by [NPS, §3.4.1]. Here we restrict our attention to cusps with respect to Hecke congruence
subgroups I'y(q). For more general co-compact subgroups of GLj (R), see loc. cit.
The group I' = SLy(Z) acts transitively on P*(Q) by fractional linear transformations. Let
={£('%): n € Z} be the stabilizer of co in I'. Thus we may identify

(6.7) PH(Q) = I/Tu
upon picking the base point of P*(Q) to be oo.
Definition 6.3. The set of left T'y(q)-orbits

Clq) :=To(e)\I'/T'
is called the set of cusps of To(q). A cusp a may be identified with a To(q)-orbit in P*(Q)
via the bijection ([6.7). The index w, := [Stabr(a) : Stabry ) (a)] of a cusp a € C(q) is called
the width of a.

The notion of width of a cusp in Definition matches the usual geometric intuition:
choosing a fundamental domain F, for I';(¢)\H to be a union of translates of the standard
fundamental domain F for I'\H, the width w, is the number of translates of F that touch a
in F,. Another description of the width w, is that wy = [« : Tee N7 'To(q)7], where 7 € T
is any representative of a.

Definition 6.4. If 7 € ' represents the cusp a € C(q), then

oa=7(""1)
is called a scaling matriz for a.

A scaling matrix for a satisfies 0,00 = a and o, ! Stabr,,)(a)os = I's, but in contrast to
the definition given in [Iw3] (2.15)] does not in general have determinant 1. Note also that the
Definition [6.4] of a scaling matrix is more restrictive than the definition in loc. cit.—Iwaniec’s
definition would allow us to multiply 7 on the right by any (! ¢), z € R.

For a € C(q) and o, a scaling matrix, a vector ¢ € S,(q, x) or &i(q, x) admits a Fourier
expansion at a of the shape

(6.8) 6 (0a(" 1)) = W2 Ploal +iy) = coul +Z| 72V () efna).

where W € W is given by the table in Theorem [6.1(2)and ¢, 4(y) is a possibly-zero constant
term. In particular, a classical cusp form f or non-holomorphic Eisenstein series admits a
Fourier expansion of the form (6.8). Sometimes we write pyq(n) or prq(n) for pa(n) if we
want to emphasize the dependence of p, on ¢ or f.

Definition 6.5. The coefficients py(n) appearing (6.8)) are called the Fourier coefficients of
f at the cusp a and depend on the choice of scaling matriz o,.
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The Fourier coefficients p,(n) are given in terms of the local Whittaker models at primes
dividing ng (see e.g. [NPS, §3.4.2]). The Fourier coefficients p,(n) may also be more explicitly
computed in terms of the Hecke eigenvalues A, (n) and other invariants of 7 using the Jacquet-
Langlands local functional equations at primes dividing q.

Ezample. Consider the cusps co and 0, and choose 0, = (') and 09 = (, '). Then for a
newvector ¢ of conductor ¢ we have

(69) pO(n) = €<7T>ﬁnpoo(n)7
where €(7)gy, is the finite root number of the representation 7. It satisfies |e(m)g,| = 1. The
relation (6.9) also follows quickly from [AtLel Thm. 3(iii)], [Lil, p. 296].

Warning: the coefficients p,(n) are in general not multiplicative, nor do they even satisfy
the weaker condition py(nm)p.(1) = pa(n)ps(m) for pairs of coprime integers m, n.

6.4. Kloosterman sums at arbitrary cusps.

Definition 6.6. Let a,b € C(q) and o4, 0y be scaling matrices. The set
Cop ={c>0:(:%) €0, To(q)oe}

is called the set of allowed moduli.

Our change in definition of scaling matrices compared to [Iw3] also causes an alteration of
the definition of the set of allowed moduli, as well as the Kloosterman sum discussed below.
As a consequence, the new definition has the advantage that C, C N for any cusps a, b.
To help the reader translate between Definition and [[w3], temporarily define CZ to be
defined as above, and let CI¥' be as in [Iw3]. Then C%4 = (wyw;*)Y/2CLy.

Ezample. Take a =00, b =0, 000 = ('), and 09 = (, '). Then
Coco = {cq: (c,q) =1, ¢c>1}.

Let x be an even Dirichlet character modulo ¢q. For a € C(¢q) and o, a scaling matrix, let
uq € To(g) be such that o, lugo, = (11).

Definition 6.7. If a Dirichlet character x modulo q satisfies x(uqs) = 1, then we say that a
1s singular for x.

Definition 6.8. If a, b are singular cusps for x, then the sum
_ _ am + dn
(6.10) Sas(m, ;03 X) = > X(oayoy e (T)
¥=(2 b)elec\oq 'To(@)o /Too
15 called the Kloosterman sum attached to the cusps a,b.

If |¢| & Cap, then the sum appearing in ([6.10]) is empty, hence Sqp(m, n; ¢; x) = 0. Temporar-
ily denote by SZ the Kloosterman sum appearing in (6.10) and by SLV the sum appearing in
e.g. [lw3} (3.13)]. If x is an even Dirichlet character modulo g, then S% and SIV are related
by
(6.11) Sao(msm, ¢ x) = Sy (m,n, [/ wewg ¢ X).

Ezample. Take a =00, b =10, 0oo = ('), and 09 = (, ). Then (see [KY2, (2.20)])
(6.12) Seco(m, n; cq; x) = X(c)S(qm, n; ).
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6.5. The Bruggeman-Kuznetsov formula. Let

Vie) = Vol (To(@)\k) = ga [[(1+p7).

plg

choose ® € C°(R~g), x an even Dirichlet character modulo ¢, singular cusps a, b, and set

(6.13) K= Z Sae(m, n;c; X)®<\/Z::c>.

c€Cqp

Define the integral transforms

(6.14) 2mi kLI (k) = L/ w@sH)(Mst,
2mi Joy T (H572)

and

(6.15) LED(t) = %/@) ha(s,6)®(s + 1) (47/Jmn]) ~*ds,

where

and ®(s) = J5° ®(z)z*% denotes the Mellin transform of ®.

Theorem 6.9 (Bruggeman-Kuznetsov Formula). Let ® € C°(Rxq) and K be as in (6.I3).
We have
K= ]CMaass + ICEis + ICholu

where
47

(6.17) KManss = e S oLEot) Y (1) Y pra(m)pre(n),

tj e=0,1 JeBi, (g:x)

of parity €
A [
(618) ’CEis = m/ ,Ciq)(t) (ﬂ:l)e Z pEva(m)pEvb(n)dt,
1) J—o0 e=0,1 E€Bit,ris(4,X)
of parity €

where one takes + in £+ (resp. —) if mn >0 (resp. mn < 0), and

Am hol
(6.19) Ko = s > L900) S0 pralmlpss(n)

k>0, even feBr(a,x)

if mn >0, and KCyo = 0 if mn < 0.

Above, B.(q, x) denotes any orthonormal basis of S,(q, x) with respect to the probability
measure on ['g(¢)\H, and By gis(¢, x) denotes an orthonormal basis of & (g, x) with respect
to the formal inner product divided by V' (q) [PY2) §2.2].

Remark: The above formula is taken from [KY1, Thm. 3.5] and [Y2] (10.2)] (which con-
tains a typo: the factor of 47 on the right hand side should be deleted), but has been
normalized differently in two ways. First, we have defined the Fourier coefficients py(n)
using the canonical normalization of archimedean Whittaker models chosen in Theorem
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6.1l One of the consequences of this choice is that ps(n) = ps(—n) by definition (the fac-
tor (sgnn)® is naturally part of the archimedean Whittaker function). Explicitly, we have
va(n) = 2(sgnn)pa(n), where v4(n) is defined by [Iwdl, (8.5)]. Secondly, we have chosen
probability measure on I'g(¢)\H to define inner products, whereas most authors choose the
pl(lS)h—fOI‘W&I‘d measure from H. These two choices result in the appearance of the factor of
Vig

=, which is natural, it being the leading constant in Weyl’s law for I'y(¢)\H.

6.6. Explicit choice of basis. Let H;,(m, x) be the (finite) set of cuspidal automorphic
representations m with conductor ¢(w) = m, finite order central character w, = x, and
Too = (' sgn®, " sgn®). One may alternatively (and equivalently) take Hj, (m, x) as
in [PY2] §2.1] to be the set of cuspidal Hecke-Maass newforms of level m, spectral parameter
t;, and central character .

Similarly, let Hy(m, x) be the (finite) set of cuspidal automorphic representations 7 with
¢(m) = m, finite order w, = x and 7T =~ o(x1, X2) With x1x5 ' = a®sgn™ for some s — m €
1 + 2Zs satisfying s + 1 = k. One may also just as well take Hy(m, x) as in [PY2] §2.1] to
be the set of cuspidal holomorphic newforms of level m, weight k, and central character .
All statements that follow involving H.(m, x) will hold equally well with either definition.

Finally, let H;.mis(m, x) be the (finite) set of pairs (u1, pu2) of unitary Hecke characters
of Q such that the global principal series representation m = m(u1, u2) (see e.g. [Bl §3.7])
has ¢(m) = m, p1ue = x of finite order, and 7, ~ m(a® sgn, a~%sgn). One may also take
Hitmis(m, x) to be the set of newform Eisenstein series of level m and character x as defined
in [PY2, §2.2]. Using the notation of loc. cit. §2.2, the bijection between these two definitions
for Hit mis(m, x) is given by

(:ula ,u2) = EX17X2 (Zv 1/2 + it>7

where x; and x, are the primitive Dirichlet characters corresponding to x1 = 1|3« and
X2 = i1 |5« Either definition will make sense in what follows.

If x = 1 1is trivial, we may use the shorthand #.(m) := H.(m, 1), as well as the shorthand
M. =, H«(m), where x = it;, k, or it, Eis.

For (7, V) a cuspidal representation of conductor m and central character w,, write

7Rt — L6 eV 1(g)p = wr(g)¢ for all g € Ky(ml)}.

Ko(mt

The set of fixed vectors m ) is also called an oldclass in the classical terminology, i.e.

S. (6, f,x) = 7m0 Via f = ¢y,

where S,(¢, f, x) was the notation used in [PY2] (2.5)].

As a first step in the construction of an orthonormal basis for S,.(q, x), observe that forms
¢ € S.(q,x) that generate distinct irreducible cuspidal automorphic representations are
necessarily orthogonal to each other. Thus, we have the orthogonal direct sum

(6.20) S(ex )= € o

mb=q T€H(m,x)

By (6.20), the problem of choosing an orthonormal basis for S,(g, x) reduces to choosing
orthonormal bases for the oldclasses 7508
Write ¢4 for the function g — ¢((4,)g) with (¢,) € GL2(R) — GL3(A) in the first

position. If ¢ is a newvector for 7 of conductor m, we have by Atkin-Lehner-Li theory that

(6.21) 7o) — span{pg : d | £}
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We write an orthonormal basis B(¢, 7r) for WKO(M) in the coordinates (6.2)) as
B(t,7) = = as(d)py: 0| L}
dl¢
for some choice of coefficients xs(d). Thus an orthonormal basis for S, (g, x) is given by
B.(q,x) = U U {¢® : ¢ newvector for m, 8 | £}.
mb=q T€H+(m,x)

Taking the Fourier expansion of the newvector ¢ at oo as in Theorem [6.1] we have that the
Fourier coefficients at infinity of the forms ¢, and ¢® are related by

(6.22) poa(n) = dPpy(n/d),  and  pye(n) =Y d"2ws(d)ps(n/d),
dje

where if n/d is not an integer, we interpret p,(n/d) = 0. Since p,(n) are directly related to
Hecke eigenvalues via (6.4]), we also define

(6.23) = d"zs5(d)As(n/d),
d|¢

where likewise A\r(n/d) = 0if n/d is not an integer. Note that we have p,s) (n) = p¢(1))\§r5) (n).
We denote by €(7m)_; the parity of 7 (in line with Iwaniec’s notation 7" for the involution

f(2) — f(—%) on Hecke-Maass forms). Lastly, we set et = (£1)M-1¢(7)g,, where €(7)gn
was defined in (€9). With these notations we have the following.

Theorem 6.10 (Explicit Bruggeman-Kuznetsov Formula for cusps 00, 0). Let ® € C°(R~).
We have

(624) IC = Z Y(C)S(qma n; C)(I)(ql/zc) = ’CMaass + ICEis + ’Chola
(c,9)=1

with notation as follows. We have

dn . & 1), =)
63) K= S0 S S g*(DZAW (X (),

br=q meHit; (r;x) 4 Y14

47 5
620 Kimprs [ 200X Y o SR ()R (bt

r=q m€H ;1 Eis(r,X) sle

where one takes + in £ (resp. —) if mn >0 (resp. mn < O) and

47 hol fin (d) ~(0)
I R T G COMD I < Sl T (2

k>0, even br=q meH(r, X)

if mn >0, and Ky = 0 if mn < 0.

There are various choices of basis for 7%°(™ in the literature (see e.g. [ILS] [PYT] [BM]),
and it is not clear that there is any canonical choice for general level. Let &s(d) be the
coefficients defined in [P2, Prop. 7.1]. The choice x5(d) = £5(d) defines an orthonormal basis
{¢@ . §| £} for 750(mD (see [SPY] Thm. 3.2] for a nice proof that avoids the Rankin-Selberg
method). The coefficients £5(d) are given in terms of the divisors of d and § and the Hecke
eigenvalues of 7. Inspecting the definition of &5(d), one deduces the following lemma.
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Lemma 6.11. The coefficients £5(d) enjoy the following properties:

(1) The coefficients s(d) are supported on d|o.
(2) The function &s5(d) is jointly multiplicative in ¢, d.
(3) We have &5(d) < (dd)°.

As a consequence of Lemma BIT)(1), the A (n) associated to &(d) (see ([623)) is jointly
multiplicative in J, n since it is the Dirichlet convolution of jointly multiplicative functions.
The coefficients &5(d) also give an orthonormal basis in the case of the Eisenstein series
(see [Y2, §8] for details).

7. TOOLS FROM ANALYTIC NUMBER THEORY

7.1. Gauss sums. We will need estimates for Gauss sums of non-primitive Dirichlet char-
acters.

Lemma 7.1. Let x be a Dirichlet character modulo q, induced by the primitive character '

modulo ¢'. Forn € Z, let
Ton) = Y x(@)eg(nz).

Then et
(7.1) Thon) =7() Y. d?(%)x’(%)u(diq,)
dl(n,q/q’)

In particular, T7(x) = 7(x, 1) = plq/qd )X (¢/¢)T(X'). Moreover, if x is any Dirichlet char-
acter modulo q, induced by x' modulo ¢ (including the trivial character with ¢ = 1), we
have

q
(7.2) rOcm)l < (@) (n, ).
Remark. [IK| Lem. 3.2] is relevant but has misprints, so we have included a proof.

Proof. By Mdobius inversion,

T(Xﬂ)zZu(%q,)%(%q,) > X Wegalny).

d‘% y (mod ¢’d)

Changing variables y — y + ¢’ shows that the inner sum over y vanishes unless d|n, in which
case the sum over y is a Gauss sum for ' repeated d times. It is well-known that

> X Weymy) = X m)r(x).
y (mod ¢’)
valid for all m € Z. This gives (]). Finally, (7.2]) follows easily from (7.I). O

Corollary 7.2. Suppose x is a character of prime power modulus ¢ = p®, B > 1 and

conductor ¢'. Let n be an integer. Then 7(x)7(x,n) = 0 except when the following conditions
hold:

(1) If ¢ = q and (n,q) = 1.
(2) If ¢ =1 and q = p.

Proof. If 1 < ¢’ < q, then 7(x) = 0. If ¢ = ¢, then 7(x,n) = 0 unless (n,q) =1. If ¢ =1
then 7(x) = S(1,0; q), which vanishes unless ¢ = p. O
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7.2. Approximate functional equation for a divisor function times a character.
There are various ways to solve a shifted convolution/divisor problem, including the circle
method, the delta symbol method, and via inner products with Poincare series. Here we
prove a generalized form of [Y1l, Lem. 5.4], which will be convenient for our purposes.

Lemma 7.3. Let x be a primitive Dirichlet character modulo q. Let G(s) be an even entire
holomorphic function with rapid decay in vertical strips, satisfying G(0) = 1 (e.g. G(s) =
exp(s?)). Then

(73 ) = = S M) T xtrenon),

T(X) c=1 r (mod cq)
where ) a(s)
=— [ o *L(1+2 =g
f(x) 2 O x ( + 28, XO,Q> S 5,

and where Xo,, denotes the trivial character modulo q.

Remarks.

(1) The proof of Lemma [7.3] gives an even more general formula than (7.3)).
(2) It turns out to be highly convenient that ¢ runs over integers coprime to gq.
(3) It is not hard to check that f(z) is smooth for z > 0, and satisfies the bound

l.—eqf
(14 z)4
Proof. For Dirichlet characters y1, x2 to moduli ¢, ¢g» respectively, define

A xea = ZXI <b>8_%7

ab=n

(7.4) o fO(x) e

where the notation matches that in [Y2]. Observe x(n)7(n) = A, x(n,1/2), and note the
functional equation

(7.5) Maa (s 1 — 8) = Az 7(n, s).
Now suppose Y1, x2 are primitive, and observe that

)\Xl,x2( 7_(222_ Z Xl Z X2(T)€cq2 (nT’)a

r (mod cq2)

by splitting the sum over r into residue classes modulo ¢o. Next we factor out a = ged(c, r)
and change variables ¢ — ac and r — ar, giving

1 o0
n’"2 X1(c *
(7.6) A 8) = 2 L2 ) 3 XD S e ().
7(x2) -1 9 (mod
c= r (mod cq2)

Consider ) a(s)
s

5 ()>‘X1X2( ,s—l—%) . ds.

Shifting the contour to Re(s) = —1, applying (7.5), and changing variables s — —s gives

1 G(s 1 G(s
(7'7) )\Xl Xz(n 1/2 - 2—/ )\Xl Xz %) ( )d + — )\@7ﬁ(n,s+%) i)ds-

(1) S 271 (1)
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Since both y1, x2 are primitive, we may insert (.6l into the two integrals. The first term in

(1) then equals
1 - Xl (C) * c
2) ; c Z Xz(r)em(nr)f<ﬁ>.

r (mod cq2)
where
1 G(s
f(x) = — o3 L(1 + 25, X1X2) ( )ds,
21 (1)

and the second term is similar. The lemma then follows, taking y1 = x, x2 = X U
7.3. The large sieve inequality. Let us denote by
(78) [ awet 33 o /

*<T tj|<T k<T [t|I<T

according to whether x = it;, k, or i, Eis.
Lemma 7.4 (Spectral large sieve). For any sequence of complex numbers a,,, we have
[ 5 S aetol] < @+ Marn) 3
*ST et (q) n<N n<N
Proof. The spectral sum on the left hand side is estimated by [DI, Thm. 2], but with weights
Z*(1)71. These weights may be absorbed into the factor (¢7')° on the right hand side. O

7.4. Additional spectral bounds.

Lemma 7.5. Suppose (q1,q2) =1 and (n,q1q2) = 1. Then

+
(7.9) > Y )P < (T0d + 026 (nT g,

|tj|<T ¢ (mod q2) 7€Hir, (q192,%)
where the 4+ indicates that the sum runs over even Dirichlet characters 1.

Remarks. The case ¢ = ¢ = 1 can be found in [Mol Lem. 2.4], and the case ¢ = 1
is a special case of [BM| Lem. 12]. The idea is to use the Bruggeman-Kuznetsov formula
together with the Weil bound. We have not stated the analogous bounds for holomorphic
forms or Eisenstein series, since these cases follow immediately from [Af(n)| < 7(n) which is
Deligne’s bound in the holomorphic case, and directly established for Eisenstein series.

Proof. Weighting by .£7(1) and extending the newforms to an orthogonal basis of S, (¢1¢2, ¥)
in an arbitrary way, we have by (6.3]), (6.4]) and positivity that the left hand side of (7.9) is

(7.10) <@eT)’® Y. ST Y )

|t;|<T 4 (mod g2) $E€Bir; (q192,)

Next we extend the sum over ¢; in (ZI0) to the whole spectrum and insert the following
smooth weights. To capture t; < (T'q1q2)°, we attach the weight function hy(t) = (£* +
1/4) exp(—t?/V?), with V' = (T'q1q2)° to the spectrum. For ¢; > (Tq1q2)° we attach a
sum of weights of the form hyy(t) = >, exp(— (£t — U)?/V?), with (Tq1q2)* < U < T
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and V = U'"¢. We then apply the Bruggeman-Kuznetsov formula, showing that (ZI0) is
bounded by a sum of expressions of the form

+ 15
Z (UVaige + 102 Ky) (1¢2T)°,
¥ (mod g2)

where

4wn>

K= > SulnmoB(— Sy(m,nic) = > D(y)eclym +7n),

¢=0 (mod ¢1¢2) y (mod c)

and B(z) is the Bessel transform of either hy or hyy that appears in the Bruggeman-
Kuznetsov formula (see [Iw4, (9.10)]).

For a spectral weight function of the type hyy, Jutila and Motohashi |[JM2] showed the
bound B(z) < 2~ Y2U? for x > U?™, and that B(z) is very small otherwise. For the
case of hy, one may also easily show two crude bounds as follows. One simple bound

is B(z) < V%, using the easy bound Lﬁiﬁ(m)‘ < 1 and which follows from the integral

representation [GR] 8.411.4]. Hence B(z) < V* < V(q1¢2T). We also claim B(z) < zV¢
for some fixed C' > 0, which can be derived by shifting contours to the line Re(2it) = 1,
in the integral representation [Iw4l, (9.10)], and bounding the integral trivially (one can find
more details in [PY2], Pf. of Lem. 10.2]). Altogether, we derive the bound

(7.11) B(x) < (quT) min (V. 7).

valid for both classes of test functions hyy or hy.
It suffices to bound the contribution from K,. We have

_ dmn — B
= Y K= Y OB(ER) Y d1+e-1) Y Bedyn+ ).
¢ (mod q2) c=0(mod q1¢2) ¥ (mod ¢2) y (mod ¢)
The sum over 1 detects the condition y = £1 (mod ¢»), giving

K=loe) S B(T) X bt

+ ¢=0(mod q1¢2) y (mod c)
y==£1 (mod g2)

Write ¢ = ¢¢o where ¢|¢3° and (¢q, ¢2) = 1. We claim

(7.12) Z ec(yn +7n) < 7(c1)c?(n, )22,
y (mod ¢) 02
y==+1(mod g2)

as we now show. The sum (Z.I2]) factors as 5155 where

Si= > eq(ynG+unt),  Si= Y. eo,(ynti +yne).
y (mod ¢1) y (mod ¢2)
y==£1 (mod g2)

By a trivial bound, we have Sy < Z—z, while S; = S(n¢z, ncz; 1) is the usual Kloosterman
sum. The Weil bound completes the proof of the claim.
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Therefore, we have

_ Amn nl/2+e 1/2 T
K < Z Z & Ve C1)1/2‘B<C : )’ < %' (@1gT)° ’
c2=0 (mod ¢2) c1=0 (mod ¢1) 162 4192
c2|q3° (c1,g2)=1
using ((C.I1]), which completes the proof. d

Theorem 7.6. Suppose ¢ = q1q2 with (q1,q2) =1 and T > 1. Then

(7.13) Yo D e ). L2+t men)| < aGT (@eT),

1 (mod g2) [t;|<T €m=q T€H it ; (m,n?)

with polynomial dependence on t. A similar bound holds true for holomorphic forms, as well
as the Eisenstein series.

Remarks. If ¢; = 1, then this is a “standard” fourth moment bound for automorphic
L-functions, which follows from the spectral large sieve inequality (Lemma [7.4)). It is thus
the go-aspect that has novelty. Our proof of Theorem eventually reduces the problem to
the case ¢ = 1.

To gauge the content of Theorem [7.6] it is helpful to discuss two special cases. First,
suppose that ¢ = 1 and ¢ = p, prime. The main contribution to (ZI3]) comes from m = p
and 7 non-trivial, in which case 7 ®7 € H;, (p?, 1). On such forms the map (7,7) = 77 is
at most two-to-one (see Lemma [T7 below), the multiplicity arising from a quadratic twist.
Hence Theorem follows from the standard fourth moment bound of level p?.

Next consider the case q; = 1, g¢o = p?, with p prime. If m = p? and 7 is primitive modulo
p®, then T @7 € My, (p',1). Again, the multiplicity of the map (7,7) — 7 ® 77 is bounded,
and the standard level p* fourth moment bound suffices to estimate the contribution of these
forms to the left hand side of (.I3). Now consider the contribution from 7 of conductor p.
Consider the typical case that 7 is twist-minimal with m = p%. Then 7 ® 1 € H ; (p% 1),
which is of lower-level than the previous case. On the other hand, the map (m,n) - 7 ®7
has multiplicity > p, seen as follows. Suppose ™ € H;, (p%,n?), and suppose x has conductor
p. Then m, := 7 ® x € Hu,(p*, (nx)?) and @ ® 7] = m,, @ 7Y, so that there are p — 1 distinct
pairs (m,,xn) all having the same twisted form 7 ® 77. Luckily, the extra multiplicity is
compensated by the saving in the number of forms of level p? compared to those of level p?.

Proof. For simplicity of exposition, we only give a proof in the case that ¢; = 1 and ¢ = 0.
The generalization to Theorem consists of only notational difficulties.

Abusing notation, for the duration of this proof we denote by (Z/qZ)* the group of finite-

order Hecke characters of Q with conductor dividing g. (For intuition, note also that (Z/qZ)*
is naturally isomorphic to the group of Dirichlet characters modulo ¢.) Define

(714> i‘gT(Q) = U U U{(ﬂ-vn) VIS H*(mu 772)}7

ne(zjqz)* *<T mla
where = is any of it;, k, or it, Eis as in Section [6.6] and * < T" denotes either |¢t;| < T, k <T,
or [t| < T in each of the three cases of x, respectively.

If there exists xy € (mx such that nyxy = 7 and m ® x ~ m, then we say that
(m1,m), (m2,m2) € HEp(q) are twist-equivalent and write (m1,71) ~ (m2,72). The relation
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~ is an equivalence relation, and thus we may partition H{¥;(q) into twist classes T €

w2r(q)/ ~. The twist classes also arise naturally as the fibers of the map

Her(g) = Mo, (mp)mem.

*<T

With the notation defined in (7.§]), we therefore have

GRS S / SO jpazreni= Y H1/2.eT)T],

ne@iqgy< =T mlg neM.(mn?) TEHM 1 (q)/~

where L(1/2,®(T)) = L(1/2, 7 ®7) only depends on the twist class T.

Note that the automorphic representation ®(7) has trivial central character and conductor
dividing ¢>. We now estimate the size of | 7| as well as its conductor in order to show that
whenever the conductor of ®(7) is large, then |7 is small to compensate, and vice-versa.

First of all, each twist class 7 contains a pair (m,n) for which 7 is twist-minimal at all
primes dividing ¢, and so we choose such a twist-minimal pair in each T, say (77,7n7). By

Lemma [6.2] (i.e. (€.0])) we have for any (7,n) € T
(7.16) o(r®7) = c(rr @7r) = [e(77), c(n7)’]-

Secondly, to estimate the sizes of the twist classes |T| we have the following estimate.

Lemma 7.7. For an integer n > 1, define firt(n) to be the largest integer d so that d?|n.
For T € H%+(q)/ ~ we have

(7.17) 17| < (ﬂrt(q), ﬁ)q

Proof. Since every (n,7) in T is a twist of (7, 7r), we have

(7.18) 7| = #{x € (Z/qZ)" : c(xr @ X) | a}-

By (6.6)), the condition ¢(m7 ® x)|q is equivalent to ¢(x) ¢(n3x)|g. Since we now see that |7T|
is multiplicative in 7 and ¢, and since the bound (7.I7)) is also, it suffices to prove the lemma
under the assumption that ¢ is a prime power.

We now assume that ¢ = p?, and switch to the conductor exponent, ¢. For notational
simplicity, replace 7 by n. Note firt(p?) = pl*/2l. By the previous discussion, we have
T = #{x : c(x) + c(n*x) < v}. There are three classes of x to consider:

(1) The case c(X) < c(n?) and c(xn?) = c(n?), the latter condition being automatic if
c(x) < ¢(n?). Under this assumption, the condition c(x)+c(n*y) < v is equivalent to
c(x)+c(n?) < v, which in turn implies ¢(x) < min(c(n?),v—c(n?)). This last quantity

is always < |v/ 2], so the number of characters x satisfying the above hypotheses is
bounded as claimed in the lemma.

(2) The case c(x) = c¢(n?) and c(xn*) < c¢(n?). Such yx are of the form y = 7%y’ with
c(x') < ¢(n?). Then c(x) + c(n?x) = c(x') + ¢(n?), and so the number of x € T
satisfying the hypotheses of this case is bounded as in the previous case.

(3) The case c¢(x) > ¢(n?). This hypothesis implies that c¢(xn?) = ¢(x), and so ¢(x) +
c(n*x) = 2¢(x). Thus any y in this case which satisfies ¢(x) + ¢(n?x) < v also has
c(x) < |v/2]. On the other hand, since ¢(x) > ¢(n?) we also have v > ¢(x)+c(n*x) >
c(x) + c(n?), so c(x) < v — ¢(n?), finishing the proof. O
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Lastly, to control the set H{¥,(¢q)/ ~ we will use that it is in bijection with the image
D(HX™1(q)) of @. The conductors of the forms o € ®(H ¥, (q)) are then given by (Z.16).

The above three facts, along with the spectral large sieve inequality (Lemma [7.4) will
suffice to finish the proof of Theorem [7.6l To implement them, we must parametrize the
possible values of ¢(n7)?, ¢(n¥), and c(wT) that may occur as 7 runs over Hi%r(q)/ ~. We
thus write the right hand side of (.15 as

(7.19) S3USOY (L2 em)T.

rlg dlr mlq T:e(nr)=r
dlm c(nQT)=d
c(m)=m
where the ' on the sum over d indicates that there are some extra constraints on the param-
eters r and d, which We now explicate for later use.

A character n € (Z/qZ)* of conductor r factors over places n = [],7,, where each
Ny © Z,; — C* and ¢(n) = Hp‘rpcp(’h’). For p odd, c¢,(n,) = cp(nf,) unless ¢,(n,) = 1
and 7, is the Legendre symbol. When p = 2, one may similarly check that if co(n2) = 3
with 8 > 4 then ¢,(n3) = 8 — 1. Considering 8 = 2,3 separately, we can conclude that
ca(m2) — ca(n3) € {1,2,3}. Therefore, the ’ on the sum in (7.I9) indicates that the sum runs
over those d | r such that there exists k£ € {1,2,3} and an odd square-free integer r’ such
that r/d = 2% and (d,r") = 1.

By positivity, Lemma [T.7, and (7.I6) we have that the sum in (7.15]) is

<¢E Y Z > (firt(q / |L(1/2,0)|%

rlg dlr m|q JEH* [m,r2])

Now we are in a position to apply the spectral large sieve Lemma [7.4] (more precisely, the
special case go = 1 of Theorem [T.0)), giving that (7.I5]) is

(7.20) < T?*(qT)* Z Z Z (firt(q), =)[m, r*] < qT?(qT)* Z Z (firt(g d)d .0) (qr;)‘

rlg  dlr nrlq rlg  dlr
Our goal is to show that this is < (¢7)?"%, so it suffices to show that the innermost double
sum in (7.20) is < ¢'¢, and since both sides are multiplicative, it suffices to show it when
q is a prime power, which we now assume. If ¢ is odd, then the conditions indicated by the
"imply that either d = r, or r is a prime and d = 1. In the case that d = r, observe that

. (firt(q)r, q)

g = lirt(g). ],
which implies the desired bound. The desired bound < q is even easier to check in the case
that r is a prime and d = 1. If p = 2 then one uses that % | 8r along with the previous
reasoning to obtain the desired bound. U

8. HARMONIC ANALYSIS STEPS

We now begin the proof of Theorem [[.LAl The sequence of steps used in the proof is
motivated in Section [[4l Let

SO, h) =Y _r(n+h)x(n+h)x(n) > wlngny,h),

n ning=n
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with w(z,y,2) as in Section [[3] which in particular satisfies (ILI3), and has support on
r < N. We also recall that x is primitive modulo q.

8.1. Approximate functional equation. Applying Lemma [7.3to S(x, h), we obtain
(8. 1)

S(x = Z e Z* _(T)ecq(hr) Z ecq(”l”ﬂ")%(nln?)w(nl’nz’ h)f<\/ﬁ)

r (mod cq) ni,ng
8.2. Poisson summation.

Lemma 8.1. We have
(8.2) Z 02 Z (¢, 1, n2, h)S(hG, —ninaeg; ¢)T) (h,Tny, eng),

(c,9)= ni1,n2€Z
where
Yy
(8.3) I(y,t1,t2, b / / w(xy, 2, h f(m)eyq(—xlt1 — Talo)dxyd,,
and
(3.4) Tohomn) = 307 x(a + hX()eg(mag + ny).
z,y (mod q)
Remark. By integration by parts, and usin it is easy to see that for r < N
y g Yy P ) g Yy )
ak+]1+]2+é Nl-i—e —kt —Jj1|¢ —jzr—Zy—e €
(85) (y, t1, 12, T) <<k7j17j27£,A17A2, ‘ ‘ ‘ 2‘

OykOt] Ot Ort T+ )1 4 |t1|N1)A2(1 N Itzylé\fz)

where Ay, A5 > 0 may be taken to be arbitrarily large.

Proof. Consider a sum of the form
V= Z ecq(ninar)x(ning)Wng, na),
ni,n2

where W is smooth of compact support, and (r,cq) = (¢,q) = 1. We split the sum into
arithmetic progressions modulo cq and apply Poisson summation, giving

1
(86) V= 62—(]2 Z A(n1>n2>c>an)I(nlan2)>
ni,n2
where
Alni,ng,e,q,X) = Y X(@1a)ecg(x12or + mim + 2ans),

@12 (mod cq)

and o e
I(ny,my) = / / W (x1, x2)ec(—x1m1 — xang)dryda,.
o Jo

By the Chinese remainder theorem, we have

A(nb na, C,q, X) = Aq(nla na, X)Ac(nb 77,2),
where
Aq(nl, Na, X) = Z X(xlxg)eq(xlxgér + nléxl -+ HQELUQ),

z1,x2 (mod q)



FOURTH MOMENT ALONG COSETS AND THE WEYL BOUND 39

and
Ac(ng,ng) = Z ec(T122qr + mqr1 + naGrs) = ce.(—nineTq).
z1,22 (mod c¢)

Now we insert into (8] the formula (8] and subsequent evaluations, obtaining

2 c *
(%) & §2(—q2) > X(P)eag(hr) Y Ag(na,na, X)eo(—mnaFQ)I(c, na,na, h).

S(x,h) =

r (mod cq) ni,n2
Next we evaluate the r-sum, that is
B(ni,ms,¢,q,X) == Y X(r)eeg(hr) Ag(na, na, x)eo(—ninar).
r (mod cq)
By the Chinese Remainder Theorem, we have
B(nb ng, ¢, q, X) = Bc(”la n2)Bq(nla na, X)>

where .
B.(n1,n2) = Z e.(hrg — mingrq) = S(hg, —ninsg; c),

r (mod c¢)

and

By(n1,n2,x) = Z X(r)eq(hre) Z X(z122)€q(T1228r + N1CT1 + N2C2).

7 (mod q) r1,22 (mod ¢q)

Evaluating the r-sum with Lemma [7.I we obtain

By(ni,n2,x) =7(X)X(c) Y. x(@1z2 + )X (2122)eq(nics + natrs).

21,02 (mod )

By a simple change of variables, we have B,(ni,n2,x) = 7(X)X(c)Ty(h,¢nq,¢ns), which
completes the proof. O

8.3. Estimation of zero frequency terms. We begin with an elementary bound.

Lemma 8.2. Suppose that M > 1 and w = wy; satisfies

—100
i) . (1 i) _
PV () <5 (1+ A

Then for q # 1 we have
S w(m)S(m, 0; g) < (Mq) min(M, q).

m

Proof. By integration by parts, the derivative bounds on w imply that for Re(s) = o € (0, 2]
the Mellin transform of w satisfies

w(s) = /000 w(:)s):zsci—x <y M?|s(s+1)...(s+100)|7".

By Mellin inversion, we have

S w(m)S(m, 0; g) = % /(2) w(s)(i W)ds.

m
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Note .
Z S(m O q Zal s q/a
m=1 alg

The crucial feature is that this Dirichlet series does not have a pole at s = 1, by the Mo6bius
inversion formula, since ¢ > 1. We may then freely move the contour of integration to either

the e-line or the (1 + ¢)-line, leading to the claimed bound. U
Lemma 8.3. We have
(8 7)

Z 2 2 Z ] C nl,ng, S(h@, —nlngq; c)TX(h,Enl,Eng)—i-O(N

(e,9)= n1,n27#0

(h;IQ) (qN)€> )

Remark. This error term is consistent with (IL14]), since

(8.8) > (ha) o %(Nq)s.

1<h<H q
h=0 (mod d)

For simplicity, and since it suffices for our application of Theorem [L5, we have bounded the
main term trivially, but it could be extracted in explicit form with more work.

Proof. We need to bound the terms in (8.2) with some n; = 0. Recall the bound on [ from
(BEH), and also observe that

T (h.0,n) = S(n,0:q) D x(z+h)X(x) = S(n,0:0)S(h,0;q),
x (mod q)
where the z-sum may be evaluated by changing basis to additive characters. Therefore the
contribution to S(x, h) from ny =ng =01is

¢,0,0,h)S(h,0;¢)S(h,0; q) < N(Ng) (h,q)

(c:q)=
Similarly, the contribution from n; = 0 and ny # 0 is

, Z S(h,0;¢c)S h 0;9) S I(e,0,n5, 1) S (n2, 03 ).

(c,q)= n2#0

Using Lemma [8.2] and m, we deduce

> 1{e,0,m2, h)S(nz, 05q) < (Ng)*Nmin (<L q).
na#0 2
Therefore the contribution to S(x, k) from n; = 0 and ng # 0 is
2

< N(ngy 9 3 (h, ) (1 + C—)_A min (1 ]52) < Ny (hq ) (N,

q — ¢ N
Since N; < N, this is even better than the claimed bound that arose from ny = ny = 0. By
a symmetry argument, a similar bound holds for the terms with ny = 0 and n; # 0. U

At this point, we pause to record a crude bound for S(x,h). Using the trivial bound
T\ (h,ny,¢ny)| < ¢?, the Weil bound for Kloosterman sums, and the bound (83]) on I, we
deduce from Lemma
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Corollary 8.4. We have

h, )
S(x,h) < @N¥*(gN)* + N%(QN)

Remarks. When ¢ = 1, this corresponds to the classical N3/4*¢ error term for the smoothed
shifted divisor problem, which follows from the Weil bound (e.g. see [DFI, Thm. 1]).

We emphasize that the arithmetical conditions on d, h,q appearing in the statement of
Theorem have not been used yet (though the archimedean condition h < N was used in
E3))

This bound is trivial for ¢ > N'/%, while the reader may recall that for Theorem [[.4], we
need N < ¢. Naturally, our next aim will be to improve this bound by proving a non-trivial
bound on T,. An optimistic guess is that T} is O(¢'™) in a suitable average sense. If true,
this would only improve the error term ¢2N%/* to ¢N®/*, which is still trivial for ¢ > N4,
so more advanced techniques will be necessary.

8.4. Properties of T,. Recall that T, was defined by (84)). First observe the symmetry
(89) TX(h'vmvn) = TX<h7n7m)‘
Suppose that x = x1x2 with x; modulo ¢; with (g1, ¢2) = 1. The Chinese remainder theorem
gives
(8.10) Ty (hy m, ) = Ty (hy 105, 1) Ty (hy T, 7).

So far the conditions d|q, ¢3|d?, and h = 0 (mod d) appearing in Theorem have not
been used. In the next lemma, we give a simplification of T, under the assumption g|d?

(whence g|h?), which is weaker than the condition ¢*|d® (whence ¢*|h®) that will be used
later. We write

hq = (h,q).
Lemma 8.5. Suppose q|h?. If q|h then
(8.11) T\ (h,m,n) = S(m,0;q)S(n,0;q).
If v,(h) < v,(q) for each plq, then T (h,m,n) = 0 unless hy|(m,n). In that case, we have
(8.12) T\ (h,m,n) = h2Kly (exhﬁq, hﬂq nﬁq; hiq)
where Klz(a, b, c; q) is the hyper-Kloosterman sum defined by

Kls(a, b, c;q) = Z eq(ax + by + cz),
2,2 (mod q)

zyz=1(mod q)
and for £, a certain integer with ({y,q) = 1.

Remarks.

e The two cases considered in Lemma BF] along with (8I0), are enough to completely
evaluate T, (see Corollary 8.0 below).

e The integer ¢, appearing in Lemma B.5is such that when ¢ | h2 we have x (14 hgt) =
€q/hy (yt) for all t € Z. Warning: there is some subtlety involved in passing from the
locally defined /¢, appearing in Lemma [2.]] to the global ¢, defined here.
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Proof. 1f q|h, then (811 is immediate from (84]).

Next suppose that 1 < v,(h) < v,(q) for all p|q. Since g|h?, we have x(1+ hu)x(1+ hv) =
X(1+ h(u+wv)), which means x (1 + hu), as a function of u, is an additive character modulo
q/hg. Therefore, there exists an integer ¢, so that x(1+ hu) = egn, ({xh'u), where h = h'h,.
Since y is primitive, and ¢/h, shares the same set of prime factors as ¢, then (¢,,q) =1. In
particular, x(z + h)X(z) = x(1 + hT) = e4/n,({xA'T), and so

T, (hgh',m,n) Z Z €q/h, (L' T)eq(may + ny).
z (mod ¢q) y (mod q)
Changing variables x — x + 2 hy shows the sum vanishes unless h,|m, in which case it is the
same sum repeated h, times. The same argument with y shows it vanishes unless h,|n, and
then gives (8.12]). O

Corollary 8.6. Let notation and assumptions be as in Lemmal8.3. Write ¢ = q1q2 where

(8.13) a= [ »9 @@= ][ »?

plg plg
vp(q)<vp(h) vp(q)>vp (h)

so that (q1,q2) = 1. Write x = x1x2 where x; has conductor q;. Let
hf]2 = (h7 q2)7 S0 (hu Q> = q1hq2-

Then T (h,eny,eng) = 0 unless hy,|(n1,ng), in which case

T (hu 1, Chgn, Chozna) = hg, S(0, 115 41)S(0, mo; 41Kl (gmh/,c_qml,c_qmm 5_2)
q2

Remark. The factorization of q as q1¢o is very natural, since the g;-part of y is almost
irrelevant, since x1(n + h)xi(n) =1 for (n,q) = 1.
Applying Corollary to (8.7), with h = h'h,, and with the replacements n; — hg,n;, we
deduce
2h?
(8.14) S(x.h) = | E

Z I(C’ hgan;s gz, h/hq2)5(hq2 h/@ —nmzhgﬂ; C)

(c,q9)=1 ni,n27#0

h,
S(Ovnl;QI)S(O n27q1)K13<€X2h Cq1nlch1n27}3 )] +O< ( q)
q2

(gN )a)-
Again, we pause our analysis to record a simple bound on S(x;, h).

Corollary 8.7. Suppose d|(h,q) with q|d*> and write ¢ = q1q> as in (8I3). Then

h

(0 h) < N gy v D gy
q2

and

(8.15) S(y) < (vae i

2 +N— )(qN)E.

Proof. Smith [Sm, Thm. 6] showed Klz(a, b, ¢; q) < q1+E assuming (a,q) = 1 (of course, the

most difficult case where ¢ is prime and (abc,q) = 1 is due to Deligne [De2, Sommes trig.

§7]). Applying this bound to (8.14), noting that (¢,,h’, =) = 1, easily finishes the proof. [
a2

Remarks.
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e Observe the significant savings of the factor ;- compared to the optimistic factor of g
q

in the discussion following Corollary [8.4l This arose in large part from the important
feature that hg,|(n1,n2) (which essentially cancelled against the A7, factor in (8.14)
while the modulus of 7T}, is greatly reduced to ga/h,,. We also save a g;-factor from
the boundedness (on average) of Ramanujan sums.

e The bound (8TH) is consistent with our ultimate goal (LI4]) when N =< ¢ provided
that d > ¢/, which is still a bit too restrictive, since the condition ¢?|d® means d

can be as small as ¢%/3.
e The bound (RI7) is compatible with the discussion in the sketch following (LIS]).

8.5. Some properties of Kl;, and application to S(x,h).

Lemma 8.8. Suppose that ¢ > 1 and a,b,c € Z. Write a = aga’, b = bob/, ¢ = coc’ where
apbocolq™ and (a'b/'d,q) = 1. Then

1
K13(a7 bv (& Q) = 3 Z T(ﬁu CL(])T(ﬁ, bO)T(ﬁv CO)n(a/b/C/)v
pla), o=

where for n € Z the Gauss sum 7(n,n) was defined in Lemma[7.1]

Proof. The proof is standard, a similar calculation appearing in e.g. [Sm! §2]. O

We apply Lemma B8 to (8I4). We already saw in the proof of Corollary 87 that

(ly,h', 72) = 1. To handle ny, ny, we write n; = nionj and ny = ngns, where n19n2|g5°
a2

and (n{nj,¢2) = 1. These two conditions are equivalent to (n{nj, ¢2/h,,) = 1 and njgnyg |
(g2/hg,) since by definition (8.13) of ¢o, the numbers ¢, and g»/h,, have the same set of
prime factors. Thus

Kly (60,1, cqins, eqina; 2 )
h"]2

1 [N
S BT mo) 77 nao ().
©(q2/hq,)
7 (mod qz/hq2)
Therefore,
2h22 =2 I — _ —
(8.16) S(x,h) = ( 2 Z 7 (qu)n(l,h') Z 7(M)7 (7, n10) (7, M20)
q @(Q2/htn> oo
n (mod q2/hg,) 110,m20/45
/ / ! ! h” £
S 80,080, st K ) + O (WL gy,
nf,ny#0

where h = h'h,, and K is shorthand for the following sum of Kloosterman sums:

hay 1, hoyia, H'h
(8.17) K = Z Ie ‘H"l’ 2 ‘“)S(h@h’ﬁ,—n1n2h§2§;0)ﬁ2(0),

(c,q)=

: /
with n; = n;on;.
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9. SPECTRAL ANALYSIS OF THE SHIFTED DIVISOR SUM

9.1. Set-up for Bruggeman-Kuznetsov. Our next major goal is to apply the Bruggeman-
Kuznetsov formula to K defined by (817). We begin with some simplifications. The evalu-
ation of T, appearing in Lemma used that ¢|d?, which is a weaker condition than what
is assumed in Theorem [L5] namely that ¢?|d®. We will use this stronger assumption now.

Recall that we factor ¢ = ¢1¢o according to the value of h as in Corollary [8.6] and corre-
spondingly set h,, = (h,q2) and h = hy,h'. By the definition of the factorization ¢ = ¢1¢a,
this implies that ¢;|h’. Recalling that d|h, for p|ga we have 3v,(h,,) > 2v,(g2), and therefore
hZ,/q2 is an integer. Note the hypothesis (¢, q) = 1 from (8I7) and observe

h/ h2 -
= 2 —, _ v 42— .
S(hqzh q, nlnthzq, c) S<q1> n1ng s q1 (C_I2/hq2), C),

using that S(az,y;c) = S(x,ay;c) for (a,c) = 1.

Another small remark is that the condition (¢,q) = 1 in the definition of K is equivalent
to the pair of conditions (¢,q;) = 1 and (¢, g2) = 1. The latter of these is enforced by the
presence of 7?(c), since ga2/h,, has the same prime factors as gy (by definition of ¢z). The
condition (c¢,q;) = 1 can be detected by multiplying (8I7) by the trivial character modulo
¢1, which we denote xg g, -

Taking these observations together, we derive that K equals

I(¢, hgyny, hgyna, W'hy,) (B hy o\
o Y Heletebete Bl g(X o e ) v )

2
(=1 ¢ @ 2

Our next goal is to see that K can be viewed as an instance of K (as in ([6.24])), with the
following choices of parameters. The level, say r, is given by

A B
h’42 h’42 (h7 Q2) ’
the central character is n?xq,,, the pair of cusps is 00,0 and m = h'/q;, n = —n1n2h22/q2.

Define the weight function ®(y) = ®(y, -) (we temporarily suppress the dependence of ® on
the other variables) by

(9.2) <I>(y)=§l(r‘”2y,t1,t2,h), with  # = hgyn;.

Therefore, K = K as in (6.24), and hence by Theorem [6.10, we have K = Kyjaass + Kgis+ Kol
where

(9.3)
n drmel”) <) ( W'\~ ;o
KMaass:tzﬁ oty) D 2. )V(q/h%)f;(l)z)‘w (G )2 (monaalmis 22 ).

a1 2
Zm:% WEH“J. (m,n? 14

and similar formulas hold for Kg;s and K.
Inserting this into (8.16]), we correspondingly write

(94) S(X, h) = SMaass(X; h) + SEis(X7 h) + Shol(X; h) + O(N(h’qC'I) (qN)e)
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9.2. The behavior of the integral transforms. Here we study the analytic behavior of
the integral transforms £*® that occur in the Bruggeman-Kuznetsov formula.

Lemma 9.1. For each q € N, let I = I(y, 1,12, h) be a smooth function on Ry x Rio x Rsg
supported on h < H < N in the last variable, and satisfying the bounds (83l with Ny Ny =
N. Let ® be defined in terms of I by (O.2), which is a function of the variables y, q, h,ni,ny

via the substitutions r = % and t; = hg,n;, i = 1,2. Let us write
2
h h2, h
|mn\ = —|n1n2\£ = —|n1n2\hq2.
q1 q
Then, there exists a function H = Hy(s,t,t1,t3, h) so that
(9.5) LED(L) = / H.(s,t,t1,ty, h)(mn)~*/?ds,
(o)

where Hy is holomorphic in s for Re(s/2) > 0, with 0 any bound towards the Ramanujan
conjecture. If [t| > (Ng|ning|)® then

(9.6) LEO(t) < e (14 [t)) A (Ng|ning|) 1.
If |t| < (¢N|nins|)®, then for Re(s) > 1 it satisfies the bound

) (o ey

Similarly, there exists a function H = Hyo (s, k,t1,ta, h) that is holomorphic in s for
Re(s) > 0 so that

(9.7)  Ha(s,t,t1,15,h) <o (@N) (NP3 (14 |s) (1 +

LMD(k) = / Huoi(s, k, 1, to, h)(mn)~/?ds,
(o)

and satisfies the same bound as (1) for Re(s) > 1 when k < (gN|nine|)e. If k >
(Ng|nins|)® then
LK) <ae b gN|ning|) .
Remarks. Since the claimed bounds are the same for the three choices of 4, hol, we may

easily treat these cases in unison. In addition, the assumption that ¢, ts # 0 is unobjection-
able by the reduction in Lemma [8.3]

Proof. We focus on the case of £* first. Recall that LE®(t) is given by (6.15), where

g 1

[o¢] . 00 d
O(s+1) = 7’/ I(r—1/2y,t1,t2’ h)y8_2dy — 5 / I(y, ty, s, h)ys_l—y,
0 0 y

By (83]), and using that t1t5 # 0, the function I has rapid decay at 0 and oo, and so D is
entire. One sees that £X® has an integral representation of the form (@.5]), with

9) (ot 1) = s 4 1),
T

where recall hy(s,t) is defined by (6.I16). It is easy to check that h(s,t) is analytic for
Re(s/2) > 0 since t € R or —0 < it < 6.

Next we work out bounds on ®. The decay of I(y) from (8H) means in practice that
y < VN and y > max(222 2% For any 4,5 > 0, and s # 1 with Re(s) = o we have

q q
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| fab Yy 2dy| < |s— 1|71 + a7 1). Integrating by parts, using the triangle inequality, and
then using this bound, we deduce for any 7 > 0 that

5 (N ) N + max (—It”Nl —|t2|N2)U_1
~ 7*2 B} 9
99)  B(s+1) <o o —a
|( ) ( 2)‘ (1 + \t1|N1> (1 + |t2\N2>
VNgq VNgq

For future use, we also record derivative bounds with respect to the other variables, which
leads to the following minor generalization of (@.9)), valid for Re(s) = o > 1:

8]'1 +j2+73

75 S+1,t ,t ,h
Ot] Ot Ohis ( iz h)

(9.10)  [t1]7*|to]72 7

o—1
NT%JF%(Nq)sN2 —l—max( a ' q

(1+|s|)A [t1|N1 4 [ta| N2 A
<1+ \/Nq) <1+ \/WQ>

<<j7a'7A

In addition, it is supported on h < H.

We also need a bound on hy(s,t). Let d(-,-) be the distance function on C. Stirling’s
approximation shows that for o fixed and with d(§,Z<o) > Wlo we have
(9.11) h(o+iv,t) < (L4 |t+2)7 (1L+]t—2)=

Now it is easy to derive the bound (@.7) by putting together (@.8)), (@.9), and (Q.IT).
It remains to show (@.6]). To see this, suppose |t| > (Ng|nins|)® and shift the contour of

integration in ([6.17]) far to the left. There are poles of hy(s,t) at s/2 +it =0,—1,-2,...,
which have |[Im(s)| < |t| > (Ng|nins|)°. Since ®(s+ 1) is small at this height, these residues
give a contribution to LE®(t) that are consistent with (0.6). From a trivial bound on the

new line o with d($,Z<o) > 14, we obtain

Py
LED(t) < ( ) ot (N —0
with
_ (|t1|N1 |t2|N2>
a=max (——,——).
q q
Here a is temporary shorthand notation not used past (9.12)) below.
Note that

012 i eV /N
CL\/7_" max(\n1|N1,|n2\N2) max(|n1|N1,\n2|N2)’
where in the last bound we used h < N = Ny Ny. If |t| > (¢N|nins|)¢, we may take o far
to the left to see that LX®(¢) is very small, as desired.
Now we quickly treat the holomorphic case. If s = o+iv with o fixed and d(l‘“’g_1 L<o) >
then analogously to (O.11]), we have

100’
D(k 4 5=t

(9.13) 28~ 1% < |k + )7t
LG -5%)

An essentially identical method now shows that £''® (k) is very small if k& > (¢N|nins|)s.
U
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9.3. The spectral expansion of S(x, ). We will mainly focus on Syjaass(X, )
We apply Lemma 0. to the function I defined in (83), and insert the result in (@.3) to
derive (with t; = hg,n;, n; = nin;)

s/2
14)  Kopass = Ho( ttthh’( 1 )d
(9 M Z e +(8, 5,1, 2, hy,h') B2, W gt 1)) s
(£) / 2
Arey —@) (h h
X A, ( ))\ﬂ <n oo |ny 1 ﬂ).
Z 2 Tafh) 2o 20 (o) (il

Zm— . WE’Hn

sle

Looking back to (m, our next goal is to convert the sums over n},n), to integrals
of Dirichlet series, and to do so we must reduce to positive values of n,. We collect the
contributions from the four quadrants of the n, n}, summation by setting for t;,t, > 0

(915) Hl(sat>t1>t2> h’) = H+(S,t,t1,t2, h) + n(_l)H—(S>ta _tlat2a h)
+ n(_l)H—(‘S? tv tlv _t27 h’) + H+(Sv t7 _tlv _t27 h’)

By Mellin inversion there exists a function Hs such that
(916) Hl (S, t, tl, t2, h) = / tl_ultz_u2h_u3H2(S, t, Uy, U2, u3)du,

where we write u = (uq, u2, u3), and which is absolutely convergent for Re(u;) > 0 for all j.
Using (@.10), we have for Re(s) > 1, Re(u;) > 0, and t; < (Ng)*

3
(9.17) Hy(s,t;,up, ug, ug) < (Nr) 27 (Ng)E MO MG H (1 + |s|)™ H 1+ Juy])™
where a; = Re(u;), and
(9.18) M=Y20 =12

Gathering together (8.10), (0.4)), (@.14), (O.15), and ([O.16) we get
2h2

(9.19)  Siaass(X; hg,l') = m > Plambeh)d ] > >

n(mod g2/hqgy) t; Em:% m€Hir, (m,n?)

47T€7r 5/2 HQ(S, u1’U2’U3) ,
S Z ) ) ; h, h d d ,
q/h'q2 j* / /2-1—(-_‘ hg;—l—uz—l—u;g (h,) S tus (8 Ui, Uo g2 ) s dadu

where

(9.20) Z(s, w1, uz; ho, ') = Z 77, 110)7 (7, 7120)

stur  gtuz

8¢ nionaolgg® LSTORR
S(0,m):q1)S(0,nh: q —©) (W \~() h?
> : /1§+L12 (/ e 1)77(”/1”/2)>\7(r)<—)>\7(r (nwnzonmz q2)-

For clarity, we recollect the origin of the relevant variable names. Firstly, ¢ and d are
given integers with d|q, ¢*|d®. For Theorem [LL5], we want to sum over h = 0 (mod d). In our
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analysis so far, without summation over h, we factored ¢ according to h, via ¢ = g1q where
q1lh and 1 < v,(h) < v,(ge) for all plge.

Our next task is to sum (@.I9) over h = h,h' = 0 (mod d) and move the sum over b’/
to the inside. To implement this swap of the order of summation, we parametrize over all
factorizations ¢ = ¢1¢2 with (q1,¢2) = 1 and all possible values of h,, satisfying h,,|gz with
vp(hyy) < v,(gqa) for all plh,,. Note that these constraints enforce (h,qs) = hg,, and h =0
(mod ¢;). We may also factor d = d;dy where d;|q; and ds|ge, and then only sum over hy,
with da|hy,. In this way, we obtain

(9.21) Yo Swasloh) = > Y > Sutaass(x: hgol).

h=0 (mod d) q192=9 hasla2 h'=0 (mod q1)
(@92)= o (hay)<vplaz)  (W02)=1
d2|hq2

Caution: the status of hy, has changed. Prior to (@.21)), h,, was a function of ¢ and h,
whereas now it is only a summation variable constrained by the conditions indicated above.
Thus,

(9.22)
! 2h32 —2
S Sulilol) - e Y ety Y Y
I— q SO((D/hqz) . __4q . 2
h ?}?/(mid 1(]1) U(mOd QZ/hqz) t] Zm—@ ﬂ-eH’Ltj (m777 )
,q2 )=
4 8/2 Hy(s,uy, us, us)
i 20 o pigrarns 2t i s
where
n(h,>Z(S7 Uy, U2, U3, h'h )
(9.23) Z(s,u1, uz, u3; hy,) = Z (W)s/2+us =
h'=0 (mod q1)
(h’,qg):l
9.4. Properties of Z and Z. Define
=D A(d)
din
Recalling ¢m = q1 , where (q1, q2) = 1, write
0= {05, m = mime, Where {im;=q, lomg = }3—2,
a2

and note (¢3my,loms) = 1. Recall also that (h',q2) = 1, 1|k, that n has modulus ¢2/hy,,
and that g, shares the same prime factors as ¢a/hy,. In Lemma below, we will also make
use of the assumptions ¢3 | di and dy | hy,.

Finally, we mention that = is an automorphic representation/newform of conductor m =
mims and central character n?.

Lemma 9.2. Let Z(s,uy,us; hg,h') be defined by (Q.20), initially with Re(s/2 + w;) large,
t=1,2. Then Z has a factorization Z = Z4o0qZpad, Where

ZgOOd(S> Uy, U2; hqzh/) = L(S/2 + ulaﬁ ® U)L(S/Q + u2>ﬁ & 77),
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and for Re(s/2 +u;) > 0/2>1/2, 1 = 1,2 the series Zy.q is holomorphic, and we have

B 3/2 W h3
(9.24) Znad(s, 1, 3 hgy B ) <o (qN) (=, )P qu 40 2<£> A;i(——qi).
a1 hfh q1 45

Proof. To begin, we recall the definition of A9 from (623) and the estimate of Lemma
6.1Ti(2), which together with Hecke multiplicativity imply

(9.25) A (n) < n Y dPe(n/d)| <nf Y dVAN(n/d).

d|(n,5) d|(n,6)
The function e — A%(e) is approximately sub-multiplicative in the sense that \:(de) <.
(de)*Ai(d)A\xi(e). Moreover, \:(d) < d* < dY?. These facts imply that the function
d — d'?X:(n/d) is essentially (i.e. up to a factor d°) monotonically increasing in d. For
example, we may deduce )\ST)( ) < nf(n,6)Y 2)\*( ) This monotonicity property will be

used repeatedly in the proof below.
The Dirichlet series Z = Z (s, u1, ug; hg,h') (see ([Q.20))) factors as follows. Write § uniquely
as 0 = 109 with 01|¢; and 3|5, and let

h' = qhh", where hilgl® and (h",q) =1
Then Z = ZyZ,Z5 where

9.26 Z() S, U1, U2, h” = MXW h” XW ning ),
s+tuir s+u
(n1m2,q)=1 n12 ' 22 ’

S(0,ny; 0, n9; (! ~ (81
Zl(S,Ul,Ug;hl Z Z ! Ch ( 2 Ch)n(nlng))\fr )(hl))\fr )(nlng),

2 S+uy 3 S +ug

01141 n1,m2(q5° 2
and
777 nl (ﬁv n2)_(5 ) h'2
(9.27) Zo(s,uy, ug; h Z Z 2+u1 v PN <n1n2f).
02|62 n1,n2/q5° ny

Let us begin with 7, for which it is not hard to see that

o LO(s/2 + uy, T @1) L9 (s/2 4 up, T ® )
9.28 Zy = A(h" : ’
( ) 0 ( ) g(q)(s +u; + Uz)

where L@ (s, 7) denotes the L-function L(s, ) with the Euler factors at the primes dividing
g removed.
For Z;, we claim

(9.29) Zy < (hg)" (b, €)' qua Xy (),
as we now proceed to show. Let o be such that Re(s/2 + u;) > 0/2 > 1/2. By the first

estimate of (9.25)),
(DN ()

e nlqu nzaéh) 1/2
03 2y Y Ll g,
Since Z; as well as its claimed upper bound (9.29) are multiplicative, it suffices to show
(@.29)) for ¢; a prime power.

Y

01€1 n1,n2|q7° d|(h1,61)
e|(nin2,61)
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In the case that m; # 1 we may use |A;(p)| < 1 for p|m; (see (6.1])) leading quickly to
([@29). In the case {; = g1, we have by positivity the bound d*/2|\;(hy/d)| < (h,£1)Y?X5(hy),
and the bound |\, (niny/e)| < (nino/e)?*e towards the Ramanujan conjecture. Currently
any 6 > 7/64 is admissible. Since ¢; = {;, observe that the summand in (9.30) is maxi-
mized when ny = ny = e = §; = ¢;. Bounding all terms by the e = §; = {; term, the
two preceding bounds show Z; < (h1q)*(hy, €1)26** X% (hy); we then derive (I29) using
(h1,£1)1/2£?/2+0 < (h17£1)1/2—€£%7 since % + 26 < 2.

Next we estimate Z,. We claim

3/2
(9.31) 7 < (aha, ) (22) " X0, ).
q2

The Dirichlet series Z5 can be factored into prime powers, provided that we correspondingly
factor h and n; the Gauss sums are multiplicative, up to a root of unity. Since the claimed
bound on Z, is multiplicative, and so is | Zs|, it suffices to check it when ¢ is a prime power.

We will use estimates for the Gauss sums from Section [Z.Jl Recall in particular from
Corollary [[.2 that the product of Gauss sums 7(77)7 (7, n1)7(7, n2) vanishes except in the two
cases

(1) n is primitive modulo ¢2/h,, and (ning, ¢2) =1
(2) n is trivial, and ga/hy, = p, prime.
Case 1) Suppose 7 is primitive modulo ga/hy,. Then only the terms ny = ny = 1 contribute
to Zs, and we have by the bound (9.25]) for AY) (n)

(9.32) Zy < ¢(n 3/2 52 Z d1/2>\*< q2/q2>

52|£2 h22
d|(82, -2 )

2

h2
Note that €2|}372 and 572 | -2, since we recall ¢ | d3 and dy | hy,. Therefore, the largest
2 2

value of d appearing in the bound (9.32]) above is d = /5. Since the summand in ([9.32)) is
essentially monotonic, we have

h2
Zy < g5 c(n)*?05° X (#)
2
If my # 1, then |A;(p)| < 1 at primes dividing ¢y (see (6.1])) and we easily obtain (@.31]). If
mg = 1, then f5 = g3/h,,, and the bound simplifies as
Zy < g5 ()P0 N (1, /65).

Substituting ¢(n) = g2/h,, gives the desired bound.
Case 2) Suppose 7 is the trivial character and g2/hy, = p is prime. We obtain by (9.25)

2

7’L1, 712, ) 1/2 * <n1n2h’q2/q2)

(9.33) ZQ<<q2;; > )T > 2 dEN (=)
2|02 n1,m2|p™> dl@z,ﬂmz%)

The largest value of d appearing in the above sum is at most ¢ regardless of ny,no, and

the summand is monotonic increasing in d. Similarly, the summand in (@.33) is monoton-

ically decreasing as a function of nq,ns as soon as ni,ne > p by current progress towards
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Ramanujan. Hence

2 h2
7o < a2 (P = gprlf e ()

We can further simplify this bound as follows. If my # 1, then |A;(p)| < 1 for p|mg. If
mg = 1, then o = g3/hy, = p. In either case, we obtain

Zy < a5ply "N (hyy).
This bound can in turn be absorbed by (9.31]) using current progress towards Ramanujan,
since hy, = %%, so that A% (hg,) < Ne(h2,/q5)(q2/hg,)?, and 1420 < 3/2.
Putting together the previous estimates finishes the proof. O

Lemma 9.3. Suppose that ¢ = q1q2 with (q1,q2) = 1, and suppose that h,, is an integer as
in (O21). Then

(9.34)  Z(s,u1,u2,us; hygy) = L($/2 4+ w1, T @n)L($/2 4+ uz, T @ n)L(s/2 + u3, T @ 1) Zpaa,
where for Re(s/2 +u;) > 0/2>1/2,1=1,2,3 the series Zp,q is holomorphic, and we have

3
e —c/2 1/2( 42 82, @
(9.35) Zpoa <o (N2 qul1 0} (hq) >\7T<q§).

Remark. Lemma implies that Z has analytic continuation to the region of C* with
Re(s/24+wu;) > 1/2,i=1,2,3.

Proof. As in the proof of Lemma [0.2] we have a factorization of the left hand side of (0.34))
as 2021 Z,, analogously to ([0.26)—(©.27). For instance,

_ n(qihy) .
oo h|Z WZl(s,ul,u2, ha).
1lgt®

Then using ([9.29), we have

- i (h _ Y
2 <q ol > h((,/;) (hi, )70 < g™ Pt
halgre "1

The case of Z5 is easy now, because Z, is identical to (@.27), since (h', g2) = 1. Therefore,
the bound ([@31)) holds for Z,. Finally, it is easy to see from (Q.28)]) that

1., L9(s/2+u;, 7 @)

O
CD(s+ uy + uo)

Zo= S ) s g ) =
0 — (h//>s/2+u3 0\o, ¢1, U2, W3, -
(h”,qg):l

9.5. Properties of Z, Eisenstein case. Suppose that nisa Dirichlet character modulo
¢2/hg,, which we may also identify with a character of Z*. For a Hecke character u, we
write 4 ® n for the twist of p by the finite order Hecke character corresponding to 7. Let
Z be defined by (@.20), but where 7 is a global principal series/newform FEisenstein series
of conductor m, central character n?, and spectral parameter it. Similarly define Z for 7 a
global principal series/newform Eisenstein series.

Lemma 9.4. The following properties hold for Z and Z in the Fisenstein case:
(1) Lemmas[9.2 and[9.3 carry over verbatim.
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(2) The series Z has meromorphic continuation to the region of C* with Re(s/2 + u;) >
1/2, i =1,2,3. Its only possible poles are at s/2 4+ u; £ it = 1, which occur if and
only if m =~ w(pq, p2) with p; unitary Hecke characters of conductors r;, i = 1,2 such
that = plgx = polzx.

In particular, only if 11 = r9 and riro = m, so my = 1, and m s a square.
(3) Factoring Z = Z 004 2baa as in (Q.34), for Re(s/24+w;) > 1+4¢,i=1,2,3, we have

(9.36) Zpaa < (gN)oq7 0103 o)

Proof. Part (1) follows from inspection of the proofs of Lemmas 0.2l and @3] This also gives
the meromorphic continuation of Z with possible poles only at the poles of L(s/2+u;, T®n)
fori=1,2,3.

Write m = m(pq, o) where py, e have conductors 7y, ro, respectively. Therefore, piqp0 =
n?, riry = m, and

L(s, T ®n) = L(s, i1 @n)L(s, iz @ ).
This L-function has a pole if and only if the conductor ¢(fiy ® ) = 1, equivalently if and
only if ¢(7i3 ®n) = 1. In this case, since 717 ® 77 is unramified at all finite places and 7 is finite
order, we have 1 = 1|5« = pi2|5x. In particular, the possible locations of the poles are as
stated in the lemma. Moreover, since n has conductor dividing ¢2/h,, (which is coprime to
q1), this implies m; = 1. Additionally, r; = ry, and so m = r?.

Finally, to show (@.36]), we simply revisit the estimates of Z; and Z5 from the proofs of
Lemmas and [@.3] but now the estimates occur slightly to the right of the 1-line instead of
slightly to the right of the 1/2-line, and we may additionally use the Ramanujan bound for
simplicity. Indeed, inspection of (@.30) shows Z; < (hiq)°¢1, and hence Z; < (hiq)°q; '{;.
Similarly, (@32) and ([@33) lead to 25 = Zo < ¢ ¢(n)¥/203>. O

9.6. Using the spectral bounds.

Proposition 9.5. With notation as in this section, we have

(9.37) D Suasss(Xx,h) < N(gN)",
h=0 (mod d)

Observe that Proposition is consistent with Theorem

Proof. We take the expression (9.22), move the contours of integration so Re(s) = 1 + &,
Re(u;) = ¢, j = 1,2,3, and apply the triangle inequality. We use (@I7) and Lemma to
bound H, and Z, respectively. Altogether, we obtain

(9.38)
o W) has (4 \'*Ng
Z SMaaSS(X7 thh ) < m Z <h > Z Z

h'=0 (mod q1) n (mod q2/hg,) q q2 1< (gN)® bm=7L
(W ,q2)=1 =
3

Q1€1€1/2<}§12 )3/2 Z 2\ (};_) /H |L(s/2 + u;, ™ @n)|ds du,
q2 2

7r€7-litj (m,n?)

plus a small error term. The limits on the integral sign are not displayed; to be definite, the
integrals (over s,uq,us,u3) have real parts as fixed above. Since the function Hs has rapid
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decay along vertical lines, the integrals may be truncated at (¢/N)® with a very small error
term.

Before applying any more advanced tools to bound this expression, we first clean it up
with trivial simplifications, giving

1/2 c
(939) Y St 1) < L LN > )3

h'=0 (mod q1) 4 n (mod q2/hgy) t;<(qN)®

(W sq2)=1
h3 i
Soun? Y A;(q—‘g)/E\L(s/2+ui,ﬁ®7})|d8du,

Zm:—2 m€Hir, (m,n?)

plus a small error term. Inspired by the method of [BM], we apply Hélder’s inequality with
exponents (4,4,4,4). Note that (\:(m))? < m°\:(m?), using the Hecke relations. This
gives

hel>N(qN)?

S Staas( hpl) < At Ayt At Ay,
h'=0 (mod q¢1)
(h',g2)=1
where
2 * hgz 2
DI > G
t; << (gN)e Zm_—2 n (mod q2/hqy) neHitj (m,n?) 2

and for i = 2, 3,4,

LETD VRN VD D Z /|Ls/2+u2,7r®n)\4dsdul

n(mod g2/hgy) t;<K(gN)e m= ﬂ 7'('67‘[17:

Note that we arranged ¢; evenly in each A;, but took (61/ Y =12in A.
Now we turn to the estimates for each A;, starting with A;. Our aim is to apply Lemma
[T5] but A; is not quite in the correct form. This can be easily remedied by arranging

{n(mod q2/hg,)y = |J  {n:n’ =4}

¥ (mod g2/hqy)

even

Note that the interior set on the right hand side is of cardinality < ¢5, since it is a coset of
the subgroup of characters modulo g/h,, of order dividing 2. With this observation, Lemma

gives
A < (gN)* Z A Z €2 <m1m2 (Z—%)my2>,
Gmi=q lyma—
Recalling that (q2/hg,)? < hy,, we deduce
Ar < (gN) qrhg,.
For A;, i = 2,3,4, by Theorem [Z.6] we have

2
A; < (gN )5%.
q2
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Therefore,
hé/zN(qN)a 1/44,1/4 Chqg 3/4 e q;/2
(940) . Zd SMaass(X> hqzh'/) < 2fql hqz/ <h—22) = (qN) N@
'=0 (mo
et

Finally, we insert (2.40) into (Q.21)), giving

1/2
> Swas(eh) < @NN Y Y B
h<H q192=q gy lgo hq2
h=0 (mod d) (q1,92)=1 vp(hay ) <vp(g2)
d2|hq2

The summand is largest when h,, = ds, and since ¢2 | d3, we have dy* > ¢/?, which
completes the proof of Proposition O

Proposition 9.6. The bound stated in Proposition holds for Syer-
Proof. The proof is nearly identical, changing the obvious things that need to be changed. [

9.7. The Eisenstein series contribution. The contribution of the Eisenstein series Sgis is
largely similar to the Maass form case, with one important difference. In the Maass case, we
related Kyraass to a Mellin integral involving twisted L-functions, which we shifted slightly
to the right of the critical line. In the Eisenstein case, we will perform the same steps, but
there will be a polar contribution arising since the twisted L-functions are now products of
Dirichlet L-functions, which may have a pole when the character is trivial. We denote by
Spole the contribution from this pole.

Proposition 9.7. The same bound stated in Proposition[3.3 holds for Sgis — Spole-
Proof. This is clear from Lemma [0.4] O

Proposition 9.8. We have

NH
SPole(X) < d_1/8T(Nq)€.

This bound is more than satisfactory for Theorem

Proof. The term Spoe(x) only arises when Z has a pole. By Lemma [0.4] such poles arise

at 5 +w; £it = 1 precisely when 7 ~ (1, po) with n = p1|5. = pa|g«.. In particular,

c¢(m) = ¢(n)?, and lyc(n)? = 572. The contribution of the polar terms may be estimated by
2

setting the integrals in the Eisenstein analogue of (0.22)) to Re(s) = 1+¢, and Re(u;) = 1/2+¢

for i = 1,2,3, and using ([Q.36]) to estimate Zy,q in lieu of (@.35). Writing ¢(n) = v, and

using (O.I7) we obtain

2

h 14
Z SPOIC(Xv h’42 h/> < ngqi Z _165/21)3/2

h'=0 (mod q1) by lyv2=712 0
q

(R ,q2)=1

Z* (Q/hi)l/z (NQ2) (M1M2H)l/2

(Ng)°.
q/hq, Py, h22/2

1 (mod v)
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Recalling that M; M, = ¢? (see (OI8)) and simplifying gives

NHY2he)*(Ng)
Yo Seoelx heph!) < q3q/22 )

h'=0 (mod q1) 521}2::_
(h',q2)=1 2

Note £5/20%/2 < (g3 /hq,)?*. Therefore,

6;/21)5/2.
2

NH1/2(Nq)€
Y Seaclxs heh') < PRI
h'=0 (mod q1) AR 4
(h',q2)=1

Including the outer summations appearing in (9.21]), we then deduce

NH'Y*(Ng)*  NH(Nq® ¢
S ole(X) < = 2 .
P Z 3/2q;/4d§’/4 q qi/2H1/2d§’/4

ae=¢ 4
(q1,92)=1

Using H > qids (since h < H and h = 0 (mod ¢1dy)) and ¢ < dg/ ? shows the claimed
bound. O

Applying Propositions [0.5] 0.6] 0.7, 0.8 and (8.8) to the sum over h =0 (mod d) of (9.4)),
we conclude the proof of Theorem [I.5]
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