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ABSTRACT

We have studied the galaxy-group cross-correlations in redshift space for the Galaxy And Mass Assembly (GAMA) Survey. We
use a set of mock GAMA galaxy and group catalogues to develop and test a novel ‘halo streaming’ model for redshift-space
distortions. This treats 2-halo correlations via the streaming model, plus an empirical 1-halo term derived from the mocks,
allowing accurate modelling into the non-linear regime. In order to probe the robustness of the growth rate inferred from
redshift-space distortions, we divide galaxies by colour, and divide groups according to their total stellar mass, calibrated to
total mass via gravitational lensing. We fit our model to correlation data, to obtain estimates of the perturbation growth rate, fog,
validating parameter errors via the dispersion between different mock realizations. In both mocks and real data, we demonstrate
that the results are closely consistent between different subsets of the group and galaxy populations, considering the use of
correlation data down to some minimum projected radius, 7. For the mock data, we can use the halo streaming model to below
Fmin = 5 h~! Mpc, finding that all subsets yield growth rates within about 3 per cent of each other, and consistent with the true
value. For the actual GAMA data, the results are limited by cosmic variance: fog = 0.29 &£ 0.10 at an effective redshift of 0.20;
but there is every reason to expect that this method will yield precise constraints from larger data sets of the same type, such as

the Dark Energy Spectroscopic Instrument (DESI) bright galaxy survey.

Key words: gravitation — galaxies: groups: general —large-scale structure of Universe.

1 INTRODUCTION

The large-scale structure in the galaxy distribution has a long history
of providing cosmological information. The first constituents of the
inhomogeneous galaxy density field to be identified were the rich
clusters, which today we see as marking the sites of exceptionally
massive haloes of dark matter. Proceeding down the halo mass
spectrum, we find progressively less rich groups of galaxies, leading
to systems dominated by a single L, galaxy, such as the Local Group
(e.g. Wechsler & Tinker 2018). All these systems have been familiar
constituents of the Universe since the first telescopic explorations
of the sky, but it took rather longer to appreciate that they were
connected as part of the cosmic web of voids & filaments (see
e.g. Peacock 2016, for some selective history). In part, the history
here showed a complex interaction of theory and observation, since
redshift surveys through the 1980s lacked the depth and sampling
to reveal the cosmic web with complete clarity. For a period, it was
therefore a question of asking whether the real Universe displayed
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the same structures that were predicted in numerical simulations of
structure formation in the Cold Dark Matter model (Bond, Kofman &
Pogosyan 1996). But since those times, there has been an increasing
confidence that galaxy groups are indeed particularly extreme non-
linear points in the general field of cosmic density fluctuations, and
this makes them interesting in two ways. First of all, groups are
readily identified in galaxy surveys, providing a relatively robust
data set (Eke et al. 2004; Robotham et al. 2011). Secondly, their non-
linear nature makes them an informative probe of theory. Modelling
non-linear behaviour is by its nature challenging compared to linear
theory, but by studying structure formation further into the non-linear
regime, we have the chance to test the robustness of our cosmological
conclusions.

Our specific aim in this direction is to use galaxy groups as a
probe of the cosmological peculiar velocity field. Such deviations
from uniform expansion must exist through continuity, and density
concentrations such as groups should be associated with an average
infall velocity in regions surrounding the groups. The amplitude
of these velocities depends in part on the strength of gravity
on cosmological scales, and the peculiar velocity field has thus
increasingly been seen as a means of probing the nature of gravity
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and testing alternative theories (e.g. Jain & Khoury 2010). Although,
it is possible to probe peculiar velocities directly using absolute
distance indicators (Davis et al. 2011), the most powerful tool has
been Redshift Space Distortions (RSD). These arise inevitably in
the study of the 3D galaxy distribution because the distances to
galaxies observed on the sky are inferred from their redshifts, z, via
the standard relation
Z c dz/

o H(@)
where c is the speed of light and H(z) = a/a is the Hubble parameter.
But this equation does not give the true distances, because Doppler
shifts from the peculiar velocities modify the observed redshift: 1 + z
— (14 2)(1 + v,/c), where v, is the radial component of the peculiar
velocity. If we then use the observed redshift as if it were a true
indicator of distance, we obtain a distribution of galaxies in ‘redshift
space’ — in which the apparent properties of galaxy clustering are
distorted in an anisotropic way.

These distortions have characteristics that depends on scale:
outside large density concentrations, galaxies fall coherently together
under gravity; while the orbital velocities inside dark matter haloes
are effectively randomized. The latter effect convolves the redshift-
space density field in the radial direction, leading to the characteristic
radial elongations of high-density regions known as ‘Fingers of God’
(FoG). RSD due to coherent flows in the linear regime were first
studied by Kaiser (1987). The growth factor fis defined by
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where § is the matter overdensity, a is the expansion factor, and 2,
is the matter fraction; the approximation for f{€2,,) only applies for
flat ACDM models in standard gravity (Lahav et al. 1991; Wang &
Steinhardt 1998; Linder 2005). In Fourier space, and in the small-
angle limit of a distant observer, the matter power spectra in redshift
space and in real space are related by

Pr(k, ) = Prk) (1 + fu?)?, 3

where u is the cosine of the angle between the wave-vector k£ and
the line of sight. This simple equation was highly influential from its
first appearance (Kaiser 1987), as it offered the chance of measuring
Qp, from measuring the RSD anisotropy. But eventually goals shifted
as Q, became very well determined from other routes (especially
the Cosmic Microwave Background). Following Guzzo et al. (2008),
the modern view is therefore to emphasize that the growth rate for a
given density is also proportional to the strength of gravity, so that
RSD can be used as a test of theories of gravity.

The RSD signal has been measured by a number of surveys,
including the 2dFGRS at z ~ 0.2 (Peacock et al. 2001; Hawkins
et al. 2003); the 6dFGS at z ~ 0.1 (Beutler et al. 2012); the SDSS
BOSS & eBOSS surveys at z >~ 0.6 (Reid et al. 2012; Alam et al.
2017, 2021a); and at z >~ 1 by the 8m VVDS and VIPERS surveys
(Guzzo et al. 2008; Pezzotta et al. 2017). For the GAMA survey at z >~
0.4, aspects of RSD were studied by Blake et al. (2013) and Loveday
etal. (2018), who measured the pair-wise velocity dispersion to small
scales and as a function of luminosity. The above studies all focused
on galaxy autocorrelations.

The challenge in modelling RSD is that truly linear modes are
rare. In observation, large scales are affected by cosmic variance due
to the finite survey volume. McDonald & Seljak (2009) proposed
the use of multiple tracers in order to overcome cosmic variance,
although in practice the improvement is slight (Blake et al. 2013).
To gain more information, one needs to probe smaller scales, where

d(z) = (1

~ Qu(2)*, (@3]

the effect of non-linearity can systematically bias the results (de la
Torre & Guzzo 2012).

One possible solution to this dilemma is to use galaxy groups to
probe the velocity field. Due to the small random virial velocity of
the central galaxy at the group centre, the coherent large-scale infall
velocities of groups are dominant down to intermediate and small
scales. The group autocorrelation would thus have reduced FoG,
aiding the extraction of the linear growth rate (Padilla et al. 2001;
Mohammad et al. 2016). In practice, the group catalogue in GAMA
is sparse, with a number density of 4.3 x 1073 A> Mpc ™ between 0.1
< z < 0.3, and measurements of the autocorrelation will have high
statistical noise. The cross-correlation between groups and galaxies is
thus an intermediate route, which effectively improves the statistical
power while still reducing the non-linear pairwise velocities at small
scales. The clustering of GAMA groups has been recently studied
in Riggs et al. (2021), and this work extends this study to further
subsets of the data, concentrating in more detail on their different
RSD signals.

Our aim here is thus to test the robustness of RSD methods down to
small or intermediate scales using multiple tracers involving galaxy
groups. By cross-correlating galaxies of different colours, and groups
in different mass bins, we examine the consistency of the inferred
cosmological results between the subsamples. In order to pursue this
investigation, we develop a new model for RSD in cross-correlation,
involving a combination of the halo model and the streaming
model, which we implement by including some information taken
from mock data. Throughout the analysis, we adopt the WMAP7
Cosmology (Komatsu et al. 2011) with og = 0.81, Q,, = 0.27, h =
0.70, and n; = 0.967, consistent with the mock catalogue.

The GAMA data set and its mocks are detailed in Section 2
followed by Section 3.1 where we introduce the statistics for
measuring the 2-point function in the data. In Section 3.2, we
present the resulting 2D correlation function measurements for sub-
samples, In Section 4, we discuss the theoretical modelling of RSD
in galaxy-group cross-correlations, and in Section 5 we confront
this modelling with real and mock GAMA data. The models are
validated in Section 5.1 via detailed comparison with the GAMA
mocks, where we establish the scales to which the different theories
can work without bias; we present the fitting of the real GAMA
data in Section 5.2. Finally, we summarize the work in Section 6. We
include our Appendices A - E in the online Supplementary materials.

2 GAMA DATA AND MOCKS

This analysis is based on the Galaxy And Mass Assembly (GAMA)
spectroscopic survey. This was conducted using the 2dF facility at the
Anglo-Australian 4-m telescope over 210 nights between 2008 and
2014, accumulating spectra of 265958 distinct galaxies. Together
with existing data, this yielded a catalogue of 330 542 redshifts over
five survey fields totalling 250 deg?, with a mean redshift of z ~ 0.2
(Driver et al. 2022). The three main fields near the equator, G09,
G12, and G15 are used here, each covering an area of 12 x 5 deg”.
The survey has an extinction-corrected r-band flux limit of r < 19.8,
based on SDSS photometry.

The overall redshift completeness of the GAMA equatorial region
is 98.5 per cent: this high completeness was achieved by a large
number of repeated visits to 2dF fields covering the survey area in
different ways. This property is greatly advantageous for small-scale
galaxy and group studies compared to much larger surveys such as
BOSS, where fibre collisions can lead to substantial undercounting
of close galaxy pairs and thus bias the measured galaxy 2-point
correlation function (Guo, Zehavi & Zheng 2012).
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The present analysis uses the DR3 data release (Baldry et al. 2018),
which differs slightly from the final data release, DR4 (Driver et al.
2022). DR4 implements revised flux completeness limits through
the use of new KiDS photometry. The original SDSS limit of r <
19.8 was trimmed in DR4 to r < 19.58 for 98 per cent completeness
in the equatorial fields. Galaxies for the present study are selected
from the SpecObjv27 DMU (Data Management Unit), with CMB
frame redshifts adopted from DistancesFramesv14. We apply
the following criteria: redshift quality nQ >3, angular completeness
mask > 80 percent, and visual classification VIS_CLASS = 0, 1,
255.! The spectroscopic redshifts are computed by the code runz
(Driver et al. 2011), which has a 1o redshift error of 50kms~" in
terms of peculiar velocity (Liske et al. 2015). In order to compute
correlation statistics, it is essential to accompany the galaxy sample
with a knowledge of the survey selection in angle and redshift.
As usual, this information is captured by a random catalogue
Randomsv02 of fictitious unclustred galaxies; this catalogue was
generated by Farrow et al. (2015) from the actual GAMA galaxy
catalogue using a modified method following Cole (2011). The idea
of this method is to clone each galaxy n times and distribute them
randomly within the maximum volume V., that the galaxy can be
observed given the survey magnitude limits

Vmax

s
Vmax, dc

= Nclones (4)
where ngones = 400 is the total number of randoms divided by
data, and Vi gc 1S the maximum volume weighted by overdensity
A(z). This method is iterated until A(z) converges, and the redshift
distribution of the resultant random catalogue is smooth without
large-scale features (see fig. 4 in Farrow et al. 2015).

The official GAMA group catalogue (G3C) was constructed by
Robotham et al. (2011). Most of the groups are found within z <
0.35 (see fig. 16 in Robotham et al. 2011): thus we impose a redshift
cut0.1 < z < 0.3 for the groups. The group catalogue is derived using
an anisotropic friends-of-friends (FoF) algorithm calibrated against
an N-body mock catalogue. However, in order to have consistently
defined groups in the GAMA mocks (see Section 2.3), we do not
use the official G3C catalogue. Instead, we apply a similar FoF
group finder algorithm due to Treyer et al. (2018) to both data and
mocks (see Kraljic et al. 2018 for an application to GAMA). The
main difference between the two algorithms is the parametrization
of the linking length, and a detailed description of the algorithm and
assessment of the group reconstruction quality can be found in the
appendix of Treyer et al. (2018).

In addition to the above selections, we further split galaxies and
groups into subsamples based on galaxy colour and group mass. The
number of selected galaxies and groups in each GAMA field and for
each subsample is summarized in Table 1. We describe the selection
in more detail below.

2.1 GAMA galaxy colour selection

Galaxies are divided into two populations that are known to have
distinct clustering properties: the ‘red’ galaxies, which tend to be
older, with little or no active star formation, and the ‘blue’ cloud,
where galaxies are younger with active star formation. To obtain the
galaxy colours, we use the extinction corrected SDSS magnitudes

1vIs_cLASS =0: Not visually inspected but suspicious based on SDSS flags;
VIS_CLASS =1: Visually inspected and a valid target; VIS_CLASS =255:
Not visually inspected but should be OK based on SDSS flags.
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Table 1. Number of selected galaxies and groups from GAMA fields with
redshifts 0.1 < z < 0.3 and flux limit » < 19.8. Galaxies are split into two
colour classes, red and blue, by equation (5). Groups are split into three stellar
mass bins: 40 per cent (LM), 50 per cent (MM), and 10 per cent (HM) by mass
ranking from low to high, covering the mass range log;o(Ms/h~>Mg) =
9.5-12.5.

Number of G09 GI12 GI15
Galaxies Blue 17335 18719 19053
Red 20584 22155 21141
Total 37919 40874 40194
Groups LM 1877 2084 2054
MM 2347 2606 2569
HM 470 522 514
Total 4694 5212 5137
G3C Total 4937 5367 5358
GAMA
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Figure 1. Distribution of the g — i colour of galaxies in the redshift range
0.1 < z < 0.3, for the real GAMA data (upper panel) and the average of 25
mocks combined (lower panel). Red and blue populations are separated by
the dashed cyan lines. The cut in GAMA is chosen such that both GAMA and
mocks have similar red and blue fractions at any given redshift. The dotted
lines show the cut for an alternative ‘contaminated’ red sample (see text).

from the TilingCatv46 DMU. It is, however, non-trivial to
separate the galaxy population into these subsets, because the colour
distribution is continuous without gaps: elaborate approaches have
been discussed in e.g. Taylor et al. (2015). For the purpose of this
study, we adopt a simple quadratic cut in the apparent g — i colour
versus redshift plane:

g —i=16.220z" + 1383z + 0.831. ®)

A cut of this form is motivated empirically by the apparent bimodality
in the colour—redshift plane, as shown in Fig. 1. The precise location
of the cut was adjusted in order to match the red and blue fraction
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at each redshift in the GAMA data with the corresponding result in
the mocks (which are discussed below in Section 2.3). The overall
fraction of red or blue galaxies is very close to 0.5, and it changes
only slightly with redshift: at the low redshift end, the red and blue
fractions are similar, while towards higher redshifts, the fraction of
red galaxies increases mildly until z ~ 0.2, and the difference in
the red and blue fraction then becomes small at z ~ 0.3. We create
random catalogues for the red and blue galaxy subsamples where
required by applying this smoothly varying colour balance to the
redshift distribution of the main random catalogue.

2.2 GAMA group mass selection

Groups are accepted with >2 group members, and the centre of the
group is determined by the most (more) massive member in terms
of stellar mass. The 2-member systems make up 66 per cent of the
total groups in the GAMA data, but are likely to have poor fidelity.
Thus, we emphasize that having the same group finder algorithm for
the data and mocks is vital in order for these low-fidelity groups
to be comparable. There are several approaches for determining
the group centre. The simplest choice is to select the most massive
member to be the central galaxy, and assume that it overlaps with
the halo centre. Other approaches include determining a weighted
centre by averaging over the positions of the group members, or
iteratively excluding members that are most distantly separated (see
e.g. Robotham et al. 2011). The iterative centres are used in the
G3C catalogue, and it is shown in Robotham et al. (2011) that the
agreement with using the brightest group galaxy (BCG) as group
centre is 95 percent for groups with N > 5, and that both BCG
and iterative centres give highly consistent results for 2 < N <
4 compared with the mock, and that the BCG centres are only
degraded by about 3 per cent compared to the iterative centres. The
effects of different group centre choices on the group-galaxy cross-
correlation concern mainly the 1-halo regime at r < 14~! Mpc, and
the correlation functions converge on larger scales (Yang et al. 2005).

The halo mass of GAMA groups was found to be tightly correlated
with the group total luminosity (Han et al. 2015; Viola et al. 2015;
Ranaetal. 2022), based on using stacked weak lensing measurements
to determine the mass distribution of the GAMA groups. The halo
mass of groups is related to the r-band luminosity Ly, via

Lo \*
M, = M, (ﬁ’) , (6)

where Lo =2 x 10" h=2Lg, log,o(M,/h~' Mg) = 13.48-0.08 &
0.12, and o« = 1.08 + 0.01 £ 0.22 (Han et al. 2015). The group
halo mass can be used to compute the expected mean group bias,
as shown in Section 5.3, where we also consider alternative mass
calibrations. It should be noted that in these works, only groups with
three members or above are used. Robotham et al. (2011) showed
that the mass function is noisier, but not biased when including
two-member groups. Although these systems are individually of low
reliability, this aspect should be allowed for by the mock catalogue,
allowing us to gain the statistical advantage of using a larger sample.
The luminosity is computed from the apparent -band magnitude:

—2.5l0g(L/Lg) =m — K(z) — 5log(d;) — 25 — Mo, )

where K(z) the k-correction up to z = 0 (kcorr_z00), d; is the
luminosity distance, and Mo = 4.67 is the r-band absolute magnitude
of the sun. The luminosity distance is expressed with unit 2~ Mpc
so that the luminosity has units of 772L,.

The total luminosity of the group is computed in Robotham et al.
(2011) via

:3104 10704M g ama(M,) dM,
f—Ag'oi“m 10-04Mr i aa (M) M,

Lgor = BLob (8)

where L, is the total observed luminosity in the rag band, B = 1.04
is the correction for median unbiased estimate for N > 5 groups, and
M, _ i is the absolute magnitude limit of the group depending on
the redshift z. ¢Gama is the luminosity function defined in Robotham
et al. (2011). The luminosity function at the faint end for GAMA
galaxies is well approximated by ¢pocL~'exp (— L/L,) (Loveday et al.
2012). Thus in practice we take the simpler approach of estimating
a total group luminosity by scaling the observed luminosity by
a redshift-dependent correction factor exp(z?/z2) with z, = 0.33,
where z is the mean redshift of the group members. This correction
factor has been checked using the G3C groups to produce a total
luminosity consistent with the official Tot FluxProxy.

The total stellar mass is another proxy for the total group mass.
We take the StellarMassesv19 DMU from Taylor et al. (2011),
where stellar population synthesis is used to model the optical
photometry of the GAMA galaxies. Because the modelling uses
rest frame luminosities, which depends on distance, the stellar mass
is expressed in units of 47> Mg.> Furthermore, for each group, we
correct the total stellar mass by the same redshift dependent factor
as the total luminosity. Notice that we do not apply the fluxscale
correction here, which accounts for the missing flux from matched
aperture photometry, because our results do not rely on the absolute
stellar mass of the groups. This correction therefore does not affect
our primary aim of splitting the groups into a few bins based on their
ranking in mass.

The calibration of the total stellar mass and the halo mass from
weak lensing of the GAMA groups is shown in Fig. 2 for the official
G3C groups from the G3CFoFGroupv09 DMU (dashed line) and
the group catalogue used in this work (solid line). The contours show
95, 50, and 20 per cent of the total sample, and are highly consistent
between the two group catalogues. We choose to divide groups into
three stellar mass bins based on percentiles: the low mass (LM) bin
consists of the least massive 40 per cent groups, the medium mass
(MM) bin corresponds to the middle 50 per cent, and the high mass
(HM) bin contains the most massive 10 per cent. The signal-to-noise
of high mass haloes is expected to be high, despite the low number
in the HM bin.

2.3 Mocks

We include mock catalogues for two reasons: (1) to validate the
RSD models and assess the bias on the recovered growth rate, and
(2) to quantify the impact of cosmic variance via the construction
of covariance matrices. We used 25 realizations of a light-cone
mock catalogue based on the GALFORM semi-analytical galaxy
formation (Gonzalez-Perez et al. 2014). The catalogue exploits
the Millennium Simulation (Boylan-Kolchin et al. 2009) with the
WMAP7 cosmology. These mocks can be obtained from the Durham
hosted Virgo-Millennium Database1? (Lemson & Virgo Consortium

Notice that this is only approximately true, because the stellar mass to light
ratio, M/L, which is used to obtain the stellar mass, depends on age and is
therefore specific to the choice of 4. The stellar mass used here assumes 7 =
0.72.

3http://virgodb.dur.ac.uk:8080/MyMillennium/Help ?page=databases/gama
_vl/lc_multi_gonzalez2014a
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Figure 2. Upper panel: Correlation between the stellar mass, corrected to
total by a factor exp(z> /zi) and the halo mass estimate derived from the
total group luminosity mass proxy, together with a lensing-based absolute
calibration from Han et al. (2015), for the GAMA groups with two or more
members between redshifts 0.1 < z < 0.3. The contours denote 95, 50, and
20 per cent of the total sample. The solid lines show the groups used in this
work using the group finder algorithm in Treyer et al. (2018), and the dashed
lines show the official G3C groups (Robotham et al. 2011). Lower panel:
The same relation for the mock catalogue. In this case, My, is not estimated
from the luminosity, but directly taken as the arithmetic mean host halo mass
of the group member. The difference in the distributions indicates that the
stellar populations in the mock data are not entirely realistic, but it also warns
us that the exact values of halo mass corresponding to the different GAMA
group subsets must be treated empirically, and should not be treated as being
known precisely.

2006). For more details regarding the mock catalogue, see Farrow
et al. (2015). By equation (2), the fiducial value of growth rate
at the mean redshift of the mocks, z = 0.195, is fy = 0.593.
The light-cone is constructed using the methods in Merson et al.
(2013), where, given an observer, the galaxy is placed at the epoch
where it first enters the past light-cone of the observer. The galaxy
trajectories are interpolated between snapshots. Each mock covers
the five GAMA fields with the SDSS r-band apparent magnitude
SDSS_r_obs_app < 21, and z < 0.9.

We use galaxies in the G09, G12, and G15 fields and apply the
same selection in redshifts 0.1 < z < 0.3 and the apparent r-band
magnitude cut SDSS_r_obs_app < 19.8. We also apply the same
survey mask generated using the random catalogue. The masked
areas are obtained by binning random galaxies in each field with an
average of ~2000 counts in each bin. Pixels with counts smaller than
five times the Poisson noise are masked. The total masked area in the
three fields is about 0.14 deg®. Because the mock redshift distribution
is not matched exactly with GAMA data and random (see Fig. 3),
we create a random catalogue for these mocks by down-sampling the

MNRAS 517, 374-392 (2022)
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Figure 3. The mean redshift distribution of the 25 GAMA mocks (square)
is offset from that of the random sample (dotted line). A random catalogue
is created for the mocks to have matched redshift distribution as the mock
mean. The redshift distribution of the GAMA galaxy sample is also shown
(histogram) for comparison.

random catalogue for the GAMA data, such that the n(z) matches
the mean of 25 mocks.

The red and blue subsamples for the mean of the mocks are
separated by the empirical line given by

g—1=046+32z, €)

as shown in the lower panel of Fig. 1. The line is chosen to go through
the green valley of the mock galaxy g — i colour. The GAMA galaxies
have a more concentrated red sequence overlapping with an extended
blue population, without a distinct green valley in between. On the
contrary, the mocks have a broader red population which is well
separated from the blue population by a green valley. Since the mock
catalogues have more distinctive separation for the two populations,
we find the corresponding colour cut in the GAMA data by matching
red and blue fractions in the two catalogues for 20 redshift bins in 0.1
< z < 0.3. The cut is smoothed by fitting a second-order polynomial,
as shown in the upper panel of Fig. 1.

The contamination of the red and blue sub-samples in the GAMA
data resulting from the colour cut is quantified in the following
way: for each redshift bin, the red and blue sub-samples are fitted
by a double Gaussian. It is a reasonable fit except for the green
valley in the mocks, as shown in Fig. 4. Given a colour cut, the
contamination of the red sub-sample is defined as the area under the
blue Gaussian over the area under the red Gaussian, and similarly
for the contamination of the blue sub-sample. Clearly, GAMA data
contain a contaminated red sample and a pure blue sample. Therefore,
we create a contaminated red sub-sample using the mock catalogues
by placing the mock colour cut such that extra blue galaxies are
included with the same level of contamination as GAMA data. The
contaminated red cut in the mocks (see Fig. 1) is smoothed by fitting
a quadratic polynomial of the form

g —i =243z +1.557 4+ 0.388. (10)

For mock groups, the stellar mass is computed by the sum of
diskstellarmass and bulgemass of all group members, and
corrected by the same redshift-dependent factor as the data. We do
not estimate the group halo mass from the same mass—luminosity
relation in equation (6). Instead, we use the host halo mass of the
mock galaxy directly. Because some haloes contain more than one
galaxy, for each group, we test the largest, the arithmetic mean, and
the median halo mass of the group member, and find that they give
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Figure 4. The g — i colour distribution of GAMA and 25 mocks combined at 5 of the 20 redshift bins in 0.1 < z < 0.3. The black dashed lines are double
Gaussian fits to the distributions, characterizing the blue and red populations. The yellow cuts show a linear cut in the green valley in the mocks, and the
corresponding cuts in GAMA which give the same red and blue fraction. The green dotted cuts in mock is the cut for the impure red sample.

similar results. We also test using the sum of unique host haloes in
the group. This increases the total group halo mass in the lower mass
end, but does not affect the higher mass end. The stellar—halo mass
relation of the groups using the total stellar mass and the arithmetic
mean host halo mass of the group members is shown in the lower
panel of Fig. 2. It is clear that the mocks show a much larger scatter
in the M,—M, plane and the slope is smaller compared to data, i.e.
at fixed stellar mass, the halo mass is larger. The total stellar mass
of the mock groups is also smaller by about 0.5 dex compared to
data. The clear difference between data and the mocks shows that
estimating the halo mass from luminosity using equation (6) is not
very reliable. The luminosity is itself strongly correlated with stellar
mass via the luminosity—mass relation, thus the upper panel of Fig. 2
does not show the true scatter of My, at fixed M, faithfully (or vice
versa). A comparison between the group and the halo catalogue in the
GAMA mocks reveals that the 2-member groups have low fidelity,
also discussed in Robotham et al. (2011). This again emphasizes the
importance of using a consistent group finder algorithm between the
GAMA data and the mock catalogues. The mock group catalogues
are separated into three stellar mass bins based on the 40, 50, and
10 per cent percentiles as measured in the data.

3 CROSS-CORRELATION MEASUREMENTS

3.1 Correlation statistics

We estimate the 2-point correlation function by counting pairs of
galaxies and randoms using the Davis—Peebles estimator (Davis &
Peebles 1983):

D,\D,
DR,
where the subscript i = 1, 2 denotes the two samples to be correlated
(in case of autocorrelation, the same sample), D; denotes data,

and R; denotes the corresponding random points. Each term in the
equation (e.g. D1 D») is the normalized pair count between data and

E(rp, ) =

-1, (11)

(or) random points, measured in bins of the pair separation (7, )
defined below. For two objects located at s; and s;, their separation
is given by s = s;—s;. The line of sight is defined along the mean
position of the pair, r = (s; + s2)/2. One can then decompose the
separation into components parallel and perpendicular to the line of
sight:

s-r
T=—" rp,=V8—n2 (12)

The random catalogue R captures various properties of the actual
data, such as the survey mask and the sample redshift distribution
n(z), but has no spatial correlation. Thus, these estimators essentially
measure the excess clustering of the data points compared to a
random distribution. For the red and blue galaxy samples, the random
n(z) is modulated by the redshift-dependent red and blue fraction
respectively (see Section 2.1).

For the case of autocorrelations, the Landy—Szalay estimator
(Landy & Szalay 1993) is known to be superior to the Davis—Peebles
approach, and there is a natural generalization to cross-correlation:

DDy — DiRy — DR + R R,
R{R; ’

E(rp, ) = (13)
However, implementing this estimator would require a random
catalogue for galaxy groups in different mass ranges, and we prefer
to avoid this complication. In contrast, the Davis—Peebles estimator
requires a random catalogue for only one of the populations being
correlated. Both Mohammad et al. (2016) and Riggs et al. (2021)
estimated cross-correlations using a form of Landy—Szalay where R,
was replaced by R;, but this has no justification, and will yield
incorrect results when the selection functions of the two tracers
are very different. We measured the galaxy autocorrelations using
both estimators, and found negligible difference for our sample.
Throughout the analysis, the size of random catalogue used is
20 times that of data.

The 2D correlation functions are measured out to a maximum
scale of 40h~" Mpc for both the r, and 7 directions in bins of
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1 h~! Mpc. This maximum scale is chosen due to the limited volume
of the GAMA survey. It may appear to be a concern that at this
scale perturbation theory starts to break down (thus the scale is often
chosen as the cut-off scales for larger data sets). However, we shall
show later that empirical models based on linear theory can still give
relatively unbiased results below this scale. For the halo streaming
model, which we will elaborate in Section 4.2, we use a 1-halo
template to absorb the deviation of non-linear clustering from the
perturbative 2-halo term. Although in principle, 7, and 7 should be
measured in the range [—40, 40] h! Mpc, in practice, pair counts
in the positive and negative bins are combined and our correlation
functions have two mirror planes of symmetry. This is the standard
practice for rp,, because the correlation function is symmetric around
the transverse direction. Along the line of sight, positive and negative
7 measurements can in fact be distinctive in cross-correlations due to
secondary gravitational effects. For example, gravitational redshift
can give rise to a non-vanishing dipole between two samples that
differ significantly in mass (Wojtak, Hansen & Hjorth 2011; Bonvin,
Hui & Gaztafiaga 2014; Cai et al. 2017; Beutler & Dio 2020).
However, given the size of the sample, we shall not investigate this
issue in this study. The combination of the 7 bins also improves the
signal-to-noise ratio for our measurements.

3.2 Results

In the following analysis, we will refer to the group subsamples
as LM, MM, and HM. We thus have six configurations for the
group-galaxy cross-correlations: LMred, MMred, HMred, LMblue,
MMblue, and HMblue. In addition, we also measure the red and blue
galaxy autocorrelations. The inclusion of galaxy autocorrelations in
the analysis helps in breaking the near degeneracy between by, and
bgrp. Ideally, one would also include the autocorrelations for the
group catalogue. These are excluded here: as mentioned above, we
do not construct random versions of the group catalogue.

Fig. 5 shows the red and blue galaxy autocorrelations (top row) and
the cross-correlation functions for the six configurations (lower three
rows) measured from the GAMA data (first and third column), and the
corresponding mocks average (second and forth column). The first
noticeable feature is that the red configurations (left two columns)
have larger clustering signals compared to the blue ones (right two
columns). This is most obvious in the two galaxy autocorrelations.
On relatively large scales, the squashing is also stronger in the blue
configurations. This effect is controlled by the Kaiser distortion
parameter 8 = f/b (see Section 4.1 below), and is expected to be
stronger for samples with a smaller bias b (vice versa), given that
the growth rate f is fixed. The fact that red galaxies have a larger
galaxy bias compared to blue galaxies implies that red galaxies are
preferentially associated with more massive dark matter haloes, in
agreement with other studies (e.g. Guo et al. 2014; Mandelbaum et al.
2016; Bilicki et al. 2021). On smaller scales, the red configurations
also show a much more prominent FoG signal compared to the
blue ones. This is intuitively sensible because more massive haloes
are associated with a larger velocity dispersion. Comparing the
correlation functions across different groups for a specific galaxy
selection, we see a similar trend on both small and large scales: with
the increase in group mass, a larger clustering amplitude, group bias,
and FoG effect are observed. Notice the high signal-to-noise ratio
at small scales in the HM groups, despite that the sample size in
this mass range is only about 1/4 of the other mass ranges. These
observations confirm that the identification of the galaxy groups,
as well as the separation of group masses based on the effective
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halo mass (total luminosity) are successful for the purpose of
this study.

The agreement between the mock average and the GAMA data is
good in general — the same trends in galaxy colour and group mass
are captured. In regions where r, is close to zero, the mock average
seem to produce weaker clustering compared to the actual data in the
blue configurations. The match in the red configuration, on the other
hand, is excellent. The mock contaminated red sample is also shown
as dotted contours (second column). The inclusion of extra blue
galaxies has the effect of slightly reducing the overall amplitude in
this contaminated sample compared to the pure red sample. On larger
scales, the signal in data is noise and cosmic variance dominated.
This is most noticeable in the LM subsamples, where the signal
greatly exceeds the mock average on r > 20 2~ Mpc. Inspecting the
measurement in each mock sample, this level of fluctuation in the data
is expected. It should be noted that cosmology adopted in the mock
catalogue is 2, = 0.27, which is lower than the current constraint
from Planck, Q,, = 0.315 £ 0.007 (Planck Collaboration VI 2020).
Thus, one may expect some difference in clustering between the
mock average and the data. However, given the noise in the GAMA
data, a percent-level shift in the growth rate f o< Q¥ is hard to
discern. It is also found in Farrow et al. (2015) (e.g. their fig. 8)
that the mock can capture similar clustering trends as the GAMA
data, when split into bins of redshift and stellar mass. Notice that
there are significant deviations at small scales (r, < 1 27! Mpc) in
the shape of the projected correlation functions, but these scales are
not explored in this analysis.

4 RSD MODELS

4.1 Quasi-linear dispersion model

To describe the RSD in galaxy density field, one can extend
equation (3) by including the galaxy bias b:

Py(k, 1) = b* P (k) (1 + Bu?)’, (14)

where § = fI/b is often referred to as the distortion parameter.
The above formalism is valid for galaxy autocorrelation, but it is
straightforward to generalize to cross-correlation:
b2
Pk, p)= -5
e (k. ) b,
where by, is the galaxy bias, and by, is the ratio between galaxy
and group bias:

b1y = bya/berp- (16)

The 2-point correlation function is the Fourier transform of the power
spectrum. Itis convenient to express the correlation functions in terms
of Legendre polynomials Py (u) with £ = 0, 2, 4 (Hamilton 1992):

&, = §o(NPo(w) + E2(1)Pa(p) + E4(r)Pa(). A7)

In this expression, the coefficients of the Legendre polynomials,
&o(r), £2(r), and &4(r) are referred to as the monopole, quadrupole,
and hexadecapole. In linear theory, only even modes are present up
to the forth order because of the RSD effect modifies the power
spectrum by the factor (1 + Bu?)?. The specific form of these
multipoles are computed by Hamilton (1992) for autocorrelation,
and Mohammad et al. (2016) for cross-correlation. We summarize
these formulae in Appendix A.

The FoG effect is accounted for by a convolution of the correlation
function with some distribution of the non-linear random peculiar
velocity along the line of sight (Peacock & Dodds 1994). N-body

aj

2‘<1 + Baa (1 + b2 B t*) P (K), (15)
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Figure 5. False colour images of autocorrelation and cross-correlation functions in redshift space for the actual GAMA data and the corresponding average
over the set of 25 GAMA mocks. r;, denotes transverse separation; 7 is radial separation. LM, MM, and HM denote the three group mass bins. A number of
trends are apparent: both the bias (amplitude of clustering) and the small-scale Finger of God (FoG) dispersion increase with group mass, and are larger for red
galaxies than for blue. The mock contaminated red sample is shown as dotted contours on the second column, with logjglé| = { — 1.0, —0.5, 0, 0.7}.

simulations show that the actual distribution is non-Gaussian (e.g. where o, is the pairwise velocity dispersion. In Fourier space, this
Sheth 1996; Scoccimarro 2004; Cuesta-Lazaro et al. 2020). Thus, function takes the form of a Lorentzian function, [)(k,u) =[1+
we adopt: (kpo2)?/2]17", which damps the high-k modes of the anisotropic

power spectrum.
At quasi-linear scales, non-linearity may introduce systematic
_N/EH()”/UIZ) , (18) biases in the inferred cosmological parameters (de la Torre & Guzzo
2012). There are multiple challenges in extending the model beyond

1
D(r) = ——
()= e (
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linear regime. There, the peculiar velocities can be large, and the
formalism described breaks down at linear order. Non-linearities alter
the small-scale shape of the matter power spectrum and correlate
the density and velocity fluctuations. Accounting for these effects
requires higher order expansion in the Perturbation Theory and the
inclusion of the velocity spectrum, Pygy(k), and the density—velocity
cross spectrum, Psy(k), e.g. the TNS model by Taruya, Nishimichi &
Saito (2010). Galaxy bias can also be non-linear and stochastic on
small scales (Dekel & Lahav 1999). Furthermore, the approximate
velocity dispersion in equation (18) fails to fit autocorrelation data
on the smallest scales. More elaborate velocity distributions are
proposed by e.g. Reid & White (2011); Zu & Weinberg (2013);
Bianchi, Chiesa & Guzzo (2015) based on simulations.

One simple approach is the replacement of the linear power
spectrum in the linear Kaiser model (equation 14) by the non-linear
power spectrum. This is reasonable because the redshift space power
spectrum should match that in real space at © = 0. Blake et al. (2011)
showed that this combination is actually among the best-performing
RSD models when fitting down to ky.x = 0.24 Mpc_l with fixed
cosmology.* For this model, we adopt the non-linear power spectrum
from HALOFIT (Smith et al. 2003; Takahashi et al. 2012). In the non-
linear regime, we should in principle allow for a scale-dependent
bias. But in practice it is a good approximation to assume that the
non-linear galaxy and matter power spectra are in a constant ratio
(see Camacho et al. 2019). In the following analysis, we refer to this
model as the ‘quasilinear dispersion” (QD) model.

4.2 RSD in the halo model

The main deficiency of the QD model is that it does not address post-
linear couplings between density and velocity, which will modify
the simple Kaiser angular anisotropy. There is an extensive literature
of attempts to improve such modelling, based on various forms of
perturbation theory. The model of Taruya et al. (2010) is widely used,
although more recent efforts have concentrated on the Effective Field
Theory approach. This adds additional terms dictated by symmetry
in a way that can also capture bias effects, including non-linearity
and non-locality (e.g. Carrasco, Hertzberg & Senatore 2012; Senatore
2015;d’ Amico et al. 2020). These results are impressive, but have the
limitation that they are presented in Fourier space and are not reliable
beyond k ~ 0.3 Mpc~'. For a robust prediction of correlation
functions, we need a formalism that still behaves correctly in the
large-k limit.

For this reason, we have developed a model that seeks to access
the highly non-linear regime by using the halo model. In real space,
this involves correlations that count pairs of galaxies in the same halo
or in different haloes:

£(r) = &n(r) + Ean(r). (19)

The 1-halo term is determined by the form of the halo density profile,
and the 2-halo term is close to a linearly biased version of the
matter two-point function. The bias in turn is determined by the
halo occupation number, N(M), of galaxies in haloes as a function
of their mass. This halo model has proved a highly effective way
to understand the relation between the clustering of galaxies and of
mass (Peacock & Smith 2000; Seljak 2000; Cooray & Sheth 2002),
and for the case of dark matter alone has led to the highly precise
HALOFIT framework (Smith et al. 2003; Takahashi et al. 2012).

4 Although it should be noted that if the model could introduce bias to Q2 if
the cosmology is not fixed, as shown in Parkinson et al. (2012).
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The halo-model separation into two independent pair contributions
must also apply for the redshift-space correlations, namely

E(rp, 1) = &1 (rp, 1) + Ean(rp, ), (20)

but it should be clear from the outset that the 1-halo and 2-halo
contributions would be expected to have rather different anisotropy
signals. The characteristic quadrupole plus hexadecapole Kaiser
distortion arises from the coherent component of the velocity field,
and this will apply to the 2-halo term only, since pairs from within the
same halo are unaffected by bulk motion of the halo. This redshift-
space decomposition using the halo model was advocated by Hand
et al. (2017), who invested much effort in trying to predict the two
distinct components using perturbation theory. Our work bears some
resemblance to their approach, with two distinct differences: we
work directly in configuration space, and we base the 1-halo term on
empirical simulation results, rather than attempting to calculate it a
priori.

A particular point to clarify in this decomposition is the treatment
of Fingers of God. Random motions within a halo are treated in
the dispersion model by a radial convolution — but in fact the
appropriate convolution will be different for the 1-halo and 2-halo
terms. The main reason for this is that the 1-halo and 2-halo terms
weight contributions as a function of halo mass differently, with a
higher weight given to high-mass haloes in the 1-halo term (see e.g.
equations 8 and 10 of Seljak 2000). Since the pairwise dispersion o |,
increases with halo mass, we expect larger FoG effects to apply to the
1-halo term. This is further complicated by the existence of central
and satellite galaxies, since the weighting of these is different in the
1-halo and 2-halo terms. For example, suppose each halo contains
either just a single central or one central and one satellite, where the
velocity dispersion of satellites is o. The 1-halo contribution must
pair a central with a satellite, so the pairwise dispersion is o. But
the 2-halo term can also pair centrals with centrals (assumed to have
negligible pairwise dispersion — although Reid et al. 2014 showed
that the actual pairwise velocity could be up to 30 per cent of o) and
satellites with satellites (pairwise dispersion +/20), so the average
rms pairwise dispersion depends on the fraction of haloes that contain
a satellite. If most haloes are central-only (as in BOSS CMASS, for
example), the pairwise dispersion for the 2-halo term will be <o In
the opposite direction, one can argue that the velocity field of haloes
will contain some stochastic component in addition to the coherent
velocities that generate the Kaiser distortion.

With this perspective, an improved simple model for the cross-
power between tracers a and b would be as follows:

Pup(k, ) = Pyy(k) Dy(kp)
+babp Piin(k) (1 + Bup®)(1 + Boi®) Da(kpa). 21

Leaving aside the 1-halo term for the moment, one way in which we
can seek to improve this expression further is in terms of quasi-linear
effects on the 2-halo term. A first requirement is that the real-space
spectrum (at u = 0) should have the full non-linear form. When
discussing the dispersion model, we achieved this by replacing Py,
by the non-linear spectrum. In the halo model, we should not do
this, since the 2-halo term in real space is close to linear theory, and
the 1-halo term supplies most of the non-linear corrections (Smith
et al. 2003). We do however adopt the HALOFIT 2-halo term, with
scale-independent bias, as the best model for the real-space 2-halo
term.

The next step is to seek improvement in the density—velocity
coupling that leads to the Kaiser distortion factors. An attractive
approach here is the streaming model (e.g. Fisher 1995; Vlah,
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Figure 6. Illustrating the decomposition of the measured mock correlation data (left-hand panel) into a 2-halo fit (middle panel) and an empirical 1-halo term
in the form of the residual of the fit (right-hand panel), for the particular case of red-MM cross-correlation. The 2-halo term is computed using the streaming
model, and is matched to the data at radii » > 102~ Mpc, with the additional criterion that rp >3 h~! Mpc.

Castorina & White 2016), in which we consider the quasilinear
relative velocity distribution as a function of pair separation, and
use this to transform to redshift space while exactly conserving pair
counts. The details of the construction of this model are given in
Appendix B. As with the linear model for the 2-halo term, there are
three main free parameters, the tracer biases and the growth rate:
(ba, by, ). This assumes that the mass power spectrum is known
exactly, whereas it depends on all fundamental ACDM parameters.
The main variation of the power is o o, so it is common to factor
out this degree of freedom and take the main RSD parameters to be
(b,0s, bpos, fog). However, there is a weaker further dependence on
og when we adopt the HALOFIT prediction of the 2-halo matter power
spectrum, rather than taking this to be pure linear theory (although
the difference is not important in practice).

In addition to these three main RSD parameters, we have pa-
rameters connected to the FoG damping. As described earlier, it is
conventional to model FoG effects by radial convolution, taking the
velocity PDF to be a Lorentzian and using a velocity dispersion as
the single free parameter. But in the present context, it is important
to be clear that the empirical evidence for the Lorentzian form comes
mainly from the 1-halo term. This is D (k) in equation (21); but we
want the effect on the 2-halo term, D, (k,). We have argued that this
will be characterized by a different dispersion, but in addition there
is no strong reason to assume it will have a Lorentzian form. As a
more general alternative, we considered a modified Lorentzian:

Da(kp) = (14 (kpon)*/2y) " (22)

and experimented with different values of y. But in practice the
results were rather insensitive to the choice of this parameter, so
we retained the Lorentzian y = 1. It is shown in e.g. Scoccimarro
(2004), Bianchi et al. (2015), and Cuesta-Lazaro et al. (2020) that
the shape of the PDF is only relevant where the correlation function
changes significantly over a scale comparable to the width of the
smoothing function. But the issue of the exact form of the PDF for
FoG corrections to the 2-halo term is a problem that merits further
study.

In summary, we therefore have two models with similar real-
space correlations, but different degrees of RSD: (1) QD: quasi-linear
dispersion model and (2) HS: halo streaming model. Both of these
converge to the linear Kaiser model on large scales, so what is of
interest is the smallest scale to which their predictions are reliable.
We will assess these by comparison with mock data.

4.2.1 The I-halo term

The real-space 1-halo term can in principle be computed in the
usual halo model framework, given the occupation numbers for the
tracers and the halo radial profile. But there is also a case for taking
an empirical approach, given that the real-space correlations are in
principle observable directly, in a manner free of RSD effects, via
the projected correlation function wy(r,). One might for example
model the real-space 1-halo term by a power-law of free amplitude
and slope, or via an NFW profile.

But whatever approach is taken in real space, there is then the
question of how the 1-halo term appears in redshift space. As
described above, the simplest approach is to assume that the transition
to redshift space consists of a radial convolution with a single
FoG function. However, it is not hard to see that this must be
an oversimplification. The 1-halo term arises from random orbital
velocities within the halo, but the velocity dispersion is unlikely to
be constant. If for example we consider the case of isotropic orbits,
then the dispersion would need to fall to zero at the virial radius of
the halo, beyond which the density is assumed to vanish.

Here, we address this concern directly by using the mocks. Given a
hypothesis for the 2-halo term, we can subtract the 2-halo prediction
from the mock data to obtain an empirical & (7, 7) that sums
with the 2-halo term to give exactly the mock data (specifically, we
apply this approach to the average of all the mocks). The 2-halo
term can be deduced by fitting to the mock data in a regime where
we assume the 1-halo contribution to be negligible. The exact cuts
adopted in the process are not critical; in practice, we chose to match
to the data at radii r > 107! Mpc, with the additional criterion
that r, > 3 h~' Mpc. The operation of this procedure is illustrated in
Fig. 6. The resulting residual 1-halo term is clearly well localized
near the origin, and indeed it can be seen that the RSD effects in the
1-halo term are complicated, with the FoG effect being largest at r,,
= 0, whereas the function appears more isotropic close to its outer
limit at , >~ 5 h~" Mpc. This interesting behaviour is clearly worthy
of being modelled in detail, but we shall not do that here.

We now have a decomposition of the redshift-space correlations
that by construction exactly matches the average of the mocks.
However, each mock realization will be different, as will be the
real data, so can these different data sets be fitted in this framework?
The 2-halo term is already parametrized, and these parameters can be
varied for any given data set. But the 1-halo term must also have some
variation. Our approach is to assume that the mocks are sufficiently
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realistic that the effective 1-halo term in any given case will be close
to the mock average, and that the difference can be captured by two
nuisance parameters:

En(rp, m) — akpy(rp, n ). (23)

In other words, assume that we have roughly the right functional
form, but that the amplitude may be off (scale by «), and that the
FoG strength may be off (stretch in the radial direction by 1/n).
Physically, the amplitude parameter o can be related to the way in
which galaxies populate haloes: there may be different numbers of
satellite galaxies in a given halo compared to the mock, leading to
a different small-scale clustering signal. We have previously seen
that an empirical rescaling of the 1-halo amplitude can yield an
accurate fit to correlation data in real space (Hang et al. 2021). The n
parameter attempts to capture the velocity dispersion of the galaxies
in the halo: a smaller 1 produces a larger FoG effect. Again, this can
be understood in terms of an uncertain halo occupation, which can
alter the mean mass of the haloes that contribute the 1-halo term.

As we show below, this approach is able to succeed in matching
the individual mock realizations, and so we see no reason not to apply
the same model to the real data. We emphasize that we do not need
to assume that the mocks are completely realistic, as long as they are
qualitatively similar to reality. The reliability of this approach can be
judged by whether or not the fitted values of & and n are close to unity
(as indeed turns out to be the case). We only consider this minimal
set of two empirical nuisance parameters in the current analysis;
for forthcoming large data sets of higher statistical precision, more
parameters may be required in order to make the model acceptably
accurate. Eventually, we will need to validate the model by deriving
1-halo templates from a given set of mocks and showing that they
can fit data derived from mocks produced according to different
assumptions. We intend to pursue this high-precision robustness test
in a future study.

4.3 Fitting methodology

4.3.1 Covariance matrix and likelihood inference

In the above discussion, we have not been explicit about exactly what
it means to fit the averaged mock data. In principle, one would like to
have an understanding of the errors on the data, so that the likelihood
can be computed as a figure of merit that is used to optimize the
fit. For an individual data set, this can be done in the standard way
by using an ensemble of mocks to estimate the covariance matrix of
the data, and then appealing the to central limit theorem to compute
the likelihood in the Gaussian approximation. For fitting the stacked
mocks, the appropriate covariance matrix is less obvious, but in any
case it is less important to have a likelihood in that case, where
the aim is simply to estimate a 1-halo contribution as a basis for
further modelling. We are not interested in placing errors on the best-
fitting parameters of the 2-halo term, for which a likelihood would
be required. In practice, therefore, we took the simple approach of
seeking a least-squares fit in In(1 + &) to the mock average. The
exact figure of merit chosen is unimportant as regards the 1-halo
residual.

The covariance matrix for a single data realization is most often
estimated in one of two ways: either directly via the scatter over a
number of mock realizations, or via Jackknife resampling of a single
realization. Both of these approaches have their limitations, but the
best strategy is when they are combined: an expanded set of mock
realizations is created by Jackknife resampling of each one, yielding
an improved estimate of the covariance matrix (Alam et al. 2021b).
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For a data vector with component x; and a model vector y;, where i
=1,..., m, the x? is defined as

X2 =Y Ixi = ylC; I, — ;1. (24)
iJ

In the above equation, Cj; is the covariance matrix, estimated from
N independent realizations of mock data:

. R
Cij = 7 21 = bl — (1. 25)
k=1

Given a model with p parameters, there are m — p degrees of freedom
in the x2-fitting. Due to the small number of mocks, we apply
Jackknife re-sampling on the mocks by dividing each survey field
into 18 sub-regions, giving a total of N; = 54 samples for each mock.
The covariance matrix for an individual mock sample is estimated
using equation (25), with an extra factor (NV; — 1) to account for
correlations between the Jackknife samples. We average over the
covariance matrices of the 25 mocks to obtain the final covariance
matrix. It is pointed out in Escoffier et al. (2016) that this method
can reduce the noise on the covariance estimation, and fast approach
the truth. However, we caution that these mocks are not completely
independent, because they are constructed from the same N-body
simulation (Gonzalez-Perez et al. 2014).
The posterior of the model parameters 6 given data D is estimated
in a Bayesian way:
P(D)

where P(0) is the prior and P(D) is treated as a normalization. The
term P(D|0) is proportional the likelihood £, which we assume to be
Gaussian:

L o< exp(—x2/2).

We use Monte Carlo Markov Chain (MCMC) sampling of the
parameter space, implementing the python package emcee.’

4.3.2 Data compression

Instead of fitting the whole 2D correlation function, which requires
an N(rp) x N(mr) — dimensional covariance matrix, we compress the
2D information into the multipoles defined as

2041 (!
G P / G P = 0,2,4, @7

2

We ignore higher order multipoles because they are typically noisy
and more sensitive to non-linearity. Multipoles are computed by
interpolating the 2D correlation function, and this is done consistently
for both the measurements and the models. In the QD model, we
exclude &4 from the fitting, because the non-zero signal at scales
r > 10 h~! Mpc cannot be well reproduced by this model.

We also considered adding the projected correlation function wy:

Tmax

wy(rp) = / E(rp, m)dm. (28)
—TTmax

This has the merit that it is in principle independent of RSD for

large enough 7 ., and a knowledge of the true real-space clustering

should be advantageous if we are focusing on redshift-space effects

that cause deviations from this. However, we found in practice that

Shitp://dfm.io/emcee/
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it was not possible to choose a large enough .« to achieve results
that converged to the true real-space clustering without the results
being too noisy to be useful. The w,, statistic may be useful at small
separations, r < 104~ Mpc, as a means of probing the real-space
1-halo term, but as discussed above we do not need to do this in
the present work. We included w,, in the fitting for the QD model;
however, due to the limited information it could provide in addition
to the multipoles, the w, was excluded in the HS model fitting.

For each of the six cross-correlation configurations, we fit the
measurement simultaneously with its corresponding galaxy autocor-
relation. This allows us to break the degeneracy between the galaxy
and group bias.

4.3.3 Scale cuts

Below quasi-linear scales r ~ 10 2~! Mpc, both models may fail
to capture the full non-linear features. Fitting data points at these
scales may introduce significant bias into the measured growth
rate. Therefore, we test the models on a set of minimum fitting
scales, rmin = 2,5, 10, 15,20 47! Mpc using the mock catalogues,
and adopt the most appropriate cut for each subsample. For the HS
model, because the model is designed to be able to fit smaller scales,
we only test the model at rpy, = 2, 5, 102~ Mpc.

4.3.4 Integral constraints

To account for the missing power for modes larger than the GAMA
survey scale, we include the integral constraint /, which is a small
constant added to the 2D correlation function. The expected integral
constraint is given by
biby ,  bib

3 Ot =3 A2(k) W2k, r = regr)dInk, (29)

I =

where A?(k) is the dimensionless linear matter power spectrum,
b, and b, are the tracer biases, W(k, r) = 3[sin (kr)/(kr)® —
cos (kr)/(kr)*], and re is the effective radius of the survey volume
in one of the GAMA fields, V = 47r2;/3. The factor 1/3 accounts
for the fact that we combine measurements over three GAMA fields.
Equation (29) gives I = 0.0017b,b,. This can also be measured
in the mock data directly, by comparing the projected correlation
function wy, at large scales between the average of 25 samples and the
combination of all mock samples. The measured values are consistent
with the expectation given the statistical errors. In the QD model, we
allowed I to be a free parameter, and found that it has little impact
on other parameters, with a posterior consistent with zero (e.g. see
Tables D1 and D2 in Appendix D). The integral constraints are then
fixed to the measured values from mock for the streaming model, as
shown in Tables D3 and D4.

4.3.5 Priors

The parameters used in the two models and their uniform prior
ranges can be found in Table 2. For each of the group-galaxy
subsample, the galaxy autocorrelation is fitted simultaneously with
the cross-correlation. Parameters with subscript ‘@’ are used for
autocorrelations and ‘c’ for cross-correlations. There is another
cosmological parameter that should be considered: the normalization
of the (linear) matter power spectrum og. From equation (14), it
is clear that on linear scales, og and b are completely degenerate,
hence RSD measurements are usually quoted in the combination fo g.
At large k, the shape of the non-linear power spectrum is actually

Table 2. Range of the uniform priors of the RSD fitting parameters. For
growth rate, the usual constraint from RSD is fog, but we fix og = 0.81 in
this analysis. The «, and n parameters are the 1-halo parameters applied in
the GSM model only.

Parameter Prior (QD) Prior (HS)
bgal [0.1,2.5] [0.5,2]
b1z [0.1,2.5] [0.25,3]
f [0,2] [0,2]
04 (kms™!) [143,1140] [30, 800]
0. (kms™h) [143,1140] [30, 800]
1, [0,0.1] Fixed
1. [0,0.1] Fixed
g - [0.1,2]
ac - [0.1,2]
Na - [0.5,2.5]
Ne - [0.5,2.5]

sensitive to og. However, such dependence is weak for the scales
probed here, and we fix og = 0.81 throughout the analysis.

5 RESULTS

5.1 Mocks

We fit both models to each of the 25 mock samples, and compute the
mean and scatter of the best-fitting parameters. The aim is to assess
the scale at which an unbiased growth rate can be recovered. The
result is shown in Fig. 7 for the set of ry;, as mentioned in previous
sections, and for each of the six configurations. The fiducial value of
fwith £10 per cent range is marked by the grey band in each panel.
The error bar is comparable to, but should not be taken directly as
the expected error size on the GAMA sample. The specific values
of all model parameters are summarized in Tables D1 and D3 in
Appendix D.

Notice that in the case of halo streaming model, there is a caveat
that the 1-halo templates are obtained from the average of the same set
of mocks as they are tested on. Ideally, we would like to have access
to multiple sets of simulations covering different cosmology and
HOD prescription, with matched survey configurations as GAMA.
Then, we would test the halo streaming model on by extracting
the 1-halo templates from one set of simulations and apply it to the
measurements from the others. In this way, we can assess whether the
model is robust against bias due to a different cosmology or change
of the simulation settings. Such test will be particularly relevant for
the forthcoming large data sets, where the demand of the precision
of the model is high. However, this is beyond the scope of this paper
given the noise level of the GAMA data. We would like to defer such
detailed comparison to a future study.

The top panel of Fig. 7 shows the recovered growth rate f
using the QD model (Section 4.1). As expected, when the small
scales are included (rpp, < 5h~! Mpc), the fitted growth rates are
significantly biased in all configurations, while at larger scales
(rmin > 15 h~! Mpc), they converge to the fiducial value. The overall
growth rate seems to be underestimated by about 5-10 per cent
for most scale cuts, but this is much smaller compared to the
statistical error of the GAMA sample. It is noticeable that the blue
configurations are less biased down to smaller scales, with frecovered
to within 10 per cent at 7y, = 5-10h! Mpc, compared to the red
configurations which are only unbiased at ryy, = 15-204~! Mpc.
This may be due to the smaller FoG effect in the blue configu-
rations compared to the red. From this test, we choose to adopt
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Figure 7. The means and scatter of the best-fitting growth rate f from 25 mocks as a function of the minimum fitting scale, rmin, for the quasi-linear dispersion
(QD: top) and the halo streaming (HS: bottom) models. Data points at each ry;, are displaced by 0.1 2~ Mpc for clarity. The grey band marks the 10 per cent
regions around the mock fiducial value f = 0.593 at z = 0.195. Note that the error bars are for a single survey, so that the errors on the mean of the mocks are

5 times smaller than shown.

Fmin = {10, 10, 10, 15, 20, 20} A~ Mpc for the LMblue, MMblue,
HMblue, LMred, MMred, and HMred subsamples, respectively, for
the QD model in the application to the GAMA data. The bottom
panel of Fig. 7 shows the recovered growth rate f using the HS
model, where the results are impressively consistent. The growth
rates for the different subsets are consistent to within an rms of
3 per cent in the mock average results, and the global average of
these different subsets is within 2 per cent of the fiducial value.
This successful performance holds down to even i, = 207! Mpc,
although the estimated errors at that point are little different to those
at rpin = 5 h~! Mpc, so we conservatively adopt the larger figure in
our HS analysis.

Fig. 8 shows the linear and streaming model with the mean best-
fitting parameters from the mock subsamples, at the respective rp;,
as mentioned above. The mock average measurement as well as the
lo error on the mean is also shown. In addition, we also show the
corresponding 2-halo term of the streaming model in dotted black
lines. On large scales (r > 15h! Mpc), all of the model curves
converge, and match well with the mock average. It is noticeable that
the full streaming model (with the addition of the 1-halo template)
and its 2-halo term do not coincide exactly on these scales: the
extracted 1-halo template still has some residuals in the monopole and
quadrupole. The largest difference is seen in the hexadecapole. The
slightly positive values seem to be produced only by the 1-halo FoG,
which both the linear and the 2-halo terms of the streaming model
fail to capture. Looking at smaller scales (+ < 10 2~! Mpc), it seems
that the QD model underpredicts the power in the red configurations,
and overpredicts that in the blue configurations.

5.2 GAMA

Fig. 9 shows the measured GAMA multipoles (filled circles), the
best-fitting QD models (black dashed lines), and the HS models
(black solid lines). In addition, the corresponding HS model 2-halo
term is shown in the dotted black lines. The same scale cuts, 7min,
are adopted as in the mock case for each of the models. The x? and
parameter values are shown in Tables D2 and D4. The full HS model
2D models are contrasted with the GAMA data in Appendix C.

We see that the QD model provides a reasonable fit to the
monopole and quadrupole at given 7y, in most configurations. The
only exception is the LMred and LMblue subsamples, where the
monopole power is boosted at large scales and the quadrupole power
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is consistent with zero. Despite the visual discrepancy, the x> of
these models are consistent with the degrees of freedom of the data.
The HS model is able to capture the shape of the multipoles down to
smaller scales, especially the hexadecapole at scales » > 5h~! Mpc.
At smaller scales (r < 5h~! Mpc), although excluded from fitting,
the mock 1-halo template continues to provide a reasonable fit
to the red configurations. But this is not the case for the blue
configurations, where the non-linear velocity dispersion seems to
be stronger in the actual data compared to the mock catalogues.
One possible explanation could be the impact of redshift measuring
errors. These are not included in the mocks, and so any measured
velocity dispersion in the real data only will include the redshift
error in quadrature. The typical GAMA error is 50km ~!, but in
detail Liske et al. (2015) showed that redshift errors can depend
on spectral and target properties. The redshift error for galaxies
classified as the ‘absorption’ type (i.e. the spectrum is dominated by
absorption features) is 101 kms~!, compared to the ‘emission’ type,
which is 33 kms~!. But red galaxies have a larger measured velocity
dispersion, so the impact of redshift errors on the total measured
dispersion will be less in that case.

Fig. 10 shows the mean and 1o error on the model parameters from
the MCMC posterior for the GAMA data, fitted at respective 7.
The open and filled symbols denote parameter constraints from the
QD model and the HS model, respectively. In the latter case, we also
show the constraints measured using the 1-halo template from the
‘contaminated’ red galaxy sample (purple filled symbols). All sets of
constraints show good consistency. Notice that the size of the error
bar in the blue configurations is similar in both models, although
the QD model has a scale cut at 102! Mpc while the HS model
at 5h~! Mpc. This is the consequence of the additional nuisance
parameters added in the latter model. The specific parameter values,
including the 1-halo parameters in the HS model, can be found in
Tables D2 and D4. In Figs E1-E4 in Appendix E, we further show
the full posteriors from MCMC for all parameters in both models,
grouped by the red and blue configurations. In the HS model, the
1-halo parameters o and 1 have no primary degeneracy with the
growth rate, although the growth rate can be shifted slightly through
their small degeneracy with the velocity dispersion parameters. In
practice, one would always marginalize over the 1-halo parameters.

The middle two panels show the measured group and galaxy biases
in both models. The LM, MM, and HM group biases measured
consistently between the red and blue configurations in both models.
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Figure 8. The multipoles of the group-galaxy cross-correlation functions in the mock average (open diamond). The coloured bands show the scatter on the
mean. The best-fitting QD models are shown in dashed black line, with ryin = {10, 10, 10, 15, 20, 20} ! Mpc for the LMblue, MMblue, HMblue, LMred,
MMred, and HMred subsamples, respectively. The best-fitting Gaussian streaming models with a 1-halo template are shown in solid black lines, with a fixed
Fmin = 5 h~! Mpc for all sub-samples, with the corresponding 2-halo term shown in dotted black lines. For the presentation purpose, the multipoles have been

multiplied by ',

For our selection of galaxies, we find that by, ~ 1 for the blue
galaxies, and by, ~ 1.3 for the red galaxies; for the groups, we
find that by, ~ 1.2, 1.4, 1.8 for the low, medium, and high mass
ranges. The by, measurements are in qualitative agreement with
that in Riggs et al. (2021) on large scales (e.g. see their Fig. 8),
although direct comparison is non-trivial due to difference in the
group selection. The consistency between the two models is good
in general, although for the blue configuration, the HS model gives
systematically lower biases compared to the QD model by 0.50—
1.50. The lower two panels show the measured autocorrelations and
cross-correlation velocity dispersion, o, and o.. The two models
measure consistent velocity dispersion, despite slightly different
form for the FoG term. Notice that for the red configuration in the
QD model, because of the large scale cut, the velocity dispersion
posterior is prior driven. There is a tentative trend (at ~20) that
the red configurations have larger velocity dispersion compared to
the blue configurations, with o, . ~ 400 — 500 kms™! for the red
configurations, and o, . ~ 300kms™' for the blue configurations
in both autocorrelations and cross-correlations. There is, however,
no clear dependence on the group mass. These measured galaxy
biases and velocity dispersion are in good agreement with other
measurements from GAMA (e.g. Blake et al. 2013; Loveday et al.
2018). The marginalized posterior for f, by, and by, for the six
configurations is shown in Figs 11 and 12 for the QD and HS models,
respectively.

The top panel shows the measured growth rate, consistent across
the six subsamples for both models. Here, we have presented the
results in the more general form of fog(z). The rationale for this is that

our modelling assumes that the background cosmology (WMAP7
parameters) is known exactly. This is not precisely true, and the
observed distortion parameter, 8 = f/b, is actually cfo g (since bog is
observable). We therefore multiply our fitted by the fiducial og(z) in
order to obtain a combination that should be insensitive to the exact
fiducial model.

We also note that RSD analyses commonly also allow for the
Alcock-Paczynski effect (Alcock & Paczynski 1979; Ballinger,
Peacock & Heavens 1996), which introduces additional distortions
of the 2D correlation function from distance measurements using a
‘wrong’ cosmology. This degree of freedom can boost the errors on
fog substantially if the cosmological model is left free. But the AP
effect is unimportant if the model is constrained by precise external
CMB data as here. A further reason that this is reasonable is that the
interest in RSD comes from the desire to test gravity: the CMB data
give a precise prediction of fog and we want to know if this is what
we measure.

In detail, then, we take og(z) = g(2)og(0) = 0.73, where z =
0.20, 03(0) = 0.81, and g(z) is the time-dependence of the (linear)
density fluctuation in linear theory, normalized to g(0) = 1. The
measurements give a mean of fog = 0.27 with uncertainties ranging
from 0.07 to 0.20 for the QD model, and fo g = 0.29 with uncertainties
ranging from 0.07 to 0.14 for the HS model. We combine our mea-
surements from the six cross-correlation configurations for the HS
model, accounting for their correlations using the mock catalogues.
We compute the scatter on the average as well as the covariance of
the best-fitting f for the six configurations in the 25 mock samples.
Ideally, one would like to use the full posterior. However, this would
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Figure 9. Same as Fig. 8 but for the actual GAMA data, with the same ry;, adopted. The coloured bands show Jackknife errors. The x 2 for each of the models

can be found in Tables D2 and D4.

require the time consuming step of running MCMC for each of the
mock sample, thus the simple average of the maximum likelihood
values is adopted. Our combined constraint from the HS model thus
gives

fog(z =0.20) = 0.29 £ 0.10. (30)

The corresponding figure for the QD model is 0.27 % 0.14, showing
the extra information gained through the smaller scales that the HS
model is able to probe. We note that the limited number of mock
samples means that our covariance matrices will be imprecise, so
that the errors on the growth rate for an individual sample may
be underestimated (Hartlap, Simon & Schneider 2007; Sellentin &
Heavens 2016). However, the empirical dispersion in the mean of the
maximum-likelihood values should be robust.

The striking thing about this GAMA-based figure is that it is
rather low compared to the fiducial Planck figure of fos(z = 0.20)
=0.47 £ 0.01, derived from the Planck TT, TE, EE4lowE+lensing
cosmological parameters (Planck Collaboration VI 2020): our fig-
ure is 1.80 below this Planck value. This discrepancy is certainly
unexpected given how well our modelling was able to account for the
RSD signal in the different mock realizations, and how the recovered
growth rates were consistent between different methods of model
fitting. Furthermore, the figures recovered from the different GAMA
subsamples show the same level of consistency with each other as is
seen in subsamples within the mocks.

There are a number of things that can be said about the low
observed figure. The first is that there is some evidence that the
fiducial Planck figure may be too high, with local gravitational
lensing data consistently arguing for a reduction of about 10 per cent
(see e.g. Hang et al. 2021). Our measurement would then be in 1.30
disagreement with a revised fiducial value of 0.42, implying that
GAMA is an unusual data set, but not unreasonably so. And we do
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have evidence that this is the case: inspection of Fig. 3 shows that
N(z) has a substantial dip at z >~ 0.24, which is seen consistently in all
three fields. One might suspect a problem with the redshift pipeline,
but this feature is absent in a subsequent fourth GAMA field, not
used here; the three main GAMA fields are simply rather unusual
regions of space. Finally, note that a multitracer analysis of RSD in
GAMA by Blake et al. (2013) gave fos(z = 0.18) = 0.36 £ 0.09,
which is also slightly lower than Planck, albeit not inconsistently so.

5.3 Group bias

Finally, it is interesting to ask if the group biases that we measure
are in accord with what is expected for haloes of these masses. We
compute the expected group bias in GAMA from the calibrated halo
mass for the groups based on equation (6). We adopt the Tinker
et al. (2010) fitting formula for the linear halo bias. The halo bias is
expressed in terms of the peak height parameter v = §./o g, where
8. ~ 1.686, and o is the rms of the linear power spectrum filtered
with a spherical top hat function with radius R (cf. equation 29). This
is related to the halo mass via M, = 200/5m47tR3/3, where py, is
the mean background density. The mean group bias in a stellar mass
range is estimated by

~ > N(og M) b(log M})
. > N(log M)
where N(log M}) is the number of groups in the logarithmic halo
mass bin i. The halo mass adopted in case of mock and GAMA are
as shown in Fig. 2. For GAMA, we also include the uncertainty in

the calibrated halo mass due to the uncertainties in log M, and « in
equation (6). We combine the error via:

Aloth = AlogMP + |Aot log(Lgrp/LO)l- (32)

(€29}
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Figure 10. The MCMC parameter constraints for the actual GAMA data using the QD model (open symbols) and the streaming model with a 1-halo template
(filled symbols). Each model is fitted with the respective rpin as in Fig. 8. The filled purple points show the constraints obtained using the 1-halo template
from the ‘contaminated’ red sample in the mock data. The 1-halo parameters are marginalized over in the HS model. On the top panel, we have converted the
constraints back to fo'g by multiplying back the fiducial og(z = 0.195). The black line and the grey band on the top panel mark fog = 0.47 £ 0.01, the fiducial
growth rate at z = 0.195 using @, and o'g constraints from Planck Collaboration VI (2020). The specific values for all model parameters are shown in Tables D2

and D4.

For the mass range concerned here, Ay p, = 0.8-0.2 dex from low
mass to high mass. We account for this scatter by convolving the
number of objects with a Gaussian distribution with width Ajeg g,
in each log M}, bin. The predicted and measured group biases using
mocks and GAMA data are summarized in Table 3. We also show
biases computed at the logarithmic mean halo mass M. These values
are close to the average bias computed from equation (31) in the case
of GAMA, but they deviate from the mock average significantly. This
indicates that estimating the bias from the mean halo mass depends
heavily on the distribution of the halo mass of the sample considered.
In addition, we include the case where the more up-to-date mass—
luminosity relation from Rana et al. (2022) is used to compute
the group halo mass. The equivalent parameters to equation (6)
are M, = (8.1 £0.4) x 10Bh™' Mg, Ly = 10" h 2L, and o =
1.01 £ 0.07. The halo mass computed with this calibration is larger
than using the fiducial Han et al. (2015), resulting in good consistency
with the fitted group bias from both the QD and HS models as shown
in Table 3.

In the mock catalogues, the predicted group bias for the LM,
MM, and HM subsamples are all lower than the fitted values. These
differences are significant given the error bar on the average of the
mock measurements. In all cases, the group bias has apparently been

underestimated by about 20 per cent. This deviation in the group bias
may arise because the arithmetic mean host halo mass of the group
members is used as a proxy for the group halo mass. However, if one
uses the total mass of unique host haloes in the group as My, then
the bias in each mass range only increases by ~ 10 per cent. Since
the mock group masses are calibrated using ‘real’ simulation halo
masses, the difference illustrates clearly that our galaxy groups are
not in 1-to-1 correspondence with single haloes, emphasizing once
again the importance of analysing real and mock data with the same
group finder.

6 SUMMARY AND CONCLUSIONS

In this work, we have investigated the RSD of group-galaxy cross-
correlations, with the aim of understanding the robustness with which
measurements of the density fluctuation growth rate can be extracted
from such measurements. We have focused on the differences in
the measured RSD using different types of galaxy and group, and
developed new methods for fitting such data down to the small-scale
non-linear regime.

We have used data from the GAMA survey in the redshift range
0.1 < z < 0.3 to measure the 2D cross-correlation function &(rp,
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Figure 11. Marginalized MCMC posteriors for the QD model.

LMred
El MMred
Il HMred
LMblue
E MMblue
Il HMblue
16
®
o
R 1ot
10 ‘
14F
1.2 F
S 1.0
Q
E. T @
0.6 — T
. L \ \ . . \ . 4 VAN .
0.2 0.6 1.0 1.4 1.0 1.2 1.4 1.6 06 08 10 12 14
f bgal b1z

Figure 12. Marginalized MCMC posteriors for the HS model. The best-
fitting bias parameters are very different among different sub-samples, but
the recovered f values are consistent.

) between groups and galaxies. The groups were found using an
FoF algorithm from Treyer et al. (2018), and were subdivided into
three stellar mass bins (LM: 40 per cent, MM: 50 per cent, and HM:
10 per cent). The corresponding halo mass for the groups was cali-
brated using the relation in Han et al. (2015), and the groups are ex-
pected to have typical masses of (10'>2, 1027, 10'32) M. For Rana
et al. (2022), the mean halo masses are (10'>¢, 10131, 10'3°) M.
The galaxies were split into red and blue subsets using a cut in
the g — i versus z plane, yielding in total six cross-correlation
configurations: LMred, MMred, HMred, LMblue, MMblue, and
HMblue.

MNRAS 517, 374-392 (2022)

We have used 25 GAMA light-cone mocks from Farrow et al.
(2015) to test RSD models and to construct Jackknife covariance
matrices for likelihood fitting. Mock group catalogues were gener-
ated using the identical algorithm that was applied to the real GAMA
data. The mock catalogues are distinct from observation in several
aspects: the mean redshift distribution, the bimodal g — i colour
distribution, and the total stellar mass of the groups. We discuss the
appropriate empirical selection that yields the best match between
the mocks and the data subsamples. The measured 2D correlation
functions show good consistency between the data and the mocks
down to small scales, and the same variation of the signals with
galaxy colours and group masses are observed. The different cross-
correlation results yield group biases that increase with mass, as
expected. For GAMA, the predicted group bias from Tinker et al.
(2010) is lower but consistent with the fitted values using the halo
mass calibration in Han et al. (2015), whereas that from Rana et al.
(2022) agree well with the fitted values. For mocks, however, these
values tend to be higher than predicted. This difference illustrates
that the groups found in redshift space do not constitute a pure halo
sample.

We have compared these measurements with two RSD models:
(1) a quasi-linear dispersion (QD) model; (2) a novel halo streaming
(HS) model. The QD model is a generalization of the linear dispersion
model of Mohammad et al. (2016) to use the non-linear real-
space power spectrum. We found from testing on the mocks that
this model provides unbiased measurements of the growth rate
at rpin = 10-202~" Mpc depending on the subsample. The HD
model uses a halo model decomposition of the correlations, where a
streaming model 2-halo term is combined with an empirical 1-halo
template adopted from the mock average. This promising model, with
the addition of two nuisance parameters, allows unbiased results on
the growth rate down to 7y, = 5 h! Mpc when fitting individual
mock realizations, and for all group-galaxy combinations. For the
GAMA measurements, an MCMC analysis was used to obtain the
posterior of our model parameters. We found that given the scale cuts,
all of the subsamples recover consistent growth rates in both models.
The average growth rate from the six subsamples using the HS model
is fog = 0.29 £ 0.10 at z = 0.20, where the error should be robust
as it is taken directly from the dispersion in maximum-likelihood
values for the mock data. This figure is 1.80 lower than the fiducial
Planck value of fog = 0.47 £ 0.01, and we have considered the
implications of this result. At face value, the low GAMA result is
consistent with the suggestions from gravitational lensing that the
true value of fog may be about 10 per cent lower than the Planck
central figure (e.g. Hang et al. 2021. But there are objective reasons
to believe that the GAMA data set may be a statistical outlier, based
on known anomalies in the redshift distribution in the GAMA
fields.

Therefore, the real test of the RSD modelling presented here
will be when it can be applied to much larger and more precise
data sets, such as the Bright Galaxy Sample from the Dark Energy
Spectroscopic Instrument (DESI) survey (Martini et al. 2018) and
the Wide Area VISTA Extra-Galactic Survey (WAVES; Driver
et al. 2016). We are greatly encouraged by the success of our
halo streaming model in reproducing mock cross-correlations down
to the smallest scales, and in yielding consistent values of fog
from different tracers, to a tolerance of better than 3 per cent.
This hybrid approach, taking advantage of ever more realistic
mock data, therefore seems an attractive way of obtaining robust
constraints on the growth of cosmological density fluctuations,
and we look forward to seeing it applied to next-generation
surveys.
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Table 3. Bias for the groups in the LM, MM, and HM stellar mass bins for the mock average and GAMA. The first column shows the mean bias value computed
from the fitting formula (Tinker et al. 2010), and the second column shows the corresponding bias computed at the mean halo mass in each case. The next two
columns marked with a ‘%’ show the bias computed in the same way, but with the GAMA group halo mass computed from a more up-to-date mass—luminosity
relation (Rana et al. 2022). The rest of the columns show the fitted biases from the six cross-correlation configurations in the mocks and the GAMA data.

Group bias T10 T10 b(My) T10* T10* b(My) QD-red QD-blue HS-red HS-blue
Mocks LM 1.02 0.92 - - 1.20 £ 0.04 1.20 £ 0.02 1.18 £ 0.03 1.20 4+ 0.02
MM 1.26 1.13 - - 1.48 £0.05 1.46 £ 0.02 1.42 £0.02 1.38 £0.02
HM 1.83 1.65 - - 1.90 £+ 0.06 2.09 £+ 0.03 1.96 £+ 0.03 1.92 +0.03
GAMA LM 1.00 0.96 1.12 1.11 1.07 £0.24 1.27 £0.10 1.14 £0.11 1.24 £0.08
MM 1.20 1.17 1.41 1.39 1.58 +0.30 1.52 £ 0.10 1.41 £0.10 1.34 £ 0.07
HM 1.52 1.49 1.85 1.81 1.71 £ 0.46 1.98 £0.19 1.81 £0.20 1.79 £0.14
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