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Abstract

The complete numerical analysis of time splitting schemes which avoid strong coupling has rarely
been addressed in the literature of unfitted mesh methods for incompressible fluid-structure interaction.
In this paper, an error analysis of the semi-implicit scheme recently reported in [Int. J. Numer. Methods
Eng. 2021; 122:5384–5408] is performed for a linear fluid-structure interaction system. The analysis
shows that, under a hyperbolic-CFL condition, the leading term in the energy error scales as O(hr−1/2),
where r = 1, 2 stands for the extrapolation order of the solid velocity in the viscous fluid substep.
The theoretical findings are illustrated via a numerical experiments which show, in particular, that the
considered method avoids the spatial non-uniformity issues of standard loosely coupled schemes and that
it delivers practically the same accuracy as the strongly coupled scheme.

1 Introduction

This paper is devoted to the error analysis of a numerical method for a linear fluid-structure coupled sys-
tem involving the transient Stokes equations (in a fixed domain) and a thin-walled solid elastodynamics
model. This system is often used as model problem for the analysis of time-splitting schemes for incom-
pressible fluid-structure interaction (see, e.g., [4, 26, 19, 28, 13, 9]). Indeed, it retains the fundamental
numerical difficulties that have to be faced also in general incompressible fluid-structure systems. A large
amount of added-mass in the system is known to severely compromise stability and accuracy in standard
explicit coupling schemes (i.e., those which invoke the fluid and solid solvers only once per time-step, see,
e.g., [44, 22, 32, 53]). The simplest approach to overcome these issues is to resort to a strongly coupled
scheme (i.e., one in which the interface coupling is implicitly discretized in time), but at the expense of
a higher computational complexity.

The development and the analysis of time splitting schemes which avoid strong coupling without
compromising stability and accuracy has been a very active field of research during the last fifteen years.
The vast majority of the studies have been devoted to the case of spatial approximations based on fluid
meshes which are fitted to the interface (see, e.g., [27, 49, 5, 4, 26, 12, 13, 36, 46, 6, 34, 14]). For many
applications, such a mesh compatibility can however be cumbersome to maintain in practice (see, e.g.,
[48, 33, 51, 8, 19, 42, 43]).

The earliest explicit coupling schemes with unfitted meshes have been reported in [8, 43], using the
immersed boundary method, and in [19, 42], using unfitted Nitsche approximations with overlapping
meshes. Nevertheless, these methods suffer from major stability/accuracy issues which either require
severe time-step restrictions (see [8, 19]) or are limited by the amount of added-mass in the system (see
[42, 43]). A new class of semi-implicit schemes with unfitted meshes has been recently reported in [30, 1]
for the case of the coupling with thin-walled solids. These methods robustly avoid strong coupling but
at the expense of introducing additional unknowns in the fluid sub-problem (intermediate solid velocity).
Fully explicit variants of these approaches have been derived in [30] and in [10]. Nevertheless, the
formulation of the former in the case of immersed solids remains open and the accuracy of the latter
relies on a grad-div penalty stabilization (for enhanced mass conservation) which spoils the conditioning
of the fluid subsystem.
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Additional difficulties, which are not considered in this paper, are the cases of curved and dynamic
interfaces. Both subjects have not been particularly analyzed in the literature. We refer to [45] for
stability and error analysis accounting also geometric errors. When dynamic interfaces are involved, a
further complication derives from the variation of the approximation spaces in time. For the study of
parabolic problems with moving interfaces we refer to [54, 37].

This paper is devoted to the numerical analysis of the unfitted mesh semi-implicit coupling scheme
recently introduced in [29]. The method combines a Nitsche based unfitted mesh spatial approximation
with a fractional-step time-marching in the fluid. The viscous part of the coupling is treated in an explicit
fashion (which avoids strong coupling), while the remaining fluid pressure and solid contributions are
treated implicitly (which guarantees added-mass free stability). Robust a priori error estimates are
derived for two extrapolated variants (r = 1, 2 stands for the extrapolation of the solid velocity). The
analysis highlights the fundamental role played by the time discretization of the Nitsche’s penalty term in

the stability and accuracy of the splitting. In particular, an O(τr/h
1
2 ) splitting error is obtained instead

of the standard O(τ/h) for the stabilized explicit coupling scheme of [19]. The superior accuracy of the
method is also supported by numerical experiments in an academic benchmark.

The rest of the paper is organized as follows. Section 2 presents the continuous setting. Its numerical
approximation is discussed in Section 3. The numerical analysis of the semi-implicit scheme is reported
in Section 4. Numerical evidence on the convergence properties of the methods is given in Section 5.
Finally, Section 6 summarizes the main conclusions of this work.

2 Problem Setting

We consider a linear fluid-structure interaction problem in which the fluid is described by the Stokes
equations in a fixed polyhedral bounded domain Ωf ⊂ Rd, with d = 2, 3 and the structure by a linear
thin-walled solid model with mid-surface given by Σ, also assumed polyhedral. Let the boundary of Ωf

be partitioned as ∂Ωf = Σ ∪ Γ and denote the outward unit normal to ∂Ωf by n. In this framework,
the considered coupled problem reads as follow: find the fluid velocity and pressure u : Ωf × R+ → Rd,
p : Ωf × R+ → R, the solid displacement and velocity d : Σ× R+ → Rd,

.
d : Σ× R+ → Rd such that for

all t ∈ R+ we have 
ρf∂tu− divσ(u, p) = 0 in Ωf × R+,

divu = 0 in Ωf × R+,

u = 0 on Γ× R+,

(1)


ρsε∂t

.
d+Ld = T in Σ× R+,

.
d = ∂td in Σ× R+,

d = 0 on ∂Σ× R+,

(2)

{
u =

.
d on Σ× R+,

T = −σ(u, p)n on Σ× R+,
(3)

with the initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0. Here, the symbols ρf and ρs stand,

respectively, for the fluid and solid densities. The thickness of the solid is denoted by ε and the fluid
Cauchy stress tensor is given by

σ(u, p)
def
= 2µε(u)− pI, ε(u)

def
=

1

2

(
∇u+ ∇uT),

where µ denotes the fluid dynamic viscosity and I is the identity matrix. The relations in (3) enforce,
respectively, the kinematic and dynamic interface coupling conditions. The abstract differential operator
L in (2) describes the elastic behaviour of the solid.

In the following, we will make use of the usual Sobolev’s spaces Hm(Ω)(m > 0), with norm ‖ · ‖m,Ω
and seminorm | · |m,Ω, along with the closed spaces H1

Γ(Ω), of functions in H1(Ω) with zero trace on Γ,
and L2

0(Ω), of functions in L2(Ω) with zero mean in Ω. The scalar product in L2(Ω) is denoted by (·, ·)Ω.

For the weak formulation of the fluid problem we consider V =
[
H1

Γ(Ωf)
]d

and Q = L2(Ωf) as the
fluid velocity and pressure functional spaces, respectively. The standard Stokes bilinear forms are given
by

a(u,v)
def
= 2µ (ε(u), ε(v))Ωf , b (q,v)

def
= − (q,divv)Ωf .
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For the solid weak problem we suppose that W ⊂
[
H1
∂Σ (Σ)

]d
is the space of admissible displacements

and we assume that L : D ⊂
[
L2 (Σ)

]d → [
L2 (Σ)

]d
is a self−adjoint second-order differential operator

symmetric, coercive and continuous on W . Associated to the operator L, we define the elastic bilinear
form

as (d,w)
def
= (Ld,w)Σ (4)

for all d ∈D and w ∈W . We define the following elastic energy norm on

‖w‖2s
def
= as (w,w)

and we assume that the following continuity estimate holds

‖w‖2s 6 βs‖w‖21,Σ (5)

for all w ∈W , with βs > 0.

3 Numerical methods

In this section, we discuss three numerical methods for the approximations of the coupled problem (1)-
(3). These methods involve an unfitted mesh spatial discretization and different levels of fluid-solid time
splitting.

3.1 Unfitted mesh spatial approximation

In a standard conforming finite element approximation, typically based on fitted meshes (see, e.g., [23,
26]), the kinematic coupling condition (3)1 is strongly enforced. This is no longer feasible in the unfitted
mesh setting. We consider the robust and optimal unfitted mesh method with overlapping meshes
proposed in [19] (see also the related works [47, 2]). Therein, the interfacial fluid-solid coupling is
treated in a fully weak fashion via a Nitsche’s type mortaring.

Let be {T s
h}0<h<1 a family of triangulations of Σ, such that Σ =

⋃
K∈T s

h
. We then consider the

standard space of continuous piecewise affine functions associated to T s
h , namely,

Xs
h

def
=
{
vh ∈ C0(Σ)

∣∣ vh|K ∈ P1(K), ∀K ∈ T s
h

}
.

For the approximation of the solid discrete space for the displacement and velocity we consider the
following space Wh = [Xs

h]d ∩W .

Σ

Ωf
hΩf

Γ

Figure 1: Unfitted meshes.

We denote with {T f
h}0<h<1 a family of triangulations that cover the fluid domain Ωf such that:

1. Every T f
h is fitted to Γ but, in general, not to Σ;

2. For every simplex K ∈ T f
h , we have K ∩ Ωf 6= ∅.

In what follows, Ωf
h stands for the domain covered by T f

h (i.e., the fluid computational domain). We
denote by Gh the set of elements of T f

h intersected by Σ, by Fh the set of the internal edges or faces of
T f
h , and by FGh the set of edges or faces of the elements of Gh that do not lie on ∂Ωf

h, namely,

Ωf
h

def
= int

(
∪K∈T f

h
K
)
, Gh

def
=
{
K ∈ T f

h

∣∣K ∩ Σ 6= ∅
}
,

Fh
def
=
{
F ∈ ∂K

∣∣K ∈ T f
h , F ∩ ∂Ωf

h 6= F
}
, FGh

def
=
{
F ∈ ∂K

∣∣K ∈ Gh, F ∩ ∂Ωf
h 6= F

}
.
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We consider the following space of continuous piecewise affine functions defined over T f
h

X f
h

def
=
{
vh ∈ C0(Ωh)

∣∣ vh|K ∈ P1(K) ∀K ∈ T f
h

}
. (6)

For the approximation of the fluid velocity and pressure, we consider the following spaces

Vh
def
=
{
vh ∈ [X f

h]d
∣∣vh|Γ = 0

}
, Qh

def
= X f

h.

Since the discrete pair Vh/Qh lacks inf-sup stability, we consider the classical Brezzi-Pitkäranta symmetric
pressure stabilization (see, e.g., [11]):

sh (ph, qh)
def
= γp

∫
Ωf
h

h2

µ
∇ph · ∇qh, γp > 0 (7)

Note that the pressure stabilization is defined over the computational fluid domain Ωf
h. In order to

guarantee robustness of the method with respect to the way the interface is cutting the fluid mesh, we
consider the following ghost-penalty operator (see [15]):

gh(uh,vh)
def
= γgµh

∑
F∈FGh

(
J∇uhKF , J∇vhKF

)
F
. (8)

We can hence introduce the following total stabilization operator Sh and associated semi-norm:

Sh
(

(uh, ph) , (vh, qh)
) def

= sh(ph, qh) + gh(uh,vh),

| (uh, ph) |S
def
= Sh

(
(uh, ph) , (uh, ph)

) 1
2 ,

(9)

so that the fluid discrete bi-linear form is given by

af
h

(
(uh, ph), (vh, qh)

) def
= af((uh, ph), (vh, qh)

)
+ Sh

(
(uh, ph), (vh, qh)

)
,

with
af((uh, ph), (vh, qh)

) def
= a(uh,vh)− b(ph,vh) + b(qh,uh).

Finally, the considered space semi-discrete unfitted mesh approximation of (1)–(3) reads as follows:
for t > 0, find

(
uh(t), ph(t),

.
dh(t),dh(t)

)
∈ Vh ×Qh ×Wh ×Wh, such that

.
dh = ∂tdh andρ

f(∂tuh,vh)Ω + af
h

(
(uh, ph), (vh, qh)

)
+ ρsε

(
∂t

.
dh,wh

)
Σ

+ as(dh,wh)

−
(
σ(uh, ph)n,vh −wh

)
Σ
−
(
uh −

.
dh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
uh −

.
dh,vh −wh

)
Σ

= 0
(10)

for all (vh, qh,wh) ∈ Vh ×Qh ×Wh. Here, γ > 0 denotes the Nitsche’s penalty parameter.

Remark 3.1. It should be noted that in (10) the Nitsche mortaring is taken only from the fluid side (as
in [39]). The fundamental reason for this is that there is no dissipative mechanism in the solid model
(2)1,2 that can control the perturbation induced by the solid stresses on the interface.

Remark 3.2. In the numerical experiments of Section 5, the second assumption on T f
h , that is, all the

elements of Ωf
h intersect the physical domain Ωf is relaxed. This is achieved by extending the ghost-penalty

operator (8) to Fh (all internal edges or faces of T f
h ), i.e.,

gh(uh,vh)
def
= γgµh

∑
F∈Fh

(
J∇uhKF , J∇vhKF

)
F
. (11)

This ensures the invertibility of the fluid stiffness matrix. It should be noted that the results of the
numerical analysis reported in Section 4 below also hold in this case.

3.2 Time splitting schemes

This section is devoted to the time-discretization of (10). We first discuss the strongly coupled and
the stabilized explicit coupling schemes reported in [19]. Particular attention is paid to the well-known
accuracy issues of the latter. We then discuss the semi-implicit projection based coupling scheme reported
in [29], whose purpose was precisely to circumvent such difficulties without resorting to strong coupling.

In the following, the parameter τ > 0 denotes the time-step length, ∂τx
n stands for the first-order

backward difference formula and x?,r represents the r -th order explicit extrapolations to xn, viz.,

∂τx
n def

=
1

τ

(
xn − xn−1) , x?,r

def
=

{
xn−1 if r = 1,

2xn−1 − xn−2 if r = 2.
(12)
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3.2.1 Strongly coupled scheme

Traditionally, the natural way to achieve numerical stability has been to consider a strongly coupled
scheme, that is, a fully implicit time-discretization of (10). An example of such an approach is reported
in Algorithm 1. The method is also known to deliver an optimal O(τ) + O(h) accuracy in the energy
norm (see [30]). The price to pay for this robustness is the resolution (at each time-step) of the hybrid
coupled system (13), which can be computationally demanding in practice, particularly, due to its hybrid
nature. Indeed, this monolithic system often yields ill-conditioned matrices (see, e.g., [2, 52]) which
require dedicated solvers.

Algorithm 1 Strongly coupled scheme (from [19]).

For n ≥ 1:
find

(
unh, p

n
h,

.
dnh,d

n
h

)
∈ Vh ×Qh ×Wh ×Wh with

.
dnh = ∂τd

n
h and such that

ρf
(
∂τu

n
h,vh

)
Ωf + af

h

(
(unh, p

n
h), (vh, qh)

)
+ ρsε

(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh)

−
(
σ(unh, p

n
h)n,vh −wh

)
Σ
−
(
unh −

.
dnh,σ(vh,−qh))n

)
Σ

+
γµ

h

(
unh −

.
dnh,vh −wh

)
Σ

= 0 (13)

for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

3.2.2 Stabilized explicit coupling scheme

The stabilized explicit coupling scheme reported in Algorithm 2 enables a fully sequential decoupled
time-marching of (10). Energy stability is achieved under a mild CFL-like condition (see [19]), thanks to
the specific explicit treatment of the Nitsche penalty interface term and to the addition of an interface
pressure stabilization in time (weakly consistent interfacial compressibility). The stability of the method
is independent of the added-mass effect and of the considered local fluid and solid time-marching schemes.
These features come however at a price: the sub-optimality of the error with respect to Algorithm 1.
The interface time splitting (the explicit treatment of the penalty term in the right-hand side of (14))
introduces a truncation error whose leading contribution scales as O(τ/h), which prevents convergence
when τ = O(h) (see Remark 4.3 and [18]). The pressure stabilization is introduced to control the pressure
fluctuations at the interface, produced by the splitting in time of pressure and it has a contribution of the

order O(τ
1
2 h

1
2 ). Correction iterations are thus needed to enhance accuracy, under restrictive constraints

on the discretization parameters.

Algorithm 2 Stabilized explicit coupling scheme (from [19]).

For n ≥ 1:

• Solid sub-step: find
( .
dnh,d

n
h

)
∈Wh ×Wh with

.
dnh = ∂τd

n
h and such that

ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) +
γµ

h

( .
dnh,wh

)
Σ

=
γµ

h

(
un−1
h ,wh

)
Σ
−
(
σ(un−1

h , pn−1
h )n,wh

)
Σ

(14)

for all wh ∈Wh.

• Fluid sub-step: find
(
unh, p

n
h

)
∈ Vh ×Qh, such that

ρf
(
∂τu

n
h,vh

)
Ωf + af

h

(
(uh, ph), (vh, qh)

)
+
γ0h

γµ

(
pnh − pn−1

h , qh
)

Σ

−
(
unh −

.
dnh, qhn

)
Σ

+
γµ

h

(
unh,vh

)
Σ

=
γµ

h

( .
dnh,vh

)
Σ

+
(
σ(un−1

h , pn−1
h )n,vh

)
Σ

(15)

for all (vh, qh) ∈ Vh ×Qh.

Roughly speaking, the lack of spatial uniformity in the splitting error of Algorithm 2 can be ex-
plained as follows. After spatial refinement, i.e., whenever h → 0, the solid sub-problem (14) forces the
solid velocity

.
dnh to be close to un−1

h |Σ, whereas in the fluid sub-problem (15) the fluid velocity unh|Σ

5



approximates
.
dnh. In summary, the spatial discretization forces ‖unh − un−1

h ‖0,Σ to be small as h → 0,
by amplifying the time-splitting error. This is an essential ingredient of the scheme that guarantees
numerical stability but it degrades accuracy.

3.2.3 Projection based semi-implicit coupling scheme

Algorithm 3 reports the projection based semi-implicit scheme of [29]. The fundamental idea of this
method, borrowed from [27] in the case of fitted mesh approximations, consists in combining a fractional-
step time-marching in the fluid (1) (see, e.g., [35]) with a semi-implicit treatment of the interface coupling
(3). In Algorithm 3, the fluid is discretized in time with an incremental pressure-correction method and
a backward-Euler method is considered for the solid. We introduce the fluid discrete viscous bi-linear
form

af
h

(
uh,vh

) def
= 2µ

(
ε(uh), ε(vh)

)
Ωf .

Note that the fluid viscous-step (16) is explicitly coupled with the solid, hence avoiding strong coupling
(i.e., reducing computational complexity), whereas the coupled pressure-displacement system (17) guar-
antees added-mass free stability through the implicit treatment of the fluid incompressibility and solid
inertial effects. For r = 2, the Algorithm 3 can be initialized with one step of the scheme with r = 1.

Algorithm 3 Projection-based semi-implicit scheme (from [29]).

For n ≥ r:
1. Fluid viscous step: find ũnh ∈ Vh such that

ρf

τ

(
ũnh − un−1

h , ṽh
)

Ωf + af
h (ũnh, ṽh) + gh(ũnh,vh) +

(
∇pn−1

h , ṽh
)

Ωf

− (σ(ũnh, 0)n, ṽh)Σ +
γµ

h

(
ũnh −

.
d?,rh , ṽh

)
Σ
−
(
ũnh −

.
d?,rh ,σ(ṽh, 0)n

)
Σ

= 0 (16)

for all ṽh ∈ Vh.

2. Pressure-displacement step: find
(
pnh,d

n
h

)
∈ Qh ×Wh with

.
dnh = ∂τd

n
h , such that

τ

ρf

(
∇(pnh − pn−1

h ),∇qh
)

Ωf
h

+ sh(pnh, qh) =
(
ũnh −

.
dnh, qhn

)
Σ
−
(

div ũnh, qh
)

Ωf ,

ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) =
γµ

h

(
ũnh −

.
d?,rh ,wh

)
Σ
−
(
σ(ũnh, p

n
h)n,wh

)
Σ

(17)

for all
(
qh,wh

)
∈ Qh ×Wh.

3. Intermediate velocity step: find unh ∈ Vh such that

ρf

τ
(unh,vh)Ωf =

ρf

τ
(ũnh,vh)Ωf −

(
∇(pnh − pn−1

h ),vh
)

Ωf (18)

for all vh ∈ Vh.

It is worth noting that the discrete interface stresses in the (17)2 involve the same penalty term as
in (16). In other words, the viscous stresses in (17)2 correspond to the variationally consistent residual
of (16). This constitutes a fundamental difference with respect to Algorithm 2 (and also with respect to
[3] with fitted meshes).

The next section provides an error estimate for Algorithm 3 which shows superior accuracy with

respect to Algorithm 2, namely: O(τr/h
1
2 ), with r = 1, 2, instead of O(τ/h). Furthermore, the numerical

evidence reported in Section 5 suggests Algorithm 3 delivers practically the same accuracy as Algorithm 1,
which is uniform with respect to h. The price to pay for this superior accuracy is threefold:

• An additional CFL-like condition for stability (see [29, Theorem 1] and Theorem 4.1 below), with
respect to Algorithm 1 ;

• The solution of the coupled pressure-displacement system (17), not required in Algorithm 2;

• A limited flexibility in the choice of the time-stepping for the fluid and solid sub-systems.
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An additional appealing characteristic of Algorithm 3, is the reduced computational cost with respect
to Algorithm 1. We refer to [29] for a run time study in the context of Nitsche-XFEM for immersed
thin-walled structures.

Remark 3.3. In practice, we can avoid solving the third step, by inserting (18) into the viscous step
(16), obtaining

ρf(∂τ ũnh, ṽh)Ωf + af
h

(
ũnh, ṽh

)
+ gh(ũnh,vh)

+
(
∇(2pn−1− pn−2), ṽh

)
Ωf −

(
σ(ũnh, 0)n, ṽh

)
Σ

+
γµ

h

(
ũnh −

.
d?,rh , ṽh

)
Σ
−
(
ũnh −

.
d?,rh ,σ(ṽh,i, 0)ni

)
Σ

= 0

for all ṽh ∈ Vh.

With the purpose of further investigating the space uniformity of the splitting error, we introduce a
variant of the projection-based semi-implicit scheme with second-order backward difference discretization.
The resulting method is shown in Algorithm 4 by choosing l = 2 and with the following definition of the
l-order backward difference formulas:

∂lτx
n def

=
(l + 1)xn − 2lxn−1 + (l − 1)xn−2

2τ
, Dl

τ x̃
n def

=
(l + 1)x̃n − 2lxn−1 + (l − 1)xn−2

2τ
.

Observe that, for l = 1 we retrieve Algorithm 3 from [29].
In the following, Algorithm 4 is introduced only for comparison pourposes conducted in Section 5. We
do not convey any stability analysis or error estimates with second-order in time discretization.

Algorithm 4 Projection-based semi-implicit scheme with l -th order backward difference.

For n ≥ r:
1. Fluid viscous step: find ũnh ∈ Vh such that

ρf
(
Dl
τ ũ

n
h, ṽh

)
Ωf + af

h (ũnh, ṽh) + gh(ũnh,vh) +
(
∇pn−1

h , ṽh
)

Ωf

− (σ(ũnh, 0)n, ṽh)Σ +
γµ

h

(
ũnh −

.
d?,rh , ṽh

)
Σ
−
(
ũnh −

.
d?,rh ,σ(ṽh, 0)n

)
Σ

= 0

for all ṽh ∈ Vh.

2. Pressure-displacement step: find
(
pnh,d

n
h

)
∈ Qh ×Wh with

.
dnh = ∂τd

n
h , such that

τ

ρf

(
∇(pnh − pn−1

h ),∇qh
)

Ωf
h

+ sh(pnh, qh) =
l + 1

2

(
ũnh −

.
dnh, qhn

)
Σ
− l + 1

2

(
div ũnh, qh

)
Ωf ,

ρsε
(
∂lτ

.
dnh,wh

)
Σ

+ as(dnh,wh) =
γµ

h

(
ũnh −

.
d?,rh ,wh

)
Σ
−
(
σ(ũnh, p

n
h)n,wh

)
Σ

for all
(
qh,wh

)
∈ Qh ×Wh.

3. Intermediate velocity step: find unh ∈ Vh such that

l + 1

2τ
ρf (unh,vh)Ωf =

l + 1

2τ
ρf (ũnh,vh)Ωf −

(
∇(pnh − pn−1

h ),vh
)

Ωf

for all vh ∈ Vh.

4 Numerical analysis

This section is devoted to the numerical analysis of Algorithm 3. We first recall the main ingredients for
the energy stability of the method reported in [29] and extend the proof to cover the case of a second-order
extrapolation (r = 2). An a priori error estimate is derived in Section 4.2.
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4.1 Energy stability

We assume (see, e.g., [38, 20]) that the following trace inequality holds

‖v‖20,Σ∩K ≤ CT

(
h−1‖v‖20,K + h‖∇v‖20,K

)
(19)

for all v ∈ H1(K), K ∈ T f
h and CT depending only on Σ. By combining (19) with a discrete inverse

inequality, it follows

‖ε (vh)n‖20,Σ 6
∑
K∈Gh

‖ε (vh)‖20,Σ∩K 6 CT

∑
K∈Gh

(
h−1 ‖ε (vh)‖20,K + h ‖∇ε (vh)‖20,K

)
6
CTI

h

∑
K∈Gh

‖ε (vh)‖20,K

(20)
for all vh ∈ Vh. Hence,

h ‖ε (vh)n‖20,Σ ≤ CTI ‖ε (vh)‖20,Ωf
h

(21)

for all vh ∈ Vh. This estimates are fundamental for the energy stability of the method.
Let define the discrete total energy Enh by the following expression:

Enh
def
=

ρf

2
‖unh‖20,Ωf +

ρsε

2
‖
.
dnh‖2Σ +

1

2
‖dnh‖2s +

τ2

2ρf
‖∇pnh‖20,Ωf

h
. (22)

The following result states the conditional energy based stability of the approximation provided by
Algorithm 3.

Theorem 4.1. Let
{(
unh, p

n
h,

.
dnh,d

n
h

)}
n≥1

be given by Algorithm 3 with r = 1, 2. Under the following

conditions

γ ≥ 2(3 + 4α)

α

CTI

cg
, (23)

γµτ ≤ 22−r

1 + 4α
ρsεh, (24)

with α > 0, the discrete energy estimate presented below holds:

Enh . E0
h, (25)

for all n ≥ 1. As a result, Algorithm 3 is conditionally stable in the energy norm (22).

Proof. The proof for r = 1 was reported in [29]. We recall here some of the steps and provide some
details that include also the case r = 2, which follows similarly. We proceed by testing (16)-(18) with(
vh, ṽh, qh,wh

)
=
(
unh, ũ

n
h, p

n
h,

.
dnh
)
. By proceeding like in [29] (the sole difference lies in the choice of

.
d?,rh ), we get the following energy estimate

ρf

2
∂τ ‖unh‖20,Ωf + 2cgµ ‖ε(ũnh)‖20,Ωf

h
+

τ

2ρf

[
‖∇pnh‖20,Ωf

h
−
∥∥∇pn−1

h

∥∥2

0,Ωf
h

]
+ ‖(ũnh, pnh)‖2S

ρsε

2τ

[ ∥∥∥ .dnh∥∥∥2

0,Σ
−
∥∥∥ .dn−1

h

∥∥∥2

0,Σ
+
∥∥∥ .dnh − .

dn−1
h

∥∥∥2

0,Σ

]
+

1

2τ

(
‖dnh‖2s − ‖dn−1

h ‖2s
)

−2µ
(
ε(ũnh)n, ũnh −

.
dnh

)
Σ
− 2µ

(
ε(ũnh)n, ũnh −

.
d?,rh

)
Σ︸ ︷︷ ︸

T1

+
γµ

h

(
ũnh −

.
d?,rh , ũnh −

.
dnh

)
Σ︸ ︷︷ ︸

T2

≤ 0 (26)

for n ≥ r. Term T1 can be bounded by adding and subtracting
.
dnh, using the Cauchy−Schwarz, Young’s

and trace inequalities (20), as follows:

T1 =− 2µ
(
ε(ũnh)n,

.
dnh −

.
d?,rh

)
Σ
− 4µ

(
ε(ũnh)n, ũnh −

.
dnh

)
Σ

≥−
(

1

α1
+

2

α2

)
µCTI

γ
‖ε(ũnh)‖20,Ωf

h
− rα1

γµ

h

∥∥∥ .dnh − .
dn−1
h

∥∥∥2

0,Σ
− 2(r − 1)α1

γµ

h

∥∥∥ .dn−1
h −

.
dn−2
h

∥∥∥2

0,Σ

− 2α2
γµ

h

∥∥∥ũnh − .
dnh

∥∥∥2

0,Σ
,

(27)
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with α1, α2 > 0. Similarly, for the second term, we have

T2 =
γµ

h

∥∥∥ũnh − .
dnh

∥∥∥2

0,Σ
+
γµ

h

( .
dnh −

.
d?,rh , ũnh −

.
dnh

)
Σ

≥
(

1− 1

2α3

)
γµ

h

∥∥∥ũnh − .
dnh

∥∥∥2

0,Σ
− rα3γµ

2h

∥∥∥ .dnh − .
dn−1
h

∥∥∥2

0,Σ
− (r − 1)

α3γµ

h

∥∥∥ .dn−1
h −

.
dn−2
h

∥∥∥2

0,Σ

(28)

with α3 > 0. By inserting (27) and (28) into (26) we get

ρf

2
∂τ ‖unh‖20,Ωf +

τ

2ρf

[
‖∇pnh‖20,Ωf

h
−
∥∥∇pn−1

h

∥∥2

0,Ωf
h

]
+
ρsε

2
∂τ

∥∥∥ .dnh∥∥∥2

0,Σ
+

1

2τ

(
‖dnh‖2s − ‖dn−1

h ‖2s
)

+ 2µ

[
cg −

CTI

γ

(
1

2α1
+

1

α2

)]
‖ε(ũnh)‖20,Ωf

h
+

[
ρsε

2τ
− r

(
α1 +

α3

2

) γµ
h

] ∥∥∥ .dnh − .
dn−1
h

∥∥∥2

0,Σ

+

(
1− 1

2α3
− 2α2

)
γµ

h

∥∥∥ũnh − .
dnh

∥∥∥2

0,Σ
− (r − 1) (2α1 + α3)

γµ

h

∥∥∥ .dn−1
h −

.
dn−2
h

∥∥∥2

0,Σ
≤ 0 (29)

for n ≥ r. We now set

α1 =
α

2
, α2 =

α

2(1 + 2α)
, α3 =

1

2
+ α, α > 0,

so that (29) yields

ρf

2
∂τ ‖unh‖20,Ωf +

τ

2ρf

[
‖∇pnh‖20,Ωf

h
−
∥∥∇pn−1

h

∥∥2

0,Ωf
h

]
+
ρsε

2
∂τ

∥∥∥ .dnh∥∥∥2

0,Σ
+

1

2τ

(
‖dnh‖2s − ‖dn−1

h ‖2s
)

+

[
ρsε

2τ
− r

(
1

4
+ α

)
γµ

h

] ∥∥∥ .dnh − .
dn−1
h

∥∥∥2

0,Σ
− (r − 1)

(
1

2
+ 2α

)
γµ

h

∥∥∥ .dn−1
h −

.
dn−2
h

∥∥∥2

0,Σ

+ 2µ

[
cg −

CTI

γ

3 + 4α

α

]
‖ε(ũnh)‖20,Ωf

h
+

α

1 + 2α

γµ

h

∥∥∥ũnh − .
dnh

∥∥∥2

0,Σ
≤ 0

for n ≥ r. We now replace the upper index n by m and sum over m = 2 . . . n and multiply by τ . This
yields

ρf

2
‖unh‖20,Ωf +

τ2

2ρf
‖∇pnh‖20,Ωf

h
+
ρsε

2

∥∥∥ .dnh∥∥∥2

0,Σ
+

1

2τ
‖dnh‖2s

+

[
ρsε

2
− τr

(
1

4
+ α

)
γµ

h

] n∑
m=1

∥∥∥ .dmh − .
dm−1
h

∥∥∥2

0,Σ
− τ(r − 1)

(
1

2
+ 2α

)
γµ

h

n∑
m=2

∥∥∥ .dm−1
h −

.
dm−2
h

∥∥∥2

0,Σ

+ 2τµ

[
cg −

CTI

γ

3 + 4α

α

] n∑
m=2

‖ε(ũmh )‖20,Ωf
h

+ τ
α

1 + 2α

γµ

h

n∑
m=2

∥∥∥ũmh − .
dmh

∥∥∥2

0,Σ

≤ ρf

2

∥∥ur−1
h

∥∥2

0,Ωf +
τ2

2ρf

∥∥∇pr−1
h

∥∥2

0,Ωf
h

+
ρsε

2

∥∥∥ .dr−1
h

∥∥∥2

0,Σ
+

1

2
‖dr−1

h ‖2s

for n ≥ r. By rearranging the terms in the first sums, we get

ρf

2
‖unh‖20,Ωf +

τ2

2ρf
‖∇pnh‖20,Ωf

h
+
ρsε

2

∥∥∥ .dnh∥∥∥2

0,Σ
+

1

2τ
‖dnh‖2s

+

[
ρsε

2
− τ4r−1

(
1

4
+ α

)
γµ

h

] n∑
m=2

∥∥∥ .dmh − .
dm−1
h

∥∥∥2

0,Σ
− τ(r − 1)

(
1

2
+ 2α

)
γµ

h

∥∥∥ .d1
h −

.
d0
h

∥∥∥2

0,Σ

+ 2τµ

[
cg −

CTI

γ

3 + 4α

α

] n∑
m=2

‖ε(ũmh )‖20,Ωf
h

+ τ
α

1 + 2α

γµ

h

n∑
m=2

∥∥∥ũmh − .
dmh

∥∥∥2

0,Σ

≤ ρf

2

∥∥ur−1
h

∥∥2

0,Ωf +
τ2

2ρf

∥∥∇pr−1
h

∥∥2

0,Ωf
h

+
ρsε

2

∥∥∥ .dr−1
h

∥∥∥2

0,Σ
+
r

2
‖dr−1

h ‖2s (30)

for n ≥ r.
In the case r = 1, the previous bound yields the energy estimate provided in [29]. For r = 2, we need

to control the contributions coming form the initialization step, namely,

ρf

2

∥∥u1
h

∥∥2

0,Ωf +
τ2

2ρf

∥∥∇p1
h

∥∥2

0,Ωf
h

+
ρsε

2

∥∥∥ .d1
h

∥∥∥2

0,Σ
+

1

2
‖d1

h‖2s ,
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which are obtained from one step of Algorithm 3 with r = 1. We hence consider (30) with (n = 1, r = 1),
which yields

ρf

2

∥∥u1
h

∥∥2

0,Ωf +
τ2

2ρf

∥∥∇p1
h

∥∥2

0,Ωf
h

+
ρsε

2

∥∥∥ .d1
h

∥∥∥2

0,Σ
+

1

2
‖d1

h‖2s

+

[
ρsε

2
− τ
(

1

4
+ α

)
γµ

h

] ∥∥∥ .d1
h −

.
d0
h

∥∥∥2

0,Σ
+ 2τµ

[
cg −

CTI

γ

3 + 4α

α

] ∥∥ε(ũ1
h)
∥∥2

0,Ωf
h

+ τ
α

1 + 2α

γµ

h

∥∥∥ũ1
h −

.
d1
h

∥∥∥2

0,Σ
≤ ρf

2

∥∥u0
h

∥∥2

0,Ωf +
τ2

2ρf

∥∥∇p0
h

∥∥2

0,Ωf
h

+
ρsε

2

∥∥∥ .d0
h

∥∥∥2

0,Σ
+

1

2
‖d0

h‖2s .

Hence, by adding this expression to (30), we finally get

ρf

2
‖unh‖20,Ωf +

τ2

2ρf
‖∇pnh‖20,Ωf

h
+
ρsε

2

∥∥∥ .dnh∥∥∥2

0,Σ
+

1

2
‖dnh‖2s

+

[
ρsε

2
− τ (1 + 4α)

γµ

h

] n∑
m=1

∥∥∥ .dmh − .
dm−1
h

∥∥∥2

0,Σ

+ 2τµ

[
cg −

CTI

γ

3 + 4α

α

] n∑
m=1

‖ε(ũmh )‖20,Ωf
h

+ τ
α

1 + 2α

γµ

h

n∑
m=1

∥∥∥ũmh − .
dmh

∥∥∥2

0,Σ

≤ ρf

2

∥∥u0
h

∥∥2

0,Ωf +
τ2

2ρf

∥∥∇p0
h

∥∥2

0,Ωf
h

+
ρsε

2

∥∥∥ .d0
h

∥∥∥2

0,Σ
+

1

2
‖d0

h‖2s (31)

for n ≥ 1. The energy estimate (22) hence follows from (31) under the conditions (23)-(24), which
completes the proof.

Remark 4.1. A similar stability analysis can be derived in the case of a thick-walled solid. The solid
quantities appearing on the interface Σ, such as

.
dnh −

.
dn−1
h , are controlled on the whole solid domain

using element-wise trace inequalities. This yields to a parabolic CFL-type stability condition, namely,

γµτ . ρsh2,

which is more restrictive than in the case of a thin-walled solid. An analogous stability result is reported
in [27] for the non-incremental version of Algorithm 3 within the framework of fitted mesh. Stability is
guaranteed under the CFL-like condition ρfh2 +2µτ . ρsεh for a thin-walled solid and ρfh2 +2µτ . ρsh2

in the case of thick-walled solid.

4.2 A priori error estimate

In the following we use the notation vn
def
= v (tn) (without subscript h) to denote the temporal value

v (tn) of a time dependent function v. For conciseness, an abuse of notation will be committed by
denoting (∂tv)n with ∂tv

n. Furthermore, the symbol . indicates inequalities up to a multiplicative
constant (independent of the discretization parameter h and of the physical parameters). We consider
the following mesh-dependent seminorms for functions defined on the interface Σ:

‖f‖21
2
,h,Σ =

∑
K∈Gh

h−1‖f‖20,ΣK , ‖f‖2− 1
2
,h,Σ =

∑
K∈Gh

h‖f‖20,ΣK

where ΣK denotes the part of the interface intersecting the simplex K, i.e., ΣK
def
= K ∩ Σ.

For the sake of simplicity, in the error analysis we assume that the interface Σ is flat. Furthermore,
the elements of the solid mesh are supposed to be grouped in disjoint macropatches Pi, with meas(Pi) =
O(hd). Each (d − 1)-dimensional macro patch Pi is assumed to contain at least one interior node and
the union of the Pi is assumed to cover Σ, viz., ∪iFi = Σ.

The discrete interpolation operators are those introduced in [19] (see also [30]). For the solid dis-
placement, we consider the elastic Ritz-projection operator πs

h : W →Wh defined by the relation

as (w − πs
hw,wh) = 0 (32)

for all wh ∈Wh, and for which there holds

‖w − πs
hw‖0,Σ + h ‖∇ (w − πs

hw)‖0,Σ . h2|w|2,Σ (33)
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for all w ∈
[
H2(Σ)

]d ∩W . For the solid velocity, we consider the operator Ih : W → Wh which is
defined as a correction of the operator πs

h by the relation

Ihw
def
= πs

hw +
∑
i

αiϕi,

with αi ∈ R to be fixed with a constraint detailed below. The ϕi are functions with support in the
macropatches Pi, such that

0 6 ϕi 6 1, ‖ϕi‖0,Pi . h
d−1
2

and take the value 1, component-wise, in the interior nodes of the associated patch Pi. The scalars αi
are chosen so that the following condition holds:∫

Pi

(w − Ihw) · n = 0. (34)

This orthogonality condition is used in the error analysis to control the interface terms coupling the fluid
pressure and the solid velocity. We refer to [7] for the detailed construction of such an operator. It can
be shown (see [19, Lemma 3.3]) that

‖w − Ihw‖0,Σ + h ‖∇ (w − Ihw)‖0,Σ . h2|w|2,Σ (35)

for all w ∈
[
H2(Σ)

]d ∩W .

Since the physical solution and the discrete one, are defined on different domains, namely Ωf and Ωf
h,

with Ωf ⊂ Ωf
h, we assume that there exist two linear continuous lifting operators E2 : H2

(
Ωf
)
→ H2

(
Rd
)

and E1 : H1
(
Ωf
)
→ H1

(
Rd
)
, satisfying the bounds ‖E1v‖H1(Rd) . ‖v‖H1(Ωf) for all v ∈ H1

(
Ωf
)

and

‖E2v‖H2(Rd) . ‖v‖H2(Ωf) for all v ∈ H2
(
Ωf
)
, (see, e.g., [25, 50]). To interpolate the resulting extended

fluid solution we consider the Scott−Zhang operator isz, see [24] for extra details. Then it holds (see [19,
Lemma 3.3]):

‖v − iszE2v‖0,Ωf + h ‖∇ (v − iszE2v)‖0,Ωf . h2|v|2,Ωf ,

‖q − iszE1q‖0,Ωf + h ‖∇ (q − iszE1q)‖0,Ωf . h|q|1,Ωf ,

‖σ (v − iszE2v, q − iszE1q)n‖− 1
2
,h,Σ . h

(
‖v‖2,Ωf + ‖q‖1,Ωf

)
,

‖v − iszE2v‖ 1
2
,h,Σ . h‖v‖2,Ωf ,

‖w − Ihw‖ 1
2
,h,Σ . h

3
2 ‖w‖2,Σ

(36)

for all v ∈
[
H2(Ωf)

]d
, q ∈ H1(Ωf) and w ∈

[
H2(Σ)

]d ∩W . Moreover, using an inverse inequality,
(36) and the stability of the extension operator we have the following stability result for the gradient
projection ∥∥∇iszE1q‖20,Ωf

h
≤ h−1

∥∥iszE1q − E1q‖20,Ωf
h

+
∥∥∇E1q‖20,Ωf

h
.
∥∥q‖21,Ωf . (37)

For the pressure and ghost-penalty stabilization operators (7)-(8), the following consistency properties
hold (see, e.g., [19, 21]):

sh (iszE1q, iszE1q)
1
2 . µ−

1
2 h|q|1,Ωf (38)

and
gh (iszE2v, iszE2v)

1
2 . hµ

1
2 |v|2,Ωf . (39)

In the following we will make use of the discrete Grönwall lemma (see, e.g., [41]), which we collect
here without a proof.

section 4.2. Let τ,B and am, bm, cm, ηm (for integers m > 1 ) be non-negative numbers such that

an + τ
n∑

m=1

bm 6 τ
n∑

m=1

ηmam + τ
n∑

m=1

cm +B

for n > 1. Suppose that τηm < 1 for all m > 1. Then there holds

an + τ

n∑
m=1

bm 6 exp

(
τ

n∑
m=1

ηm
1− τηm

)(
τ

n∑
m=1

cm +B

)
for n ≥ 1.
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For the a priori error estimate, we assume that the exact solution of problem (1)-(3) has the following
regularity, for a given final time T > τ :

u ∈
[
H1 (0, T ;H2(Ω)

)]d
, u|Σ ∈

[
H1 (0, T ;H2(Σ)

)]d
,

∂ttu ∈
[
L2 (0, T ;L2(Ω)

)]d
, ∂ttu|Σ ∈

[
L2 (0, T ;L2(Σ)

)]d
,

p ∈ H1 (0, T ;H1(Ω)
)
, u|Σ ∈

[
H2 (0, T ;H2(Σ)

)]d
,

∂(r)

t u|Σ ∈
[
L2 (0, T ;L2(Σ)

)]d
, d ∈

[
H1 (0, T ;H2(Σ)

)]d
.

(40)

We define the energy norm of the error at time tn as

Znh
def
= (ρf)

1
2 ‖un − unh‖0,Ωf +

τ

(ρf)
1
2

‖∇(pn − pnh)‖0,Ωf
h

+ (ρsε)
1
2 ‖

.
dn −

.
dnh‖0,Σ + ‖dn − dnh‖s

+

(
n∑

m=1

τ
α

1 + 2α
γµ‖ũmh −

.
dmh ‖21

2
,h,Σ

) 1
2

+

(
n∑

m=1

τ |(ũmh , pmh )|2S

) 1
2

.

We can then state the following a priori error estimate.

Theorem 4.3. Let (u, p,d,
.
d) be the solution of (1)-(2) and, {(unh, ũnh, pnh,dnh,

.
dnh)}n≥r be given by

Algorithm 3, with initial data

(ũr−1
h , pr−1

h ,dr−1
h ,

.
dr−1
h ) = (iszE2u

r−1, iszE1p
r−1,πs

hd
r−1, Ih

.
dr−1)

for r = 1, 2. Suppose that the exact solution has the regularity (40) and that the stability conditions
(23)-(24) hold. Then, for n ≥ r and nτ < T , we have the following discrete error estimate:

Znh . c1h+ c2τ + c3
τr

h
1
2

, (41)

where {ci}3i=1 denote positive constants independent of h and τ , but which depend on the physical param-
eters and on the regularity of the exact solution.

Proof. The proof combines some of the arguments reported in [16, 19]. Note however that analysis of [19]
focuses on the spatial semi-discrete problem (10) and the work of [16] is limited to a pure fluid problem.
Multiplying (1)-(2) by (vh, qh) ∈ Vh × Qh and wh ∈ Wh, integrating by parts over Ωf and using (1)3

and (3)2 we obtain

1. Fluid sub-problem:{
ρf (∂tu,vh)Ωf + 2µ (ε(u), ε(vh))Ωf + (∇p,vh)Ωf − (σ (u, 0)n,vh)Σ = 0,

(qh, divu)Ωf = 0.
(42)

2. Solid sub-problem:
ρsε(∂t

.
d,wh)Σ + as (d,wh) + (σ (u, p)n,wh)Σ = 0.

Note that only the viscous term has been integrated by parts in the fluid.

On the other hand, owing to the kinematic coupling condition (3)1, we also have

1. Fluid sub-problem:
ρf (∂tu,vh)Ωf + 2µ (ε(u), ε(vh))Ωf + (∇p,vh)Ωf − (σ (u, 0)n,vh)Σ

+
γµ

h
(u−

.
d,vh)Σ − (u−

.
d,σ (vh,−qh)n)Σ = 0,

(qh,divu)Ωf = 0

(43)

for all (vh, qh) ∈ Vh ×Qh.

2. Solid sub-problem:

ρsε(∂t
.
d,wh)Σ + as (d,wh) +

γµ

h
(
.
d− u,wh)Σ + (σ (u, p)n,wh)Σ = 0 (44)

for all wh ∈Wh.
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Thereafter, using the lifting operators (component-wise) we introduce the following decomposition of the
errors for the fluid:

E2u
n − unh = E2u

n − iszE2u
n︸ ︷︷ ︸

def
= θnπ

+ iszE2u
n − unh︸ ︷︷ ︸

def
= θnh

in Ωf
h,

E2u
n − ũnh = E2u

n − iszE2u
n︸ ︷︷ ︸

def
= θnπ

+ iszE2u
n − ũnh︸ ︷︷ ︸

def
= θ̃nh

in Ωf
h,

E1p
n − pnh = E1p

n − iszE1p
n︸ ︷︷ ︸

def
= ynπ

+ iszE1p
n − pnh︸ ︷︷ ︸

def
= ynh

in Ωf
h

(45)

and for the solid:

dn − dnh = dn − πs
hd

n︸ ︷︷ ︸
def
= ξnπ

+πs
hd

n − dnh︸ ︷︷ ︸
def
= ξnh

in Σ,

.
dn −

.
dnh =

.
dn − Ih

.
dn︸ ︷︷ ︸

def
= ξ̇nπ

+ Ih
.
dn −

.
dnh︸ ︷︷ ︸

def
= ξ̇nh

in Σ.
(46)

By adding and subtracting ∂τπ
s
hd

n, we can rewrite ξ̇nh as

ξ̇nh = Ih
.
dn −

.
dnh = Ih

.
dn − ∂τπs

hd
n︸ ︷︷ ︸

def
= znh

+ ∂τπ
s
hd

n − ∂τdnh︸ ︷︷ ︸
= ∂τξ

n
h

= znh + ∂τξ
n
h . (47)

We also introduce the following notations:

χ̇?,rπ
def
=

.
dn − Ih

.
d?,r =

{ .
dn − Ih

.
dn−1 if r = 1,

.
dn − 2Ih

.
dn−1 + Ih

.
dn−2 if r = 2,

(48)

ψn−1
h

def
= yn−1

h + iszE1p
n − iszE1p

n−1. (49)

In particular, owing to (48), we have

un − ũnh − (
.
dn −

.
d?,rh ) = θnπ + θ̃nh − (χ̇?,rπ + Ih

.
d?,r −

.
dn,rh ) = θnπ + θ̃nh − (χ̇?,rπ + ξ̇n,rh ), (50)

Similar, from (49), one straightforwardly gets the following useful relations:

pn − pn−1
h = ψn−1

h + ynπ ,

pnh − pn−1
h = ψn−1

h − ynh .
(51)

The essential part of the proof focuses on deriving an a priori estimate for the discrete errors{
(θnh , θ̃

n
h , y

n
h , ξ

n
h , ξ̇

n
h)
}
n≥r,

in terms of the following energy norm

Enh
def
= (ρf)

1
2 ‖θnh‖0,Ωf +

(
τ

ρf

) 1
2

‖∇ynh‖0,Ωf
h

+ (ρsε)
1
2 ‖ξ̇nh‖0,Σ + ‖ξnh‖s

+

(
n∑

m=r

τµ
∥∥∇θ̃mh ∥∥2

0,Ωf
h

) 1
2

+

(
n∑

m=r

τ
α

1 + 2α
γµ‖θ̃mh − ξ̇mh ‖21

2
,h,Σ

) 1
2

+

(
n∑

m=r

τcg|(θ̃mh , ymh )|2S

) 1
2

.

To this purpose, we first focus on the fluid subsystem. By subtracting (16) from the momentum equation
of (43) at t = tn, with n ≥ r, we get

ρf(∂tun, ṽh)Ωf −
ρf

τ

(
ũnh − un−1

h , ṽh
)

Ωf + 2µ
(
ε(un − ũnh), ε(ṽh)

)
Ωf +

(
∇(pn − pn−1

h ), ṽh
)

Ωf

+
γµ

h

(
(un − ũnh)− (

.
dn −

.
d?,rh ), ṽh

)
Σ
−
(
un −

.
dn,σ(ṽh,−qh)n

)
Σ

+
(
ũnh −

.
d?,rh ,σ(ṽh, 0)n

)
Σ

13



−
(
σ(un − ũnh, 0)n, ṽh

)
Σ
− gh(ũnh,v

n
h ) = 0. (52)

Owing to the error decompositions (45) -(46) and using (50)-(51), the identity (52) can be rewritten as

ρf

τ

(
θ̃nh − θn−1

h , ṽh
)

Ωf + 2µ
(
ε(θ̃nh), ε(ṽh)

)
Ωf +

(
∇ψn−1

h , ṽh
)

Ωf

+
γµ

h

(
θ̃nh − ξ̇?,rh , ṽh

)
Σ
−
(
θ̃nh − ξ̇?,rh ,σ(ṽh, 0)n

)
Σ
−
(
σ(θ̃nh , 0)n, ṽh

)
Σ

+ gh
(
θ̃nh ,v

n
h

)
= ρf(− ∂tun + ∂τu

n − ∂τθnπ , ṽh
)

Ωf − 2µ
(
ε(θnπ), ε(ṽh)

)
Ωf −

(
∇ynπ , ṽh

)
Ωf

− γµ

h

(
θnπ − χ̇?,rπ , ṽh

)
Σ

+
(
θnπ − χ̇?,rπ ,σ(ṽh, 0)n

)
Σ

+
(
σ(θnπ , 0)n, ṽh

)
Σ

+ gh
(
iszE2u

n,vnh
)

(53)

for n ≥ r.
For the pressure, subtracting the pressure-projection step of (17) from the mass conservation equation

(43) at t = tn, with n ≥ r, we get the following relation(
div(un − ũnh), qh

)
Ωf −

τ

ρf

(
∇(pnh − pn−1

h ),∇qh
)

Ωf
h
− sh

(
pnh, qh

)
+
(
ũnh −

.
dnh, qh n

)
Σ

= 0. (54)

Again, using the definition of error decomposition (45)-(46), the coupling kinematic condition (3)1 and
(51), from (54) we obtain

τ

ρf

(
∇(ynh − ψn−1

h ),∇qh
)

Ωf
h

+
(

div θ̃nh , qh
)

Ωf + sh
(
ynh , qh

)
−
(
θ̃nh − ξ̇nh , qh n

)
Σ

= −
(

div θnπ , qh
)

Ωf + sh
(
iszE1p

n, qh
)

+
(
θnπ − ξ̇nπ , qh n

)
Σ

(55)

for n ≥ r.
Finally, adding and subtracting iszE2u

n, iszE1p
n , iszE1p

n−1 in (18) and using (51), we obtain the
following relation for the end-of-step velocity error

ρf

τ

(
θnh − θ̃nh ,vh

)
Ωf +

(
∇(ynh − ψn−1

h ),vh
)

Ωf = 0 (56)

for n ≥ r.
Subtracting the solid problem of (17) from (44) t = tn, with n ≥ r, and using the relation (50), we

obtain

ρsε
(
∂t

.
dn − ∂∗τ

.
dnh,wh

)
Σ

+ as(dn − dnh,wh)− γµ

h

(
un − ũnh − (

.
dn −

.
d?,rh ),wh

)
Σ

+
(
σ(un − ũnh, pn − pnh)n,wh

)
Σ

= 0.

Thus, using (45) -(46) and (50), we finally get the equation for the solid discrete errors:

ρsε
(
∂τ ξ̇

n
h ,wh

)
Σ

+ as(ξnh ,wh)− γµ

h

(
θ̃nh − ξ̇?,rh ,wh

)
Σ

+
(
σ(θ̃nh , y

n
h )n,wh

)
Σ

= ρsε
(
∂τ

.
dn − ∂t

.
dn − ∂τ ξ̇nπ ,wh

)
Σ
− as(ξnπ ,wh)︸ ︷︷ ︸

= 0

+
γµ

h

(
θnπ − χ̇?,rπ ,wh

)
Σ
−
(
σ(θnπ , y

n
π )n,wh

)
Σ

(57)

for n ≥ r. Note that term as
(
ξnπ ,wh

)
vanishes due to the definition of the solid velocity projection

operator (32).

Owing to (53), (55), (56) and (57), we have that the the discrete errors (θnh , θ̃
n
h , y

n
h , ξ

n
h , ξ̇nh) satisfy a

time-stepping scheme similar to Algorithm 3, but with a modified right-hand side and pressure increment
(i.e., we have ynn − ψn−1

h instead of pnh − pn−1
h ). Therefore, we can leverage the stability arguments of

Theorem 4.1 to derive an a priori error estimate. We proceed by testing (53), (55), (56) and (57) with

(ṽh,vh, qh,wh) = τ
(
θ̃nh ,θ

n
h , y

n
h , ξ̇

n
h

)
.

By adding the resulting expressions, using the steps of Theorem 4.1 under condition (23), we obtain the
following energy inequality for the discrete errors:

ρf

2

(
‖θnh‖20,Ωf − ‖θn−1

h ‖20,Ωf

)
+

τ2

2ρf

(
‖∇ynh‖20,Ωf

h
−
∥∥∇ψn−1

h

∥∥2

0,Ωf
h

)
+
ρsε

2

(
‖ξ̇nh‖20,Σ − ‖ξ̇n−1

h ‖20,Σ
)
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+
1

2

(
‖ξnh‖2s − ‖ξn−1

h ‖2s
)
+

[
ρsε

2
− τ

( r
4

+ rα
) γµ
h

] ∥∥∥ξ̇nh − ξ̇n−1
h

∥∥∥2

0,Σ
−(r−1)τ

(
1

2
+ 2α

)
γµ

h

∥∥∥ξ̇n−1
h − ξ̇n−2

h

∥∥∥2

0,Σ

+ τ‖(θ̃nh , ynh )‖2S + 2µτ

(
cg −

CTI

γ

3 + 4α

α

)∥∥∥ε(θ̃nh)
∥∥∥2

0,Ωf
h

+ τ
α

1 + 2α

γµ

h

∥∥∥θ̃nh − ξ̇nh∥∥∥2

0,Σ
≤ G?,rh (58)

for n ≥ r, and with the right-hand side G?,rh defined by

G?,rh
def
= τρf(− ∂tun + ∂τu

n − ∂τθnπ , θ̃nh
)

Ωf︸ ︷︷ ︸
def
= T1

+ τ
(
ynπ ,div θ̃nh

)
Ωf︸ ︷︷ ︸

def
= T2

−2τµ
(
ε(θnπ), ε(θ̃nh)

)
Ωf︸ ︷︷ ︸

def
= T3

+τ
(
θnπ − χ̇?,rπ ,σ(θ̃nh , 0)n

)
Σ︸ ︷︷ ︸

def
= T4

−τ γµ
h

(
θnπ − χ̇?,rπ , θ̃nh − ξ̇nh

)
Σ︸ ︷︷ ︸

def
= T5

+τ
(
σ(θnπ , y

n
π )n, θ̃nh − ξ̇nh

)
Σ︸ ︷︷ ︸

def
= T6

−τ
(

div θnπ , y
n
h

)
Ωf + τ

(
θnπ − ξ̇nπ , ynh n

)
Σ︸ ︷︷ ︸

def
= T7

+τSh
(
(iszE2u

n, iszE1p
n), (θ̃nh , y

n
h )
)︸ ︷︷ ︸

def
= T8

+τρsε
(
∂τ

.
dn − ∂t

.
d (tn)− ∂τ ξ̇nπ , ξ̇nh

)
Σ︸ ︷︷ ︸

def
= T9

−τas(ξnh , znh)︸ ︷︷ ︸
def
= T10

(59)

Considering condition (23), equation (58) can be written as:

ρf

2

(
‖θnh‖20,Ωf − ‖θn−1

h ‖20,Ωf

)
+

τ2

2ρf

(
‖∇ynh‖20,Ωf

h
−
∥∥∇ψn−1

h

∥∥2

0,Ωf
h

)
+
ρsε

2

(
‖ξ̇nh‖20,Σ − ‖ξ̇n−1

h ‖20,Σ
)

+
1

2

(
‖ξnh‖2s − ‖ξn−1

h ‖2s
)

+

[
ρsε

2
− τ

( r
4

+ rα
) γµ
h

] ∥∥∥ξ̇nh − ξ̇n−1
h

∥∥∥2

0,Σ

− τ(r − 1)

(
1

2
+ 2α

)
γµ

h

∥∥∥ξ̇n−1
h − ξ̇n−2

h

∥∥∥2

0,Σ

+ τ‖(θ̃nh , ynh )‖2S + µcgτ
∥∥∥ε(θ̃nh)

∥∥∥2

0,Ωf
h

+ τ
α

1 + 2α

γµ

h

∥∥∥θ̃nh − ξ̇nh∥∥∥2

0,Σ
≤ G?,rh .

The lack of telescoping sum on the pressure terms
∥∥∇ynh

∥∥2

0,Ωf
h
−
∥∥∇ψn−1

h

∥∥2

0,Ωf
h

is not an issue (see, e.g.,

[16]). Indeed, using (37) we have

‖∇ψn−1
h ‖20,Ωf

h
= ‖∇yn−1

h + τ∇∂τ iszE1p
n‖20,Ωf

h

6
(

1 +
τ

T

)∥∥∇yn−1
h ‖20,Ωf

h
+

(
1 +

T

τ

)
τ2
∥∥∇∂τ iszE1p

n‖20,Ωf
h

.
(

1 +
τ

T

)∥∥∇yn−1
h ‖20,Ωf

h
+ (τ + T )

∥∥∂tp‖2L2(tn−1,tn;H1(Ωf )),

so that by inserting this expression into (58), we have

ρf

2

(
‖θnh‖20,Ωf − ‖θn−1

h ‖20,Ωf

)
+

τ2

2ρf

(
‖∇ynh‖20,Ωf

h
−
∥∥∇yn−1

h

∥∥2

0,Ωf
h

)
+
ρsε

2

(
‖ξ̇nh‖20,Σ − ‖ξ̇n−1

h ‖20,Σ
)

+
1

2

(
‖ξnh‖2s − ‖ξ̇n−1

h ‖2s
)

+

[
ρsε

2
− τ

( r
4

+ rα
) γµ
h

] ∥∥∥ξ̇nh − ξ̇n−1
h

∥∥∥2

0,Σ
−τ(r−1)

(
1

2
+ 2α

)
γµ

h

∥∥∥ξ̇n−1
h − ξ̇n−2

h

∥∥∥2

0,Σ

+ τ‖(θ̃nh , ynh )‖2S + µcgτ
∥∥∥ε(θ̃nh)

∥∥∥2

0,Ωf
h

+ τ
α

1 + 2α

γµ

h

∥∥∥θ̃nh − ξ̇nh∥∥∥2

0,Σ
. G?,rh +

τ3

2ρfT

∥∥∇yn−1
h ‖20,Ωf

h

+ (τ + T )
τ2

2ρf

∥∥∂tp‖2L2(tn−1,tn;H1(Ωf ))

for n ≥ r. We now replace the upper index n by m and sum over m = r . . . n, this yields

ρf

2
‖θnh‖20,Ωf +

τ2

2ρf
‖∇ynh‖20,Ωf

h
+
ρsε

2
‖ξ̇nh‖20,Σ+

1

2
‖ξnh‖2s +µcg

n∑
m=r

τ
∥∥∥ε(θ̃mh )

∥∥∥2

0,Ωf
h

+
α

1 + 2α

γµ

h

n∑
m=r

τ
∥∥∥θ̃mh − ξ̇mh ∥∥∥2

0,Σ
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+

n∑
m=r

τ‖(θ̃mh , ymh )‖2S+

[
ρsε

2
− τ4r

(
1

4
+ α

)
γµ

h

] n∑
m=r

∥∥∥ξ̇mh − ξ̇m−1
h

∥∥∥2

0,Σ
−τ(r−1)

(
1

2
+ 2α

)
γµ

h

∥∥∥ξ̇r−1
h − ξ̇r−2

h

∥∥∥2

0,Σ

.
τ2

2ρfT

n−1∑
m=r−1

τ
∥∥∇ymh ‖20,Ωf

h
+
ρf

2
‖θr−1
h ‖20,Ωf +

τ2

2ρf

∥∥∇yr−1
h

∥∥2

0,Ωf
h

+
ρsε

2
‖ξ̇r−1
h ‖20,Σ +

1

2
‖ξr−1
h ‖2s +

n∑
m=r

Gm,rh

+ (τ + T )
τ2

2ρf

∥∥∂tp‖2L2(tr−1,T ;H1(Ωf )) (60)

for n ≥ r.
We proceed by estimating G?,rh , by treating each term in (59) separately. The first term can be bound

in a standard fashion using a Taylor expansion, (36), the Cauchy–Schwarz and the Poincaré’s inequalities
with constant CP. This yields

T1 6 ρfτ
(
‖∂tun − ∂τun‖0,Ωf + ‖∂τθnπ‖0,Ωf

)
‖θ̃nh‖0,Ωf

6 ρfτ
(
τ

1
2 ‖∂ttun‖L2(tn−1,tn;L2(Ωf )) + τ−

1
2 ‖∂tθπ‖L2(tn−1,tn;L2(Ωf ))

)
‖θ̃nh‖0,Ωf

6
(ρfCP)2

2ε1µ

(
τ2 ‖∂ttu‖L2(tn−1,tn;L2(Ωf )) + ‖∂tθπ‖2L2(tn−1,tn;L2(Ωf ))

)
+ ε1τµ‖∇θ̃nh‖20,Ωf

h

.
(ρfCP)2

2ε1µ
τ2 ‖∂ttu‖2L2(tn−1,tn;L2(Ωf )) +

(ρfCP)2

2ε1µ
h2 ‖∂tu‖2L2(tn−1,tn;H2(Ωf ))

+ ε1τµ‖∇θ̃nh‖20,Ωf
h

(61)

with ε1 > 0. Observe that the last term can be absorbed in the left-hand side of (60) with ε1 small
enough. For term T9 we proceed in a similar fashion. Using (36), we get

T9 6ρsετ
(
‖(∂t − ∂τ )

.
dn‖0,Σ + ‖∂τ ξ̇nπ‖0,Σ

)
‖ξ̇nh‖0,Σ

6 ρsετ
(
τ

1
2 ‖∂ttu‖L2(tn−1,tn;L2(Σ)) + τ−

1
2 ‖∂tξ̇nπ‖L2(tn−1,tn;L2(Σ))

)
‖ξ̇nh‖0,Σ

6
ρsεT

2ε9

(
τ2 ‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + h2 ‖∂tu‖2L2(tn−1,tn;H2(Σ))

)
+ τ

ε9ρ
sε

2T
‖ξ̇nh‖20,Σ,

(62)

with ε9 > 0 and where the last term can can be controlled in (60) using a Grönwall argument (Lemma
4.2).

For term T2, using (36), we have

T2 = τ
(
ynπ , div θ̃nh

)
Ωf 6 τh2 1

2ε2µ
‖pn‖21,Ωf + τ

ε2

2
µ‖∇θ̃nh‖20,Ωf

h
. (63)

The second term can be absorbed in the left-hand side of (60) for ε2 > 0 small enough.

T3 . τ
µ

ε3
h2‖un‖22,Ω + τε3µ‖∇θ̃nh‖20,Ωf

h
. (64)

The last term can be, once again, absorbed in the left-hand side of (60), for ε3 > 0 sufficiently small.
Terms T4 and T5 involve the Nitsche splitting error, namely ‖θnπ − χ̇?,rπ ‖ 1

2
,h,Σ. Using (35), (36) and

a Taylor expansion we have

‖θnπ − χ̇?,rπ ‖ 1
2
,h,Σ ≤‖θ

n
π − ξ̇nπ‖ 1

2
,h,Σ + ‖Ih

.
dn − Ih

.
d?,r‖ 1

2
,h,Σ

.h‖un‖2,Ωf + h
3
2

(
‖
.
dn‖2,Σ +

r∑
i=1

‖
.
dn−r‖2,Σ

)
+
τ

2r−1
2

h
1
2

‖∂rt
.
d‖L2(tn−r,tn;L2(Σ)).

(65)

To estimate T4, we follow the same idea of [19]. Using the robust trace inequality (21) combined with
(65), we get

T4 6τ
µ

ε4
‖θnπ − χ̇?,rπ ‖21

2
,h,Σ + τµε4‖ε(θ̃nh)n‖2− 1

2
,h,Σ

.τ
µ

ε4
h2

(
‖un‖22,Ω +

r∑
i=1

‖
.
dn−r‖2,Σ

)
+
µ

ε4

τ2r

h
‖∂rt

.
d‖2L2(tn−r,tn;L2(Σ)) + τε4µ‖∇θ̃nh‖20,Ωf

h
.

(66)
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Once more, the last term can be absorbed in the left-hand side of (60), for ε4 > 0 sufficiently small.
Similarly, for T5 we have

T5 6
τ

2ε5
γµ‖θnπ − χ̇?,rπ ‖21

2
,h,Σ +

τε5

2
γµ‖θ̃nh − ξ̇nh‖21

2
,h,Σ

.τ
γµ

ε5
h2

(
‖un‖22,Ω +

r∑
i=1

‖
.
dn−r‖2,Σ

)
+
γµ

ε6

τ2r

h
‖∂rt

.
d‖2L2(tn−r,tn;L2(Σ)) +

τε5

2
γµ‖θ̃nh − ξ̇nh‖21

2
,h,Σ.

(67)

Note that the last term can be included in the left-hand side of (60) for ε5 > 0 small enough.
Term T6 can be handled using (36) as follows:

T6 6τ
1

2ε6

1

γµ
‖σ (θnπ , y

n
π )n‖2− 1

2
,h,Σ + τ

ε6

2
γµ‖θ̃nh − ξ̇nh‖21

2
,h,Σ

6τh2 1

2ε6γµ

(
‖un‖22,Ωf + ‖pn‖21,Ωf

)
+ τ

ε6

2
γµ‖θ̃nh − ξ̇nh‖21

2
,h,Σ.

(68)

Again, the last term can be absorbed in the left-hand side of (60), for ε6 > 0 small enough.
Integrating by parts in T7, we have

T7 = τ
(
θnπ ,∇ynh

)
Ωf︸ ︷︷ ︸

def
= T7,1

+ τ
(
ξ̇nπ , τy

n
h n
)

Σ︸ ︷︷ ︸
def
= T7,2

.
(69)

Term T7,1 can be easily handled by using (36) as follows:

T7,1 ≤ τ
1

2ε7
‖θnπ‖20,Ωf + τ

ε7

2
‖∇ynh‖20,Ωf . τh2 µ

2ε7
‖un‖20,Ωf + τ

ε7

2
|(0, ynh )|2S . (70)

The second term can be absorbed in the left-hand side of (60), for ε7 > 0 sufficiently small. For the
second term of (69), we proceed as in [19] (see also [30]). We denote by ȳni ∈ R the average of ynh over
the interface patch Pi. Combining the trace inequality (19) with the orthogonality property (34) of the
interpolation operator Ih and the standard estimate

‖ynh − ȳni ‖0,Pi . h ‖∇ynh‖0,Pi ,

term T7,2 can be estimated as follow:

T7,2 = −τ
∑
i

(
ynh − ȳni , ξ̇nπ · n

)
Pi

. τ
∑
i

h ‖∇ynh‖0,Pi
∥∥∥ξ̇nπ∥∥∥

0,Pi

. τh3 µ

2ε7
‖
.
dn‖22,Σ + τh2 ε7

2µ
‖∇ynh‖20,Ωh . τh3 µ

2ε7

∥∥∥ .dn∥∥∥2

2,Σ
+ τ

ε7

2
|(0, ynh )|2S .

(71)

It should be noted here we have assumed that the solid mesh step has an asymptotic regime similar to
the fluid mesh step, namely, hs = O(hf). As for T7,1, the last term in (71) can be, once again, absorbed
in the left-hand side of (60), for ε7 > 0 sufficiently small.

For term T8, using the weak consistency of the stabilization operators (38) and (39), we have

T8 6τ
1

2ε8
|(iszE2u

n, iszE1p
n)|2S + τ

ε8

2
|(θ̃nh , ynh )|2S

.τh2 1

ε8µ

(
µ ‖un‖22,Ωf + µ−1 ‖pn‖21,Ωf

)
+ τ

ε8

2
|(θ̃nh , ynh )|2S .

(72)

Again, the last term can be absorbed in the left-hand side of (60), for ε8 > 0 small enough.
Term T10 can be bounded using the continuity estimate for the elastic bilinear form (5), (32), (36)

and a triangular inequality. This yields

T10 =− τas
(
ξnh , Ih

.
dn − ∂τπs

hd
n
)

=− τas
(
ξnh , Ih

.
dns − ∂τdn

)
6τ‖ξnh‖s‖Ih

.
dn − ∂τdn‖s

6τ‖ξnh‖s
(
‖Ih

.
dn −

.
dn‖s + ‖

.
dn − ∂τdn‖s

)
6
τε11

2T
‖ξnh‖2s + τ

h2βsT

2ε10
‖un‖22,Σ + τ2 β

sT

2ε10
‖∂tu‖2L2(tn−1,tn;H1(Σ)).

(73)
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Note that the first term can controlled via Lemma 4.2 in (60).
In summary, the term

∑n
m=r G

m,r
h in the right-hand side of (60) can be estimated by collecting the

estimates (61)-(73) and by inserting them into (59), for n ≥ r. The desired estimate (41) hence follows
from (60) together with the stability condition (24) and Lemma 4.2 with

am =
ρf

2
‖θmh ‖20,Ωf +

τ2

2 ρf

∥∥∇ynh
∥∥2

0,Ωf
h

+
ρsε

2
‖ξ̇mh ‖20,Σ +

1

2
‖ξnh‖2s , ηm =

1

T
(74)

and by noting that, owing to the initial data, we have

θr−1
h = 0, θ̃r−1

h = 0, yr−1
h = 0, ξr−1

h = 0, ξ̇r−1
h = 0 (75)

for r = 1, 2. This completes proof.

Corollary 4.1. Assume that Algorithm 3 with r = 2 is initialized with one step of the method with
r = 1. Then, under the assumptions of Theorem 4.3, for n ≥ 1 and nτ < T , the following discrete error
estimate holds for the scheme with r = 2:

Znh . c1h+ c2τ + c3
τ2

h
1
2

+ c4
τ

3
2

h
1
2

, (76)

where {ci}4i=1 denote positive constants independent of h and τ , but which depend on the physical param-
eters and on the regularity of the exact solution.

Proof. For r = 2, we have to bound the contributions from the initialization step in the right-hand side
of (60), namely,

ρf

2
‖θ1
h‖20,Ωf +

τ2

2ρf

∥∥∇y1
h

∥∥2

0,Ωf
h

+
ρsε

2
‖ξ̇1
h‖20,Σ +

1

2
‖ξ1
h‖2s . (77)

To this purpose, we use the fact that the initialization of Algorithm 3 with r = 2 is provided by the first
step of the scheme with r = 1. We can hence use the estimate provided by (60) with r = 1 and n = 1 to
control (77). More precisely, using (75), this yields

ρf

2
‖θ1
h‖20,Ωf +

τ2

2ρf

∥∥∇y1
h

∥∥2

0,Ωf
h

+
ρsε

2
‖ξ̇1
h‖20,Σ +

1

2
‖ξ1
h‖2s + µcgτ

∥∥∥ε(θ̃1
h)
∥∥∥2

0,Ωf
h

+
α

1 + 2α

γµ

h
τ
∥∥∥θ̃1

h − ξ̇1
h

∥∥∥2

0,Σ

+ τ‖(θ̃1
h, y

1
h)‖2S +

[
ρsε

2
− τ

(
1

4
+ α

)
γµ

h

] ∥∥∥ξ̇1
h − ξ̇0

h

∥∥∥2

0,Σ
. G1,1

h +
τ3

2ρf

∥∥∂tp‖2L2(0,τ ;H1(Ωf )).

Hence, by inserting this estimate in (60), we get

ρf

2
‖θnh‖20,Ωf +

τ2

2ρf
‖∇ynh‖20,Ωf

h
+
ρsε

2
‖ξ̇nh‖20,Σ+

1

2
‖ξnh‖2s +µcg

n∑
m=1

τ
∥∥∥ε(θ̃mh )

∥∥∥2

0,Ωf
h

+
α

1 + 2α

γµ

h

n∑
m=1

τ
∥∥∥θ̃mh − ξ̇mh ∥∥∥2

0,Σ

+

n∑
m=1

τ‖(θ̃mh , ymh )‖2S +

[
ρsε

2
− τ (1 + 4α)

γµ

h

] n∑
m=1

∥∥∥ξ̇mh − ξ̇m−1
h

∥∥∥2

0,Σ

.
τ2

2ρfT

n−1∑
m=1

τ
∥∥∇ymh ‖20,Ωf

h
+ G1,1

h +

n∑
m=2

Gm,2h + (τ + T )
τ2

2ρf

∥∥∂tp‖2L2(0,T ;H1(Ωf )) (78)

for n ≥ 1. Owing to the initialization procedure, the bounds provided in (66)-(67) for terms T4 and T5

of G1,1
h yield a O(τ3/h) splitting error, by noting that

γµ
τ2

h
‖∂t

.
d‖2L2(0,τ ;L2(Σ)) ≤ γµ

τ3

h
‖∂t

.
d‖2L∞(0,τ ;L2(Σ)). (79)

The estimate (41) for r = 2 hence follows from (78) together with the stability condition (24) and Lemma
4.2 with (74). This completes proof.

We conclude this section with a series of remarks.

Remark 4.2. For r = 2, the last term in (41) comes from the bound of the first step of Algorithm 3
with r = 1, that is, the estimate given by (79). This bound is quasi-optimal in time because the Taylor
expansions are evaluated in L2(0, T ) instead of L1(0, T ). Alternatively, one could avoid this term by
initializing Algorithm 3 with the first-step of Algorithm 1.
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Remark 4.3. Note that Algorithm 2 introduces the following perturbations terms in the discrete error
equation

γµ

h

(
unh − un−1

h ,wh
)

0,Σ
+
(
σ(unh, p

n
h)n− σ(un−1

h , pn−1
h )n,vh −wh

)
0,Σ
,

with wh = τ ξ̇nh . The first term leads to the following bound:

τ
γµ

h

(
un − un−1, ξ̇nh

)
0,Σ
≤ (γµ)2

2

τ2

h2
‖∂tu‖2L2(tn−1,tn;L2(Σ)) +

τ

2
‖ξ̇nh‖20,Σ.

The second term can be controlled via Lemma 4.2 while the first yields the above mentioned O(τ/h)
sub-optimal splitting error.

Remark 4.4. As shown in Theorem 4.3, the discrete error estimates of Algorithm 3 contains terms of
order O(τr/h1/2), which are not visible numerically (see Section 5). To fully understand the impact of
selecting the same penalty term in the viscous step as in the solid sub-step in Algorithm 3, we consider
the coupling of a parabolic equation with and an hyperbolic one. The considered coupled problem reads as
follow: find u : Ωf × R+ → R, d : Σ× R+ → R, ḋ : Σ× R+ → R, such that for all t ∈ R+ we have{
∂tu−∆u = 0 in Ωf × R+,

u = 0 on Γ× R+,


∂tḋ−∆d = T in Σ× R+,

ḋ = ∂td in Σ× R+,
d = 0 on ∂Σ× R+,

u = ḋ on Σ× R+,

T = −∂u
∂n

on Σ× R+,

with the respective initial conditions. We propose to discretize the problem via a loosely coupled scheme,
inspired by the semi-implicit scheme of Algorithm 3. The fully discrete approximation results in the
following (explicit) scheme:
For n ≥ 1:

• Parabolic step: find unh ∈ Vh, such that(
∂τu

n
h, vh

)
Ωf +

(
∇unh,∇vh

)
Ωf +

γ

h

(
unh − ḋn−1

h , vh
)

Σ
−
(∂unh
∂n

, vh
)

Σ
= 0

for all vh ∈ Vh.

• Hyperbolic step: find (dnh, ḋ
n
h) ∈Wh ×Wh with ḋnh = ∂τd

n
h and such that(

∂τ ḋ
n
h, wh

)
Σ

+
(
∇dnh,∇wh

)
Σ
− γ

h

(
unh − ḋn−1

h , wh
)

Σ
+
(∂unh
∂n

,wh
)

Σ
= 0

for all wh ∈Wh.

When considering loosely coupled schemes with Nitsche’s coupling, the sub-optimal terms come typically
from the fact that we introduce a time-splitting error inside the Nitsche’s penalty term, which is scaled
with an h−1. A possible way to overcome this issue, is to remove the time-splitting error from the
Nitsche’s penalty term, by introducing an error in time within the definition of the projection errors.
Thus, considering the following decomposition of the errors for the parabolic-hyperbolic explicit scheme:

E2u
n − unh = E2u

n − iszE2u
n︸ ︷︷ ︸

def
= θnπ

+ iszE2u
n − unh︸ ︷︷ ︸

def
= θnh

in Ωf
h,

dn − dnh = dn − πhdn︸ ︷︷ ︸
def
= ξnπ

+πhd
n − dnh︸ ︷︷ ︸

def
= ξnh

in Σ,

ḋn − ḋnh = ḋn − πhḋn︸ ︷︷ ︸
def
= ξ̇nπ

+πhḋ
n − πhḋn+1︸ ︷︷ ︸

def
= ξ̇nτ

+πhḋ
n+1 − ḋnh︸ ︷︷ ︸
def
= ξ̇nh

in Σ,

(80)

it can be proven that the scheme delivers optimal space and time accuracy. More in detail, using similar
arguments of the proof of Theorem 4.3, we will get the following terms inside the Nitsche’s penalty part:

un − unh − (ḋn − ḋn−1
h ) = θnπ + θnh − (ḋn − πhḋn︸ ︷︷ ︸

ξ̇nπ

+πhḋ
n − ḋn−1

h︸ ︷︷ ︸
ξ̇n−1
h

),

which does not contain error in time, in fact the arising terms involving θnh − ξ̇n−1
h are controlled via

the stability result and terms involving θnπ − ξ̇nπ have optimal convergence order. The only terms which
contain ξ̇nτ are the corresponding T9 and T10 terms of (59) and their optimality can be proved.

A similar strategy fails when considered for the semi-implicit scheme of Algorithm 3. In particular
we will retrieve terms of order O(τ/h1/2) when controlling the pressure term T7,2 of (59).
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5 Numerical experiments

In this section, we illustrate via numerical experiments the convergence properties of Algorithm 3 with
r = 1, 2 (semi-implicit scheme) in an academic numerical example. The obtained results are compared
with those of Algorithms 1 (strongly coupled scheme) and Algorithm 2 (stabilized explicit coupling
scheme).

• •A B

ΓI ΓO

ΓW

Ωf

Ωf
hΣ

Figure 2: Geometric configuration.

Figure 3: Fluid and solid meshes for h = 0.1.

The considered test case is the well-known fluid-structure interaction benchmark describing the prop-
agation of a pressure wave within a straight two-dimensional elastic tube (see, e.g., [31, 17, 19]). In the
following, all the units are given in the CGS system.

The fluid domain is defined as Ωf = [0, L]× [0, R], with L = 6 and R = 0.5, while the fluid computa-
tional domain is given by Ωf

h = [0, 6]× [0, 0.8]. The solid domain is Σ = [0, L]×{R}, as shown in Figure
2. In the sequel, the solid is described by a one-dimensional string model, viz.,

d =

(
0
η

)
, Ld =

(
0

−λ1∂xxη + λ0η

)
, λ1

def
=

Eε

2(1 + v)
, λ0

def
=

Eε

R2 (1− ν2)
,

hence in (4), taking w = (0, w)T, we have

as(d,w)
def
= λ1(∂xη, ∂xw)Σ + λ0(η, w)Σ.

The fluid physical parameters are given by ρf = 1.0, µ = 0.035. For the solid we have ρs = 1.1 and
ε = 0.1, with Young’s modulus E = 0.75 × 106 and Poisson’s ratio ν = 0.5. Regarding the boundary
conditions, we consider both fluid and structure to be initially at rest and we impose a sinusoidal normal
traction of maximal amplitude 2× 104 for 5× 10−3 time instants at the inlet ΓI. A symmetry condition
is applied on the lower wall ΓW and zero traction is enforced at ΓO. All the computations have been
performed with FreeFem++ [40]. An example of the unfitted meshes is shown in Figure 3 with fluid
space discretization parameter h = 0.1. The Nitsche parameter is set to γ = 103 and for the pressure
and ghost-penalty stabilization terms (7)-(8) we consider γp = 10−3 and γg = 1, respectively.

As expected, all the considered considered methods deliver a numerical solution with a stable pressure-
wave propagation. For illustration purposes, Figure 4 provides the snapshots of the fluid pressure and
solid deformation at time t = 5× 10−3, 10−2 and 1.5× 10−2, obtained with τ = 10−4 and h = 0.05 using
respectively Algorithms 1-3. The solid displacement has been amplified by a factor 20. A very good
agreement between Algorithm 1 and Algorithm 3 (r = 1, 2) is clearly visible, while a difference on the
solid displacement is noticeable with Algorithm 2.

In order to quantify the accuracy properties of each coupling scheme we have evaluated the conver-
gence histories by uniformly refining in space and in time

(h, τ) ∈
{

0.1/2i, 2× 10−4/2i
}4

i=0
. (81)

Figure 5 shows the corresponding solid displacement at t = 1.5 × 10−2 for i = 0, .., 3 and the different
coupling schemes. As in Figure 4, a very good fit is observed between Algorithm 1 and Algorithm 3
(r = 1, 2), while a degradation of accuracy is visible for Algorithm 2 under space-time refinement. The
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(a) Algorithm 3, r = 1. (b) Algorithm 3, r = 2.

(c) Algorithm 1. (d) Algorithm 2.

Figure 4: Snapshots of the fluid pressure and deformation (magnified) at different time instants.

depicted reference solution has been generated using the strongly coupled fitted method with a high
space-time grid resolution (h = 3.125× 10−3 and τ = 10−6).

Aiming to investigate the space uniformity of the splitting error, we compare Algorithms 1−3 with the
variant of the projection-based semi-implicit scheme with second-order backward difference discretization,
shown in Algorithm 4. Figure 6 reports the convergence history of the solid displacement at time
t = 1.5 × 10−2, in the relative elastic energy-norm. Note that, from the choice of space and time
discretization parameters in (81), we have τ = O(h). The results show that Algorithm 3 with r = 1, 2
and Algorithm 1 retrieve the overall optimal first-order accuracy O(h) of Algorithm 1. As expected,
Algorithm 2 shows a non-convergence behaviour. This points out the expected O(τ/h) sub-optimality
of the splitting error (see Remark 4.3). Algorithm 4 exhibits better accuracy than Algorithm 3. Full
second-order accuracy is not achieved due to the first-order extrapolation of the pressure. Finally, it is

worth noting that no effect from the O(τ/h
1
2 ) and O(τ2/h

1
2 ), anticipated by Theorem 4.3, is visible on

the convergence history of Algorithm 3.

6 Conclusion

In this paper, an a priori error analysis of the unfitted mesh based semi-implicit coupling scheme intro-
duced in [29] has been performed in the context of linear-fluid structure interaction system involving a
thin-walled solid. The considered method combines a Nitsche based unfitted mesh spatial approximation
with a fractional-step time-splitting in the fluid. Strong coupling is avoided by treating explicitly the
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Figure 5: Comparison of the solid displacements at t = 1.5 × 10−2 for different levels of (τ, h)-refinement,
given by (81) with i = 0, ..., 3.
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Figure 6: Convergence history of the solid displacements at t = 1.5× 10−2 in the elastic-energy norm.
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fluid viscous part, while the added-mass free stability (see [29, Theorem 1] and Theorem 4.1 herein) is
achieved by treating implicitly the fluid incompressibility and the solid inertia.

The stability analysis of [29] has been extended to the case of second order extrapolation of the solid
velocity (r = 2) under a similar hyberbolic CFL condition. The proposed error analysis predicts superior
accuracy of the semi-implicit scheme of [29] with respect to the stabilized explicit scheme of [19], namely

O(τr/h
1
2 ), r = 1, 2, instead of O(τ/h). Extensive numerical evidence indicated that the semi-implicit

algorithm and the strongly coupled (from [19]) deliver practically the same accuracy. In particular, no
effect from the non-uniformity in space is visible, for both the first and second-order backward difference
variants.
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