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A B S T R A C T 

We have studied the galaxy-group cross-correlations in redshift space for the Galaxy And Mass Assembly (GAMA) Survey. We 
use a set of mock GAMA galaxy and group catalogues to develop and test a novel ‘halo streaming’ model for redshift-space 
distortions. This treats 2-halo correlations via the streaming model, plus an empirical 1-halo term derived from the mocks, 
allowing accurate modelling into the non-linear regime. In order to probe the robustness of the growth rate inferred from 

redshift-space distortions, we divide galaxies by colour, and divide groups according to their total stellar mass, calibrated to 

total mass via gravitational lensing. We fit our model to correlation data, to obtain estimates of the perturbation growth rate, f σ 8 , 
validating parameter errors via the dispersion between different mock realizations. In both mocks and real data, we demonstrate 
that the results are closely consistent between different subsets of the group and galaxy populations, considering the use of 
correlation data down to some minimum projected radius, r min . For the mock data, we can use the halo streaming model to below 

r min = 5 h 

−1 Mpc , finding that all subsets yield growth rates within about 3 per cent of each other, and consistent with the true 
value. For the actual GAMA data, the results are limited by cosmic variance: f σ 8 = 0.29 ± 0.10 at an ef fecti ve redshift of 0.20; 
but there is every reason to expect that this method will yield precise constraints from larger data sets of the same type, such as 
the Dark Energy Spectroscopic Instrument (DESI) bright galaxy surv e y. 

Key words: gravitation – galaxies: groups: general – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

he large-scale structure in the galaxy distribution has a long history
f providing cosmological information. The first constituents of the
nhomogeneous galaxy density field to be identified were the rich
lusters, which today we see as marking the sites of exceptionally
assive haloes of dark matter. Proceeding down the halo mass

pectrum, we find progressively less rich groups of galaxies, leading
o systems dominated by a single L ∗ galaxy, such as the Local Group
e.g. Wechsler & Tinker 2018 ). All these systems have been familiar
onstituents of the Universe since the first telescopic explorations
f the sky, but it took rather longer to appreciate that they were
onnected as part of the cosmic web of voids & filaments (see
.g. Peacock 2016 , for some selective history). In part, the history
ere showed a complex interaction of theory and observation, since
edshift surv e ys through the 1980s lacked the depth and sampling
o reveal the cosmic web with complete clarity. For a period, it was
herefore a question of asking whether the real Universe displayed
 E-mail: e.hang@ucl.ac.uk 

o  

o  

i  

Pub
he same structures that were predicted in numerical simulations of
tructure formation in the Cold Dark Matter model (Bond, Kofman &
ogosyan 1996 ). But since those times, there has been an increasing
onfidence that galaxy groups are indeed particularly extreme non-
inear points in the general field of cosmic density fluctuations, and
his makes them interesting in two ways. First of all, groups are
eadily identified in galaxy surv e ys, pro viding a relativ ely robust
ata set (Eke et al. 2004 ; Robotham et al. 2011 ). Secondly, their non-
inear nature makes them an informative probe of theory. Modelling
on-linear behaviour is by its nature challenging compared to linear
heory, but by studying structure formation further into the non-linear
e gime, we hav e the chance to test the robustness of our cosmological
onclusions. 

Our specific aim in this direction is to use galaxy groups as a
robe of the cosmological peculiar velocity field. Such deviations
rom uniform expansion must exist through continuity, and density
oncentrations such as groups should be associated with an average
nfall velocity in regions surrounding the groups. The amplitude
f these velocities depends in part on the strength of gravity
n cosmological scales, and the peculiar velocity field has thus
ncreasingly been seen as a means of probing the nature of gravity
© 2022 The Author(s) 
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nd testing alternative theories (e.g. Jain & Khoury 2010 ). Although, 
t is possible to probe peculiar velocities directly using absolute 
istance indicators (Davis et al. 2011 ), the most powerful tool has
een Redshift Space Distortions (RSD). These arise inevitably in 
he study of the 3D galaxy distribution because the distances to 
alaxies observed on the sky are inferred from their redshifts, z, via
he standard relation 

( z) = 

∫ z 

0 

c d z ′ 

H ( z ′ ) 
, (1) 

here c is the speed of light and H ( z) = ȧ /a is the Hubble parameter.
ut this equation does not give the true distances, because Doppler 

hifts from the peculiar velocities modify the observed redshift: 1 + z 

 (1 + z)(1 + v r / c ), where v r is the radial component of the peculiar
elocity. If we then use the observed redshift as if it were a true
ndicator of distance, we obtain a distribution of galaxies in ‘redshift
pace’ – in which the apparent properties of galaxy clustering are 
istorted in an anisotropic way. 
These distortions have characteristics that depends on scale: 

utside large density concentrations, galaxies fall coherently together 
nder gravity; while the orbital velocities inside dark matter haloes 
re ef fecti vely randomized. The latter ef fect convolves the redshift-
pace density field in the radial direction, leading to the characteristic 
adial elongations of high-density regions known as ‘Fingers of God’ 
FoG). RSD due to coherent flows in the linear regime were first
tudied by Kaiser ( 1987 ). The growth factor f is defined by 

 ≡ ∂ ln δ

∂ ln a 
� �m 

( z) 0 . 55 , (2) 

here δ is the matter o v erdensity, a is the expansion factor, and �m 

s the matter fraction; the approximation for f ( �m 

) only applies for
at � CDM models in standard gravity (Lahav et al. 1991 ; Wang &
teinhardt 1998 ; Linder 2005 ). In Fourier space, and in the small-
ngle limit of a distant observer, the matter power spectra in redshift
pace and in real space are related by 

 

s 
m 

( k, μ) = P 

r 
m 

( k) (1 + f μ2 ) 2 , (3) 

here μ is the cosine of the angle between the wav e-v ector k and
he line of sight. This simple equation was highly influential from its
rst appearance (Kaiser 1987 ), as it offered the chance of measuring
m 

from measuring the RSD anisotropy. But eventually goals shifted 
s �m 

became very well determined from other routes (especially 
he Cosmic Microwave Background). Following Guzzo et al. ( 2008 ), 
he modern view is therefore to emphasize that the growth rate for a
iven density is also proportional to the strength of gravity, so that
SD can be used as a test of theories of gravity. 
The RSD signal has been measured by a number of surv e ys,

ncluding the 2dFGRS at z � 0.2 (Peacock et al. 2001 ; Hawkins
t al. 2003 ); the 6dFGS at z � 0.1 (Beutler et al. 2012 ); the SDSS
OSS & eBOSS surv e ys at z � 0.6 (Reid et al. 2012 ; Alam et al.
017 , 2021a ); and at z � 1 by the 8 m VVDS and VIPERS surv e ys
Guzzo et al. 2008 ; Pezzotta et al. 2017 ). For the GAMA survey at z �
.4, aspects of RSD were studied by Blake et al. ( 2013 ) and Lo v eday
t al. ( 2018 ), who measured the pair-wise velocity dispersion to small
cales and as a function of luminosity. The abo v e studies all focused
n galaxy autocorrelations. 
The challenge in modelling RSD is that truly linear modes are 

are. In observation, large scales are affected by cosmic variance due 
o the finite surv e y volume. McDonald & Seljak ( 2009 ) proposed
he use of multiple tracers in order to o v ercome cosmic variance,
lthough in practice the impro v ement is slight (Blake et al. 2013 ).
o gain more information, one needs to probe smaller scales, where 
he effect of non-linearity can systematically bias the results (de la
orre & Guzzo 2012 ). 
One possible solution to this dilemma is to use galaxy groups to

robe the velocity field. Due to the small random virial velocity of
he central galaxy at the group centre, the coherent large-scale infall
elocities of groups are dominant down to intermediate and small 
cales. The group autocorrelation would thus have reduced FoG, 
iding the extraction of the linear growth rate (Padilla et al. 2001 ;
ohammad et al. 2016 ). In practice, the group catalogue in GAMA

s sparse, with a number density of 4 . 3 × 10 −3 h 

3 Mpc −3 between 0.1
 z < 0.3, and measurements of the autocorrelation will have high

tatistical noise. The cross-correlation between groups and galaxies is 
hus an intermediate route, which ef fecti v ely impro v es the statistical
ower while still reducing the non-linear pairwise velocities at small 
cales. The clustering of GAMA groups has been recently studied 
n Riggs et al. ( 2021 ), and this work extends this study to further
ubsets of the data, concentrating in more detail on their different
SD signals. 
Our aim here is thus to test the robustness of RSD methods down to

mall or intermediate scales using multiple tracers involving galaxy 
roups. By cross-correlating galaxies of different colours, and groups 
n different mass bins, we examine the consistency of the inferred
osmological results between the subsamples. In order to pursue this 
nv estigation, we dev elop a new model for RSD in cross-correlation,
nvolving a combination of the halo model and the streaming 
odel, which we implement by including some information taken 

rom mock data. Throughout the analysis, we adopt the WMAP7 
osmology (Komatsu et al. 2011 ) with σ 8 = 0.81, �m 

= 0.27, h =
.70, and n s = 0.967, consistent with the mock catalogue. 
The GAMA data set and its mocks are detailed in Section 2

ollowed by Section 3.1 where we introduce the statistics for 
easuring the 2-point function in the data. In Section 3.2 , we

resent the resulting 2D correlation function measurements for sub- 
amples, In Section 4 , we discuss the theoretical modelling of RSD
n galaxy-group cross-correlations, and in Section 5 we confront 
his modelling with real and mock GAMA data. The models are
alidated in Section 5.1 via detailed comparison with the GAMA 

ocks, where we establish the scales to which the different theories
an work without bias; we present the fitting of the real GAMA
ata in Section 5.2 . Finally, we summarize the work in Section 6 . We
nclude our Appendices A - E in the online Supplementary materials.

 G A M A  DATA  A N D  M O C K S  

his analysis is based on the Galaxy And Mass Assembly (GAMA)
pectroscopic surv e y. This w as conducted using the 2dF f acility at the
nglo-Australian 4-m telescope o v er 210 nights between 2008 and
014, accumulating spectra of 265 958 distinct galaxies. Together 
ith existing data, this yielded a catalogue of 330 542 redshifts o v er
v e surv e y fields totalling 250 deg 2 , with a mean redshift of z � 0.2
Driver et al. 2022 ). The three main fields near the equator, G09,
12, and G15 are used here, each co v ering an area of 12 × 5 deg 2 .
he surv e y has an e xtinction-corrected r -band flux limit of r < 19.8,
ased on SDSS photometry. 
The o v erall redshift completeness of the GAMA equatorial region

s 98.5 per cent: this high completeness was achieved by a large
umber of repeated visits to 2dF fields co v ering the surv e y area in
ifferent ways. This property is greatly advantageous for small-scale 
alaxy and group studies compared to much larger surv e ys such as
OSS, where fibre collisions can lead to substantial undercounting 
f close galaxy pairs and thus bias the measured galaxy 2-point
orrelation function (Guo, Zehavi & Zheng 2012 ). 
MNRAS 517, 374–392 (2022) 
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Table 1. Number of selected galaxies and groups from GAMA fields with 
redshifts 0.1 < z < 0.3 and flux limit r < 19.8. Galaxies are split into two 
colour classes, red and blue, by equation ( 5 ). Groups are split into three stellar 
mass bins: 40 per cent (LM), 50 per cent (MM), and 10 per cent (HM) by mass 
ranking from low to high, co v ering the mass range log 10 ( M ∗/h −2 M �) = 

9 . 5 –12 . 5. 

Number of G09 G12 G15 

Galaxies Blue 17 335 18 719 19 053 
Red 20 584 22 155 21 141 
Total 37 919 40 874 40 194 

Groups LM 1877 2084 2054 
MM 2347 2606 2569 
HM 470 522 514 
Total 4694 5212 5137 

G3C Total 4937 5367 5358 

Figure 1. Distribution of the g − i colour of galaxies in the redshift range 
0.1 < z < 0.3, for the real GAMA data (upper panel) and the average of 25 
mocks combined (lower panel). Red and blue populations are separated by 
the dashed cyan lines. The cut in GAMA is chosen such that both GAMA and 
mocks have similar red and blue fractions at any given redshift. The dotted 
lines show the cut for an alternative ‘contaminated’ red sample (see text). 
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The present analysis uses the DR3 data release (Baldry et al. 2018 ),
hich differs slightly from the final data release, DR4 (Driver et al.
022 ). DR4 implements revised flux completeness limits through
he use of new KiDS photometry. The original SDSS limit of r <
9.8 was trimmed in DR4 to r < 19.58 for 98 per cent completeness
n the equatorial fields. Galaxies for the present study are selected
rom the SpecObjv27 DMU (Data Management Unit), with CMB
rame redshifts adopted from DistancesFramesv14 . We apply
he following criteria: redshift quality nQ ≥3, angular completeness

ask > 80 per cent , and visual classification VIS CLASS = 0, 1,
55. 1 The spectroscopic redshifts are computed by the code runz
Driver et al. 2011 ), which has a 1 σ redshift error of 50 km s −1 in
erms of peculiar velocity (Liske et al. 2015 ). In order to compute
orrelation statistics, it is essential to accompany the galaxy sample
ith a knowledge of the surv e y selection in angle and redshift.
s usual, this information is captured by a random catalogue
andomsv02 of fictitious unclustred galaxies; this catalogue was
enerated by Farrow et al. ( 2015 ) from the actual GAMA galaxy
atalogue using a modified method following Cole ( 2011 ). The idea
f this method is to clone each galaxy n times and distribute them
andomly within the maximum volume V max that the galaxy can be
bserv ed giv en the surv e y magnitude limits 

 = n clones 
V max 

V max , dc 
, (4) 

here n clones = 400 is the total number of randoms divided by
ata, and V max, dc is the maximum volume weighted by o v erdensity
 ( z). This method is iterated until � ( z) converges, and the redshift

istribution of the resultant random catalogue is smooth without
arge-scale features (see fig. 4 in Farrow et al. 2015 ). 

The official GAMA group catalogue (G3C) was constructed by
obotham et al. ( 2011 ). Most of the groups are found within z �
.35 (see fig. 16 in Robotham et al. 2011 ): thus we impose a redshift
ut 0.1 < z < 0.3 for the groups. The group catalogue is derived using
n anisotropic friends-of-friends (FoF) algorithm calibrated against
n N -body mock catalogue. Ho we ver, in order to have consistently
efined groups in the GAMA mocks (see Section 2.3 ), we do not
se the official G3C catalogue. Instead, we apply a similar FoF
roup finder algorithm due to Treyer et al. ( 2018 ) to both data and
ocks (see Kraljic et al. 2018 for an application to GAMA). The
ain difference between the two algorithms is the parametrization

f the linking length, and a detailed description of the algorithm and
ssessment of the group reconstruction quality can be found in the
ppendix of Treyer et al. ( 2018 ). 

In addition to the abo v e selections, we further split galaxies and
roups into subsamples based on galaxy colour and group mass. The
umber of selected galaxies and groups in each GAMA field and for
ach subsample is summarized in Table 1 . We describe the selection
n more detail below. 

.1 GAMA galaxy colour selection 

alaxies are divided into two populations that are known to have
istinct clustering properties: the ‘red’ galaxies, which tend to be
lder, with little or no active star formation, and the ‘blue’ cloud,
here galaxies are younger with active star formation. To obtain the
alaxy colours, we use the extinction corrected SDSS magnitudes
NRAS 517, 374–392 (2022) 

 VIS CLASS = 0: Not visually inspected but suspicious based on SDSS flags; 
IS CLASS = 1: Visually inspected and a valid target; VIS CLASS = 255: 
ot visually inspected but should be OK based on SDSS flags. 

g

A  

i  

o  
rom the TilingCatv46 DMU. It is, ho we ver, non-tri vial to
eparate the galaxy population into these subsets, because the colour
istribution is continuous without gaps: elaborate approaches have
een discussed in e.g. Taylor et al. ( 2015 ). For the purpose of this
tudy, we adopt a simple quadratic cut in the apparent g − i colour
ersus redshift plane: 

 − i = 6 . 220 z 2 + 1 . 383 z + 0 . 831 . (5) 

 cut of this form is moti v ated empirically by the apparent bimodality
n the colour–redshift plane, as shown in Fig. 1 . The precise location
f the cut was adjusted in order to match the red and blue fraction

art/stac2569_f1.eps
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2 Notice that this is only approximately true, because the stellar mass to light 
ratio, M / L , which is used to obtain the stellar mass, depends on age and is 
therefore specific to the choice of h . The stellar mass used here assumes h = 

0.72. 
3 http:// virgodb.dur.ac.uk:8080/MyMillennium/ Help?page=databases/ gama 
v1/lc multi gonzalez2014a 
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t each redshift in the GAMA data with the corresponding result in
he mocks (which are discussed below in Section 2.3 ). The o v erall
raction of red or blue galaxies is very close to 0.5, and it changes
nly slightly with redshift: at the low redshift end, the red and blue
ractions are similar, while towards higher redshifts, the fraction of 
ed galaxies increases mildly until z ∼ 0.2, and the difference in 
he red and blue fraction then becomes small at z ∼ 0.3. We create
andom catalogues for the red and blue galaxy subsamples where 
equired by applying this smoothly varying colour balance to the 
edshift distribution of the main random catalogue. 

.2 GAMA group mass selection 

roups are accepted with ≥2 group members, and the centre of the
roup is determined by the most (more) massive member in terms
f stellar mass. The 2-member systems make up 66 per cent of the 
otal groups in the GAMA data, but are likely to have poor fidelity.
hus, we emphasize that having the same group finder algorithm for

he data and mocks is vital in order for these low-fidelity groups
o be comparable. There are several approaches for determining 
he group centre. The simplest choice is to select the most massive
ember to be the central galaxy, and assume that it o v erlaps with

he halo centre. Other approaches include determining a weighted 
entre by averaging over the positions of the group members, or
terativ ely e xcluding members that are most distantly separated (see 
.g. Robotham et al. 2011 ). The iterative centres are used in the
3C catalogue, and it is shown in Robotham et al. ( 2011 ) that the

greement with using the brightest group galaxy (BCG) as group 
entre is 95 per cent for groups with N ≥ 5, and that both BCG
nd iterative centres give highly consistent results for 2 ≤ N ≤
 compared with the mock, and that the BCG centres are only
egraded by about 3 per cent compared to the iterative centres. The 
f fects of dif ferent group centre choices on the group-galaxy cross-
orrelation concern mainly the 1-halo regime at r ≤ 1 h 

−1 Mpc , and 
he correlation functions converge on larger scales (Yang et al. 2005 ).

The halo mass of GAMA groups was found to be tightly correlated
ith the group total luminosity (Han et al. 2015 ; Viola et al. 2015 ;
ana et al. 2022 ), based on using stacked weak lensing measurements 

o determine the mass distribution of the GAMA groups. The halo 
ass of groups is related to the r -band luminosity L grp via 

 h = M p 

(
L grp 

L 0 

)α

, (6) 

here L 0 = 2 × 10 11 h 

−2 L �, log 10 ( M p /h 

−1 M �) = 13 . 48 –0 . 08 ±
 . 12, and α = 1.08 + 0.01 ± 0.22 (Han et al. 2015 ). The group
alo mass can be used to compute the expected mean group bias,
s shown in Section 5.3 , where we also consider alternative mass
alibrations. It should be noted that in these works, only groups with
hree members or abo v e are used. Robotham et al. ( 2011 ) showed
hat the mass function is noisier, but not biased when including 
wo-member groups. Although these systems are individually of low 

eliability, this aspect should be allowed for by the mock catalogue, 
llowing us to gain the statistical advantage of using a larger sample.
he luminosity is computed from the apparent r -band magnitude: 

− 2 . 5 log ( L/L �) = m − K( z) − 5 log (d L ) − 25 − M �, (7) 

here K ( z) the k -correction up to z = 0 ( kcorr z00 ), d L is the
uminosity distance, and M � = 4.67 is the r -band absolute magnitude
f the sun. The luminosity distance is expressed with unit h 

−1 Mpc
o that the luminosity has units of h −2 L �. 
The total luminosity of the group is computed in Robotham et al.
 2011 ) via 

 FoF = BL ob 

∫ −14 
−30 10 −0 . 4 M r φGAMA ( M r ) d M r ∫ M r−lim 

−30 10 −0 . 4 M r φGAMA ( M r ) d M r 

, (8) 

here L ob is the total observed luminosity in the r AB band, B = 1.04
s the correction for median unbiased estimate for N ≥ 5 groups, and
 r − lim 

is the absolute magnitude limit of the group depending on
he redshift z. φGAMA is the luminosity function defined in Robotham 

t al. ( 2011 ). The luminosity function at the faint end for GAMA
alaxies is well approximated by φ∝ L 

−1 exp ( − L / L ∗) (Loveday et al.
012 ). Thus in practice we take the simpler approach of estimating
 total group luminosity by scaling the observed luminosity by 
 redshift-dependent correction factor exp ( z 2 /z 2 ∗) with z ∗ = 0.33,
here z is the mean redshift of the group members. This correction

actor has been checked using the G3C groups to produce a total
uminosity consistent with the official TotFluxProxy . 

The total stellar mass is another proxy for the total group mass.
e take the StellarMassesv19 DMU from Taylor et al. ( 2011 ),
here stellar population synthesis is used to model the optical 
hotometry of the GAMA galaxies. Because the modelling uses 
est frame luminosities, which depends on distance, the stellar mass 
s expressed in units of h −2 M �. 2 Furthermore, for each group, we
orrect the total stellar mass by the same redshift dependent factor
s the total luminosity. Notice that we do not apply the fluxscale
orrection here, which accounts for the missing flux from matched 
perture photometry, because our results do not rely on the absolute
tellar mass of the groups. This correction therefore does not affect
ur primary aim of splitting the groups into a few bins based on their
anking in mass. 

The calibration of the total stellar mass and the halo mass from
eak lensing of the GAMA groups is shown in Fig. 2 for the official
3C groups from the G3CFoFGroupv09 DMU (dashed line) and 

he group catalogue used in this work (solid line). The contours show
5, 50, and 20 per cent of the total sample, and are highly consistent
etween the two group catalogues. We choose to divide groups into
hree stellar mass bins based on percentiles: the low mass (LM) bin
onsists of the least massive 40 per cent groups, the medium mass
MM) bin corresponds to the middle 50 per cent, and the high mass
HM) bin contains the most massive 10 per cent. The signal-to-noise
f high mass haloes is expected to be high, despite the low number
n the HM bin. 

.3 Mocks 

e include mock catalogues for two reasons: (1) to validate the
SD models and assess the bias on the reco v ered growth rate, and

2) to quantify the impact of cosmic variance via the construction
f covariance matrices. We used 25 realizations of a light-cone 
ock catalogue based on the GALFORM semi-analytical galaxy 

ormation (Gonzalez-Perez et al. 2014 ). The catalogue exploits 
he Millennium Simulation (Boylan-Kolchin et al. 2009 ) with the 

MAP7 cosmology. These mocks can be obtained from the Durham 

osted Virgo-Millennium Database1 3 (Lemson & Virgo Consortium 
MNRAS 517, 374–392 (2022) 
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M

Figure 2. Upper panel: Correlation between the stellar mass, corrected to 
total by a factor exp ( z 2 /z 2 ∗) and the halo mass estimate derived from the 
total group luminosity mass proxy, together with a lensing-based absolute 
calibration from Han et al. ( 2015 ), for the GAMA groups with two or more 
members between redshifts 0.1 < z < 0.3. The contours denote 95, 50, and 
20 per cent of the total sample. The solid lines show the groups used in this 
work using the group finder algorithm in Treyer et al. ( 2018 ), and the dashed 
lines show the official G3C groups (Robotham et al. 2011 ). Lower panel: 
The same relation for the mock catalogue. In this case, M h is not estimated 
from the luminosity, but directly taken as the arithmetic mean host halo mass 
of the group member. The difference in the distributions indicates that the 
stellar populations in the mock data are not entirely realistic, but it also warns 
us that the exact values of halo mass corresponding to the different GAMA 

group subsets must be treated empirically, and should not be treated as being 
known precisely. 
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is offset from that of the random sample (dotted line). A random catalogue 
is created for the mocks to have matched redshift distribution as the mock 
mean. The redshift distribution of the GAMA galaxy sample is also shown 
(histogram) for comparison. 
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006 ). For more details regarding the mock catalogue, see Farrow
t al. ( 2015 ). By equation ( 2 ), the fiducial value of growth rate
t the mean redshift of the mocks, z = 0.195, is f fid = 0.593.
he light-cone is constructed using the methods in Merson et al.
 2013 ), where, given an observer, the galaxy is placed at the epoch
here it first enters the past light-cone of the observer. The galaxy

rajectories are interpolated between snapshots. Each mock co v ers
he five GAMA fields with the SDSS r -band apparent magnitude
DSS r obs app < 21 , and z < 0.9. 
We use galaxies in the G09, G12, and G15 fields and apply the

ame selection in redshifts 0.1 < z < 0.3 and the apparent r -band
agnitude cut SDSS r obs app < 19 . 8. We also apply the same

urv e y mask generated using the random catalogue. The masked
reas are obtained by binning random galaxies in each field with an
verage of ∼2000 counts in each bin. Pixels with counts smaller than
ve times the Poisson noise are masked. The total masked area in the

hree fields is about 0 . 14 deg 2 . Because the mock redshift distribution
s not matched exactly with GAMA data and random (see Fig. 3 ),
e create a random catalogue for these mocks by down-sampling the
NRAS 517, 374–392 (2022) 
andom catalogue for the GAMA data, such that the n ( z) matches
he mean of 25 mocks. 

The red and blue subsamples for the mean of the mocks are
eparated by the empirical line given by 

 − i = 0 . 46 + 3 . 2 z, (9) 

s shown in the lower panel of Fig. 1 . The line is chosen to go through
he green valley of the mock galaxy g − i colour. The GAMA galaxies
ave a more concentrated red sequence overlapping with an extended
lue population, without a distinct green valley in between. On the
ontrary, the mocks have a broader red population which is well
eparated from the blue population by a green valley. Since the mock
atalogues have more distinctive separation for the two populations,
e find the corresponding colour cut in the GAMA data by matching

ed and blue fractions in the two catalogues for 20 redshift bins in 0.1
 z < 0.3. The cut is smoothed by fitting a second-order polynomial,

s shown in the upper panel of Fig. 1 . 
The contamination of the red and blue sub-samples in the GAMA

ata resulting from the colour cut is quantified in the following
ay: for each redshift bin, the red and blue sub-samples are fitted
y a double Gaussian. It is a reasonable fit except for the green
alley in the mocks, as shown in Fig. 4 . Given a colour cut, the
ontamination of the red sub-sample is defined as the area under the
lue Gaussian o v er the area under the red Gaussian, and similarly
or the contamination of the blue sub-sample. Clearly, GAMA data
ontain a contaminated red sample and a pure blue sample. Therefore,
e create a contaminated red sub-sample using the mock catalogues
y placing the mock colour cut such that extra blue galaxies are
ncluded with the same level of contamination as GAMA data. The
ontaminated red cut in the mocks (see Fig. 1 ) is smoothed by fitting
 quadratic polynomial of the form 

 − i = 2 . 43 z 2 + 1 . 55 z + 0 . 388 . (10) 

For mock groups, the stellar mass is computed by the sum of
iskstellarmass and bulgemass of all group members, and
orrected by the same redshift-dependent factor as the data. We do
ot estimate the group halo mass from the same mass–luminosity
elation in equation ( 6 ). Instead, we use the host halo mass of the
ock galaxy directly. Because some haloes contain more than one

alaxy, for each group, we test the largest, the arithmetic mean, and
he median halo mass of the group member, and find that they give
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Figure 4. The g − i colour distribution of GAMA and 25 mocks combined at 5 of the 20 redshift bins in 0.1 < z < 0.3. The black dashed lines are double 
Gaussian fits to the distributions, characterizing the blue and red populations. The yellow cuts show a linear cut in the green valley in the mocks, and the 
corresponding cuts in GAMA which give the same red and blue fraction. The green dotted cuts in mock is the cut for the impure red sample. 
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imilar results. We also test using the sum of unique host haloes in
he group. This increases the total group halo mass in the lower mass
nd, but does not affect the higher mass end. The stellar–halo mass
elation of the groups using the total stellar mass and the arithmetic
ean host halo mass of the group members is shown in the lower

anel of Fig. 2 . It is clear that the mocks show a much larger scatter
n the M h –M ∗ plane and the slope is smaller compared to data, i.e.
t fixed stellar mass, the halo mass is larger. The total stellar mass
f the mock groups is also smaller by about 0.5 dex compared to
ata. The clear difference between data and the mocks shows that 
stimating the halo mass from luminosity using equation ( 6 ) is not
ery reliable. The luminosity is itself strongly correlated with stellar 
ass via the luminosity–mass relation, thus the upper panel of Fig. 2

oes not show the true scatter of M h at fixed M ∗ faithfully (or vice
ersa). A comparison between the group and the halo catalogue in the
AMA mocks reveals that the 2-member groups have low fidelity, 

lso discussed in Robotham et al. ( 2011 ). This again emphasizes the
mportance of using a consistent group finder algorithm between the 
AMA data and the mock catalogues. The mock group catalogues 

re separated into three stellar mass bins based on the 40, 50, and
0 per cent percentiles as measured in the data. 

 CROSS-COR R ELATION  MEASUREMENTS  

.1 Correlation statistics 

e estimate the 2-point correlation function by counting pairs of 
alaxies and randoms using the Davis–Peebles estimator (Davis & 

eebles 1983 ): 

ˆ ( r p , π ) = 

D 1 D 2 

D 1 R 2 
− 1 , (11) 

here the subscript i = 1, 2 denotes the two samples to be correlated
in case of autocorrelation, the same sample), D i denotes data, 
nd R i denotes the corresponding random points. Each term in the 
quation (e.g. D 1 D 2 ) is the normalized pair count between data and
or) random points, measured in bins of the pair separation ( r p , π )
efined below. For two objects located at s 1 and s 2 , their separation
s given by s = s 1 –s 2 . The line of sight is defined along the mean
osition of the pair, r = ( s 1 + s 2 ) / 2. One can then decompose the
eparation into components parallel and perpendicular to the line of 
ight: 

= 

s · r 
| r | ; r p = 

√ 

s 2 − π2 . (12) 

The random catalogue R captures various properties of the actual 
ata, such as the surv e y mask and the sample redshift distribution
 ( z), but has no spatial correlation. Thus, these estimators essentially
easure the excess clustering of the data points compared to a

andom distribution. For the red and blue galaxy samples, the random
 ( z) is modulated by the redshift-dependent red and blue fraction
espectively (see Section 2.1 ). 

For the case of autocorrelations, the Landy–Szalay estimator 
Landy & Szalay 1993 ) is known to be superior to the Davis–Peebles
pproach, and there is a natural generalization to cross-correlation: 

ˆ ( r p , π ) = 

D 1 D 2 − D 1 R 2 − D 2 R 1 + R 1 R 2 

R 1 R 2 
. (13) 

o we ver, implementing this estimator would require a random 

atalogue for galaxy groups in different mass ranges, and we prefer
o a v oid this complication. In contrast, the Davis–Peebles estimator
equires a random catalogue for only one of the populations being
orrelated. Both Mohammad et al. ( 2016 ) and Riggs et al. ( 2021 )
stimated cross-correlations using a form of Landy–Szalay where R 2 

as replaced by R 1 , but this has no justification, and will yield
ncorrect results when the selection functions of the two tracers 
re very different. We measured the galaxy autocorrelations using 
oth estimators, and found negligible difference for our sample. 
hroughout the analysis, the size of random catalogue used is 
0 times that of data. 
The 2D correlation functions are measured out to a maximum 

cale of 40 h 

−1 Mpc for both the r p and π directions in bins of
MNRAS 517, 374–392 (2022) 
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 h 

−1 Mpc . This maximum scale is chosen due to the limited volume
f the GAMA surv e y. It may appear to be a concern that at this
cale perturbation theory starts to break down (thus the scale is often
hosen as the cut-off scales for larger data sets). Ho we ver, we shall
how later that empirical models based on linear theory can still give
elatively unbiased results below this scale. For the halo streaming
odel, which we will elaborate in Section 4.2 , we use a 1-halo

emplate to absorb the deviation of non-linear clustering from the
erturbative 2-halo term. Although in principle, r p and π should be
easured in the range [ −40 , 40] h 

−1 Mpc , in practice, pair counts
n the positive and ne gativ e bins are combined and our correlation
unctions have two mirror planes of symmetry. This is the standard
ractice for r p , because the correlation function is symmetric around
he transverse direction. Along the line of sight, positive and negative

measurements can in fact be distinctive in cross-correlations due to
econdary gravitational effects. For example, gravitational redshift
an give rise to a non-vanishing dipole between two samples that
iffer significantly in mass (Wojtak, Hansen & Hjorth 2011 ; Bonvin,
ui & Gazta ̃ naga 2014 ; Cai et al. 2017 ; Beutler & Dio 2020 ).
o we ver, gi ven the size of the sample, we shall not investigate this

ssue in this study. The combination of the π bins also impro v es the
ignal-to-noise ratio for our measurements. 

.2 Results 

n the following analysis, we will refer to the group subsamples
s LM, MM, and HM. We thus have six configurations for the
roup-galaxy cross-correlations: LMred, MMred, HMred, LMblue,
Mblue, and HMblue. In addition, we also measure the red and blue

alaxy autocorrelations. The inclusion of galaxy autocorrelations in
he analysis helps in breaking the near de generac y between b gal and
 grp . Ideally, one would also include the autocorrelations for the
roup catalogue. These are excluded here: as mentioned abo v e, we
o not construct random versions of the group catalogue. 
Fig. 5 shows the red and blue galaxy autocorrelations (top row) and

he cross-correlation functions for the six configurations (lower three
ows) measured from the GAMA data (first and third column), and the
orresponding mocks average (second and forth column). The first
oticeable feature is that the red configurations (left two columns)
ave larger clustering signals compared to the blue ones (right two
olumns). This is most obvious in the two galaxy autocorrelations.
n relatively large scales, the squashing is also stronger in the blue

onfigurations. This effect is controlled by the Kaiser distortion
arameter β = f / b (see Section 4.1 below), and is expected to be
tronger for samples with a smaller bias b (vice v ersa), giv en that
he growth rate f is fixed. The fact that red galaxies have a larger
alaxy bias compared to blue galaxies implies that red galaxies are
referentially associated with more massive dark matter haloes, in
greement with other studies (e.g. Guo et al. 2014 ; Mandelbaum et al.
016 ; Bilicki et al. 2021 ). On smaller scales, the red configurations
lso show a much more prominent FoG signal compared to the
lue ones. This is intuitively sensible because more massive haloes
re associated with a larger velocity dispersion. Comparing the
orrelation functions across different groups for a specific galaxy
election, we see a similar trend on both small and large scales: with
he increase in group mass, a larger clustering amplitude, group bias,
nd FoG effect are observed. Notice the high signal-to-noise ratio
t small scales in the HM groups, despite that the sample size in
his mass range is only about 1/4 of the other mass ranges. These
bservations confirm that the identification of the galaxy groups,
s well as the separation of group masses based on the ef fecti ve
NRAS 517, 374–392 (2022) 
alo mass (total luminosity) are successful for the purpose of 
his study. 

The agreement between the mock average and the GAMA data is
ood in general – the same trends in galaxy colour and group mass
re captured. In regions where r p is close to zero, the mock average
eem to produce weaker clustering compared to the actual data in the
lue configurations. The match in the red configuration, on the other
and, is excellent. The mock contaminated red sample is also shown
s dotted contours (second column). The inclusion of extra blue
alaxies has the effect of slightly reducing the o v erall amplitude in
his contaminated sample compared to the pure red sample. On larger
cales, the signal in data is noise and cosmic variance dominated.
his is most noticeable in the LM subsamples, where the signal
reatly exceeds the mock average on r ≥ 20 h 

−1 Mpc . Inspecting the
easurement in each mock sample, this level of fluctuation in the data

s expected. It should be noted that cosmology adopted in the mock
atalogue is �m 

= 0.27, which is lower than the current constraint
rom Planck , �m 

= 0.315 ± 0.007 (Planck Collaboration VI 2020 ).
hus, one may expect some difference in clustering between the
ock average and the data. Ho we ver, gi ven the noise in the GAMA

ata, a percent-level shift in the growth rate f ∝ �0 . 55 
m 

is hard to
iscern. It is also found in Farrow et al. ( 2015 ) (e.g. their fig. 8)
hat the mock can capture similar clustering trends as the GAMA
ata, when split into bins of redshift and stellar mass. Notice that
here are significant deviations at small scales ( r p < 1 h 

−1 Mpc ) in
he shape of the projected correlation functions, but these scales are
ot explored in this analysis. 

 RSD  M O D E L S  

.1 Quasi-linear dispersion model 

o describe the RSD in galaxy density field, one can extend
quation ( 3 ) by including the galaxy bias b : 

 

s 
g ( k, μ) = b 2 P 

r ( k) (1 + βμ2 ) 2 , (14) 

here β = f / b is often referred to as the distortion parameter.
he abo v e formalism is valid for galaxy autocorrelation, but it is
traightforward to generalize to cross-correlation: 

P 

s 
c ( k, μ) = 

b 2 gal 

b 12 
(1 + βgal μ

2 )(1 + b 12 βgal μ
2 ) P 

r ( k) , (15) 

where b gal is the galaxy bias, and b 12 is the ratio between galaxy
nd group bias: 

 12 ≡ b gal /b grp . (16) 

he 2-point correlation function is the Fourier transform of the power
pectrum. It is convenient to express the correlation functions in terms
f Legendre polynomials P � ( μ) with � = 0, 2, 4 (Hamilton 1992 ): 

ξ s 
g = ξ0 ( r) P 0 ( μ) + ξ2 ( r) P 2 ( μ) + ξ4 ( r) P 4 ( μ) . (17) 

In this expression, the coefficients of the Legendre polynomials,
0 ( r ), ξ 2 ( r ), and ξ 4 ( r ) are referred to as the monopole, quadrupole,
nd hexadecapole. In linear theory, only even modes are present up
o the forth order because of the RSD effect modifies the power
pectrum by the factor (1 + βμ2 ) 2 . The specific form of these
ultipoles are computed by Hamilton ( 1992 ) for autocorrelation,

nd Mohammad et al. ( 2016 ) for cross-correlation. We summarize
hese formulae in Appendix A. 

The FoG effect is accounted for by a convolution of the correlation
unction with some distribution of the non-linear random peculiar
elocity along the line of sight (Peacock & Dodds 1994 ). N -body
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Figure 5. False colour images of autocorrelation and cross-correlation functions in redshift space for the actual GAMA data and the corresponding average 
o v er the set of 25 GAMA mocks. r p denotes transverse separation; π is radial separation. LM, MM, and HM denote the three group mass bins. A number of 
trends are apparent: both the bias (amplitude of clustering) and the small-scale Finger of God (FoG) dispersion increase with group mass, and are larger for red 
galaxies than for blue. The mock contaminated red sample is shown as dotted contours on the second column, with log 10 | ξ | = { − 1.0, −0.5, 0, 0.7 } . 
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imulations show that the actual distribution is non-Gaussian (e.g. 
heth 1996 ; Scoccimarro 2004 ; Cuesta-Lazaro et al. 2020 ). Thus,
e adopt: 

( π ) = 

1 √ 

2 σ
exp 

(
−

√ 

2 H 0 π/σ12 

)
, (18) 
12 2  
here σ 12 is the pairwise velocity dispersion. In Fourier space, this 
unction takes the form of a Lorentzian function, ˜ D ( kμ) = [1 +
 kμσ12 ) 2 / 2] −1 , which damps the high- k modes of the anisotropic
ower spectrum. 
At quasi-linear scales, non-linearity may introduce systematic 

iases in the inferred cosmological parameters (de la Torre & Guzzo
012 ). There are multiple challenges in extending the model beyond
MNRAS 517, 374–392 (2022) 
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inear regime. There, the peculiar velocities can be large, and the
ormalism described breaks down at linear order. Non-linearities alter
he small-scale shape of the matter power spectrum and correlate
he density and velocity fluctuations. Accounting for these effects
equires higher order expansion in the Perturbation Theory and the
nclusion of the velocity spectrum, P θθ ( k ), and the density–velocity
ross spectrum, P δθ ( k ), e.g. the TNS model by Taruya, Nishimichi &
aito ( 2010 ). Galaxy bias can also be non-linear and stochastic on
mall scales (Dekel & Lahav 1999 ). Furthermore, the approximate
elocity dispersion in equation ( 18 ) fails to fit autocorrelation data
n the smallest scales. More elaborate velocity distributions are
roposed by e.g. Reid & White ( 2011 ); Zu & Weinberg ( 2013 );
ianchi, Chiesa & Guzzo ( 2015 ) based on simulations. 
One simple approach is the replacement of the linear power

pectrum in the linear Kaiser model (equation 14 ) by the non-linear
ower spectrum. This is reasonable because the redshift space power
pectrum should match that in real space at μ = 0. Blake et al. ( 2011 )
howed that this combination is actually among the best-performing
SD models when fitting down to k max = 0 . 2 h Mpc −1 with fixed
osmology. 4 For this model, we adopt the non-linear power spectrum
rom HALOFIT (Smith et al. 2003 ; Takahashi et al. 2012 ). In the non-
inear regime, we should in principle allow for a scale-dependent
ias. But in practice it is a good approximation to assume that the
on-linear galaxy and matter power spectra are in a constant ratio
see Camacho et al. 2019 ). In the following analysis, we refer to this
odel as the ‘quasilinear dispersion’ (QD) model. 

.2 RSD in the halo model 

he main deficiency of the QD model is that it does not address post-
inear couplings between density and velocity, which will modify
he simple Kaiser angular anisotropy. There is an e xtensiv e literature
f attempts to impro v e such modelling, based on various forms of
erturbation theory. The model of Taruya et al. ( 2010 ) is widely used,
lthough more recent efforts have concentrated on the Ef fecti ve Field
heory approach. This adds additional terms dictated by symmetry

n a way that can also capture bias effects, including non-linearity
nd non-locality (e.g. Carrasco, Hertzberg & Senatore 2012 ; Senatore
015 ; d’Amico et al. 2020 ). These results are impressive, but have the
imitation that they are presented in Fourier space and are not reliable
eyond k � 0 . 3 h Mpc −1 . For a robust prediction of correlation
unctions, we need a formalism that still behaves correctly in the
arge- k limit. 

For this reason, we have developed a model that seeks to access
he highly non-linear regime by using the halo model. In real space,
his involves correlations that count pairs of galaxies in the same halo
r in different haloes: 

( r) = ξ1 h ( r) + ξ2 h ( r) . (19) 

he 1-halo term is determined by the form of the halo density profile,
nd the 2-halo term is close to a linearly biased version of the
atter two-point function. The bias in turn is determined by the

alo occupation number, N ( M ), of galaxies in haloes as a function
f their mass. This halo model has pro v ed a highly ef fecti ve way
o understand the relation between the clustering of galaxies and of

ass (Peacock & Smith 2000 ; Seljak 2000 ; Cooray & Sheth 2002 ),
nd for the case of dark matter alone has led to the highly precise
ALOFIT framework (Smith et al. 2003 ; Takahashi et al. 2012 ). 
NRAS 517, 374–392 (2022) 

 Although it should be noted that if the model could introduce bias to �m 

if 
he cosmology is not fixed, as shown in Parkinson et al. ( 2012 ). 

t
 

c  

a  
The halo-model separation into two independent pair contributions
ust also apply for the redshift-space correlations, namely 

( r p , π ) = ξ1 h ( r p , π ) + ξ2 h ( r p , π ) , (20) 

ut it should be clear from the outset that the 1-halo and 2-halo
ontributions would be expected to have rather different anisotropy
ignals. The characteristic quadrupole plus hexadecapole Kaiser
istortion arises from the coherent component of the velocity field,
nd this will apply to the 2-halo term only, since pairs from within the
ame halo are unaffected by bulk motion of the halo. This redshift-
pace decomposition using the halo model was advocated by Hand
t al. ( 2017 ), who invested much effort in trying to predict the two
istinct components using perturbation theory. Our work bears some
esemblance to their approach, with two distinct differences: we
ork directly in configuration space, and we base the 1-halo term on

mpirical simulation results, rather than attempting to calculate it a
riori. 
A particular point to clarify in this decomposition is the treatment

f Fingers of God. Random motions within a halo are treated in
he dispersion model by a radial convolution – but in fact the
ppropriate convolution will be different for the 1-halo and 2-halo
erms. The main reason for this is that the 1-halo and 2-halo terms
eight contributions as a function of halo mass differently, with a
igher weight given to high-mass haloes in the 1-halo term (see e.g.
quations 8 and 10 of Seljak 2000 ). Since the pairwise dispersion σ 12 

ncreases with halo mass, we expect larger FoG effects to apply to the
-halo term. This is further complicated by the existence of central
nd satellite galaxies, since the weighting of these is different in the
-halo and 2-halo terms. For example, suppose each halo contains
ither just a single central or one central and one satellite, where the
elocity dispersion of satellites is σ . The 1-halo contribution must
air a central with a satellite, so the pairwise dispersion is σ . But
he 2-halo term can also pair centrals with centrals (assumed to have
egligible pairwise dispersion – although Reid et al. 2014 showed
hat the actual pairwise velocity could be up to 30 per cent of σ ) and
atellites with satellites (pairwise dispersion 

√ 

2 σ ) , so the average
ms pairwise dispersion depends on the fraction of haloes that contain
 satellite. If most haloes are central-only (as in BOSS CMASS, for
xample), the pairwise dispersion for the 2-halo term will be 
σ . In
he opposite direction, one can argue that the velocity field of haloes
ill contain some stochastic component in addition to the coherent
elocities that generate the Kaiser distortion. 

With this perspective, an improved simple model for the cross-
ower between tracers a and b would be as follows: 

 ab ( k, μ) = P 1 h ( k ) D 1 ( k μ) 

+ b a b b P lin ( k) (1 + βa μ
2 )(1 + βb μ

2 ) D 2 ( kμ) . (21) 

eaving aside the 1-halo term for the moment, one way in which we
an seek to impro v e this e xpression further is in terms of quasi-linear
ffects on the 2-halo term. A first requirement is that the real-space
pectrum (at μ = 0) should have the full non-linear form. When
iscussing the dispersion model, we achieved this by replacing P lin 

y the non-linear spectrum. In the halo model, we should not do
his, since the 2-halo term in real space is close to linear theory, and
he 1-halo term supplies most of the non-linear corrections (Smith
t al. 2003 ). We do ho we ver adopt the HALOFIT 2-halo term, with
cale-independent bias, as the best model for the real-space 2-halo
erm. 

The next step is to seek impro v ement in the density–velocity
oupling that leads to the Kaiser distortion factors. An attractive
pproach here is the streaming model (e.g. Fisher 1995 ; Vlah,



Modelling RSD in galaxy-group cross-correlations 383 

Figure 6. Illustrating the decomposition of the measured mock correlation data (left-hand panel) into a 2-halo fit (middle panel) and an empirical 1-halo term 

in the form of the residual of the fit (right-hand panel), for the particular case of red-MM cross-correlation. The 2-halo term is computed using the streaming 
model, and is matched to the data at radii r > 10 h −1 Mpc , with the additional criterion that r p > 3 h −1 Mpc . 
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astorina & White 2016 ), in which we consider the quasilinear 
elativ e v elocity distribution as a function of pair separation, and
se this to transform to redshift space while exactly conserving pair 
ounts. The details of the construction of this model are given in
ppendix B. As with the linear model for the 2-halo term, there are

hree main free parameters, the tracer biases and the growth rate: 
 b a , b b , f ). This assumes that the mass power spectrum is known
xactly, whereas it depends on all fundamental � CDM parameters. 
he main variation of the power is ∝ σ 2 

8 , so it is common to factor
ut this degree of freedom and take the main RSD parameters to be
 b a σ 8 , b b σ 8 , f σ 8 ). Ho we ver, there is a weaker further dependence on
8 when we adopt the HALOFIT prediction of the 2-halo matter power 

pectrum, rather than taking this to be pure linear theory (although 
he difference is not important in practice). 

In addition to these three main RSD parameters, we have pa- 
ameters connected to the FoG damping. As described earlier, it is
onventional to model FoG effects by radial convolution, taking the 
elocity PDF to be a Lorentzian and using a velocity dispersion as
he single free parameter. But in the present context, it is important
o be clear that the empirical evidence for the Lorentzian form comes
ainly from the 1-halo term. This is D 1 ( k z ) in equation ( 21 ); but we
ant the effect on the 2-halo term, D 2 ( k z ). We have argued that this
ill be characterized by a different dispersion, but in addition there 

s no strong reason to assume it will have a Lorentzian form. As a
ore general alternative, we considered a modified Lorentzian: 

 2 ( kμ) = 

(
1 + ( kμσ12 ) 

2 / 2 γ
)−γ

(22) 

nd experimented with different values of γ . But in practice the 
esults were rather insensitive to the choice of this parameter, so
e retained the Lorentzian γ = 1. It is shown in e.g. Scoccimarro

 2004 ), Bianchi et al. ( 2015 ), and Cuesta-Lazaro et al. ( 2020 ) that
he shape of the PDF is only rele v ant where the correlation function
hanges significantly o v er a scale comparable to the width of the
moothing function. But the issue of the exact form of the PDF for
oG corrections to the 2-halo term is a problem that merits further
tudy. 

In summary, we therefore have two models with similar real- 
pace correlations, but different degrees of RSD: (1) QD: quasi-linear 
ispersion model and (2) HS: halo streaming model. Both of these 
onverge to the linear Kaiser model on large scales, so what is of
nterest is the smallest scale to which their predictions are reliable. 

e will assess these by comparison with mock data. 
.2.1 The 1-halo term 

he real-space 1-halo term can in principle be computed in the
sual halo model frame work, gi ven the occupation numbers for the
racers and the halo radial profile. But there is also a case for taking
n empirical approach, given that the real-space correlations are in 
rinciple observable directly, in a manner free of RSD effects, via
he projected correlation function w p ( r p ). One might for example
odel the real-space 1-halo term by a power-law of free amplitude

nd slope, or via an NFW profile. 
But whatever approach is taken in real space, there is then the

uestion of how the 1-halo term appears in redshift space. As
escribed abo v e, the simplest approach is to assume that the transition
o redshift space consists of a radial convolution with a single
oG function. Ho we ver, it is not hard to see that this must be
n o v ersimplification. The 1-halo term arises from random orbital
elocities within the halo, but the velocity dispersion is unlikely to
e constant. If for example we consider the case of isotropic orbits,
hen the dispersion would need to fall to zero at the virial radius of
he halo, beyond which the density is assumed to vanish. 

Here, we address this concern directly by using the mocks. Given a
ypothesis for the 2-halo term, we can subtract the 2-halo prediction
rom the mock data to obtain an empirical ξ 1h ( r p , π ) that sums
ith the 2-halo term to give exactly the mock data (specifically, we

pply this approach to the average of all the mocks). The 2-halo
erm can be deduced by fitting to the mock data in a regime where
e assume the 1-halo contribution to be negligible. The exact cuts

dopted in the process are not critical; in practice, we chose to match
o the data at radii r > 10 h 

−1 Mpc , with the additional criterion
hat r p > 3 h 

−1 Mpc . The operation of this procedure is illustrated in
ig. 6 . The resulting residual 1-halo term is clearly well localized
ear the origin, and indeed it can be seen that the RSD effects in the
-halo term are complicated, with the FoG effect being largest at r p 
 0, whereas the function appears more isotropic close to its outer

imit at r p � 5 h 

−1 Mpc . This interesting behaviour is clearly worthy
f being modelled in detail, but we shall not do that here. 
We now have a decomposition of the redshift-space correlations 

hat by construction exactly matches the average of the mocks. 
o we ver, each mock realization will be different, as will be the

eal data, so can these different data sets be fitted in this framework?
he 2-halo term is already parametrized, and these parameters can be
aried for an y giv en data set. But the 1-halo term must also have some
ariation. Our approach is to assume that the mocks are sufficiently
MNRAS 517, 374–392 (2022) 
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ealistic that the ef fecti ve 1-halo term in any given case will be close
o the mock average, and that the difference can be captured by two
uisance parameters: 

1 h ( r p , π ) → αξ1 h ( r p , η π ) . (23) 

n other words, assume that we have roughly the right functional
orm, but that the amplitude may be off (scale by α), and that the
oG strength may be off (stretch in the radial direction by 1/ η).
hysically, the amplitude parameter α can be related to the way in
hich galaxies populate haloes: there may be different numbers of

atellite galaxies in a given halo compared to the mock, leading to
 different small-scale clustering signal. We have previously seen
hat an empirical rescaling of the 1-halo amplitude can yield an
ccurate fit to correlation data in real space (Hang et al. 2021 ). The η
arameter attempts to capture the velocity dispersion of the galaxies
n the halo: a smaller η produces a larger FoG effect. Again, this can
e understood in terms of an uncertain halo occupation, which can
lter the mean mass of the haloes that contribute the 1-halo term. 

As we show below, this approach is able to succeed in matching
he individual mock realizations, and so we see no reason not to apply
he same model to the real data. We emphasize that we do not need
o assume that the mocks are completely realistic, as long as they are
ualitatively similar to reality. The reliability of this approach can be
udged by whether or not the fitted values of α and η are close to unity
as indeed turns out to be the case). We only consider this minimal
et of two empirical nuisance parameters in the current analysis;
or forthcoming large data sets of higher statistical precision, more
arameters may be required in order to make the model acceptably
ccurate. Eventually, we will need to validate the model by deriving
-halo templates from a given set of mocks and showing that they
an fit data derived from mocks produced according to different
ssumptions. We intend to pursue this high-precision robustness test
n a future study. 

.3 Fitting methodology 

.3.1 Covariance matrix and likelihood inference 

n the abo v e discussion, we hav e not been explicit about exactly what
t means to fit the averaged mock data. In principle, one would like to
ave an understanding of the errors on the data, so that the likelihood
an be computed as a figure of merit that is used to optimize the
t. For an individual data set, this can be done in the standard way
y using an ensemble of mocks to estimate the covariance matrix of
he data, and then appealing the to central limit theorem to compute
he likelihood in the Gaussian approximation. For fitting the stacked

ocks, the appropriate covariance matrix is less obvious, but in any
ase it is less important to have a likelihood in that case, where
he aim is simply to estimate a 1-halo contribution as a basis for
urther modelling. We are not interested in placing errors on the best-
tting parameters of the 2-halo term, for which a likelihood would
e required. In practice, therefore, we took the simple approach of
eeking a least-squares fit in ln (1 + ξ ) to the mock average. The
xact figure of merit chosen is unimportant as regards the 1-halo
esidual. 

The covariance matrix for a single data realization is most often
stimated in one of two ways: either directly via the scatter o v er a
umber of mock realizations, or via Jackknife resampling of a single
ealization. Both of these approaches have their limitations, but the
est strategy is when they are combined: an expanded set of mock
ealizations is created by Jackknife resampling of each one, yielding
n impro v ed estimate of the co variance matrix (Alam et al. 2021b ).
NRAS 517, 374–392 (2022) 
or a data vector with component x i and a model vector y i , where i
 1,..., m , the χ2 is defined as 

χ2 = 

m ∑ 

i,j 

[ x i − y i ] C 

−1 
ij [ x j − y j ] . (24) 

In the abo v e equation, C ij is the covariance matrix, estimated from
 independent realizations of mock data: 

ˆ C ij = 

1 

N − 1 

N ∑ 

k= 1 

[ x k i − 〈 x k i 〉 ][ x k j − 〈 x k j 〉 ] . (25) 

iven a model with p parameters, there are m − p degrees of freedom
n the χ2 -fitting. Due to the small number of mocks, we apply
ackknife re-sampling on the mocks by dividing each surv e y field
nto 18 sub-regions, giving a total of N J = 54 samples for each mock.
he covariance matrix for an individual mock sample is estimated
sing equation ( 25 ), with an extra factor ( N J − 1) to account for
orrelations between the Jackknife samples. We av erage o v er the
ovariance matrices of the 25 mocks to obtain the final covariance
atrix. It is pointed out in Escoffier et al. ( 2016 ) that this method

an reduce the noise on the covariance estimation, and fast approach
he truth. Ho we ver, we caution that these mocks are not completely
ndependent, because they are constructed from the same N -body
imulation (Gonzalez-Perez et al. 2014 ). 

The posterior of the model parameters θ given data D is estimated
n a Bayesian way: 

P ( θ | D) = 

P ( D| θ ) P ( θ ) 

P ( D) 
, (26) 

where P ( θ ) is the prior and P ( D ) is treated as a normalization. The
erm P ( D | θ ) is proportional the likelihood L , which we assume to be
aussian: 

 ∝ exp ( −χ2 / 2) . 

e use Monte Carlo Markov Chain (MCMC) sampling of the
arameter space, implementing the python package emcee . 5 

.3.2 Data compression 

nstead of fitting the whole 2D correlation function, which requires
n N ( r p ) × N ( π ) – dimensional covariance matrix, we compress the
D information into the multipoles defined as 

� ( r ) = 

2 � + 1 

2 

∫ 1 

−1 
ξc ( r , μ) P � ( μ) d μ; � = 0 , 2 , 4 . (27) 

e ignore higher order multipoles because they are typically noisy
nd more sensitive to non-linearity. Multipoles are computed by
nterpolating the 2D correlation function, and this is done consistently
or both the measurements and the models. In the QD model, we
xclude ξ 4 from the fitting, because the non-zero signal at scales
 ≥ 10 h 

−1 Mpc cannot be well reproduced by this model. 
We also considered adding the projected correlation function w p : 

 p ( r p ) = 

∫ πmax 

−πmax 

ξ ( r p , π ) d π. (28) 

his has the merit that it is in principle independent of RSD for
arge enough πmax , and a knowledge of the true real-space clustering
hould be advantageous if we are focusing on redshift-space effects
hat cause deviations from this. However, we found in practice that

http://dfm.io/emcee/
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Table 2. Range of the uniform priors of the RSD fitting parameters. For 
growth rate, the usual constraint from RSD is f σ 8 , but we fix σ 8 = 0.81 in 
this analysis. The α, and η parameters are the 1-halo parameters applied in 
the GSM model only. 

Parameter Prior (QD) Prior (HS) 

b gal [0.1,2.5] [0.5,2] 
b 12 [0.1,2.5] [0.25,3] 
f [0,2] [0,2] 
σ a (km s −1 ) [143,1140] [30, 800] 
σ c (km s −1 ) [143,1140] [30, 800] 
I a [0,0.1] Fixed 
I c [0,0.1] Fixed 
αa – [0.1,2] 
αc – [0.1,2] 
ηa – [0.5,2.5] 
ηc – [0.5,2.5] 
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t was not possible to choose a large enough πmax to achieve results
hat converged to the true real-space clustering without the results 
eing too noisy to be useful. The w p statistic may be useful at small
eparations, r < 10 h 

−1 Mpc , as a means of probing the real-space
-halo term, but as discussed abo v e we do not need to do this in
he present work. We included w p in the fitting for the QD model;
o we ver, due to the limited information it could provide in addition
o the multipoles, the w p was excluded in the HS model fitting. 

For each of the six cross-correlation configurations, we fit the 
easurement simultaneously with its corresponding galaxy autocor- 

elation. This allows us to break the de generac y between the galaxy
nd group bias. 

.3.3 Scale cuts 

elow quasi-linear scales r ∼ 10 h 

−1 Mpc , both models may fail 
o capture the full non-linear features. Fitting data points at these 
cales may introduce significant bias into the measured growth 
ate. Therefore, we test the models on a set of minimum fitting
cales, r min = 2 , 5 , 10 , 15 , 20 h 

−1 Mpc using the mock catalogues,
nd adopt the most appropriate cut for each subsample. For the HS
odel, because the model is designed to be able to fit smaller scales,
e only test the model at r min = 2 , 5 , 10 h 

−1 Mpc . 

.3.4 Integr al constr aints 

o account for the missing power for modes larger than the GAMA
urv e y scale, we include the integral constraint I , which is a small
onstant added to the 2D correlation function. The expected integral 
onstraint is given by 

 ≡ b 1 b 2 

3 
σ 2 

eff = 

b 1 b 2 

3 

∫ 

� 

2 ( k ) W 

2 ( k , r = r eff ) d ln k , (29) 

here � 

2 ( k ) is the dimensionless linear matter power spectrum,
 1 and b 2 are the tracer biases, W ( k , r ) = 3[sin ( kr )/( kr ) 3 −
os ( kr )/( kr ) 2 ], and r eff is the ef fecti v e radius of the surv e y volume
n one of the GAMA fields, V = 4 πr 3 eff / 3. The factor 1/3 accounts
or the fact that we combine measurements o v er three GAMA fields.
quation ( 29 ) gives I = 0.0017 b 1 b 2 . This can also be measured

n the mock data directly, by comparing the projected correlation 
unction w p at large scales between the average of 25 samples and the
ombination of all mock samples. The measured values are consistent 
ith the expectation given the statistical errors. In the QD model, we

llowed I to be a free parameter, and found that it has little impact
n other parameters, with a posterior consistent with zero (e.g. see 
ables D1 and D2 in Appendix D). The integral constraints are then
xed to the measured values from mock for the streaming model, as
hown in Tables D3 and D4. 

.3.5 Priors 

he parameters used in the two models and their uniform prior
anges can be found in Table 2 . For each of the group-galaxy
ubsample, the galaxy autocorrelation is fitted simultaneously with 
he cross-correlation. Parameters with subscript ‘ a ’ are used for
utocorrelations and ‘ c ’ for cross-correlations. There is another 
osmological parameter that should be considered: the normalization 
f the (linear) matter power spectrum σ 8 . From equation ( 14 ), it
s clear that on linear scales, σ 8 and b are completely degenerate, 
ence RSD measurements are usually quoted in the combination f σ 8 . 
t large k , the shape of the non-linear power spectrum is actually
ensiti ve to σ 8 . Ho we ver, such dependence is weak for the scales
robed here, and we fix σ 8 = 0.81 throughout the analysis. 

 RESULTS  

.1 Mocks 

e fit both models to each of the 25 mock samples, and compute the
ean and scatter of the best-fitting parameters. The aim is to assess

he scale at which an unbiased growth rate can be reco v ered. The
esult is shown in Fig. 7 for the set of r min as mentioned in previous
ections, and for each of the six configurations. The fiducial value of
 with ±10 per cent range is marked by the grey band in each panel.
he error bar is comparable to, but should not be taken directly as

he expected error size on the GAMA sample. The specific values
f all model parameters are summarized in Tables D1 and D3 in
ppendix D. 
Notice that in the case of halo streaming model, there is a caveat

hat the 1-halo templates are obtained from the average of the same set
f mocks as they are tested on. Ideally, we w ould lik e to have access
o multiple sets of simulations co v ering different cosmology and
OD prescription, with matched surv e y configurations as GAMA. 
hen, we would test the halo streaming model on by extracting

he 1-halo templates from one set of simulations and apply it to the
easurements from the others. In this way, we can assess whether the
odel is robust against bias due to a different cosmology or change

f the simulation settings. Such test will be particularly rele v ant for
he forthcoming large data sets, where the demand of the precision
f the model is high. Ho we v er, this is be yond the scope of this paper
iven the noise level of the GAMA data. We w ould lik e to defer such
etailed comparison to a future study. 
The top panel of Fig. 7 shows the reco v ered growth rate f

sing the QD model (Section 4.1 ). As expected, when the small
cales are included ( r min ≤ 5 h 

−1 Mpc ), the fitted growth rates are
ignificantly biased in all configurations, while at larger scales 
 r min ≥ 15 h 

−1 Mpc ), the y conv erge to the fiducial value. The o v erall
rowth rate seems to be underestimated by about 5 –10 per cent
or most scale cuts, but this is much smaller compared to the
tatistical error of the GAMA sample. It is noticeable that the blue
onfigurations are less biased down to smaller scales, with f reco v ered
o within 10 per cent at r min = 5 –10 h 

−1 Mpc , compared to the red
onfigurations which are only unbiased at r min = 15 –20 h 

−1 Mpc .
his may be due to the smaller FoG effect in the blue configu-

ations compared to the red. From this test, we choose to adopt
MNRAS 517, 374–392 (2022) 
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M

Figure 7. The means and scatter of the best-fitting growth rate f from 25 mocks as a function of the minimum fitting scale, r min , for the quasi-linear dispersion 
(QD: top) and the halo streaming (HS: bottom) models. Data points at each r min are displaced by 0 . 1 h −1 Mpc for clarity. The grey band marks the 10 per cent 
regions around the mock fiducial value f = 0.593 at z = 0.195. Note that the error bars are for a single surv e y, so that the errors on the mean of the mocks are 
5 times smaller than shown. 
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 min = { 10 , 10 , 10 , 15 , 20 , 20 } h 

−1 Mpc for the LMblue, MMblue,
Mblue, LMred, MMred, and HMred subsamples, respectively, for

he QD model in the application to the GAMA data. The bottom
anel of Fig. 7 shows the reco v ered growth rate f using the HS
odel, where the results are impressively consistent. The growth

ates for the different subsets are consistent to within an rms of
 per cent in the mock average results, and the global average of
hese different subsets is within 2 per cent of the fiducial value.
his successful performance holds down to even r min = 2 h 

−1 Mpc ,
lthough the estimated errors at that point are little different to those
t r min = 5 h 

−1 Mpc , so we conserv ati vely adopt the larger figure in
ur HS analysis. 
Fig. 8 shows the linear and streaming model with the mean best-

tting parameters from the mock subsamples, at the respective r min 

s mentioned abo v e. The mock av erage measurement as well as the
 σ error on the mean is also shown. In addition, we also show the
orresponding 2-halo term of the streaming model in dotted black
ines. On large scales ( r ≥ 15 h 

−1 Mpc ), all of the model curves
onverge, and match well with the mock average. It is noticeable that
he full streaming model (with the addition of the 1-halo template)
nd its 2-halo term do not coincide exactly on these scales: the
xtracted 1-halo template still has some residuals in the monopole and
uadrupole. The largest difference is seen in the hexadecapole. The
lightly positive values seem to be produced only by the 1-halo FoG,
hich both the linear and the 2-halo terms of the streaming model

ail to capture. Looking at smaller scales ( r ≤ 10 h 

−1 Mpc ), it seems
hat the QD model underpredicts the power in the red configurations,
nd o v erpredicts that in the blue configurations. 

.2 GAMA 

ig. 9 shows the measured GAMA multipoles (filled circles), the
est-fitting QD models (black dashed lines), and the HS models
black solid lines). In addition, the corresponding HS model 2-halo
erm is shown in the dotted black lines. The same scale cuts, r min ,
re adopted as in the mock case for each of the models. The χ2 and
arameter values are shown in Tables D2 and D4. The full HS model
D models are contrasted with the GAMA data in Appendix C. 
We see that the QD model provides a reasonable fit to the
onopole and quadrupole at given r min in most configurations. The

nly exception is the LMred and LMblue subsamples, where the
onopole power is boosted at large scales and the quadrupole power
NRAS 517, 374–392 (2022) 
s consistent with zero. Despite the visual discrepancy, the χ2 of
hese models are consistent with the degrees of freedom of the data.
he HS model is able to capture the shape of the multipoles down to
maller scales, especially the hexadecapole at scales r > 5 h 

−1 Mpc .
t smaller scales ( r < 5 h 

−1 Mpc ), although excluded from fitting,
he mock 1-halo template continues to provide a reasonable fit
o the red configurations. But this is not the case for the blue
onfigurations, where the non-linear velocity dispersion seems to
e stronger in the actual data compared to the mock catalogues.
ne possible explanation could be the impact of redshift measuring

rrors. These are not included in the mocks, and so any measured
elocity dispersion in the real data only will include the redshift
rror in quadrature. The typical GAMA error is 50 km 

−1 , but in
etail Liske et al. ( 2015 ) showed that redshift errors can depend
n spectral and target properties. The redshift error for galaxies
lassified as the ‘absorption’ type (i.e. the spectrum is dominated by
bsorption features) is 101 km s −1 , compared to the ‘emission’ type,
hich is 33 km s −1 . But red galaxies have a larger measured velocity
ispersion, so the impact of redshift errors on the total measured
ispersion will be less in that case. 
Fig. 10 shows the mean and 1 σ error on the model parameters from

he MCMC posterior for the GAMA data, fitted at respective r min .
he open and filled symbols denote parameter constraints from the
D model and the HS model, respectively. In the latter case, we also

how the constraints measured using the 1-halo template from the
contaminated’ red galaxy sample (purple filled symbols). All sets of
onstraints show good consistency. Notice that the size of the error
ar in the blue configurations is similar in both models, although
he QD model has a scale cut at 10 h 

−1 Mpc while the HS model
t 5 h 

−1 Mpc . This is the consequence of the additional nuisance
arameters added in the latter model. The specific parameter values,
ncluding the 1-halo parameters in the HS model, can be found in
ables D2 and D4. In Figs E1–E4 in Appendix E, we further show

he full posteriors from MCMC for all parameters in both models,
rouped by the red and blue configurations. In the HS model, the
-halo parameters α and η have no primary degeneracy with the
rowth rate, although the growth rate can be shifted slightly through
heir small de generac y with the velocity dispersion parameters. In
ractice, one would always marginalize o v er the 1-halo parameters. 
The middle two panels show the measured group and galaxy biases

n both models. The LM, MM, and HM group biases measured
onsistently between the red and blue configurations in both models.
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Figure 8. The multipoles of the group-galaxy cross-correlation functions in the mock average (open diamond). The coloured bands show the scatter on the 
mean. The best-fitting QD models are shown in dashed black line, with r min = { 10 , 10 , 10 , 15 , 20 , 20 } h −1 Mpc for the LMblue, MMblue, HMblue, LMred, 
MMred, and HMred subsamples, respectively. The best-fitting Gaussian streaming models with a 1-halo template are shown in solid black lines, with a fixed 
r min = 5 h −1 Mpc for all sub-samples, with the corresponding 2-halo term shown in dotted black lines. For the presentation purpose, the multipoles have been 
multiplied by r 1.5 . 

F  

g  

fi  

r
t  

a
g
i
s
1
c
m
f  

Q  

p  

t
t
c
i
n
b
m  

2  

c  

r

t
r  

o
p  

o  

o  

o  

fi
 

A
P
o
‘  

f  

e  

C  

i  

g  

w
 

0  

d  

m  

f  

r  

s
m
W  

t  

I  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/1/374/6696392 by U
niversity C

ollege London user on 31 O
ctober 2022
or our selection of galaxies, we find that b gal ≈ 1 for the blue
alaxies, and b gal ≈ 1.3 for the red galaxies; for the groups, we
nd that b grp ≈ 1.2, 1.4, 1.8 for the low, medium, and high mass
anges. The b grp measurements are in qualitative agreement with 
hat in Riggs et al. ( 2021 ) on large scales (e.g. see their Fig. 8 ),
lthough direct comparison is non-trivial due to difference in the 
roup selection. The consistency between the two models is good 
n general, although for the blue configuration, the HS model gives 
ystematically lower biases compared to the QD model by 0.5 σ–
.5 σ . The lower two panels show the measured autocorrelations and 
ross-correlation velocity dispersion, σ a and σ c . The two models 
easure consistent velocity dispersion, despite slightly different 

orm for the FoG term. Notice that for the red configuration in the
D model, because of the large scale cut, the velocity dispersion
osterior is prior driven. There is a tentative trend (at ∼2 σ ) that
he red configurations have larger velocity dispersion compared to 
he blue configurations, with σa,c ∼ 400 − 500 kms −1 for the red 
onfigurations, and σa,c ∼ 300 kms −1 for the blue configurations 
n both autocorrelations and cross-correlations. There is, ho we ver, 
o clear dependence on the group mass. These measured galaxy 
iases and velocity dispersion are in good agreement with other 
easurements from GAMA (e.g. Blake et al. 2013 ; Lo v eday et al.

018 ). The marginalized posterior for f , b gal , and b 12 for the six
onfigurations is shown in Figs 11 and 12 for the QD and HS models,
espectively. 

The top panel shows the measured growth rate, consistent across 
he six subsamples for both models. Here, we have presented the 
esults in the more general form of f σ 8 ( z). The rationale for this is that
ur modelling assumes that the background cosmology (WMAP7 
arameters) is known exactly. This is not precisely true, and the
bserved distortion parameter, β = f / b , is actually ∝ f σ 8 (since b σ 8 is
bservable). We therefore multiply our fitted f by the fiducial σ 8 ( z) in
rder to obtain a combination that should be insensitive to the exact
ducial model. 
We also note that RSD analyses commonly also allow for the

lcock-Paczynski effect (Alcock & Paczynski 1979 ; Ballinger, 
eacock & Heavens 1996 ), which introduces additional distortions 
f the 2D correlation function from distance measurements using a 
wrong’ cosmology. This degree of freedom can boost the errors on
 σ 8 substantially if the cosmological model is left free. But the AP
ffect is unimportant if the model is constrained by precise external
MB data as here. A further reason that this is reasonable is that the

nterest in RSD comes from the desire to test gravity: the CMB data
ive a precise prediction of f σ 8 and we want to know if this is what
e measure. 
In detail, then, we take σ 8 ( z ) = g ( z ) σ 8 (0) = 0.73, where z =

.20, σ 8 (0) = 0.81, and g ( z) is the time-dependence of the (linear)
ensity fluctuation in linear theory, normalized to g (0) = 1. The
easurements give a mean of f σ 8 = 0.27 with uncertainties ranging

rom 0.07 to 0.20 for the QD model, and f σ 8 = 0.29 with uncertainties
anging from 0.07 to 0.14 for the HS model. We combine our mea-
urements from the six cross-correlation configurations for the HS 

odel, accounting for their correlations using the mock catalogues. 
e compute the scatter on the average as well as the covariance of

he best-fitting f for the six configurations in the 25 mock samples.
deally, one would like to use the full posterior. Ho we ver, this would
MNRAS 517, 374–392 (2022) 
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M

Figure 9. Same as Fig. 8 but for the actual GAMA data, with the same r min adopted. The coloured bands show Jackknife errors. The χ2 for each of the models 
can be found in Tables D2 and D4. 
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equire the time consuming step of running MCMC for each of the
ock sample, thus the simple average of the maximum likelihood

alues is adopted. Our combined constraint from the HS model thus
ives 

 σ8 ( z = 0 . 20) = 0 . 29 ± 0 . 10 . (30) 

he corresponding figure for the QD model is 0.27 ± 0.14, showing
he extra information gained through the smaller scales that the HS
odel is able to probe. We note that the limited number of mock

amples means that our covariance matrices will be imprecise, so
hat the errors on the growth rate for an individual sample may
e underestimated (Hartlap, Simon & Schneider 2007 ; Sellentin &
eavens 2016 ). Ho we ver, the empirical dispersion in the mean of the
aximum-likelihood values should be robust. 
The striking thing about this GAMA-based figure is that it is

ather low compared to the fiducial Planck figure of f σ 8 ( z = 0.20)
 0.47 ± 0.01, derived from the Planck TT, TE, EE + lowE + lensing

osmological parameters (Planck Collaboration VI 2020 ): our fig-
re is 1.8 σ below this Planck value. This discrepancy is certainly
ne xpected giv en how well our modelling was able to account for the
SD signal in the different mock realizations, and how the reco v ered
rowth rates were consistent between different methods of model
tting. Furthermore, the figures reco v ered from the different GAMA
ubsamples show the same level of consistency with each other as is
een in subsamples within the mocks. 

There are a number of things that can be said about the low
bserved figure. The first is that there is some evidence that the
ducial Planck figure may be too high, with local gravitational

ensing data consistently arguing for a reduction of about 10 per cent
see e.g. Hang et al. 2021 ). Our measurement would then be in 1.3 σ
isagreement with a revised fiducial value of 0.42, implying that
AMA is an unusual data set, but not unreasonably so. And we do
NRAS 517, 374–392 (2022) 
ave evidence that this is the case: inspection of Fig. 3 shows that
 ( z) has a substantial dip at z � 0.24, which is seen consistently in all

hree fields. One might suspect a problem with the redshift pipeline,
ut this feature is absent in a subsequent fourth GAMA field, not
sed here; the three main GAMA fields are simply rather unusual
egions of space. Finally, note that a multitracer analysis of RSD in
AMA by Blake et al. ( 2013 ) gave f σ 8 ( z = 0.18) = 0.36 ± 0.09,
hich is also slightly lower than Planck , albeit not inconsistently so.

.3 Group bias 

inally, it is interesting to ask if the group biases that we measure
re in accord with what is expected for haloes of these masses. We
ompute the expected group bias in GAMA from the calibrated halo
ass for the groups based on equation ( 6 ). We adopt the Tinker

t al. ( 2010 ) fitting formula for the linear halo bias. The halo bias is
xpressed in terms of the peak height parameter ν ≡ δc / σ R , where
c ≈ 1.686, and σ R is the rms of the linear power spectrum filtered
ith a spherical top hat function with radius R (cf. equation 29 ). This

s related to the halo mass via M h = 200 ̄ρm 

4 πR 

3 / 3, where ρ̄m 

is
he mean background density. The mean group bias in a stellar mass
ange is estimated by 

ˆ 
 grp = 

∑ 

i N ( log M 

i 
h ) b( log M 

i 
h ) ∑ 

i N ( log M 

i 
h ) 

, (31) 

here N ( log M 

i 
h ) is the number of groups in the logarithmic halo

ass bin i . The halo mass adopted in case of mock and GAMA are
s shown in Fig. 2 . For GAMA, we also include the uncertainty in
he calibrated halo mass due to the uncertainties in log M p and α in
quation ( 6 ). We combine the error via: 

 log M h = � log M p + | � α log ( L grp /L 0 ) | . (32) 
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Figure 10. The MCMC parameter constraints for the actual GAMA data using the QD model (open symbols) and the streaming model with a 1-halo template 
(filled symbols). Each model is fitted with the respective r min as in Fig. 8 . The filled purple points show the constraints obtained using the 1-halo template 
from the ‘contaminated’ red sample in the mock data. The 1-halo parameters are marginalized o v er in the HS model. On the top panel, we have converted the 
constraints back to f σ 8 by multiplying back the fiducial σ 8 ( z = 0.195). The black line and the grey band on the top panel mark f σ 8 = 0.47 ± 0.01, the fiducial 
growth rate at z = 0.195 using �m 

and σ 8 constraints from Planck Collaboration VI ( 2020 ). The specific values for all model parameters are shown in Tables D2 
and D4. 
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or the mass range concerned here, � log M h = 0 . 8 –0 . 2 dex from low
ass to high mass. We account for this scatter by convolving the

umber of objects with a Gaussian distribution with width � log M h 

n each log M h bin. The predicted and measured group biases using
ocks and GAMA data are summarized in Table 3 . We also show

iases computed at the logarithmic mean halo mass M̄ h . These values 
re close to the average bias computed from equation ( 31 ) in the case
f GAMA, but they deviate from the mock average significantly. This
ndicates that estimating the bias from the mean halo mass depends 
eavily on the distribution of the halo mass of the sample considered.
n addition, we include the case where the more up-to-date mass–
uminosity relation from Rana et al. ( 2022 ) is used to compute
he group halo mass. The equi v alent parameters to equation ( 6 )
re M p = (8 . 1 ± 0 . 4) × 10 13 h 

−1 M �, L 0 = 10 11 . 5 h 

−2 L �, and α =
.01 ± 0.07. The halo mass computed with this calibration is larger 
han using the fiducial Han et al. ( 2015 ), resulting in good consistency
ith the fitted group bias from both the QD and HS models as shown

n Table 3 . 
In the mock catalogues, the predicted group bias for the LM,
M, and HM subsamples are all lower than the fitted values. These

ifferences are significant given the error bar on the average of the
ock measurements. In all cases, the group bias has apparently been 
0  
nderestimated by about 20 per cent . This deviation in the group bias
ay arise because the arithmetic mean host halo mass of the group
embers is used as a proxy for the group halo mass. Ho we ver, if one

ses the total mass of unique host haloes in the group as M h , then
he bias in each mass range only increases by ∼ 10 per cent . Since
he mock group masses are calibrated using ‘real’ simulation halo 

asses, the difference illustrates clearly that our galaxy groups are 
ot in 1-to-1 correspondence with single haloes, emphasizing once 
gain the importance of analysing real and mock data with the same
roup finder. 

 SUMMARY  A N D  C O N C L U S I O N S  

n this work, we have investigated the RSD of group-galaxy cross-
orrelations, with the aim of understanding the robustness with which 
easurements of the density fluctuation growth rate can be extracted 

rom such measurements. We have focused on the differences in 
he measured RSD using different types of galaxy and group, and
e veloped ne w methods for fitting such data do wn to the small-scale
on-linear regime. 
We have used data from the GAMA surv e y in the redshift range

.1 < z < 0.3 to measure the 2D cross-correlation function ξ ( r p ,
MNRAS 517, 374–392 (2022) 
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M

Figur e 11. Mar ginalized MCMC posteriors for the QD model. 

Figur e 12. Mar ginalized MCMC posteriors for the HS model. The best- 
fitting bias parameters are very different among different sub-samples, but 
the reco v ered f values are consistent. 
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) between groups and galaxies. The groups were found using an

 oF algorithm from Tre yer et al. ( 2018 ), and were subdivided into
hree stellar mass bins (LM: 40 per cent, MM: 50 per cent, and HM:
0 per cent). The corresponding halo mass for the groups was cali-
rated using the relation in Han et al. ( 2015 ), and the groups are ex-
ected to have typical masses of (10 12 . 2 , 10 12 . 7 , 10 13 . 2 ) M �. For Rana
t al. ( 2022 ), the mean halo masses are (10 12 . 6 , 10 13 . 1 , 10 13 . 5 ) M �.
he galaxies were split into red and blue subsets using a cut in

he g − i versus z plane, yielding in total six cross-correlation
onfigurations: LMred, MMred, HMred, LMblue, MMblue, and
Mblue. 
NRAS 517, 374–392 (2022) 
We have used 25 GAMA light-cone mocks from Farrow et al.
 2015 ) to test RSD models and to construct Jackknife covariance
atrices for likelihood fitting. Mock group catalogues were gener-

ted using the identical algorithm that was applied to the real GAMA
ata. The mock catalogues are distinct from observation in several
spects: the mean redshift distribution, the bimodal g − i colour
istribution, and the total stellar mass of the groups. We discuss the
ppropriate empirical selection that yields the best match between
he mocks and the data subsamples. The measured 2D correlation
unctions show good consistency between the data and the mocks
own to small scales, and the same variation of the signals with
alaxy colours and group masses are observed. The different cross-
orrelation results yield group biases that increase with mass, as
 xpected. F or GAMA, the predicted group bias from Tinker et al.
 2010 ) is lower but consistent with the fitted values using the halo
ass calibration in Han et al. ( 2015 ), whereas that from Rana et al.

 2022 ) agree well with the fitted values. For mocks, however, these
alues tend to be higher than predicted. This difference illustrates
hat the groups found in redshift space do not constitute a pure halo
ample. 

We have compared these measurements with two RSD models:
1) a quasi-linear dispersion (QD) model; (2) a no v el halo streaming
HS) model. The QD model is a generalization of the linear dispersion
odel of Mohammad et al. ( 2016 ) to use the non-linear real-

pace power spectrum. We found from testing on the mocks that
his model provides unbiased measurements of the growth rate
t r min = 10 –20 h 

−1 Mpc depending on the subsample. The HD
odel uses a halo model decomposition of the correlations, where a

treaming model 2-halo term is combined with an empirical 1-halo
emplate adopted from the mock average. This promising model, with
he addition of two nuisance parameters, allows unbiased results on
he growth rate down to r min = 5 h 

−1 Mpc when fitting individual
ock realizations, and for all group-galaxy combinations. For the
AMA measurements, an MCMC analysis was used to obtain the
osterior of our model parameters. We found that given the scale cuts,
ll of the subsamples reco v er consistent growth rates in both models.
he average growth rate from the six subsamples using the HS model

s f σ 8 = 0.29 ± 0.10 at z = 0.20, where the error should be robust
s it is taken directly from the dispersion in maximum-likelihood
alues for the mock data. This figure is 1.8 σ lower than the fiducial
lanck value of f σ 8 = 0.47 ± 0.01, and we have considered the

mplications of this result. At face v alue, the lo w GAMA result is
onsistent with the suggestions from gravitational lensing that the
rue value of f σ 8 may be about 10 per cent lower than the Planck
entral figure (e.g. Hang et al. 2021 . But there are objective reasons
o believe that the GAMA data set may be a statistical outlier, based
n known anomalies in the redshift distribution in the GAMA 

elds. 
Therefore, the real test of the RSD modelling presented here

ill be when it can be applied to much larger and more precise
ata sets, such as the Bright Galaxy Sample from the Dark Energy
pectroscopic Instrument (DESI) surv e y (Martini et al. 2018 ) and

he Wide Area VISTA Extra-Galactic Surv e y (WAVES; Driver
t al. 2016 ). We are greatly encouraged by the success of our
alo streaming model in reproducing mock cross-correlations down
o the smallest scales, and in yielding consistent values of f σ 8 

rom different tracers, to a tolerance of better than 3 per cent.
his hybrid approach, taking advantage of ever more realistic
ock data, therefore seems an attractive way of obtaining robust

onstraints on the growth of cosmological density fluctuations,
nd we look forward to seeing it applied to next-generation
urv e ys. 

art/stac2569_f11.eps
art/stac2569_f12.eps


Modelling RSD in galaxy-group cross-correlations 391 

Table 3. Bias for the groups in the LM, MM, and HM stellar mass bins for the mock average and GAMA. The first column shows the mean bias value computed 
from the fitting formula (Tinker et al. 2010 ), and the second column shows the corresponding bias computed at the mean halo mass in each case. The next two 
columns marked with a ‘ ∗’ show the bias computed in the same way, but with the GAMA group halo mass computed from a more up-to-date mass–luminosity 
relation (Rana et al. 2022 ). The rest of the columns show the fitted biases from the six cross-correlation configurations in the mocks and the GAMA data. 

Group bias T10 T10 b( M̄ h ) T10 ∗ T10 ∗ b( M̄ h ) QD-red QD-blue HS-red HS-blue 

Mocks LM 1.02 0.92 – – 1.20 ± 0.04 1.20 ± 0.02 1.18 ± 0.03 1.20 ± 0.02 
MM 1.26 1.13 – – 1.48 ± 0.05 1.46 ± 0.02 1.42 ± 0.02 1.38 ± 0.02 
HM 1.83 1.65 – – 1.90 ± 0.06 2.09 ± 0.03 1.96 ± 0.03 1.92 ± 0.03 

GAMA LM 1.00 0.96 1.12 1.11 1.07 ± 0.24 1.27 ± 0.10 1.14 ± 0.11 1.24 ± 0.08 
MM 1.20 1.17 1.41 1.39 1.58 ± 0.30 1.52 ± 0.10 1.41 ± 0.10 1.34 ± 0.07 
HM 1.52 1.49 1.85 1.81 1.71 ± 0.46 1.98 ± 0.19 1.81 ± 0.20 1.79 ± 0.14 
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