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In the past two decades genomic data have been widely used to detect historical gene flow between species in a
variety of plants and animals. The Tamias quadrivittatus group of North America chipmunks, which originated
through a series of rapid speciation events, are known to undergo massive amounts of mitochondrial introgression.
Yet in a recent analysis of targeted nuclear loci from the group, no evidence for cross-species introgression was
detected, indicating widespread cytonuclear discordance. The study used the heuristic method HYDE to detect
gene flow, which may suffer from low power. Here we use the Bayesian method implemented in the program BPP
to reanalyze these data. We develop a Bayesian test of introgression, calculating the Bayes factor via the Savage-
Dickey density ratio using the Markov chain Monte Carlo (MCMC) sample under the model of introgression.
We take a stepwise approach to constructing an introgression model by adding introgression events onto a well-
supported binary species tree. The analysis detected robust evidence for multiple ancient introgression events
affecting the nuclear genome, with introgression probabilities reaching 63%. We estimate population parameters
and highlight the fact that species divergence times may be seriously underestimated if ancient cross-species
gene flow is ignored in the analysis. We examine the assumptions and performance of HYDE, and demonstrate
that it lacks power if gene flow occurs between sister lineages or if the mode of gene flow does not match the
assumed hybrid speciation model with symmetrical population sizes. Our analyses highlight the importance of
using adequate statistical methods to reach reliable biological conclusions concerning cross-species gene flow.
Bayesian test | BPP | chipmunks | introgression | MSci | multispecies coalescent | Savage-Dickey density ratio

Introduction
Genomic sequence data are a rich source of information concerning the history of species divergences and cross-
species gene flow. The past two decades have seen widespread use of genomic data to infer hybridization or
introgression (Mallet et al., 2016). Gene flow has been detected in a variety of species including Arabidopsis
(Arnold et al., 2016), butterflies (Martin et al., 2013), corals (Mao et al., 2018), lizards (Finger et al., 2022), birds5

(Ellegren et al., 2012), and mammals (Kumar et al., 2017; Chan et al., 2013; Shi and Yang, 2018). The studies
have considerably enriched our understanding of the evolutionary dynamics of introgressed genes, and the role of
introgression in speciation and ecological adaptation (Payseur and Rieseberg, 2016; Martin and Jiggins, 2017).

A number of statistical methods have been developed to analyze genomic sequence data to detect gene flow
between species and to estimate its strength (as measured by the introgression probability or migration rate).10

Heuristic or summary methods are based on summaries of the multilocus sequence data and include the popular
D-statistic or ABBA-BABA test (Patterson et al., 2012), HYDE (Blischak et al., 2018), and SNAQ (Solis-Lemus
and Ane, 2016). The D-statistic and HYDE use the site-pattern counts for a species quartet to test for the presence
of gene flow between non-sister species, while SNAQ uses the frequencies of estimated gene tree topologies.
Likelihood methods use the multilocus sequence alignments directly and include the Bayesian implementations of15

the introgression model in PHYLONET/MCMC-SEQ (Wen and Nakhleh, 2018), *BEAST (Zhang et al., 2018), and
BPP (Flouri et al., 2020), as well as the maximum-likelihood and Bayesian implementations of the continuous-
migration model (also known as the isolation-with-migration or IM model) (Nielsen and Wakeley, 2001; Zhu and
Yang, 2012; Dalquen et al., 2017; Hey et al., 2018). See Jiao et al. (2021) for a recent review. In theory, likelihood
methods are expected to be more powerful because they use all information in the data about the model and20
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parameters. However, summary and likelihood methods for inferring cross-species gene flow are seldom applied to
the same real datasets with their utilities evaluated, partly because likelihood methods typically involve intensive
computation and may not be computationally feasible for genome-scale datasets. In this regard, it is noteworthy
that the BPP implementation of the multispecies-coalescent-with-introgression (MSci) model has been successfully
applied to genomic datasets of more than 10,000 loci (Flouri et al., 2020, table 1; Thawornwattana et al., 2022,25

table S4).

Figure 1: Geographic distributions of the six chipmunk species in the Tamias quadrivittatus group, based on data
downloaded from the IUCN (https://www.iucnredlist.org/).

Table 1. Summary of evidence for mitochondrial introgression in the T. quadrivittatus group (Sullivan et al., 2014)

Species Region Distribution Introgression Source
T. bulleri M Allopatric No
T. canipes (C) GB/RM Allopatric No
T. cinereicollis (I) GB/RM Parapatric Yes Not assignable
T. dorsalis (D) GB/RM Parapatric Yes C/U/Q/Not assignable
T. durangae M Allopatric No
T. palmeri GB/RM Allopatric Untested
T. quadrivittatus (Q) GB/RM Parapatric Yes Not assignable
T. rufus (R) GB/RM Allopatric No
T. umbrinus (U) GB/RM Parapatric Yes Not assignable

Note.— Geographic regions include Great Basin (GB), Rocky Mountains (RM), and Mexico (M). Single letter codes are for the six species
included in the nuclear data analysis.

The Tamias chipmunks (sensu lato, but see Patterson and Norris, 2016) are a diverse group of at least 23 distinct
species, occupying a variety of habitats in the western United States. Molecular phylogenetic studies have revealed
a complex history of radiative speciations and cross-species gene flow involving morphologically and ecologically
diverse lineages (Good and Sullivan, 2001; Good et al., 2003).30

The Tamias quadrivittatus group of chipmunks currently consists of nine species that are distributed across
the Great Basin along with the central and southern Rocky Mountains in North America (fig. 1). Previous work
on Tamias has highlighted the importance of genital morphology, specifically the baculum (a bone found in the
penis) in male chipmunks, as a reliable indicator of species limits (Patterson and Thaeler Jr, 1982; White, 2010).
The biogeographic history of the group likely included large range fluctuations that have periodically resulted35

in isolation and secondary contact among species, which would have affected opportunities for hybridization
and/or introgression (Good et al., 2003). The current distributions of species in the group has extensive regions
of overlap and broad parapatry in ecological transition zones (fig. 1), with instances of both allopatry and parapatry,
and the determinants of current distributions are thought to be related primarily to competitive exclusion and
ecological preference (Brown, 1971; Heller, 1971; Root et al., 2001). The system provides an exciting opportunity40

to investigate the effects of introgression on genetic variation within and between species.
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Hybridization between chipmunk species has been widely reported based on discrepancies between mtDNA,
nuclear DNA, and morphology (Good and Sullivan, 2001; Good et al., 2003, 2008; Hird et al., 2010). Work in the
past decade has documented widespread mitochondrial introgression among species of the group (Reid et al., 2012;
Sullivan et al., 2014; Sarver et al., 2017, 2021), which is often asymmetrical, possibly due to bacular morphology,45

which has been identified in at least six species (Good et al., 2003, 2008; Reid et al., 2012; Sullivan et al., 2014).
Recent work on six species in the T. quadrivittatus group found that four of them exhibited clear evidence of
introgressed mitochondrial DNA: T. cinereicollis, T. dorsalis, T. quadrivittatus, and T. umbrinus (table 1). The
cliff chipmunk (T. dorsalis) was involved in local introgression with multiple other species, receiving mtDNA
from whichever congeneric chipmunk it came into contact with. However, populations of T. dorsalis that are50

geographically isolated carry mtDNA haplotypes that are unique to the species (Sullivan et al., 2014; Sarver et al.,
2017). Range overlap in transition zones plays an important role in mitochondrial introgression in Tamias (Brown,
1971; Bi et al., 2019).

Sarver et al. (2021) used a targeted sequence-capture approach to sequence thousands of nuclear loci (mostly
genes or exons) to estimate the species phylogeny of the T. quadrivittatus group and to infer possible nuclear55

introgression. The program HYDE (Blischak et al., 2018) was used to infer gene flow. Surprisingly, no significant
evidence for gene flow involving the nuclear genome was detected between any species in the group, despite the
evidence for widespread mitochondrial introgression. We note that HYDE, like the D-statistic, uses the four-taxon
site-pattern counts pooled across the genome as data, and does not use information in the variation in genealogical
history across the genome caused by the stochastic fluctuation of coalescent and introgression (Lohse and Frantz,60

2014; Jiao et al., 2021; Zhu and Yang, 2021). As a result, neither the D-statistic nor HYDE can detect gene flow
between sister species or populations. Importantly, HYDE is designed to estimate the relative genetic contributions
of the two parental species which hybridized to form a third species. When applied to detect other modes of gene
flow, it makes restrictive assumptions about the direction of gene flow, and about species divergence times and
population sizes that may be unrealistic (see fig. 7 below). The performance of HYDE when its model assumptions65

are violated is unexplored.
To examine whether the lack of evidence for nuclear introgression in the analysis of Sarver et al. (2021) may be

due to the lack of power of HYDE, here we re-analyze the data of Sarver et al. (2021) using the BPP program (Flouri
et al., 2018, 2020), which includes a Bayesian implementation of the MSci model. Borrowing ideas from stepwise
regression or Bayesian variable selection, we add introgression events sequentially onto the binary species tree70

to construct a joint MSci model with multiple introgression events. We develop a Bayesian test of introgression,
calculating the Bayes factor for comparing the null model of no introgression against the alternative model of
introgression via the Savage-Dickey density ratio (Dickey, 1971), using a Markov chain Monte Carlo (MCMC)
sample under the MSci model. This may have a computational advantage over cross-model MCMC algorithms
such as reversible jump MCMC (Green, 1995) or calculation of Bayes factors using thermodynamic integration75

(Gelman and Meng, 1998; Lartillot and Philippe, 2006). Our re-analysis revealed robust evidence for several ancient
introgression events affecting the nuclear genome in the Tamias group, involving both sister species and nonsister
species. We examine the model assumptions underlying HYDE and use computer simulation to demonstrate that
the opposite conclusions reached in the two analyses may be explained by the lack of power of HYDE to detect
gene flow. We then assess the impact of ignoring introgression on estimation of population parameters, highlighting80

serious biases in species divergence time estimation when introgression exists and is ignored. Our results highlight
the power of coalescent-based likelihood methods in the analysis of genomic datasets to infer the history of species
divergence and gene flow.

Theory: Bayesian test of introgression
Bayes factor is given by the Savage-Dickey density ratio in comparisons of nested hypotheses85

One can test for the presence of cross-species gene flow by comparing the introgression (MSci) model with the
corresponding multispecies coalescent (MSC) model with no gene flow. The model of no gene flow (H0) is a
special case of the introgression model (H1), with H1 reducing to H0 when the introgression probability is 0.

The commonly used device for Bayesian model comparison is the Bayes factor, which is the ratio of the marginal
likelihood values under the two compared models. When the two models are nested, the Bayes factor is given by90

the Savage-Dickey density ratio (Dickey, 1971). In general, suppose we wish to compare the null model H0 : φ = φ0
against the alternative model H1 : φ ̸= φ0, and suppose that both models have common (nuisance) parameters λ ,
while parameters ξ in H1 become unidentifiable when φ = φ0. The parameter vector is λ for H0 and (φ ,λ ,ξ ) for H1.
Given data x, let the likelihood be L0(λ ) under H0 and L(φ ,λ ,ξ ) = p(x|φ ,λ ,ξ ) under H1, with L(φ0,λ ,ξ ) = L0(λ )
as the two models are nested. Let the prior be π0(λ ) under H0 and π(φ ,λ ,ξ ) = π(φ)π(λ |φ)π(ξ |φ ,λ ) under H1.95

The Bayes factor in support of H1 over H0 is defined as
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B10 =
m
m0

=

∫∫∫
π(φ ,λ ,ξ )L(φ ,λ ,ξ )dφdλdξ∫

π0(λ )L0(λ )dλ
, (1)

where m0 and m are the marginal likelihoods for the two models respectively.
Under the assumption that the priors on the common parameters (λ ) agree between the two models, with

π(λ |φ0) = π0(λ ), (2)

B10 can be expressed as the ratio of the prior and posterior densities for φ in H1, both evaluated at the null value φ0:

B10 =
m
m0

=
π(φ0)

π(φ0|x)
, (3)

where π(φ |x) =
∫∫

π(φ ,λ ,ξ |x)dξ dλ is the marginal posterior density of φ .100

Proof. Rewrite the prior π0(λ ) and likelihood L0(λ ) under H0 as densities under H1.

B10 =
m∫

π0(λ )L0(λ )dλ

=
m∫

π(λ |φ0)L0(λ )dλ

=
m∫ ∫ π(φ0,λ ,ξ )

π(φ0)
L(φ0,λ ,ξ )dξ dλ

=
π(φ0)∫ ∫ 1

m π(φ0,λ ,ξ )L(φ0,λ ,ξ )dξ dλ

=
π(φ0)∫∫

π(φ0,λ ,ξ |x)dξ dλ

=
π(φ0)

π(φ0|x)
.

(4)

Thus eq. 3 holds even if there exist nuisance parameters (λ ) in both models, if the null values (φ0) are at the
boundary of the parameter space in H1, and if some parameters in H1 (ξ ) become unidentifiable when the parameters
of interest take the null values (when φ = φ0). The proof above is more general than that given by Dickey (1971),
which does not deal with the unidentifiability of ξ . Note that such irregular conditions cause considerable difficulties105

for likelihood ratio test (LRT), leading to unknown null distributions for the test statistic (e.g., Self and Liang, 1987).
It is interesting that they do not cause any difficulty for the Bayesian test.

If the condition on the priors (eq. 2) does not hold, a correction factor may be applied (Verdinelli and Wasserman,
1995). This is not needed in our application.

Calculation of the Savage-Dickey density ratio110

The prior density π(φ0) of eq. 3 is typically available analytically. The posterior density π(φ0|x) can be estimated
using a kernel density smoothing procedure using the MCMC sample under H1 (Silverman, 1986). This means
that calculation of B10 using eq. 3 requires running the MCMC under H1 only and no cross-model algorithms such
as reverse-jump MCMC (Green, 1995) are needed. Note that within-model MCMC typically has better mixing
properties than cross-model algorithms (Yang, 2014, pp. 247-260).115

Suppose (φ (1),φ (2), · · · ,φ (N)) are an MCMC sample from the posterior π(φ |x). These are the φ values sampled
during the MCMC, with the values for other parameters (λ and ξ ) simply ignored. The kernel density estimator at
the point φ0 is

π̂(φ0|x) =
1

Nh

N

∑
i=1

K
(

φ0 −φ (i)

h

)
, (5)

where K(·) is the kernel smoothing function and h is the smoothing parameter or window width. A good choice of
h is120

h = 0.9 ·min
(

SD,
inter-quartile range

1.34

)
×N− 1

5 (6)

(Silverman, 1986, eq. 3.30-3.31, p.47). The kernel function K is typically symmetrical around 0, with points further
away from φ0 make less contribution to the density at φ0. For example, the Gaussian kernel is given as
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Figure 2: (a) Bayes factor expressed as the Savage-Dickey density ratio in the test of the null hypothesis H0 : µ = 0
against the alternative hypothesis H1 : µ ̸= 0, using a data sample from N(µ,1). The black and red curves represent
the prior and posterior densities for µ in H1, and the small interval (of width ε) in the parameter space for H1 is
the null interval ø (or interval of null effects), representing H0. The prior and posterior probabilities over the null
interval (the gray and red areas) depend on the interval width (ε), but when ε → 0, their ratio converges to the
Bayes factor B10 =

π(µ0)
π(µ0|x)

. If the area of null effects shrinks greatly when we move from the prior to the posterior,

the data contain strong evidence against H0. (b) Approximate Bayes factor B10,ε = P(ø)
P(ø|x) (eq. 8) plotted against ε

for a dataset of size n = 100 with the sample mean x̄ = 0.258. The prior is µ ∼ N(0,σ2
0 ) with σ0 = 2 (twice the

sampling standard deviation). When ε → 0, B10 = 1.381. (c) Bayes factor (eqs. 1 or 13) plotted against the prior
variance σ2

0 for the same dataset showing the sensitivity of B10 to the prior on the parameter of interest (µ). Note
that in this dataset (with

√
n|x̄|= 2.58) H0 is rejected by the LRT with p-value 1%.

K(t) = 1√
2π

e−t2/2 . (7)

However, this approach may be awkward to apply if the prior or posterior density at the null value, π(φ0) or
π(φ0|x), is 0 or ∞. In this paper, we use a more intuitive way of deriving the Savage-Dickey density ratio of eq. 3,
which also provides an approach to its calculation. This treats the problem of testing as a problem of estimation,125

and assesses how likely the parameter of interest (φ ) differs from the null value (φ0). Define a null region or region
of null effects, ø : |φ −φ0|< ε , inside which φ is very close to φ0. The null region is a small part of the parameter
space for H1 that represents H0 (fig. 2). We then define a Bayes factor to represent the evidence for H1

B10,ε =
1−P(ø|x)
P(ø|x)

/
1−P(ø)
P(ø)

≈ P(ø)
P(ø|x)

, (8)

as 1−P(ø) ≈ 1 and 1−P(ø|x) ≈ 1 for small ε . When ε → 0, P(ø)→ π(φ0)∆ and P(ø|x)→ π(φ0|x)∆, where the
differential ∆ is the size of the null region, so that B10,ε → π(φ0)

π(φ0|x)
, as in eq. 3. Thus the same conclusion is reached130

whether the problem is considered a testing problem (eqs. 1 or 3) or an estimation problem (eq. 8).
The approach is illustrated in figure 2 using the simple problem of testing H0 : µ = 0 against H1 : µ ̸= 0 using

a sample of size n from N(µ,1). The data are summarized as the sample mean |x̄|. We assign the prior µ ∼
N(0,σ2

0 ) under H1. The posterior is then µ|x ∼ N(µ1,σ
2
1 ), with µ1 = nx̄

n+1/σ2
0

and 1
σ2

1
= n+ 1

σ2
0

. The prior and

posterior probabilities of the null interval are P(ø)=P{|µ|< ε}= 1−2φ
(
− ε

σ0

)
≈ π(µ0)∆ and P(ø|x)= φ

(
ε−µ1

σ1

)
−135

φ
(−ε−µ1

σ1

)
≈ π(µ0|x)∆, with the differential to be the width of the null interval, ∆ = 2ε .

The above theory applies generally to Bayesian testing of nested hypotheses. Examples include comparison of
different species delimitation models (e.g., one-species versus two-species models) (Yang and Rannala, 2010) and
test of migration between species (e.g., two species with and without migration) (Nielsen and Wakeley, 2001).

Test of introgression140

When we use the Savage-Dickey density ratio (eq. 3) to test introgression, the nuisance parameters include species
divergence times (τ) and population sizes (θ ) on the species tree. Since we use the same priors on τ and θ in
models with and without introgresion, independent of the introgression probabilities (ϕ), the assumption of eq. 2
holds. We consider two tests with different assumptions about the population size parameters (fig. 3). In test 1, the
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Figure 3: Parameters in the alternative and null hypotheses in two Bayesian tests of introgression (i.e., test of
H0 : ϕ = 0 against H1 : ϕ > 0). The parameter of interest is the introgression probability ϕ . In test 1 (a), the shared
parameters are λ = (τR,τX = τY ,θA,θB,θR,θX ,θY ). In test 2 (b), the shared parameters are λ = (τR,θA,θB,θR)
while ξ = (τX = τY ) in H1 becomes unidentifiable at the null value ϕ0 = 0. Here only the two species involved in
introgression are shown. Including other species on the species tree adds the same set of parameters to the null and
alternative hypotheses.

MSci model assigns different θ parameters on the two segments of a branch broken by an introgression event; for145

example, in figure 3a branch RA is broken into two branches RX and XA and assigned θX and θA, respectively. The
null model of no gene flow will have two θ parameters for the branch as well. Such a model can be implemented
in BPP by including ghost species in the MSC model from which no sequences are sampled (fig. 3a). In the second
test, the MSci model assigns the same θ parameter for a branch on the species tree before and after an introgression
event (which can be specified using the control variable thetamodel = linked-msci in BPP) (fig. 3b). When the150

introgression probability takes the null value (0) in H1, the introgression time τX becomes unidentifiable. The proof
of eq. 4 applies to both scenarios. In this study, we used test 1. Note that calculating the Bayes factor using the
Savage-Dickey density ratio (eqs. 3 or 8) requires an MCMC sample from H1 and does not require any analysis or
MCMC run under H0.

In our BPP analysis, the introgression probability ϕ is assigned a beta prior beta(a,b), and the null hypothesis155

corresponds to ϕ0 = 0 in H1. Let the null region be ø : ϕ < ε . Then P(ø) = P(ϕ < ε) in eq. 8 is given by the
cumulative distribution function (CDF) for beta(a,b), while P(ø|x) is simply the proportion of the sampled ϕ values
that are < ε . Intuitively, the null region ø : ϕ < ε in H1 represents absence of introgression (as the introgression
probability ϕ is negligibly small), 1−P(ø)

P(ø) is the prior odds in favor of gene flow, while 1−P(ø|x)
P(ø|x) is the posterior odds,

and B10 measures the change in the odds in favour of gene flow when we move from the prior to the posterior. We160

used ε = 0.01 and confirm that use of ε = 0.001 gave very similar results. A cut-off of 20 for B10 may be considered
strong evidence in support of H1 (corresponding to 95% posterior for H1 if the prior model probabilities for H0 and
H1 are 1

2 each), while 100 means extremely strong evidence (corresponding to 99% posterior for H1).

Materials and Methods
Chipmunk genomic data165

The dataset, generated and analyzed by Sarver et al. (2021), includes 1060 nuclear loci from six chipmunk species:
T. rufus (R), T. canipes (C), T. cinereicollis (I), T. umbrinus (U), T. quadrivittatus (Q) and T. dorsalis (D) (with
5, 5, 9, 10, 11, 11 individuals, respectively), as well as the outgroup T. striatus (3 individuals). We included all
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individuals whether or not their mtDNA was likely to be introgressed. Due to lack of a reference genome, Sarver
et al. (2021) assembled genomic loci (targeted genes or exons) into contigs using an approach called Assembly170

by Reduced Complexity (ARC). Filters were then applied to remove missing data (contigs not present across all
individuals) and sequences with likely assembly errors. The procedure generated a dataset of 1060 loci (1060 ARC
contigs, Sarver et al., 2021), with sequence length ranging from 14 to 1026 bp among loci and the number of
variable sites from 0.33% to 15.2%.

High-quality heterozygous sites in the data, as identified by high mapping quality and depth of coverage, are175

represented using IUPAC ambiguity codes. They are accommodated using the analytical integration algorithm
implemented in BPP (Flouri et al., 2018; Gronau et al., 2011). This takes the unphased genotype sequences as data
and averages over all possible heterozygote phase resolutions, using their relative likelihoods based on the sequence
alignment at the locus as weights (Huang et al., 2021).

Species tree estimation for the T. quadrivittatus group180

We used BPP version 4 (Flouri et al., 2018; Rannala and Yang, 2017) to estimate the species tree under the MSC
model without gene flow. This is the A01 analysis (speciesdelimitation=0, speciestree=1) (Yang, 2015).

We assigned inverse-gamma (IG) priors to parameters in the MSC model: θ ∼ IG(3, 0.002) with mean 0.001
for population size parameters and τ0 ∼ IG(3, 0.01) with mean 0.005 for the age of the root. The shape parameter
α = 3 means that those priors are diffuse, while the prior means are based on estimates from preliminary runs. Note185

that both θ and τ are measured in the expected number of mutations per site. The inverse gamma is a conjugate
prior for θ and allows the θ parameters to be integrated out analytically, leading to a reduction of parameter space
and improved mixing of the MCMC algorithm. We conducted 10 replicate MCMC runs, using different starting
species trees. Each run generated 2× 105 samples, with a sampling frequency of 2 iterations, after a burn-in of
16,000 iterations. Each run took about 70 hours using one thread on a server with Intel Xeon Gold 6154 3.0GHz190

processors. Convergence was confirmed by consistency between runs. All runs converged to the same species tree
(fig. 4a), with ∼ 100% posterior probability, which had the same topology as the tree inferred by Sarver et al.
(2021).

Stepwise construction of the introgression model
As the species tree is well supported, apparently unaffected by cross-species introgression, we used the species tree195

to build an introgression model with multiple introgression events. Our procedure is similar to stepwise regression,
the step-by-step method for constructing a regression model that involves adding or removing explanatory variables
based on a criterion such as an F-test or t-test.

Our procedure has two stages. In the first stage, we used BPP to fit a number of introgression models, each
with only one introgression event, and rank candidate introgression events by their strength (indicated by the200

introgression probability ϕ). The analyses of Sarver et al. (2021) suggest that mitochondrial introgression affected
mostly four species: T. umbrinus (U), T. dorsalis (D), T. quadrivittatus (Q) and T. cinereicollis (I). We considered
introgression events involving all possible pairs among those four species, as well as another species, QI, the
common ancestor of T. cinereicollis and T. quadrivittatus (fig. 4a). The dataset of 1060 loci was analyzed under an
MSci model with only one introgression event, estimating the introgression probability (ϕ) and introgression time205

(τ). We assign the same inverse-gamma priors on θ and τ as above, and beta(1,1) or U(0,1) for the introgression
probability ϕ . Two replicate runs were conducted for each analysis to confirm consistency between runs, and
MCMC samples from the two runs were then combined to produce posterior estimates of parameters. This analysis
provides a ranking of the introgression events by the introgression probability. We calculated the Bayes factor for
testing H0 : ϕ0 = 0 given by the Savage-Dickey density ratio (eq. 3), using the null interval ø = (0,0.01) (eq. 8); use210

of (0,0.001) produced virtually identical results. Only introgresssion events with B10 ≥ 20 were considered further.
In the second stage, we added introgression events onto the binary species tree (fig. 4a) sequentially in the order

of decreasing strength (introgression probability). To reduce the computational cost and to examine the robustness
of the analysis, this step was applied to two subsets of the 1060 loci: the first half and the second half, each of
530 loci. The priors used for population sizes and root age were as above. With multiple introgression events215

in the model, we extended the MCMC runs to be k-times as long if the model involved k introgression events.
Three replicate runs were performed to check consistency between runs. Samples from the replicate runs were then
combined to produce posterior summaries. At each step, the added introgression event was retained if it met the
same cutoff as above in either of the two data subsets.

Our procedure produced a joint introgression model with three unidirectional introgression events. The joint220

model was then applied to the full dataset of 1060 loci to estimate the population parameters including introgression
probabilities, introgression times, species divergence times, and population sizes (fig. 4b), using the same prior
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Figure 4: (a) Species tree for the T. quadrivittatus group with T. striatus used as the outgroup. Branch lengths
represent the posterior means of divergence times (τ) estimated from BPP analysis of the full data of 1060 loci
under the MSC model with no gene flow, with node bars indicating the 95% HPD intervals. A minimum divergence
time of 7 Myrs for the outgroup T. striatus is used to convert the τ estimates into absolute times. b) The joint
introgression model constructed in this study with three unidirectional introgression events, showing parameter
estimates from BPP analysis of the full data of 1060 loci. Nodes created by introgression events are labeled, with
the labels used to identify parameters in table S3. The MSci model includes 6 species divergence times and 3
introgression times (τ), 19 population size parameters (θ ), and 3 introgression probabilities (ϕ).

settings. We conducted 3 replicate runs, using a burn-in of 50,000 iterations and then taking 106 samples, sampling
every 2 iterations. Each run took 200 hrs.

Results225

Species tree estimation for the T. quadrivittatus group
We analyzed the full data of 1060 loci under the MSC model without gene flow to estimate the species tree. The ten
replicate runs using different starting species trees converged to the same maximum a posteriori probability (MAP)
tree, with posterior probability ∼ 100% (fig. 4a). Sarver et al. (2021) recovered the same species tree topology in
their analysis of the same data using ASTRAL (Mirarab and Warnow, 2015) and SVDQUARTETS (Chifman and230

Kubatko, 2014), although with weaker support for some nodes, e.g., concerning the placement of T. rufus. The
differences in support may be due to the fact that ASTRAL and SVDQUARTETS use summaries of the multilocus
sequence data that are not sufficient statistics, and are thus less efficient than the full likelihood method implemented
in BPP (Xu and Yang, 2016; Zhu and Yang, 2021).

Stepwise construction of the introgression model235

In the first stage of our procedure, we fitted introgression models, each involving one introgression event, using the
full dataset of 1060 loci. We considered introgression events between every contemporary pair of the five species:
T. cinereicollis (I), T. dorsalis (D), T. quadrivittatus (Q), and T. umbrinus (U), and the ancestral species QI (fig. 4a).
Introgression events that passed our cutoff (B10 ≥ 20) are listed in table 2. Introgression from QI into D had the
highest probability, > 10%, while six more events had ϕ > 5%: Q→D, D→QI, QI→U, I→D, Q→I, and I→Q.240

We note that introgressions between Q and I, and between QI and D, was significant in both directions and the
estimated introgressions times were close (table 2). We thus replaced the two unidirectional introgression events by
one bidirectional introgression in further analyses (model D in Flouri et al., 2020).
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Table 2. Posterior means and 95% HPD CIs (in parentheses) for introgression probability (ϕ) and introgression time (τ) in the
separate introgression analysis

Introgression ϕ τ (×10−3) B10

* QIRCD → U 0.6215 (0.3907, 0.8243) 0.896 (0.784, 1.004) ∞

* QI → D 0.1187 (0.0866, 0.1499) 0.337 (0.311, 0.367) ∞

Q → D 0.0779 (0.0509, 0.1026) 0.297 (0.253, 0.328) ∞

D → QI 0.0707 (0.0384, 0.1058) 0.337 (0.302, 0.366) ∞

QI → U 0.0624 (0.0269, 0.1020) 0.408 (0.353, 0.457) 21.27
I → D 0.0579 (0.0332, 0.0862) 0.265 (0.217, 0.318) ∞

* Q → I 0.0568 (0.0315, 0.0750) 0.098 (0.073, 0.121) ∞

I → Q 0.0533 (0.0153, 0.0969) 0.111 (0.077, 0.156) ∞

D → U 0.0214 (0.0022, 0.0483) 0.276 (0.178, 0.474) 0.04
Q → U 0.0198 (0.0037, 0.0389) 0.296 (0.209, 0.367) 0.05
D → I 0.0180 (0.0092, 0.0275) 0.155 (0.123, 0.192) 0.39
D → Q 0.0177 (0.0058, 0.0315) 0.184 (0.117, 0.347) 0.10
U → QI 0.0097 (0.0022, 0.0181) 0.371 (0.322, 0.410) 0.01
I → U 0.0069 (0.0015, 0.0136) 0.158 (0.098, 0.223) 0.00
U → D 0.0066 (0.0024, 0.0112) 0.235 (0.176, 0.300) 0.00
U → Q 0.0061 (0.0008, 0.0127) 0.200 (0.119, 0.294) 0.00
U → I 0.0037 (0.0009, 0.0071) 0.147 (0.090, 0.207) 0.00

Note.— The species tree of figure 4a is used, with a single introgression event assumed in each analysis. The full dataset of 1060 loci is
analyzed using BPP to estimate the introgression probability (ϕ) and the introgression time (τ), together with the species divergence times
(τ) and population sizes (θ ) on the species tree. Introgression events with B10 < 20 (D → U and below) are not considered further in the
stepwise approach of constructing the joint introgression model. The three introgression events that are selected in the joint introgression

model are marked with asterisks. Bayes factor B10 = ∞ occurs if all ϕ values in the MCMC sample are > ε = 1%.

The time of QI→U introgression was estimated to be 0.000408, very close to the species divergence time at
node QIR (0.000417) (fig. 4a), suggesting that the introgression was probably a more ancient event. Note that if245

an introgression event is assigned incorrectly to a daughter branch to the lineage truly involved in introgression,
one would expect the estimated introgression time to collapse onto the species divergence time. We thus attempted
to place the introgression onto more ancient ancestral branches on the species tree (fig. 4a) and finally identified
the lineage involved in introgression to be the ancestral species QIRCD. The QIRCD→U introgression had an
estimated time that was away from the species divergence times, and the estimated introgression probability (62%)250

was the highest (table 2).
In the second stage, we added introgression events identified in table 2 onto the binary species tree of figure

4a, in the order of their introgression probabilities (table S1). This was applied to two data subsets (the full data
split into two halves). While our procedure allows introgression events already in the model to drop out when new
introgressions are added to the model, this did not happen in the analysis of the Tamias dataset. Instead the most255

important introgression events identified in stage 1 remained to be most important in the joint introgression models
constructed in stage 2. Note that multiple introgression events may not be independent. An introgression event
significant in stage 1 may not be significant anymore when other introgression events are already included in the
model. For example, when the QI→D introgression was already included in the model, none of the introgressions
Q→D, D→QI, I→D and I→Q was significant. Those introgressions may be expected to lead to similar features in260

the sequence data, such as reduced sequence divergences between Q or I and D. Similarly, introgression probability
for an introgression event often became smaller when other introgressions were added in the model. However,
the opposite may occur as well. For example, ϕQIRCD→U was estimated to be 54-63% when this was the only
introgression assumed in the model, but increased to 59-69% when other introgression events were added in the
model (table S1).265

Results for the two data subsets were largely consistent, especially concerning introgression events with high
introgression probabilities. We thus arrived at a joint introgression model with three unidirectional introgression
events (fig. 4b, table S1).

We examined the impact of the prior for ϕ on the Bayesian test of introgression. We calculated the Bayes factor
B10 using the full dataset of 1060 loci under the prior ϕ ∼ beta(α,β ), with α = 0.2,1,5 and β = 0.2,1,5, generating270

nine prior settings (table S2). Note that beta(α,β ) has the mean E(ϕ) = α

α+β
and variance V(ϕ) = αβ

(α+β )2(α+β+1) .
In particular, the prior mean varied from 0.0385 for beta(0.2, 5) to 0.961 for beta(5, 0.2). The Bayes factor B10 was
∞ for all three introgression probabilities in the joint model, insensitive to the prior on ϕ (table S2).
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Figure 5: Posterior means and 95% HPD CIs for the three introgression probabilities (ϕ) obtained from BPP analyses
of the full data of 1060 loci using different beta priors, ϕ ∼beta(α,β ).
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Figure 6: Scatterplot of posterior means and 95% HPD CIs (a) for the six species divergence times (τ) and (b) for
the six ancestral population sizes (θ ) in the MSC and MSci models of figure 4 obtained from BPP analyses of the
full data of 1060 loci. Note that both τ and θ are measured in the expected number of mutations per site.

Estimation of introgression probabilities and species divergence/introgression times
Finally, we fitted the joint introgression model of figure 4b to the full data of 1060 loci, as well as the two halves,275

with parameter estimates shown in table S3. The fitted model is very parameter-rich, partly as we assign different θ

parameters for different branches on the species tree: for example, branch Q in figure 4b is broken into two segments
by the introgression event, Q→I, which are assigned two independent θ parameters. As a result, population sizes
for ancestral species tend to be poorly estimated, especially for those populations with a very short time duration.
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Figure 7: (a) HYDE assumes a hybrid-speciation model with the additional assumption of equal population sizes,
or a symmetrical inflow model, with τS = τT and θS = θT (Blischak et al., 2018). (b, c) Two parental species trees
S1 and S2 induced by the hybridization model of (a). Site patterns are a mixture over the two species trees.

These patterns are consistent with simulation studies that examine the information content in multi-locus datasets280

(Huang et al., 2020).
The estimated introgression probabilities from the full data are 0.625 with the 95% highest probability density

(HPD) credibility interval (CI) to be (0.442, 0.794) for ϕQIRCD→U , 0.106 (0.074, 0.139) for ϕQI→D, and 0.050
(0.028, 0.074) for ϕQ→I . The introgression probability ϕQIRCD→U involved considerable uncertainty, with a large
CI, possibly because the introgression is ancient and is between sister species, making it hard to estimate its strength,285

so that the dataset of 1060 loci may be too small.
We evaluated the impact of the prior for ϕ on parameter estimation in the analysis of the full dataset, using

α = 0.2,1,5 and β = 0.2,1,5 in the prior ϕ ∼ beta(α,β ) (fig. 5). The prior had some effects on ϕQIRCD→U , with
the prior mean being more important than the prior variance. Under beta(0.2, 5) with the prior mean 0.0385, the
posterior mean was lower, and the CI wider. Under beta(5, 0.2) with the prior mean 0.961, the posterior mean was290

higher, and the CI narrower. However, the posterior CIs overlapped considerably among the different priors, and
overall the impact of the prior for ϕ on the estimate of ϕQIRCD→U was minor. Estimates of ϕQI→D and ϕQ→I were
insensitive to the prior used (fig. 5).

Accommodating gene flow in the model had significant impacts on estimation of the time of divergence between
species involved in gene flow (figs. 4 & 6). While estimates of times for the recent divergences (τQI,τQIR,τQIRC,295

and τQIRCD) were nearly identical between the MSC model ignoring gene flow and the MSci model incorporating
gene flow, the estimated age of the T. quadrivittatus clade (τQIRCDU ) was much greater under MSci than under
MSC (fig. 6). This can be explained by the fact that the MSC model ignored the QIRCD→U introgression, which
had introgression probability 62.5%. Note that sequence divergence between any pair of species X and Y has to be
older than species divergence (tXY > τXY ), and as a result, the minimum (rather than average) sequence divergence300

dominates the estimate of species divergence time. If gene flow is present between species and is ignored in the
model, the reduced sequence divergence due to gene flow will be misinterpreted as recent species divergence,
leading to underestimation of species divergence time. This effect has been noted in previous simulations (Leaché
et al., 2014).

The estimated age of the root of the species tree (τQIRCDUS) was slightly smaller under MSci than under MSC.305

However, τQIRCDUS is negatively correlated with the population size (θQIRCDUS) so that both parameters have large
uncertainties (Burgess and Yang, 2008).

Sullivan et al. (2014, fig. 1) used the minimum divergence time of 7 Ma for the outgroup species T. striatus, based
on fossil teeth thought to belong to Tamias found in the late Miocene, reported in Dalquest et al. (1996), to date the
T. quadrivittatus clade to 1.8 Ma in a maximum-likelihood concatenation analysis of four nuclear genes, and to 1.2310

Ma (with 95% CI 0.6–2.2) in a *BEAST (Heled and Drummond, 2010) analysis of the same data. Concatenation
analysis is known to be biased as it does not accommodate the stochastic variation of gene tree topologies and
divergence times among loci due to the coalescent process (Ogilvie et al., 2017). We used the same calibration to
rescale the estimates of τ under the MSC and MSci models (fig. 4). The minimum age for the T. quadrivittatus clade
was 1.9 Ma (with 95% HPD CI to be 1.8–2.0) under the MSC model, comparable to the *BEAST estimate under the315

same model (fig. 4a). Under the MSci model, the estimated minimum age was 4.1 Ma (with CI be 3.2–5.1) (fig. 4b),
much older than the estimates under the MSC model without gene flow. Note that here the CIs accommodate the
uncertainty due to finite amounts of sequence data but not uncertainties in the fossil calibration.
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Model assumptions underlying HYDE

Whereas the analyses of nuclear data by Sarver et al. (2021) using HYDE detected no significant signal of320

introgression at all, our BPP analyses of the same data revealed strong evidence of multiple introgression events,
involving both sister and non-sister species (fig. 4b). To understand the opposing conclusions reached in the two
analyses, here we examine the model assumptions underlying HYDE. We then use simulation to compare the
performance of HYDE and BPP under conditions that are representative of the Tamias data but may violate the
assumptions of HYDE.325

HYDE was developed under the hybrid-speciation model of figure 7a, with τS = τX = τT , and θS = θT (Blischak
et al., 2018). Formulated for quartet data, with one sequence from each of the four species, it uses the counts or
frequencies of three parsimony-informative site patterns: ii j j, i j ji, i ji j, to estimate the genetic contributions of the
two parental species to the hybrid species: ϕ and 1−ϕ . Here pattern i jkl means a site with nucleotides i, j,k, l in
O,P1,H,P2, respectively (fig. 7a). Under this model, the probabilities of gene trees and site patterns are both given330

by a mixture over the two binary species trees S1 and S2 (called parental species trees), with mixing probabilities ϕ

and 1−ϕ (fig. 7b&c). Given species tree S1, the matching pattern ii j j has a larger probability (say, a) than the other
two mismatching patterns (each with probability b, say, with b < a). Given species tree S2, the matching pattern
i j ji has probability a while the two mismatching patterns have b each. The symmetry assumptions (τS = τT and
θS = θT ) ensure that a,b for tree S1 are equal to a,b for S2. By averaging over the two species trees, the site pattern335

probabilities under the hybridization model are given as

pii j j = ϕa+(1−ϕ)b

pi ji j = ϕb+(1−ϕ)b = b

pi j ji = ϕb+(1−ϕ)a.

(9)

Setting those probabilities to the observed frequencies (p̂) and eliminating a and b from the system of equations
gives the estimate

ϕ̂ =
p̂ii j j − p̂i ji j

p̂ii j j −2 p̂i ji j + p̂i j ji
, (10)

This is eq. 3 in Blischak et al. (2018), although the derivation here is simpler than that of Kubatko and Chifman
(2019). Note that the theory works if τS = τT > τX and θS = θT , so that the method may be used under model A340

of Flouri et al. (2020, fig. 1) with the symmetry assumption. The null hypothesis of no hybridization/introgression
(H0 : ϕ = 0) can be tested by applying a normal approximation to the site-pattern counts (Kubatko and Chifman,
2019).

To see which of the two assumptions (τS = τT and θS = θT ) has more impact, note that a change in τ is comparable
with the same amount of change in 2

θ
. Coalescent may occur in population RS (if the H sequence takes the left345

parental path in the model of fig. 7a), at the rate 2
θS

over time period τR − τS, and it may occur in population RT

(if the H sequence takes the right parental path), at the rate 2
θT

over time period τR − τT . If 2(τR−τS)
θS

= 2(τR−τT )
θT

, the
probability of coalescent (given that two sequences enter populations S or T ) will be the same in the two populations.
However, the probabilities of the site patterns depend on the time of coalescent as well as its occurrence. Thus for
eq. 10 to be valid, both the rates and the times have to be identical: τS = τT and θS = θT .350

Note that HYDE or the D-statistic cannot be used to infer gene flow between sister lineages. One might
think that HYDE or D could be applicable if two sequences were sampled from the recipient lineage to form a
quartet. However this is not the case. With ancient introgression, the two sequences from the same lineage are
interchangeable and have the same average genomic distance to the outgroup sequence. Suppose P1 and H in figure
7a are two sequences from the same lineage. Then site patterns ii j j and i ji j will have the same probability even if355

ϕ > 0.

Simulations to examine the performance of HYDE

Our examination of assumptions underlying HYDE suggests that HYDE may not be suitable for testing gene flow
in the Tamias data. The strongest introgression in the Tamias data detected using BPP was between sister species,
with ϕQIRCD→U = 0.625 (fig. 4b). This is unidentifiable by HYDE. The next introgression involved outflow with360

ϕQI→D = 0.106, whereas HYDE assumes inflow. The third introgression was again between sister species, with
ϕQ→I = 0.050. To verify those expectations and to explore the performance of HYDE and BPP under different
scenarios of gene flow, we conducted simulations using four different model settings (fig. 8a-d), based on parameter
estimates obtained from the Tamias data (fig. 4b, table S3). Gene trees and sequence alignments at multiple loci
were generated using the simulate option of BPP. HYDE analysis was conducted using PAUP (Swofford, 2003).365
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Figure 8: Introgression models (species trees with introgression) used for simulating data to evaluate the
performance of HYDE and BPP. (a) Species tree for three species (R, U and S) with R → U introgression at the
rate of ϕ = 0.625, and with S to be the outgroup, based on BPP estimates from the Tamias data (fig. 4b, table S3).
Population sizes (θ ) are next to the branches and species divergence times (τ) are next to the nodes. Two sequences
are sampled from species U. When the data are analyzed using HYDE, either Ua or Ub is specified as the hybrid
lineage. (b) Outflow model for three species (D, Q, R), with S to be the outgroup, with introgression from Q to D at
the rate ϕ = 0.106 (table S3). (c) Inflow asymmetrical model for three species, with asymmetrical divergence times
and population sizes. (d) Inflow symmetrical model for three species, with τM = τQR and θM = θQR (see fig. 7a).
Note that only model (d) matches the assumption of HYDE.

Po
w
e
r

Number of loci Number of loci

Po
w
e
r

(a) Sister species  (b) Outflow asym

(d) Inflow sym (HyDe model)(c) Inflow asym

Figure 9: Power of detecting gene flow by HYDE and BPP in 100 replicate datasets simulated under the models of
figure 8.

The data were also analyzed using BPP. The results are summarized in figure 9.
Model a (fig. 8a) assumes gene flow between sister lineages, based on the introgression event from QIRCD→U

in the Tamias data (fig. 4b). It was suggested that by including multiple sequences from the recipient lineage,
HYDE or the D-statistic might be used to detect gene flow between sister lineages. We used species R and U,
with introgression rate ϕR→U = 0.625, including two sequences (Ua and Ub) from the recipient species U, while370

S was used as the outgroup. The divergence times (τ) and population sizes (θ ) were based on the real data (table
S3). When multiple branches in the full tree (fig. 4b) were merged into one branch in the tree of figure 8a, θ for
the merged branch was calculated as a weighted average, with the branch lengths as weights. As our objective in
this case was to confirm the lack of power of HYDE (and the D-statistic), we simulated large datasets, each with
L = 8000 loci. The sequence length was 500 sites, and the number of replicates was 100. When the data were375
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analyzed using HYDE and the D-statistic, the quartet tree (((Ua, Ub), R), S) was used, with Ua or Ub labelled the
‘hybrid’ lineage. The same data were analyzed using BPP under the MSci model with three species (fig. 8a).

As expected, HYDE and the D-statistic had no power to detect gene flow between sister lineages: indeed, the
power of HYDE and D was not higher than the significant level (fig. 9, table S4). Note that a test that ignores data
and produces 5% positives at random will have 5% of power. Also HYDE did not produce reliable estimates of ϕ;380

in about half of the datasets, the estimate was outside the range (0,1).
Model b (fig. 8b) was based on the next strongest introgression in the Tamias data, with ϕQI→D = 0.106 (fig. 4b).

We used species D, Q, R, with S as the outgroup. This is a case of outflow, when gene flow from an ingroup species
Q to a more distant species D. Our examination of the assumptions made by HYDE suggests that HYDE can be
used to detect inflow, but not outflow. We generated datasets of various sizes with L = 500,2000 or 8000 loci. The385

other settings were the same as for model a. When the data were analyzed using HYDE, Q was designated the
‘hybrid’ lineage while R and D were the two parents. HYDE performed poorly (fig. 9b), with very low power and
frequent invalid estimates of ϕ (table S5).

Model c (fig. 8c) was the same as model b but the direction of gene flow was reversed. The model was then a
case of inflow, as assumed by HYDE. However, species divergence times and population sizes did not satisfy the390

symmetry requirements of HYDE (in other words, τM ̸= τQR and θM ̸= θQR). In this case, HYDE had considerable
power in detecting gene flow (fig. 9c). However, the estimates of ϕ by HYDE involved large biases, apparently
converging to ≈ 0.32 when the true value was 0.106 (table S5). This positive bias is apparently because coalescent
occurs at a higher rate or over longer time period on the M branch than on the QR branch in figure 8c, with
τQRD−τM

θM
>

τQRD−τQR
θQR

. In the opposite case, the bias should be negative.395

Model d (fig. 8d) was the same as model c with inflow but in addition we enforced the symmetry assumptions, so
that species Q was a hybrid species formed by hybridization between D and R. This is the hybrid speciation model
assumed by HYDE, and the method performed well (fig. 9d). Its power was lower than that for BPP, as expected
from statistical theory, but improved with the increase of data, rising from 10% at L = 500 loci to 90% at 8000
loci. The parameter estimate appeared to be consistent, converging to the correct value (0.106) when the number400

of loci increased, and there were not many invalid estimates (table S5). Those results are consistent with previous
simulations, which evaluated the performance of HYDE when all its assumptions were met and found the method
to perform well (Blischak et al., 2018; Flouri et al., 2020).

In summary, our simulations suggest that it is important to apply HYDE to detect the correct mode of gene flow
(that is, gene flow between non-sister lineages, and inflow instead of outflow) (fig. 8d). Furthermore, the symmetry405

assumptions are important for HYDE to produce reliable estimates of introgression probability. When all model
assumptions are met, HYDE performed well. However, HYDE had no power to detect gene flow between sister
lineages, and very low power to detect outflow.

In all four models (fig. 8a-d), the Bayesian test using BPP had good power (fig. 9, tables S4&S5). Furthermore,
the posterior means and 95% HPD CIs for parameters in the introgression models b-d were well-behaved (fig. 10).410

While HYDE can estimate only two parameters from the site-pattern counts (the internal branch length in coalescent
units on the species tree and the introgression probability), the BPP analysis of the same data estimates all parameters
in the model. The species divergence/introgression times were all well estimated with small CIs (fig. 10). The
introgression probability was accurately estimated with narrow CIs when ≥ 500 loci were used. Population size
parameters for short branches were poorly estimated due to lack of coalescent events in those populations.415

Table 3. False positive rate of BPP and HYDE tests and average estimates of introgression probability in 100 simulated replicates

BPP HYDE

Error Rate Error Rate Error Rate Error Rate Proportion of
# loci (α = 1%) (α = 5%) ϕ̂±SD (α = 1%) (α = 5%) ϕ̂±SD invalid estimates

Inflow asym (fig. 8c)
500 0% 0% 0.019±0.011 1% 7% 0.140±0.108 52%
2000 0% 0% 0.009±0.004 5% 13% 0.094±0.061 52%
8000 0% 0% 0.004±0.002 2% 7% 0.038±0.032 51%

Inflow sym (fig. 8d, HYDE model)
500 0% 0% 0.032±0.016 0% 3% 0.064±0.048 49%
2000 0% 0% 0.014±0.006 1% 2% 0.039±0.029 55%
8000 0% 0% 0.006±0.003 0% 3% 0.022±0.016 49%

Note.— Data were simulated using the species trees of figure 8c-d but with ϕ = 0.
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Table 4. LRT and Bayesian tests in the normal example in two datasets

Data LRT Bayesian test
√

n|x̄| p-value Prior B10 P(H1|x)
1.96 p = 0.05 σ0 = 1 0.359 0.264
1.96 p = 0.05 σ0 = 2 0.262 0.208
1.96 p = 0.05 σ0 = 10 0.120 0.107

2.58 p = 0.01 σ0 = 1 0.408 0.290
2.58 p = 0.01 σ0 = 2 0.300 0.230
2.58 p = 0.01 σ0 = 10 0.138 0.122

Note.— The Bayes factor B10 is calculated assuming data size n = 100 in eq. 13, while the posterior model
probability is given by eq. 14. Note that the p-value for the LRT is 5% (or 1%) in the dataset with

√
n|x̄|= 1.96 (or

2.58).

We also examined the false positive rate (type-I error rate) of the HYDE and Bayesian tests, by simulating
data using the inflow-asym (fig. 8c) and inflow-sym (fig. 8d) models but with ϕ = 0 fixed so that there was no
introgression in the true model. The results are summarized in table 3. Under the inflow-asym model, HYDE had
higher false positive rate than the nominal significant level. For example, at the 5% significance level, the false
positive rate was 7%, 13%, and 7% in datasets of 500, 2000, and 8000 loci, respectively. The high rate may be420

explained by the violation of the symmetry assumptions for HYDE. Under the inflow-sym model (or the HYDE
model), the rate was 3%, 2%, and 3%, all within the allowed 5% (table 3). Thus HYDE performed well when its
assumptions were met and had elevated false positives when the assumptions were violated. In all settings, the false
positive rate of the Bayesian test was estimated to be ∼ 0%. This is consistent with the expectation that the Bayesian
test may be more conservative (with lower false positive rate and lower power) than the LRT (see discussions later).425

Finally, to assess the information content in datasets of the size of the Tamias data, we used parameter estimates
from the full dataset (fig. 4b, table S3) to simulate two datasets of the same size as the original, with 5, 5, 9, 10, 11,
11, 3 unphased sequences per locus for species R, C, I, U, Q, D and S, respectively. The sequence length was 200
sites. We analyzed the datasets under the same MSci model of figure 4b using BPP to estimate all parameters. The430

estimates from the two datasets were similar, so we present those from one of them in table S3. At this data size,
BPP achieved relatively good precision and accuracy. The posterior means were close to the true values, and the
CIs were also similar to those calculated from the real data. Similarly to analyses of the real data, divergence times
and population sizes for modern species were well estimated, but ancestral population sizes, in particular those for
populations of short time duration, were more poorly estimated.435

Discussion
Criteria for testing gene flow
Hypothesis testing or model selection involves arbitrariness, and classical hypothesis testing and Bayesian model
selection applied to the same data may produce strongly opposed conclusions, a situation known as Jeffreys’s
paradox (Jeffreys, 1939; Lindley, 1957). Furthermore, Bayesian model selection is known to be sensitive to priors440

on model parameters, especially on parameters that are not shared between the models under comparison. See Yang
(2014, pp.194-7) for a discussion of those issues. Here we review different strategies for testing, using as example
a simple problem of testing the null hypothesis H0 : µ = 0 against the alternative H1 : µ ̸= 0, using a data sample,
x = {x1,x2, · · · ,xn}, from the normal distribution N(µ,1). We assume that a false positive error (of falsely rejecting
H0 when it is true) is more serious than a false negative error (of failing to reject H0 when it is false). The data445

can be summarized as the sample mean x̄, with the likelihood given by x̄ ∼ N(0,1/n) under H0 and x̄ ∼ N(µ,1/n)
under H1. Let φ(x; µ,σ2) be the probability density function (PDF) for N(µ,σ2) and Φ(·) be the CDF for N(0,1).

In hypothesis testing, the p-value can be calculated from the fact that under H0,
√

n|x̄| ∼ N(0,1) or n|x̄|2 ∼ χ2
1 .

At the α = 5% significance level, we reject H0 if

2∆ℓ= 2log
φ(x̄; x̄, 1

n)

φ(x̄;0, 1
n)

= n|x̄|2 > χ
2
1,5% = 3.84. (11)

Alternatively one may consider this as an estimation problem and construct a confidence interval (CI) for µ and450
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Figure 10: Posterior means and 95% HPD CIs for parameters in the three introgression models of figure 8: (b)
outflow asym, (c) inflow asym and (d) inflow sym (HYDE model), in BPP analyses of 100 replicate datasets, each
with 500, 2000, or 8000 loci. Note that in model (d) inflow sym, all populations had the same size (θ ) although
separate θ parameters were estimated for different populations when the data were analyzed using BPP. Parameters
τ and θ are multiplied by 103. The number above the CI bars is the coverage or the probability that the CI includes
the true value.

reject H0 if the CI excludes the null value 0. This is equivalent to the LRT.
In a Bayesian analysis, we consider two approaches. The first is to examine whether the posterior 95% credibility

interval (CI) for µ under H1 excludes the null value 0. We assign the prior µ ∼ N(0,σ2
0 ) under H1. The posterior is

then µ|x ∼N(µ1,σ
2
1 ), with mean µ1 =

nx̄
n+1/σ2

0
and precision 1

σ2
1
= n+ 1

σ2
0

. Here the reciprocal of variance is known

as precision. The sample precision is n and the prior precision is 1/σ2
0 , while the posterior precision is the sum455

of the two. The 95% CI for µ is given as µ1 ± 1.96σ1 so that the CI excludes 0 (in which case we reject H0) if
|µ1|> 1.96σ1, or if

n|x̄|2 > 3.84
[
1+1/(nσ

2
0 )
]
. (12)

The second approach is to use the Bayes factor to compare the null and alternative hypotheses.
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B10 =
P(x̄|H1)

P(x̄|H0|
=

φ(x̄;0, 1
n +σ2

0 )

φ(x̄;0, 1
n)

=
1√

1+nσ2
0

· exp
{

nx̄2

2
[
1+1/(nσ2

0 )
]}, (13)

(e.g., Yang, 2006, eq. 5.21).
The Bayes factor is closely related to (and ’calibrated’ using) the posterior model probability. If the two models460

are assigned equal prior probabilities (π0 = π1 =
1
2 ), the posterior model probability is

P(H1|x) =
B10

1+B10
, (14)

so that a 95% cut-off on P(H1|x) corresponds to B10 = 19, and H0 is rejected based on the Bayes factor if and only
if

n|x̄|2 > log
{

19
√

1+nσ2
0

}
×2

[
1+1/(nσ

2
0 )
]
. (15)

While the LRT (eq. 11) depends on
√

n|x̄| only, both the posterior CI (eq. 12) and the Bayes factor (eq. 15)
depend in addition on nσ2

0 . Note that the three criteria (eqs. 11, 12, & 15) have the ordering465

3.84 < 3.84
[
1+1/(nσ

2
0 )
]

< log
{

19
√

1+nσ2
0

}
×2

[
1+1/(nσ

2
0 )
]
.

(16)

Thus the LRT has more power and higher false positive rate than the posterior CI while the Bayesian test based on
the Bayes factor is the most conservative. The result reflects the general perception that the LRT tends to reject the
null hypothesis and favour parameter-rich models too often, especially in large datasets. Note that if H0 is true, the
false positive rate of the LRT stays at 5% when the sample size n → ∞, whereas in the Bayesian analysis, the true
model H0 will dominate, with P(H0|x)→ 1 and B10 → 0 when n → ∞.470

Example calculations are given in table 4 for two datasets with
√

n|x̄|= 1.96 or 2.58 and n= 100. In both datasets,
H0 is rejected by the LRT (at the 5% and 1% levels, respectively), but the Bayes factor and the posterior model
probabilities favour H0 over H1, with B10 < 1 and P(H1|x)< 1

2 .
This analysis suggests that the difference in power between HYDE and BPP are due to the inefficient use of

information in the data by HYDE, not to the different statistical philosophies. An LRT for testing introgression475

applied to the multilocus sequence alignments may be expected to have more power (and higher false positive rate)
than the Bayesian test based on the Bayes factor.

The power of heuristic and likelihood methods to detect introgression
When applied to the Tamias dataset, HYDE and BPP produced opposite conclusions concerning gene flow. Our
examination of the model assumptions for HYDE and our simulations suggest that this is because gene flow with480

the strongest signal in the Tamias group, either between sister species or involving outflow, may be of the wrong
type or in the wrong direction for HYDE. Here we review and summarize the major issues with HYDE.

First, both HYDE and the D-statistic pool sites across loci when counting site patterns, so that the site-pattern
counts are genome-wide averages. Cross-species gene flow creates genealogical variation across the genome, with
the probabilistic distribution of the gene trees and coalescent times specified by parameters in the MSC model485

with gene flow, such as species divergence times, population sizes, and rates of gene flow (Barton, 2006; Lohse
and Frantz, 2014). As a result, there is important information concerning gene flow in the variance of site-pattern
counts among loci, but this information is ignored by those methods. In other words, sites at the same locus share the
genealogical history under the assumption of no within-locus recombination (see Zhu et al., 2022 for an evaluation
of the impact of this assumption on MSC-based analyses), and their differences reflect the stochastic fluctuation490

of the mutation process. Sites at different loci in addition may have different genealogical histories, reflecting
the stochastic nature of the process of coalescent and introgression. When sites are pooled across loci, those two
sources of variation are confounded, leading to loss of information (Shi and Yang, 2018; Zhu and Yang, 2021). As
a consequence, certain forms of introgression, such as introgression between sister lineages, are unidentifiable by
D or HYDE, while estimation of introgression rates between non-sister species suffers from larger variances (Jiao495

et al., 2021).
Second, HYDE makes restrictive assumptions about gene flow. The underlying model is one of hybrid speciation

with identical population sizes or equivalently the inflow model with symmetrical species divergence times and
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population sizes (fig. 7a, with τS = τT and θS = θT ) (Blischak et al., 2018; Kubatko and Chifman, 2019).
Our simulation suggests that HYDE can indeed infer gene flow/hybridization and produce reliable estimates of500

introgression probability under this model (fig. 9d & table S5; see also Blischak et al., 2018; Flouri et al., 2020).
However, introgression in the wrong direction or violation of the symmetry assumptions may lead to loss of power
and biased or invalid estimates by HYDE (fig. 9b&c, table S5).

Third, the approaches taken by HYDE to accommodate multiple samples per species and heterozygote sites in
diploid genomes may be problematic. When multiple samples are available in the species quartet, HYDE counts site505

patterns in all combinations of the quartet. Let the numbers of sequences for species O,P1,H,P2 be nO,n1,nH ,n2.
There are then nO × n1 × nH × n2 combinations in which one sequence is sampled per species, and HYDE counts
site patterns in all of them (Blischak et al., 2018). This ignores the lack of independence among the quartets and
exaggerates the sample size. At the same time, multiple samples from the same species are never compared with
each other, which should provide important information about the population size for that species. In a likelihood510

method such as BPP, all sequences at the same locus, both from the same species and from different species, are
related through a gene tree, and genealogical information at the locus is used.

Similarly heterozygote sites are not treated properly in HYDE. If the site pattern is AGRG, with R representing an
A/G heterozygote, HYDE adds 0.5 each to the site patterns i j j j (for AGGG) and i ji j (for AGAG) (Blischak et al.,
2018), in effect treating R as an unknown nucleotide that is either A or G whereas correctly it means a heterozygote515

(both A and G). The proportion of heterozygotes in each diploid genome should be informative about θ for that
population, but such information is not used by HYDE. In BPP, heterozygote sites are resolved into their underlying
nucleotides using an analytical integration algorithm (so that R means both A and G, say), with the uncertainty in the
genotypic phase of multiple heterozygous sites in a diploid sequence accommodated by averaging over all possible
heterozygote phase resolutions, weighting them according to their likelihoods based on the sequence alignment520

at the locus (Gronau et al., 2011; Flouri et al., 2018). Simulations suggest that this approach has nearly identical
statistical performance to using fully phased haploid genomic sequences (Gronau et al., 2011; Huang et al., 2021).

In this paper we have focused on the heuristic method HYDE and the likelihood method BPP, as they have
been used to analyze the Tamias data. By choosing parameter values to be representative of the Tamias data, our
simulation has evaluated a tiny portion of the parameter space and does not constitute a systematic evaluation of525

the performance of HYDE. The strengths and weaknesses of heuristic and likelihood methods for inference under
models of gene flow were discussed by Degnan (2018) and Jiao et al. (2021), but a comprehensive comparative
study has not yet been conducted. For estimation of the species phylogeny under the MSC without gene flow,
(Zhu and Yang, 2021, fig. 3) demonstrated a dramatic information loss resulting from pooling sites across loci
in the site-pattern based methods (also known as coalescent-aware concatenation methods), and from the failure530

to use information in coalescent times or gene-tree branch lengths in the two-step methods (which infer the gene
trees and then treat them as data to infer the species tree). Both the site pattern-based and the two-step methods
are used to infer gene flow and to estimate the introgression probability (e.g., HYDE and the D-statistic in the
first category and SNAQ in the second) and similar information loss may be expected. A detailed analysis of
the performance of heuristic methods in comparison with likelihood methods will be interesting. Currently the535

gap between the heuristic and likelihood methods appears to be a large one. Heuristic methods are orders-of-
magnitude more efficient computationally and can be applied to much larger datasets, whereas likelihood methods
have far better statistical properties, being able to identify and estimate all parameters in the model. There are great
opportunities for improving both the statistical performance of heuristic methods and the computational efficiency
of likelihood methods (including the mixing efficiency of MCMC algorithms).540

Introgression in T. quadrivittatus chipmunks
The joint introgression model for the T. quadrivittatus group (fig. 4b) was constructed using a stepwise approach
that iteratively adds introgression events to the binary species tree. We note several limitations with this approach.
First the approach assumes the availability of a stable binary species tree, and may not be feasible if the species tree
is large and highly uncertain, possibly influenced by introgression events (Leaché et al., 2014). The Tamias dataset545

analyzed here includes only six species, and the first stage of our procedure (i.e., the separate analysis) involved
16 possible introgression events, so that the computation was feasible. Second, the approach is not an exhaustive
search in the space of introgression models and may miss certain introgression events. Note that introgression
events not selected in the first stage of the procedure will not be incorporated in the final joint introgression model.
In our analysis of the Tamias data, we considered introgressions between contemporary species, mostly based on550

phylogenetic analyses of the mitochondrial genome (Sarver et al., 2017), and moved certain events to older ancestral
branches when the estimated introgression time coincided with the species divergence time. We did not evaluate
introgressions involving ancestral branches systematically. Furthermore, the criterion based on the Bayes factor
used in our test is a stringent one, and the dataset of 1060 loci is relatively small. All those factors suggest that
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we cannot rule out the possibility that we may have missed some introgression events; in other words, our analysis555

may suffer from false-negative errors. In contrast, the three introgression events identified in our analysis (fig. 4b)
appear to be robust and are unlikely to be false positives (figs. 5, table S2). We conclude that there is strong and
robust evidence that gene flow has affected the nuclear genome in the T. quadrivittatus group of chipmunks.

Given the extensive mitochondrial introgression in the Tamias group (Sullivan et al., 2014; Sarver et al., 2017,
2021), introgression affecting the nuclear genome was expected, and the failure to detect any significant evidence560

for it in the HYDE analysis was surprising (Sarver et al., 2021). Sarver et al. (2021) discussed the evidence for
cytonuclear discordance in the pattern of introgression (Bonnet et al., 2017; McElroy et al., 2020; Sarver et al.,
2021), as well as possible roles of purifying selection affecting the coding genes or exons that make up the nuclear
dataset being analyzed. Our results suggest a simpler explanation, that gene flow in the Tamias group is of a wrong
type or in the wrong direction, undetectable by HYDE.565

Our analyses suggest that species involved in excessive mitochondrial introgression tend to be those involved
in nuclear introgression as well. T. dorsalis was noted to be a universal recipient of mtDNA from other species
(Sullivan et al., 2014; Sarver et al., 2017). Consistent with this, our separate analysis (table 2) identified three
introgression events into T. dorsalis with ϕ > 5% as well as one event with T. dorsalis to be the donor species, even
though some of those events become non-significant after introgression involving older ancestors was incorporated570

in the model. It will be interesting to use expanded datasets to examine whether this is due to a lack of power to
detect gene flow or a genuine lack of gene flow.

It will be very useful to generate more genomic data, especially the noncoding parts of the nuclear genome,
including more species from the genus, to provide more power for detecting gene flow and estimating introgression
rates. It will also be interesting to examine whether the noncoding and coding regions of the genome give consistent575

signals concerning species divergences and cross-species gene flow, and to examine how the effective rate of gene
flow vary among chromosomes or across genomic regions. In a few genomic analyses, coding and noncoding parts
of the genome were found to produce highly consistent results, with nearly proportional estimates of divergence
times (τ) and population sizes (θ ), and with very similar estimates of introgression rates (Shi and Yang, 2018;
Thawornwattana et al., 2018, 2022). One can also examine the posterior distribution of the gene trees to identify580

loci or genomic segments that are most likely to have been transferred across species boundaries, and to correlate
with the functions of genes residing in or tightly linked to the segments.
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Table S1. Posterior means and 95% HPD CIs (in parentheses) of introgression probabilities (ϕ) and introgression times (τ) in the
stepwise construction of the MSci model, applied to datasets of the two halves

First half Second half

Model ϕ τ (×10−3) B10 ϕ τ (×10−3) B10

1 QIRCD → U 0.537 (0.247, 0.801) 0.841 (0.702, 0.980) ∞ 0.632 (0.332, 0.869) 0.906 (0.740, 1.045) ∞

2 QIRCD → U 0.615 (0.427, 0.798) 0.869 (0.773, 0.966) ∞ 0.695 (0.501, 0.876) 0.918 (0.802, 1.037) ∞

QI ↔ D 0.138 (0.094, 0.185) 0.349 (0.311, 0.391) ∞ 0.069 (0.038, 0.102) 0.322 (0.282, 0.363) ∞

0.020 (0.000, 0.047) 0.03 0.018 (0.000, 0.037) 0.03

3 QIRCD → U 0.601 (0.369, 0.813) 0.863 (0.759, 0.971) ∞ 0.696 (0.480, 0.892) 0.915 (0.782, 1.040) ∞

QI → D 0.133 (0.080, 0.191) 0.331 (0.288, 0.372) 53.24 0.085 (0.038, 0.136) 0.331 (0.279, 0.388) 25.06
Q → D 0.008 (0.000, 0.021) 0.153 (0.058, 0.261) 0.00 0.008 (0.001, 0.019) 0.100 (0.040, 0.210) 0.00

4 QIRCD → U 0.588 (0.360, 0.797) 0.854 (0.746, 0.958) ∞ 0.681 (0.470, 0.869) 0.909 (0.787, 1.032) ∞

QI → D 0.132 (0.080, 0.188) 0.330 (0.286, 0.373) ∞ 0.088 (0.035, 0.149) 0.334 (0.270, 0.396) 35.99
I → D 0.007 (0.000, 0.018) 0.120 (0.048, 0.197) 0.00 0.012 (0.001, 0.025) 0.160 (0.090, 0.227) 0.01

5 QIRCD → U 0.582 (0.326, 0.818) 0.852 (0.738, 0.961) ∞ 0.689 (0.473, 0.883) 0.905 (0.778, 1.026) ∞

QI → D 0.126 (0.084, 0.170) 0.307 (0.263, 0.352) ∞ 0.099 (0.063, 0.139) 0.336 (0.291, 0.382) ∞

Q ↔ I 0.036 (0.013, 0.065) 0.099 (0.062, 0.137) 2.90 0.048 (0.023, 0.075) 0.088 (0.051, 0.118) ∞

0.030 (0.008, 0.055) 0.39 0.014 (0.000, 0.028) 0.02

6 QIRCD → U 0.589 (0.338, 0.827) 0.850 (0.738, 0.966) ∞ 0.686 (0.491, 0.870) 0.902 (0.782, 1.022) ∞

QI → D 0.118 (0.074, 0.165) 0.295 (0.246, 0.345) ∞ 0.097 (0.060, 0.136) 0.334 (0.284, 0.381) ∞

Q → I 0.041 (0.014, 0.074) 0.100 (0.066, 0.140) 7.90 0.055 (0.026, 0.087) 0.091 (0.053, 0.132) ∞

Note.— Introgression events are added sequentially onto the species tree of figure 4a and those that do not meet our cutoffs (B10 ≥ 20) are
grayed out. B10 = ∞ occurs when there are no MCMC samples with ϕ < ε = 1%. A bidirectional introgression event, e.g., between Q and I

has two introgression probabilities, e.g., ϕQ→I (above) and ϕI→Q (below). The final joint introgression model has three unidirectional
introgression events.
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Table S2. Bayes factors (B10) for the three introgression probabilities (ϕ) obtained from BPP analyses of the full data of 1060 loci
under the joint MSci model of figure 4b and different beta priors, ϕ ∼beta(α,β )

B10

ε & Prior P(ø) QIRCD → U QI → D Q → I

ε = 1%
beta(0.2, 0.2) 0.210 ∞ ∞ ∞

beta(0.2, 1) 0.398 ∞ ∞ ∞

beta(0.2, 5) 0.585 ∞ ∞ ∞

beta(1, 0.2) 0.002 ∞ ∞ ∞

beta(1, 1) 0.010 ∞ ∞ ∞

beta(1, 5) 0.049 ∞ ∞ ∞

beta(5, 0.2) 6.0×10−12 ∞ ∞ ∞

beta(5, 1) 1.0×10−10 ∞ ∞ ∞

beta(5, 5) 1.2×10−8 ∞ ∞ ∞

ε = 0.1%
beta(0.2, 0.2) 0.132 ∞ ∞ ∞

beta(0.2, 1) 0.251 ∞ ∞ ∞

beta(0.2, 5) 0.371 ∞ ∞ ∞

beta(1, 0.2) 2.0×10−4 ∞ ∞ ∞

beta(1, 1) 0.001 ∞ ∞ ∞

beta(1, 5) 0.005 ∞ ∞ ∞

beta(5, 0.2) 6.0×10−17 ∞ ∞ ∞

beta(5, 1) 1.0×10−15 ∞ ∞ ∞

beta(5, 5) 1.3×10−13 ∞ ∞ ∞

Note.— Bayes factor B10 is calculated using eq. 8, where the null region ø for ϕ is the interval (0,ε) with ε = 1% or 0.1%. B10 = ∞ occurs
when ϕ > ε in all MCMC samples.
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Table S3. Posterior means and 95% HPD CIs (in parentheses) of parameters under the MSci model of figure 4b obtained from BPP
analyses of three real datasets (the two halves and the full dataset) and a simulated dataset

Parameters First half, 530 loci Second half, 530 loci Full data, 1060 loci Simulation, 1060 loci

Population sizes (θ , ×10−3)
θQ 1.119 (0.817, 1.455) 1.032 (0.733, 1.370) 1.059 (0.844, 1.287) 1.098 (0.867, 1.347)
θI 1.556 (0.996, 2.191) 2.335 (1.474, 3.387) 1.923 (1.433, 2.473) 2.108 (1.574, 2.701)
θR 0.330 (0.266, 0.399) 0.377 (0.311, 0.442) 0.344 (0.295, 0.396) 0.366 (0.313, 0.421)
θC 0.478 (0.400, 0.556) 0.474 (0.407, 0.547) 0.478 (0.427, 0.534) 0.491 (0.436, 0.542)
θD 3.092 (2.580, 3.633) 3.460 (2.920, 4.016) 3.314 (2.915, 3.705) 3.386 (3.001, 3.781)
θU 0.953 (0.843, 1.063) 0.912 (0.814, 1.011) 0.932 (0.857, 1.004) 0.917 (0.844, 0.991)
θS 0.792 (0.680, 0.904) 0.934 (0.809, 1.052) 0.866 (0.782, 0.948) 0.817 (0.734, 0.900)

θQIRCDUS 11.04 (9.516, 12.56) 10.83 (9.357, 12.30) 11.01 (9.924, 12.09) 10.38 (9.368, 11.40)
θQIRCDU 0.687 (0.332, 1.075) 0.601 (0.274, 0.955) 0.656 (0.367, 0.971) 0.475 (0.229, 0.734)
θQIRCD 1.963 (0.248, 4.652) 1.595 (0.336, 3.153) 2.203 (0.392, 4.533) 1.340 (0.236, 2.809)
θQIRC 3.212 (0.296, 6.828) 1.503 (0.232, 3.505) 2.222 (0.295, 4.800) 2.141 (0.192, 5.173)
θQIR 2.923 (0.724, 5.067) 1.990 (0.755, 3.258) 2.518 (1.266, 3.890) 2.792 (1.523, 4.167)
θQI 0.727 (0.198, 1.503) 1.033 (0.203, 2.427) 0.773 (0.177, 1.714) 1.157 (0.217, 2.714)

θJ 1.017 (0.777, 1.272) 1.242 (0.954, 1.545) 1.107 (0.921, 1.298) 1.147 (0.934, 1.372)
θK 0.686 (0.177, 1.467) 0.799 (0.177, 1.808) 0.626 (0.170, 1.282) 0.959 (0.185, 2.241)
θL 1.911 (0.224, 4.493) 1.280 (0.399, 2.326) 1.568 (0.345, 2.936) 1.381 (0.315, 2.781)
θM 0.412 (0.245, 0.569) 0.430 (0.282, 0.578) 0.407 (0.275, 0.529) 0.415 (0.291, 0.543)
θN 0.439 (0.310, 0.574) 0.476 (0.350, 0.600) 0.440 (0.342, 0.543) 0.384 (0.301, 0.473)
θO 0.291 (0.190, 0.390) 0.422 (0.282, 0.552) 0.325 (0.239, 0.416) 0.350 (0.259, 0.443)

Speciation/introgression times (τ , ×10−3)
τQIRCDUS 3.297 (2.830, 3.851) 3.588 (3.062, 4.075) 3.423 (3.061, 3.783) 3.415 (3.066, 3.768)
τQIRCDU 1.872 (1.299, 2.456) 2.270 (1.703, 2.849) 2.029 (1.569, 2.489) 2.011 (1.673, 2.338)
τQIRCD 0.749 (0.634, 0.855) 0.750 (0.654, 0.837) 0.731 (0.642, 0.815) 0.753 (0.693, 0.815)
τQIRC 0.584 (0.469, 0.699) 0.673 (0.573, 0.765) 0.628 (0.542, 0.707) 0.697 (0.615, 0.766)
τQIR 0.363 (0.283, 0.452) 0.437 (0.360, 0.517) 0.389 (0.322, 0.452) 0.379 (0.312, 0.445)
τQI 0.267 (0.222, 0.312) 0.321 (0.272, 0.367) 0.290 (0.253, 0.327) 0.274 (0.238, 0.309)
τJ = τK = τQIRCD→U 0.850 (0.738, 0.966) 0.902 (0.782, 1.022) 0.871 (0.778, 0.961) 0.832 (0.747, 0.917)
τL = τM = τQI→D 0.295 (0.246, 0.345) 0.334 (0.284, 0.381) 0.307 (0.268, 0.350) 0.298 (0.258, 0.336)
τN = τO = τQ→I 0.100 (0.066, 0.140) 0.091 (0.053, 0.132) 0.102 (0.074, 0.130) 0.094 (0.069, 0.118)

Introgression probabilities (ϕ)
ϕQIRCD→U 0.589 (0.338, 0.827) (∞) 0.686 (0.491, 0.870) (∞) 0.625 (0.442, 0.794) (∞) 0.587 (0.440, 0.733) (∞)
ϕQI→D 0.118 (0.074, 0.165) (∞) 0.097 (0.060, 0.136) (∞) 0.106 (0.074, 0.139) (∞) 0.107 (0.077, 0.140) (∞)
ϕQ→I 0.041 (0.014, 0.074) (8) 0.055 (0.026, 0.087) (∞) 0.050 (0.028, 0.074) (∞) 0.048 (0.028, 0.069) (∞)

Note.— Bayes factor B10 is given in parentheses, calculated using eq. 8: ∞ means that all sampled values of ϕ are > ε = 1%.

Table S4. Power of BPP, HYDE and D-statistic tests of gene flow between sister species and average estimates of introgression
probability in 100 simulated replicate datasets (each of 8000 loci) under the model of figure 8a

Power Proportion of

Methods (α = 1%) (α = 5%) ϕ̂±SD invalid estimates

HYDE
R→Ua 3% 8% 0.005±0.003 48%
R→Ub 3% 5% 0.004±0.004 51%

D-statistic
R↔Ua 0% 1% – NA
R↔Ub 0% 2% – NA

BPP
R→U 100% 100% 0.623±0.066 0%

Note.— Bayesian test by BPP is considered significant at the 5% (or 1%) level if B10 ≥ 20 (or 100). In the HYDE test, Ua and Ub were
regarded as the ‘hybrid’ lineage to detect gene flow R→Ua and R→Ub, respectively, in figure 8a. In some datasets, the HYDE estimate of ϕ

was outside the range (0, 1), and only the valid estimates were used to calculate the means.
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Table S5. Power of BPP and HYDE tests of gene flow and average estimates of introgression probability in 100 simulated replicates
under the three models of figure 8b-d

BPP HYDE

Power Power Power Power Proportion of
# loci (α = 1%) (α = 5%) ϕ̂±SD (α = 1%) (α = 5%) ϕ̂±SD invalid estimates

Outflow asym (fig. 8b)
500 39% 56% 0.096±0.026 1% 4% 0.155±0.111 44%
2000 100% 100% 0.104±0.025 3% 9% 0.107±0.057 33%
8000 100% 100% 0.105±0.013 10% 24% 0.076±0.042 20%

Inflow asym (fig. 8c)
500 72% 84% 0.118±0.030 23% 41% 0.331±0.110 10%
2000 100% 100% 0.106±0.014 87% 95% 0.321±0.068 0%
8000 100% 100% 0.107±0.009 100% 100% 0.325±0.037 0%

inflow sym (fig. 8b, HYDE model)
500 15% 27% 0.115±0.037 2% 10% 0.124±0.071 19%
2000 90% 95% 0.110±0.022 14% 27% 0.101±0.047 2%
8000 100% 100% 0.108±0.010 83% 90% 0.108±0.025 0%

Note.— The true introgression probability is ϕ = 0.106 (fig. 8b-d). See legend to table S4.
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