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shelf mechanization of the proof-search algorithms coming together with semi-decision 
procedures for proving theorems and meta-theorems of the object system. As illustrated 
with case studies in the paper, the L-Framework achieves a great degree of automation 
when used on several propositional sequent systems, including single conclusion and 
multi-conclusion intuitionistic logic, classical logic, classical linear logic and its dyadic 
system, intuitionistic linear logic, and normal modal logics.
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1. Introduction

Gentzen’s sequent systems [1] have proved to be a flexible and robust logical formalism for defining proof systems. With 
the advent of new needs in the form of techniques and technologies (e.g., to reason in temporal, epistemic, and modal 
domains), the past decades have witnessed a vivid scene where novel sequent-based calculi have been proposed (see, e.g., 
[2,3]). It is fair to say that the most important aims of these new systems are the ultimate goal of having both a formal 
specification language and a mechanization of proof-search algorithms coming together with decision procedures –whenever 
possible and feasible.

Cut-free sequent systems are key for this latter purpose. Intuitively, the cut-rule expresses the mathematical use of 
lemmas in proofs: if A follows from B and C follows from A, then C follows from B . That is, one can cut the intermediate 
lemma A. Cut-admissibility theorems then state that any judgment that possesses a proof making use of the cut-rule also 
possesses a proof that does not make use of it. This is of practical convenience for proof-search purposes because it is often 
much easier to find proofs when the need to mechanically come up with auxiliary lemmas can be avoided. Moreover, there 
are important applications of cut-admissibility, such as the reduction of consistency proofs and “subformula properties” 
to mere structural syntactic checks. However, structural properties of a logical system such as cut-freeness are actually 
inductive meta-properties and thus undecidable to check in general. In practice, proof-theoretic approaches to establish 
them usually require combinatorial search heuristics based on the structure of formulas of each particular system. These 
heuristics, in turn, may depend on the ability to prove other inductive properties. For instance, Gentzen-style proofs of 
cut-admissibility heavily depend on checking admissibility of other structural rules (e.g., weakening and contraction) and 
showing that some of the sequent rules defining the system are invertible.

The main goal of this article is to present the L-Framework [4], a tool for algebraically specifying and analyzing 
propositional sequent systems. It provides both a specific scaffolding of constructs usually found in a sequent system, and 
algorithms for proving inductive properties such as admissibility, invertibility, cut-admissibility, and identity expansion. The 
proposed framework is generic in the sense that only mild restrictions are imposed on the formulas of the sequent system, 
and modular since admissibility of structural rules, invertibility, cut-admissibility and identity expansion can be proved 
incrementally.

The algorithms and their implementation in the L-Framework are based on the expressive power of rewriting logic 
[5], both as a logical and a reflective meta-logical framework [6,7]. A sequent system is specified as a rewriting logic theory 
S and a sequent as a formula ϕ in the syntax of S . In this setting, the process of building a proof of ϕ in S is cast as a 
reachability goal of the form S � ϕ

∗→ �, where � denotes the empty sequent. Therefore, as a logical framework, rewriting 
logic directly serves the purpose of providing a proof-search algorithm at the object level of S . Since rewriting logic is 
reflective, a universal rewrite theory U is further used to prove meta-logical properties (e.g., cut-freeness) of the system 
S . More precisely, such proofs are specified as reachability goals of the form U �

(
S ;�

) ∗→
(
S ;�

)
, where � is a set 

of sequents representing the proof-obligations to be discharged, and S and � are the meta-representation of S and � in 
the syntax of the universal theory U , respectively. In this way, starting with the specification of the propositional sequent 
system S in rewriting logic, the framework presented in this paper enables both the proof of theorems and inductive 
meta-theorems of S .

The framework comprises a generic rewrite theory offering sorts, operators, and standard procedures for proof-search 
at the object- and meta-level. The sorts are used to represent different elements of the syntactic structure of a sequent 
system such as formulas, sets of formulas, sequents, and collections of sequents. The inference rules of a sequent system 
are specified as reversed rewrite rules, so that an inference step of the mechanized system is carried out by matching a 
sequent to the conclusion of an inference rule, and replacing the latter by the corresponding substitution instance of the 
2
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rule’s premises. Conceptually, a proof at the object level is found when all proof-obligations are conclusions of inference 
rules without premises (i.e., axioms).

Once a sequent system S is specified, proofs of its cut-freeness, admissibility, invertibility, and identity expansion prop-
erties can be searched for. The process of obtaining proofs for each one of these properties follows a similar pattern. 
Namely, the rules of S are used by pair-wise comparison to generate the inductive hypothesis H and the proof obliga-

tions �. Therefore, if for each pair (H , �) the (meta-)reachability goal U �
(
S ∪ H ;�

) ∗→
(
S ∪ H ;�

)
can be answered 

positively, then the corresponding property of the sequent system S holds. The universal theory U contains the rewrite-
based heuristics that operate over S ∪ H and �. Much of the effort in obtaining the proposed framework was devoted to 
designing such meta-level heuristics and fully implementing them in Maude [8], a high-performance reflective language and 
system supporting rewriting logic.

The case studies presented in this paper comprise several propositional sequent systems, encompassing different proof-
theoretical aspects. The chosen systems include: single conclusion (G3ip) and multi-conclusion intuitionistic logic (mLJ), 
classical logic (G3cp), classical linear logic (LL) and its dyadic system (DyLL), intuitionistic linear logic (ILL), and normal 
modal logics (K and S4). Beyond advocating for the use of rewriting logic as a meta-logical framework, the novel algorithms 
presented here are able to automatically discharge many proof obligations and ultimately obtain the expected results. In 
fact, as detailed in Section 8, the only expected intervention from the user consists in manually adding the already proved 
theorems that can be used to complete the proof of another result. This reflects the dependencies of the different analyses, 
a step that can be further automated. For instance, admissibility of structural rules are usually needed to show invertibility 
results that, in turn, are extensively used in the proof of cut-elimination.

This paper is an extended version of the work [9], bringing not only new results and analyses, but also new uses of the 
L-Framework tool. In particular:

• Properties and the spectrum of logics: the procedures have been updated and extended to automatically check invertibility 
of rules in a larger class of logical systems, including modal logics and variants of linear logic. Moreover, the current 
analyses prove stronger properties: invertibility lemmas and admissibility of structural rules are shown to be height-
preserving (a fact needed in the proof of cut-admissibility). For that, the definitions and necessary conditions in Section 5
were refined.

• New reasoning techniques: cut-admissibility is probably the most important property of sequent systems. This paper 
shows how to use the proposed framework to automatically discharge most of the cases in proofs of cut-admissibility. 
In some cases, the proposed algorithms are able to complete entire cut-admissibility proofs. The cases of failure are also 
interesting, since they tell much about the reasons for such failure. Some are fixable by proving and adding invertibility 
and admissibility lemmas. Others can be used in order to shed light on the reason for the failure. Finally, this work also 
addresses the dual property of identity expansion. Together with cut-admissibility, this property is key for designing 
harmonical systems [10].

• Pretty printing and output: the previous implementation has been updated to generate proof terms that can be used, e.g., 
to produce LATEX files with the proof trees in the meta-proofs. This allows for generating documents with complete and 
detailed proofs of several results in the literature, as well as identifying dependencies among the different theorems.

Outline. The rest of the paper is organized as follows. Section 2 introduces the structural properties of sequent systems that 
are considered in this work and Section 3 presents order-sorted rewriting logic and its main features as a logical framework. 
Section 4 presents the machinery used for specifying sequent systems as rewrite theories. Then, Section 5 establishes how to 
prove the structural properties based on a rewriting approach. Section 6 addresses cut-admissibility and identity expansion. 
The design principles behind the L-Framework are described in Section 7. Section 8 presents different sequent systems 
and properties that can be proved with the approach. Finally, Section 9 concludes the paper and presents some future 
research directions.

2. Structural properties of sequent-based proof systems

This section presents and illustrates with examples the properties of admissibility and invertibility of rules in sequent 
systems [11,12]. Additional notation and standard definitions are established to make the text self-contained.

Definition 1 (Sequent). Let L be a formal language consisting of well-formed formulas. A sequent is an expression of the 
form � � � where � (the antecedent) and � (the succedent) are finite multisets of formulas in L , and � is the consequence
symbol. If the succedent of a sequent contains at most one formula, it is called single-conclusion; otherwise, it is called 
multiple-conclusion.

Definition 2 (Sequent system). A sequent system S is a finite set of inference rules of the form:

S1 · · · Sn

S
r

3
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�, p � p
I

� � � �R
� � C

�,� � C
�L

�,⊥ � C
⊥L

�, F � C �, G � C

�, F ∨ G � C
∨L

� � Fi

� � F1 ∨ F2
∨Ri

�, F , G � C

�, F ∧ G � C
∧L

� � F � � G
� � F ∧ G

∧R

�, F ⊃ G � F �, G � C

�, F ⊃ G � C
⊃L

�, F � G

� � F ⊃ G
⊃R

Fig. 1. System G3ip for propositional intuitionistic logic. In the I axiom, p is atomic.

where the sequent S is the conclusion inferred from the premise sequents S1, . . . , Sn in the rule r. If the set of premises is 
empty, then r is an axiom. In a rule introducing a connective, the formula with that connective in the conclusion sequent is 
the principal formula. When sequents are restricted to having empty antecedents (hence being of the shape � �), the system 
is called one-sided; otherwise it is called two-sided.

As an example, Fig. 1 presents the two-sided single-conclusion propositional intuitionistic sequent system G3ip [11], with 
formulas built from the grammar:

F , G ::= p | � | ⊥ | F ∨ G | F ∧ G | F ⊃ G

where p ranges over atomic propositions. In this system, for instance, the formula F ∨ G in the conclusion sequent of the 
inference rule ∨L is the principal formula.

Definition 3 (Derivation). A derivation in a sequent system S (called S -derivation) is a finite rooted tree with nodes labeled 
by sequents, axioms at the leaf nodes, and where each node is connected with the (immediate) successor nodes (if any) 
according to its inference rules. A sequent S is derivable in the sequent system S , notation S � S , iff there is a derivation 
of S in S . The system S is usually omitted when it can be inferred from the context.

It is important to distinguish the two different notions associated to the symbols � and �, namely: the former is used 
to build sequents and the latter denotes derivability in a sequent system.

Definition 4 (Height of derivation). The height of a derivation is the greatest number of successive applications of rules in it, 
where an axiom has height 1. The expression

S �n � � �

denotes that the sequent � � � is derivable in S with a height of derivation at most n. A property is said height-preserving
if such n is an invariant. The annotated sequent

� �n �

is a shorthand for S �n � � � when S is clear from the context. Moreover, when S is a sequent, this notation is further 
simplified to n : S .

In what follows, annotated sequents are freely used in inference rules. For instance, if suc(·) represents the successor 
function on natural numbers, then

n : S1 . . . n : Sk

suc(n) : S
r

represents the annotated rule r stating that

if S �n Si for each i = 1, . . . ,k, then S �suc(n) S

Some other rules can be added to the system without changing the set of theorems (provable formulas) in it. These 
added rules may ease the reasoning when proving sequents and they are said to be admissible in the system. Invertibility, on 
the other hand, is the admissibility of “upside-down” rules, where the premises of a rule are derived from the conclusion. 
Invertibility is one of the most important properties in proof theory, since it is the core of proofs of cut-admissibility [1], as 
well as the basis for tailoring focused proof systems [13,14].

Definition 5 (Admissibility and invertibility). Let S be a sequent system. An inference rule 
S1 · · · Sk

S is called:

i. admissible in S if S is derivable in S whenever S1, . . . , Sk are derivable in S ;
ii. invertible in S if the rules S , . . . , S are admissible in S .
S1 Sk

4
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The admissibility of structural rules is often required in the proof of other properties. A structural rule does not introduce 
logical connectives, but instead changes the structure of the sequent. Since sequents are built from multisets, such changes 
are related to the multiplicity of a formula or its presence/absence in a context.

In the intuitionistic setting, the structural rules for weakening and contraction

� � C
�,� � C

W and
�,�,� � C
�,� � C

C (1)

are height-preserving admissible in G3ip. A proof of the admissibility of weakening can be obtained by induction on the 
height of derivations (considering all possible rule applications) and it is often independent of any other results. For example, 
suppose that G3ip �n � � C and consider, e.g., the case where C = A ⊃ B and that the last rule applied in the proof of 
� � A ⊃ B is ⊃R

�, A �i B
� �suc(i) A ⊃ B

⊃R

By inductive hypothesis, the sequent �, �, A �i B is derivable and then,

�,�, A �i B
�,� �suc(i) A ⊃ B

⊃R

The same exercise can be done for the other rules of the system, thus showing that W is height-preserving admissible:

G3ip �n � � C implies G3ip �n �,� � C

On the other hand, proving invertibility of a rule may require the admissibility of weakening. For example, for proving 
that ⊃R is height-preserving invertible in G3ip, one has to show that G3ip �n �, F � G whenever G3ip �n � � F ⊃ G . The 
proof follows by induction on the height of the derivation of � � F ⊃ G . Consider, e.g., the case when � = �′, A ⊃ B and the 
last rule applied is ⊃L

�′, A ⊃ B �i A �′, B �i F ⊃ G

�′, A ⊃ B �suc(i) F ⊃ G
⊃L

By inductive hypothesis on the right premise, �′, B, F �i G is derivable. Considering the left premise, since � �i A is derivable, 
height-preserving admissibility of weakening implies that �, F �i A is derivable and the result follows:

�, F �i A �′, B, F �i G
�, F �suc(i) G

⊃L

Note that not all introduction rules in G3ip are invertible: if p1, p2 are different atomic propositions, then pi � p1 ∨ p2
is derivable for i = 1, 2, but pi � p j is not for i �= j. Indeed, ∨Ri and ⊃L are the only non-invertible rules in G3ip.

Finally, admissibility of contraction (C) often depends on invertibility results. As an example, consider that G3ip �n

�, F ∨ G, F ∨ G � C with last rule applied ∨L

�, F ∨ G, F �i C �, F ∨ G, G �i C
�, F ∨ G, F ∨ G �suc(i) C

∨L

The inductive hypothesis cannot be applied since the premises do not have duplicated copies of formulas. Since ∨L is 
height-preserving invertible, the derivability of �, F ∨ G, F �i C and �, F ∨ G, G �i C implies, respectively, the derivability of 
�, F , F �i C and �, G, G �i C . By induction, �, F �i C and �, G �i C are derivable and the result follows:

�, F �i C �, G �i C
�, F ∨ G �suc(i) C

∨L

Invertibility and admissibility results will be largely used for showing cut-admissibility in Section 6.

3. Rewriting logic preliminaries

This section briefly explains order-sorted rewriting logic [5] and its main features as a logical framework. Maude [8] is a 
language and tool supporting the formal specification and analysis of rewrite theories, which are the specification units of 
rewriting logic.

An order-sorted signature � is a tuple �=(S, ≤, F ) with a finite poset of sorts (S, ≤) and a set of function symbols F
typed with sorts in S , which can be subsort-overloaded. For X = {Xs}s∈S an S-indexed family of disjoint variable sets with 
each Xs countably infinite, the set of terms of sort s and the set of ground terms of sort s are denoted, respectively, by T�(X)s and 
T�,s; similarly, T�(X) and T� denote the set of terms and the set of ground terms. A substitution is an S-indexed mapping 
5
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θ : X −→ T�(X) that is different from the identity only for a finite subset of X and such that θ(x) ∈ T�(X)s if x ∈ Xs , for any 
x ∈ X and s ∈ S . A substitution θ is called ground iff θ(x) ∈ T� or θ(x) = x for any x ∈ X . The application of a substitution 
θ to a term t is denoted by tθ . Acquaintance with the usual notions of position p in a term t , subterm t|p at position p, 
and term replacement t[u]p of t ’s subterm at position p with term u is assumed (see, e.g., [15]). The expression u � t (resp., 
u ≺ t) denotes that term u is a subterm (resp., proper subterm) of term t . Given a term t ∈ T�(X), t ∈ T(S,≤,F∪Ct )

(X) is the 
ground term obtained from t by turning each variable x ∈ vars(t) of sort s ∈ S into the fresh constant x of sort s and where 
Ct = {x | x ∈ vars(t)}.

A rewrite theory is a tuple R = (�, E � B, R) with: (i) (�, E � B) an order-sorted equational theory with signature �, 
E � B the disjoint union of E , a set of (possibly conditional) equations over T�(X) and B , a set of structural axioms over 
T�(X) for which there is a finitary matching algorithm (e.g., associativity, commutativity, and identity, or combinations of 
them); and (ii) R a finite set of rewrite rules over T�(X) (possibly with equational conditions). A rewrite theory R induces 
a rewrite relation →R on T�(X) defined for every t, u ∈ T�(X) by t →R u if and only if there is a one-step rewrite proof of 
(∀X)t → u in R . More precisely, t →R u iff there is a rule (l → r if γ ) ∈ R , a term t′ , a position p in t′ , and a substitution 
θ : X −→ T�(X) satisfying t =E�B t′ = t′[lθ]p , u =E�B t′[rθ]p , and γ θ can be inferred from R . When the condition γ is true, 
then the (conditional) rule l → r if γ is simply written as l → r.

The tuple TR = (T�/E , ∗→R), where ∗→R is the reflexive-transitive closure of →R , is called the initial reachability model 
of R [16]. An inductive property of a rewrite theory R does not need to hold for any model of R , but just for TR . Using a 
suitable inductive inference system, for example, one based on a convenient notion of constructors as proposed in [17], the 
semantic entailment |= in TR can be under-approximated by an inductive inference relation � over R , which is shown to 
be sound with respect to |= (i.e., for any property ϕ , if R � ϕ , then TR |= ϕ). A �-sentence (∀X) ϕ is called an inductive 
consequence of R iff R � (∀X) ϕ , and this implies that TR |= ϕ .

Appropriate requirements are needed to make an equational theory R executable in Maude. It is assumed that the 
equations E can be oriented into a set of (possibly conditional) sort-decreasing, operationally terminating, and confluent 
rewrite rules 

−→
E modulo B [8]. For a rewrite theory R , the rewrite relation →R is undecidable in general, even if its 

underlying equational theory is executable, unless conditions such as coherence [18] are given (i.e., rewriting with →R can 
be decomposed into rewriting with →E/B and →R/B ). The executability of a rewrite theory R ultimately means that its 
mathematical and execution semantics coincide.

In this paper, the rewriting logic specification of a sequent system S is a rewrite theory RS = (�S , ES � BS , RS )

where: �S is an order-sorted signature describing the syntax of the logic S ; ES is a set of executable equations modulo 
the structural axioms BS ; and RS is a set of executable rewrite rules modulo BS capturing those non-deterministic 
aspects of logical inference in S that require proof search. The point is that although both the computation rules ES
and the deduction rules RS are executed by rewriting modulo BS , by the executability assumptions on RS , the rewrite 
relation →ES /BS has a single outcome in the form of a canonical form and thus can be executed blindly with a “don’t 
care” non-deterministic strategy. Furthermore, BS provides yet one more level of computational automation in the form of 
BS -matching and BS -unification algorithms. This interplay between axioms, equations, and rewrite rules can ultimately 
make the executable specification RS very efficient with modest memory requirements.

The expression CSUB(t, u) denotes the complete set of unifiers of terms t and u modulo the structural axioms B . Recall 
that for each substitution σ : X −→ T�(X), such that tσ =B uσ , there are substitutions θ ∈ CSUB(t, u) and γ : X −→ T�(X)

satisfying σ =B θγ . For a combination of free and associative and/or commutative and/or identity axioms B , except for 
symbols that are associative but not commutative, such a finitary unification algorithm exists [19].

The unification problems solved here comprise terms of sort Sequent (defined in the next section), where the set 
B corresponds to identity, commutativity, and associativity (ACU). Those are the usual structural axioms for multisets of 
formulas needed to represent the left and right contexts in sequents. Hence, the finitary algorithm implemented in Maude 
is used [20]. Unification is used to mechanize some of the inference rules in the proposed framework by exploiting the 
structure of terms, and thus implementing reasoning with the inductive relation �. Moreover, matching modulo ACU is 
needed because sequents are included as part of the simplification tasks internally performed by the proposed heuristics to 
discharge proof obligations. In Maude, both matching and unification modulo ACU are built-in procedures, and used here as 
blackboxes. A recent account of such features can be found in [21].

4. A rewriting view of sequent systems

This section presents the machinery used for specifying a propositional sequent system S as a rewrite theory RS . The 
framework is equipped with sorts that represent formulas, multisets of formulas, sequents, and lists of sequents. The user 
of the framework is expected to inhabit the sort for formulas in RS with the concrete syntax of the system S . This has 
the immediate effect of fully inhabiting the remaining sorts of RS . As shown below, rewrite rules in RS correspond to 
backwards inference rules of S , so that proof-search in the former is successful whenever all leaves in a proof-tree are 
instances of axioms. The system G3ip (Fig. 1) is used throughout the section for illustrating the proposed approach.

The notation of Maude [8] is adopted as an alternative representation to the rewriting logic one introduced in Section 3. 
This decision has the immediate effect of producing an executable specification of sequent systems, while providing a 
precise mathematical semantics of the given definitions. Additional details about the implementation in Maude are given in 
Section 7.
6
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As a reference for the development of this section, Maude declarations are summarized next.

mod M is ... endm --- Rewrite theory M
sort S . --- Declaration of sort S
subsort S1 < S2 . --- Subsort relation
op f : S1 ... Sn -> T . --- Funct. sym. of sort T with

--- params in S1 x ... x Sn
op c : -> T . --- Constant c of sort T
rl [rule-name] : l => r . --- Rewrite rule with name ’rule-name’
crl [rule-name] : l => r if c . --- Conditional rewrite rule

An order-sorted signature �S defining the sorts for building formulas (and multisets of formulas and sequents, which 
are introduced later), is assumed:

sort Prop . --- Atomic propositions
sort Formula . --- Formulas
subsort Prop < Formula . --- Atomic propositions are formulas

The object logic to be specified must provide suitable constructors for these two sorts. For instance:

mod G3i is
...
op p : Nat -> Prop . --- Atomic Propositions
op _/\_ : Formula Formula -> Formula . --- Conjunction
op False : -> Formula . --- False/bottom
...
endm

Atomic propositions take the form p(n), where the natural number n is the identifier of the proposition (e.g., the proposition 
p3 is written as p(3)). Constructors for Prop are not allowed to have arguments of type Formula.

Multisets of formulas are built in the usual way:

sort MSFormula . --- Multiset of Formulas
subsort Formula < MSFormula . --- A formula is also a singleton
op * : -> MSFormula . --- Empty multiset
--- Multiset Union
op _;_ : MSFormula MSFormula -> MSFormula [assoc comm id: * ] .

Given two multisets M and N , the term M;N denotes the multiset union of M and N . Note that the mixfix operator op _;_
(in Maude, _ denotes the position of the parameters) is declared with three structural axioms: associativity, commutativity, 
and the empty multiset as its identity element. Due to the subsort relation Formula < MSFormula, a formula F is also a 
singleton containing F .

Sequents, as expected, are built as pairs of multisets of formulas. A goal is a list of sequents to be proved:

sorts Sequent .
op _|--_ : MSFormula MSFormula -> Sequent . --- Sequents
--- Goals: List of sequents to be proved
sorts Goal .
subsort Sequent < Goal .
op proved : -> Goal . --- The empty list
op _|_ : Goal Goal -> Goal [frozen(2) id: proved] .

The attribute frozen used in the declaration of the operator op _|_ (goals’ concatenation) means that inference steps can 
only be performed on the head of a non-empty list of goals (i.e., the usual ‘head-tails’ recursive structure). More precisely, 
the attribute frozen(2) defines a rewriting strategy where the second parameter cannot be subject of rewriting. In this 
way, only the first sequent S in the list S | G can be reduced until it becomes proved (when possible), as will be explained 
shortly.

Inference rules in the theory RS are specified as rules that rewrite list of sequents (i.e., goals). There are two options for 
expressing an inference rule as a rewrite rule. Namely, they can be axiomatized as backwards inference (i.e., from conclusion 
to premises) or as forward inference (i.e., from premises to conclusion). In this paper, as explained in Section 3, the back-
wards inference approach is adopted, so that a proof-search process advances by rewriting the target goal of an inference 
rule to its premises, thus implementing a goal directed proof-search procedure. For instance, the initial rule, and the left 
and right introduction rules for conjunction in G3ip are specified as follows:

var P : Prop .
var Gamma : MSFormula .
vars A B C : Formula .
--- Rules
7
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rl [I] : P ; Gamma |-- P => proved .
rl [AndL] : A /\ B ; Gamma |-- C => A ; B ; Gamma |-- C .
rl [AndR] : Gamma |-- A /\ B => (Gamma |-- A) | (Gamma |-- B) .

Variables in rules are implicitly universally quantified. The type of variables is specified with the syntax var x : T . 
Hence, the initial rule must be read as

(∀P : Prop,� : MSFormula)((P ,� � P ) → proved)

The constant proved denotes the empty list of goals or, equivalently, the empty collection of (pending) proof obligations. 
Rules with more than one premise, such as AndR, are specified using op: _|_. Modulo the axioms BS , a term proved | G

is structurally equal to G, thus making the goal G automatically active for proof-search under the rewrite strategy declared 
for goals.

As illustrated with the running example, the syntax of the object logic in RS , as well as its inference rules, is straight-
forward. This is usually called in rewriting logic the ε-representational distance [22], where the system being specified 
mathematically as a rewrite theory and its codification in Maude as a system module are basically the same. This is certainly 
an appealing feature that can widen the adoption of the framework proposed here for implementing and analyzing sequent 
systems.

In face of the ε-representational distance, the adequacy of RS with respect to S follows from the soundness of rewrit-
ing logic itself.

Proposition 1 (Adequacy). Let S be a sequent system, RS the resulting rewrite theory encoding the syntax and inference rules of 
S , S a sequent in S , and tS its representation in RS . Then,

S � S iff RS � tS
∗→ proved.

Observe that the proof of a sequent S in S may follow different strategies depending on the order the subgoals are 
proved. Such strategies are irrelevant because all the branches in the derivation of a proof must be closed (i.e., ending with 
an instance of an axiom). Hence, if S is provable, it can be proved using the strategy enforced by op _|_ in RS : always 
trying to first solve the left-most subgoal of the pending goals.

Let r be a sequent rule in S and R the corresponding rewrite rule in RS . Modulo the associativity and commutativity 
of multisets of formulas, it is easy to show that, for any sequent S and its representation tS , tS

1→RS t′
S iff t′

S is the repre-
sentation of the premises (where proved means no premises) obtained when r is applied (on the same active formula) in 
S . Hence, rewrite steps are in one-to-one correspondence with proof search steps in S -derivations.

When using the proposed framework, the resulting rewrite theory becomes a proof search procedure. For instance, 
Maude’s command

search p(1) /\ p(2) |-- p(2) /\ p(1) =>* proved .

answers the question of whether the sequent p1 ∧ p2 � p2 ∧ p1 is provable in G3ip.
For the proof analyses later developed in this paper, operations to the rewrite theory RS are added. A new constructor 

for annotated sequents (see Definition 4) and also a copy of the inference rules dealing with height annotations are included:

op _:_ : Nat Sequent -> Sequent . --- Annotated sequents
var k : Nat .
--- Automatically generated annotated sequent rules
rl [I] : suc(k) : P ; Gamma |-- P => proved.
rl [AndL] : suc(k) : A /\ B ; Gamma |-- C => k : A ; B ; Gamma |-- C .
rl [AndR] : suc(k) : Gamma |-- A /\ B => ( k : Gamma |-- A) | ( k : Gamma |-- B) .

The function application suc(.) denotes the successor function on Nat. Note that axioms are annotated with an ar-
bitrary height k ≥ 1. In rules with two premises, both of them are marked with the same label. This is without loss of 
generality since it is always possible to obtain larger annotations from shorter ones (see Lemma 1).

In the rest of the paper, given a sequent system S , RS will denote the resulting rewrite theory that encodes the syntax, 
inference, and annotated inference rules of S . By abusing the notation, when a sequent S ∈ S is used in the context of the 
rewrite theory RS (e.g., in S →RS

S ′), such S must be understood as the corresponding term tS ∈ �RS
(X) representing 

S in RS . Similarly, “a sequent rule r” in the context of the theory RS must be understood as “the representation of r
in RS ”. The expression R1 ∪ R2 denotes the union of the theories R1 and R2. If S is a sequent, the expression R ∪ {S}
denotes the extension resulting from R by adding the sequent S as an axiom, understood as a zero-premise rule (i.e., R
is extended with the rule rl [ax] S => proved .). Moreover, given a rewrite theory R and a sequent S , the notation 
R � S means R � S

∗→ proved, i.e., there is a derivation of S in the system specified by R . Similarly, for annotated 
sequents, R � n : S means R � (n : S) ∗→ proved.
8
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Lemma 1. Let S be a sequent system, S a sequent, and k ≥ 1. Then,

RS � k : S implies RS � suc(k) : S.

Proof. By induction on k. If k = 1, then S is necessarily an instance of an axiom and suc(1) : S →RS
proved using the 

same axiom. The case k > 1 is immediate by applying induction on the premises (with shorter derivations). An instance of 
this theorem will be (automatically) proved for each one of the systems studied in Section 8. �
5. Proving admissibility and invertibility

This section presents rewrite-based techniques for proving admissibility and invertibility of inference rules of a sequent 
system specified as a rewrite theory RS (see Section 4). They are presented as meta-theorems about sequent systems 
with the help of rewrite-related scaffolding, such as terms and substitutions, and they provide sufficient conditions for 
obtaining the desired properties. The system G3ip is, as in previous sections, used as running example (Section 8 presents 
the complete set of case studies).

The procedures proposed here heavily depend on unification and a brief discussion on the subject is presented next. 
Since no additional axioms are added to the symbols in the syntax of the object logic S , the existence of a unification 
algorithm for terms in the sort Sequent (whose only symbol defined with axioms is _;_ for building multiset of formulas) 
is guaranteed. Furthermore, recall from Section 4 that rewrite rules in RS correspond to backwards inference rules of S , 
so that proof-search in the former is successful whenever all leaves in a proof-tree are instances of axioms.

As an example, consider the unification of the conclusions of the right and left rules for conjunction in G3ip. Unification 
problems take the form t1 =? t1’ /\ ... /\ tn =? tn’ and Maude’s command irredundant unify computes the 
set of unifiers modulo the declared axioms in the theory1:

irredundant unify suc(n) : A /\ B ; Gamma |-- C =?
suc(n’) : Gamma’ |-- A’ /\ B’ .

Unifier #1
n --> %3:FNat n’ --> %3:FNat
A --> %1:Formula A’ --> %4:Formula
B --> %2:Formula B’ --> %5:Formula
C --> %4:Formula /\ %5:Formula
Gamma --> %6:MSFormula
Gamma’ --> %6:MSFormula ; %1:Formula /\ %2:Formula

No more unifiers.

Observe that the variables of the second rule are renamed to avoid clash of names. The term %1:Formula denotes a fresh 
variable of sort Formula. Let t and t′ be the two terms in the above unification problem and θ the (unique) substitution 
computed. Consider the least signature �′

RS
that contains �RS

as well as a fresh constant %i.Type for each variable 
%i:Type in tθ . Note the “:” in the variable %i:Type and the “.” in the constant %i.Type. To avoid confusion, when the sort 
can be inferred from the context, the constant %i.Type is written as %i, but variables always carry their typing information. 
In this example, �′

RS
extends �RS

with constants

op %1 : -> Formula ., op %6 : -> MSFormula ., etc.

Recall from Section 3 that given a term t , t is the ground term obtained from t by replacing its variables with fresh con-
stants. In the current example, the ground term tθ in the signature �′

RS
is suc(%4) : %1 /\ %2 ; %6 |-- %4 /\ %5. 

As expected, on this (ground) sequent it is possible to apply both AndL and AndR.

5.1. Admissibility of rules

This section introduces sufficient conditions to prove theorems of the form

if S �n �′ � �′ , then S �n � � �

i.e., height preserving admissibility of the rule2

1 The “irredundant” version of the command unify in Maude 3.2.1 allows for filtering the computed unifiers against each other, thus obtaining a 
minimal set of most general unifiers.

2 The admissibility problems considered in this section correspond to one-premise rules only. Observe that a general approach for proving admissibility 
of rules with more than one premise does not exist. Indeed, cut-admissibility itself is an admissibility problem, which will be addressed in Section 6.
9
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�′ � �′
� � �

r

Admissibility is often proved by induction on the height of the derivation π of the sequent �′ � �′ in combination 
with case analysis on the last rule applied in π . It turns out that this analysis may depend on other results. For example, 
as illustrated in Section 2, proving admissibility of contraction often depends on invertibility results. Hence, any general 
definition of admissibility of rules in the rewriting setting has to internalize such reasoning. This will be formalized by 
closing the leaves in π w.r.t. theorems of the form “if the sequent S1 is provable, so is the sequent S2”. Such theorems 
will be encoded as rewrite rules of the form r : S1 → S2. More precisely, let ts be a ground term denoting a sequent and 
r : t → t′ be a rule. The set

[[ts]]r = {ts} ∪ {t′θ | θ ∈ CSU(t, ts)}
is the least set containing ts and the resulting premises after the instantiation of r in ts . Let Ts be a set of ground terms 
and R = {r1, ...rm} be a set of theorems of the form rk : tk → tk

1. Then,

[[Ts]]R = Ts ∪
⋃

k∈1..m

{tk
1θ | t ∈ Ts, θ ∈ CSU(tk, t)}.

Proofs of admissibility need to consider all the cases of the last rule applied in a proof π . Definition 6 identifies rules 
that are height-preserving admissible relative to one of the sequent rules of the system.

Definition 6 (Local admissibility). Let S be a sequent system, I be a (possibly empty) set of rules, and rt , rs ∈ S be rules 
given by

k : T1 · · · k : Tn

suc(k) : T
rt

S1

S
rs

The rule rs is height-preserving admissible relative to rt in S under the assumptions I iff assuming that i : S1 is provable then, 
for each θ ∈ CSU(i : S1, suc(k) : T ),

RS ∪ [[{(k : T j)θ | j ∈ 1..n}]]I ∪ {(∀�x)(kθ : S1 → kθ : S)} � (i : S)θ,

where vars(i : S1) ∩ vars(suc(k) : T ) = ∅ and �x = vars(S) ∪ vars(S1).

For proving admissibility of the rule rs , the goal is to prove that, if S1 is derivable with height i, then S is also derivable 
with at most the same height. The proof follows by induction on i (the height of a derivation π of S1). Suppose that the 
last rule applied in π is rt . This is only possible if S1 and T “are the same”, up to substitutions. Hence, the idea is that 
each unifier θ of i : S1 and suc(k) : T covers the cases where the rule rt can be applied on the sequent S1. For computing 
this unifier, it is assumed that the rules do not share variables (the implementation takes care of renaming the variables if 
needed). A proof obligation is generated for each unifier. Consider, for instance, the proof obligation of the ground sequent 
(i : S)θ for a given θ ∈ CSU(i : S1, suc(k) : T ). This means that, as hypothesis, the derivation below is valid

(k : T1)θ · · · (k : Tn)θ

(i : S1)θ
rt

(2)

Hence, all the premises in this derivation are assumed derivable. This is the purpose of extending the theory with the 
following set of ground sequents (which are interpreted as rules of the form t → proved):{

(k : T j)θ | j ∈ 1..n
}

(3)

The proof of admissibility theorems may require auxiliary lemmas. Assuming the theorems I , the sequents resulting 
after an application of r ∈ I to the sequents in Equation (3) can also be assumed to be provable (notation [ [·] ]I ). The 
typical instantiation of I in admissibility analysis will be the already proved invertibility lemmas.

If θ ∈ CSU(i : S1, suc(k) : T ), then θ should map k to a fresh variable, say %1:Nat and i to suc(%1:Nat). Hence, the 
(ground) goal (i : S)θ to be proved takes the form suc(%1) : Sθ where %1= kθ is the freshly generated constant in the 
extended signature. By induction, it can be assumed that the theorem (i.e., S1 implies S) is valid for shorter derivations, i.e., 
derivations of height at most %1. This is the purpose of the added rule

{(∀�x)(kθ : S1 → kθ : S)} (4)

where the height of the derivation is “frozen” to be the constant kθ . This allows for applying rs only on sequents of height 
kθ . In particular, induction can be used on all the premises of the rule rt in Equation (2).
10
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If it is possible to show that the ground sequent (i : S)θ is derivable from the extended rewrite theory, then the admis-
sibility result will work for the particular case when rt is the last applied rule in the derivation π of S1. Since a complete 
set of unifiers is finite for terms of the sort Sequent, then there are finitely many proof obligations to discharge in order to 
check if a rule is admissible relative to a rule in a sequent system. Observe that the set CSU(i : S, suc(k) : T ) may be empty. 
In this case, the set of proof obligations is empty and the property vacuously holds.

The base cases in this proof correspond to axiom rules. Consider for instance the case where rt is the initial rule in the 
system G3ip. Since there are no premises, the set in Equation (3) is empty and hence there are no ground sequents of the 
form %1:T jθ as hypothesis. Consider the hypothetical case that suc(%1):Sθ is rewritten to a term of the form %1: S’ by 
using another rule of the system (different from the initial rule rt ). Note that it is not possible to use the rule in Equation 
(4) to reduce the goal to proved: an application of this rule produces inevitably yet another sequent of the form %1: S’’. 
Thus the only hope to finishing the proof is to apply the initial rule on the sequent suc(%1):Sθ and the rule in Equation 
(4) is never used in such a proof.

The notion of admissibility relative to a rule is the key step in the inductive argument, when establishing sufficient 
conditions for the admissibility of a rule in a sequent system.

Theorem 1. Let S be a sequent system, I be a (possibly empty) set of rules, and 
�′ � �′
� � �

rs
be an inference rule. If rs is admissible 

relative to each rt in S under the assumption I , then rs is height-preserving admissible in S under the assumption I , i.e., S �n

�′ � �′ implies S �n � � � assuming the theorems I .

Proof. Assume that �′ �n �′ is derivable in the system S . The proof proceeds by induction on n with case analysis on the 
last rule applied. Assume that the last applied rule is rt . By hypothesis (using Definition 6), it can be concluded that � �n �

is derivable and the result follows. �
It is important to highlight the rationale behind Definition 6, which is similar to the results in the forthcoming sections. 

The proof search procedures try to show that (i : S)θ is provable by reducing it to provable (Proposition 1). Since rules 
in RS are encoded in a backward fashion (rewriting the conclusion into the premises), the procedure attempts to build a 
goal directed derivation of that sequent. The set of assumptions (Equation (3)) is added as axioms and it is closed under 
the rules in I . The closure reflects a forward reasoning: if the (ground) sequent S is provable and theorem r ∈ I applies 
on it, then the right-hand side of r can also be assumed to be provable. During the search procedure, a goal is immediately 
discharged if it belongs to that set of assumptions. Finally, the induction principle is encoded by specializing the theorem 
to be proved, and allowing applications of it to ground sequents with shorter height annotations (Equation (4)).

The proof of admissibility of weakening for G3ip and some other systems studied in Section 8 does not rely on any result 
(and hence, I is empty). Also, the proof of Lemma 1, mechanized by stating it as the admissibility of the annotated rule

n : S
suc(n) : S

H
(5)

is also proved with I = ∅ in all the systems in Section 8. The proof of contraction requires some invertibility lemmas 
and they must be added to I . The use of I thus presents a convenient and modular approach because properties can be 
proved incrementally.

Section 8.3 presents some further examples where the above definitions can be applied for proving that other rules with 
one premise satisfy the admissibility condition, i.e., the provability of the premise implies the provability of the conclusion.

5.2. Invertibility of rules

This section gives a general definition for proving height-preserving invertibility of rules. Observe that such analysis is 
done premise-wise. The case of rules with several premises is performed for each one of them separately. For instance, 
consider the rule ⊃L of G3ip, and let ⊃L1 and ⊃L2 be the rules

�, F ⊃ G � F �, G � C
�, F ⊃ G � C

⊃L
�, F ⊃ G � C
�, F ⊃ G � F

⊃L1
�, F ⊃ G � C

�, G � C
⊃L2

It can be shown that ⊃L1 is not admissible while ⊃L2 is. Hence, ⊃L is invertible only in its right premise (see Definition 5).
Some invertibility results depend on, e.g., the admissibility of weakening. Hence, for modularity, the invertibility analysis 

is parametric under a set of rules H of admissible rules of the system (that can be used during the proof search procedure).

Definition 7 (Local invertibility). Let S be a sequent system and H be a (possibly empty) set of rules. Consider the following 
annotated inference rules:

k : S1 · · · k : S p

suc(k) : S
rs

m : T1 · · · m : Tn

suc(m) : T
rt
11
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Under the assumption H , the premise l ∈ 1..p of the rule rs is height-preserving invertible relative to the rule rt iff for each 
θ ∈ CSU(suc(k) : S, suc(m) : T ):

H ∪ RS ∪
{
(m : T j)θ | j ∈ 1..n

}
∪

⋃
j∈1..n

{(m : Sl)γ | γ ∈ CSU(k : S, (m : T j)θ)} � (k : Sl)θ

where the variables in S and T are assumed disjoint. Under the assumption H , the rule rs is height-preserving invertible 
relative to rt if all its premises are.

In order to show the invertibility of a rule rs , the goal is to check that derivability is not lost when moving from the 

conclusion S to the premises S1, · · · , S p . Each premise Sl entails a different proof obligation. Let 
Sl

S
rsl be the “sliced” 

version of rule rs when the case of the premise l ∈ 1..p is considered. The proof is by induction on the derivation π of 
S . Suppose that the last rule applied in π is rt . Observe that this is only possible if S and T unify. Let θ ∈ CSU(suc(k) :
S, suc(m) : T ) and assume that θ(k) =%1:Nat (and hence θ(m) =%1:Nat). The resulting derivation π takes the form

%1 : T1θ . . . %1 : Tnθ

suc(%1) : Sθ
rt

(6)

The premises of this derivation are assumed to be provable and the theory is extended with the axioms (m : T j)θ . Since 
those premises have shorter derivations, induction applies on them. More precisely, given that the ground sequent (m : T j)θ

is provable and the rule rsl can be applied on it, the resulting sequent after the application of rsl (T j Sl below) is also 
provable with the same height of derivation mθ :

if
T j Sl

T jθ
rslthen the sequent T j Sl is provable with height %1 (7)

This inductive reasoning is captured by the expression⋃
j∈1..n

{(m : Sl)γ | γ ∈ CSU(k : S, (m : T j)θ)}

The unifier γ checks whether it is possible to apply rsl on the premise T j . If this is the case, the resulting premise Slγ

is added as an axiom. If, from the extended theory, it is possible to prove derivable the premise Sl with height kθ , then the 
invertibility result will work for the particular case when rt was the last applied rule in the derivation π of S . If the set 
CSU(suc(k)S, suc(m) : T ) is empty, it means that the rules rt and rs cannot be applied on the same sequent and the property 
vacuously holds for that particular case of rt . For instance, in G3ip, the proof of invertibility of ∧R does not need to consider 
the case of invertibility relative to ∨R since it is not possible to have, at the same time, a conjunction and a disjunction 
on the succedent of the sequent. In multiple-conclusion systems as e.g, G3cp (see Section 8.3), this proof obligation is not 
vacuously discharged.

The next theorem presents sufficient conditions for checking the invertibility of a rule rs in a sequent system. The proof 
is similar to the one given for Theorem 1.

Theorem 2. Let S be a sequent system, H be a set of rules, and rs be an inference rule with p ≥ 1 premises in S . Let l ∈ 1..p. 
If the premise l of rs is height-preserving invertible relative to each rt in S under the assumption H , then the premise l in rs is 
height-preserving invertible in S under the assumption H .

Note that if rs is a rule without premises (i.e., an axiom), invertibility vacuously holds according to Definition 5. Hence, 
only the case for p ≥ 1 premises is considered in the theorem above.

Most of the proofs of invertibility require Lemma 1 and, in some cases, admissibility of weakening. Hence, the assumption 
H must contain those theorems for each case. The dependencies among the different proofs will be stated in Section 8 for 
each of the systems under analysis.

6. Proving cut-admissibility and identity expansion

One of the most fundamental properties of a proof system is analyticity. Analytic calculi are calculi in which proof 
search proceeds by a stepwise decomposition of the formula to be proved, normally implying that it has the sub-formula 
property [23]. In sequent calculus, the sub-formula property is often proved by showing that the cut-rule is admissible. 
Roughly, the cut-rule introduces an auxiliary lemma A in the reasoning “if A follows from C and B follows from A, then 
B follows from C”. The admissibility of the cut rule states that adding intermediary lemmas does not change the set of 
theorems of the logical system. That is, the lemma A is not needed in the proofs of the system. This implies that, if B is 
provable from the hypothesis C , then there exists a direct (cut-free) proof of this fact.
12
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The cut-rule may take different forms depending on the logical system at hand. For concreteness, consider the following 
cut-rule for the system G3ip:

� � A �, A � B
� � B

Cut (8)

This rule has an additive flavor: the context � is shared by the premises. Later, different cut-rules will be considered, 
including multiplicative-like cut-rules (splitting the context � in the premises) and also cut-rules for one-sided sequent 
systems.

Gentzen’s style proof of admissibility of the cut-rule [1] generally proceeds by proving that top-most applications of cut 
can be eliminated. This is usually done via a nested induction on the complexity of the cut-lemma A and sub-induction 
on the cut-height, i.e., the sum of the heights of the derivations of the premises. In the following, the rationale behind this 
cut-elimination procedure will be formalized by means of rewrite-based conditions. The next section discusses how these 
conditions become a semi-automatic procedure for checking the cut-admissibility property for different logical systems.

The analyses in Section 5 showed how to inductively reason on the height of derivations inside the rewriting logic 
framework. But what about the induction on the complexity of formulas? In general, it is possible to inductively reason 
about terms built from algebraic specifications. The unification of a sequent against the conclusion of an inference rule rs ∈
S uniquely determines the active formula F introduced by rs . Since terms in the sort Formula are inductively generated 
from the constructors of that sort, special attention can be given to the sub-terms (if any) of F since those are the only
candidates that are useful to build the needed inductive hypothesis in the cut-admissibility proof. Such sub-terms are called 
auxiliary formulas.

Gentzen’s procedure consists of reducing topmost cut-applications to the atomic case, then showing that these cuts can 
be eliminated. The reduction step to be performed depends on the status of the cut-formula in the premises: principal on 
both or non-principal on at least one premise. This procedure is formalized next.

Principal cases. If the cut-formula is principal (see Definition 2) in both premises of the cut-rule, then induction on the 
complexity of the cut-formula is applied. For instance, consider the case when the cut-formula is A ∧ B:

� �n A � �n B
� �suc(n) A ∧ B

∧R
�, A, B �m C

�, A ∧ B �suc(m) C
∧L

� � C
Cut

�
� � A

� � B
�, A � B

W
�, A, B � C

�, A � C
Cut

� � C
Cut

Both applications of the cut-rule in the right-hand derivation are on smaller formulas and then induction applies. Note that 
this kind of reduction does not necessarily preserve the height of the derivation. Hence, no height-annotation can be used 
on the resulting premises. Note also that weakening is needed in order to match the leaves of the left derivation.

If the cut-formula A ∧ B is “frozen” (making A, B constants of type Formula), then the inductive reasoning is formalized 
by generating the following rules:

rl [cutF] : Gamma |-- C => (Gamma |-- cA) | (Gamma, cA |-- C)
rl [cutF] : Gamma |-- C => (Gamma |-- cB) | (Gamma, cB |-- C)

Here c A, cB are constants representing the sub-terms of the ground term A ∧ B . The other terms are variables. More gener-
ally, if the cut formula is a term of the form f (t1, ..., tn), each ti of sort Formula gives rises to a different rule. In the case 
of constants (e.g., False) and atomic propositions (no sub-terms of sort Formula), the set of generated rules is empty.

Non-principal cases. The non-principal cases require permuting up the application of the cut-rule w.r.t. the application of an 
inference rule, thus reducing the cut-height. As an example, assume that the left premise of the cut-rule is the conclusion 
of an application of the rule ∧L . Hence, it must be the case that the antecedent of the sequent contains a conjunct F ∧ G . 
The reduction is as follows:

�, F , G �n A
�, F ∧ G �suc(n) A

∧L
�, F ∧ G, A �suc(m) B

�, F ∧ G � B
Cut

�
�, F , G �n A �, F , G, A �suc(m) B

�, F , G � B
Cut

�, F ∧ G � B
∧L

Permuting up cuts results in an application of the cut-rule on shorter derivations. The top-rightmost sequent in the right-
hand side derivation is deduced via the height-preserving invertibility of the ∧L rule and the fact that �, F ∧ G, A �suc(m) B
is provable. Similar reductions are possible when the cut formula A is not principal in the right premise of the cut-rule.

If the height of the premises in the above derivation is “frozen”, it is possible to extend the theory RS with two new 
rules that exactly mimic the behavior of replacing a non-principal cut with a smaller one. Those rules are:

rl[CutH]:Gamma |-- G => (cn : Gamma |-- cA) | (suc(cm) : Gamma, cA |-- G)
rl[CutH]:Gamma |-- G => (suc(cn) : Gamma |-- cA) | (cm : Gamma, cA |-- G)
13
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where cn (resp., cm) is the “frozen” constant resulting from n (resp., m) and c A the ground term representing the cut-
formula. The first rule reflects the principle behind the above reduction where the height of the left premise of the cut-rule 
is reduced. The second rule reflects the case where the cut-formula is not principal in the right premise. Note that the first 
rule cannot be applied directly on the sequent �, F ∧ G � B: the left premise �, F ∧ G � A is provable with height suc(n)

but, not necessarily, with height n. Similarly for the second rule and the right premise of the cut-rule.

6.1. Cut admissibility

The scenario is ready for establishing the necessary conditions for the admissibility of cut. The specification of the 
additive cut-rule for the system G3ip can be written as

rl [cut] : Gamma |-- C => (Gamma |-- A) | (Gamma, A |-- C) [nonexec] .

This rewrite rule has an extra variable (A) in the right-hand side and cannot be used for execution (unless a strategy is 
provided). Hence, the attribute nonexec identifies this rule as non-executable. In the following, lcut (resp., rcut) is used 
to denote the term Gamma |-- A (resp., Gamma, A |-- C) whose set of variables is {Gamma, A} (resp., {Gamma, A, C}). 
Moreover, hcut denotes the head/conclusion of the cut-rule, i.e., the term Gamma |-- C.

As already illustrated, admissibility results and invertibility lemmas are usually needed in order to complete the proof of 
cut-admissibility. Such auxiliary results are specified in the analysis, respectively, as H and I . As explained in Sections 5.1
and 5.2, a rule in H encodes an admissible rule of the system that can be used, in a backward fashion, during the proof-
search procedure. Moreover, a rule in I is used to close the assumptions under the invertibility results.

Given a logical system S , every possible derivation of the premises of the cut-rule should be considered. This means 
that there is a proof obligation for each rs, rt ∈ S s.t. rs (resp., rt) is applied on the left (resp., right) premise (i.e., when rs

matches lcut and rt marches rcut). More precisely:

Definition 8 (Local cut-admissibility). Let S be a sequent system, and H , I be set of rules. Let

n : S1 · · · n : Sm

suc(n) : S
rs

k : T1 · · · k : Tn

suc(k) : T
rt

be inference rules in S . Under the assumptions H and I , the cut rule is admissible relative to rs and rt iff for each 
θ ∈ CSU(S, lcut) and γ ∈ CSU(T , rcutθ):

H ∪ RS ∪ ind-F ∪ ind-H ∪
[[{(n : S j)γ , S jγ | j ∈ 1..m} ∪ {(n : T j)γ , T jγ | j ∈ 1..n}]]I � hcutγ

where the variables in S and T are assumed disjoint and

ind-F = {
(hcut→ lcut | rcut)[t/A] | t ≺ Aγ and t has sort Formula

}
ind-H = {hcut→ (nγ : lcut | suc(n)γ : rcut)[Aγ /A]}∪

{hcut→ (suc(n)γ : lcut | nγ : rcut)[Aγ /A]}

The rules in S are extended with axioms corresponding to the sequents resulting after the application of rs and rt

on the premises of the cut-rule. Note that those premises are added with and without the height annotations, which can 
be used in applications of inductive hypothesis with shorter derivations and (non-height preserving) applications of the 
cut-rule over simpler formulas, respectively. Note also that the set of axioms is closed under applications of the rules in I .

The set of rules in ind-F specifies a valid application of the cut-rule with sub-terms of the cut-formula (t ≺ Aγ ). As usual, 
this rule is assumed to be universally quantified on the remaining variables (t is a ground term). On the other hand, the 
set of rules in ind-H specifies a valid application of the cut-rule with shorter derivations. As discussed previously, two cases 
need to be considered: when the left and right premises are shorter. In both cases, the height of the derivation is fixed (nγ ) 
as well as the cut-formula ([Aγ /A]).

Regarding the base-cases of the induction, if the cut-formula is a constant or an atomic proposition, the set ind-F is 
empty. If the rule rs is an axiom, then the set 

{
n : S jγ , S jγ | j ∈ 1..m

}
is also empty. In this case, an attempt of proving 

hcutγ by starting with the first rule in ind-H leads to a goal of the form nγ : lcut where no inference rule r ∈ S can be 
applied: nγ is a constant of the form %1 and it does not unify with the annotation suc(n) in the conclusion of r. Hence, if 
rs is an axiom, a proof of hcutγ cannot start with ind-H. A similar analysis applies for rt .

Proving the admissibility of cut needs to consider all the possible matchings of the rules of the system and the premises 
of the cut-rule.

Theorem 3. Let S be a sequent system, and H , I be sets of rules. If for each rs and rt ∈ S the cut-rule is admissible relative to rs

and rt under the assumptions H and I , then the cut-rule is admissible in S (relative to H and I ).
14
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Proof. Consider the annotated cut-rule below (a similar analysis applies for the other cut-rules introduced in Section 8):

� �suc(n) A �, A �suc(m) B

� � B
Cut

Assume that there exists a derivation of the premises starting, respectively with the rules rs and rt . By the hypothesis and 
Definition 8, there is a valid derivation of the sequent in the conclusion and the result follows. �
6.2. Identity expansion

The identity axiom states that any atomic formula is a consequence of itself. It has a dual flavor w.r.t. the cut-rule, in the 
sense that, while in the cut-rule a formula is eliminated, in the identity axiom an atomic formula is introduced. In G3ip, I
represents the general schema for the identity axiom (see Fig. 1), where p is an atomic formula.

In Section 6.1, the cut-rule was proved admissible relative to some assumptions. The corresponding dual property w.r.t. 
the identity axiom is the identity expansion: assuming I , is any well formed formula a consequence of itself? Or equivalently: 
Is the general identity axiom – not restricted to atoms – admissible? For example, in G3ip, proving identity expansion 
requires proving the admissibility of the axiom I A for an arbitrary formula A:

A � A
I A

Observe that the cut/identity duality is also reflected during proof-search: while applications of the cut-rule should be 
avoided because arbitrary formulas need to be produced “out of thin air”, applications of general identity axioms are most 
welcome, since they may make the proof smaller and proof-search simpler.

The proof of identity expansion proceeds by induction on the formula A. Consider a constructor C = f (�t) of type 
S1, ..., Sn → Formula and let C be the ground term f (�t) where each ti ∈ �t is replaced by a fresh constant ti of sort 
Si . Hence, the goal is to prove C � C assuming that ti � ti is provable for each ti ∈�t of sort Formula.

Theorem 4. Let S be a propositional sequent system and RS , with signature (S,≤, F ), be the resulting rewrite theory encoding S . 
Identity expansion holds in S iff for each symbol f ∈ F of type S1, ..., Sn → Formula (n ≥ 0),

RS ∪ {t′ � t′ | t′ ≺ f (�t) and t′ has sort Formula} � ( f (�t) � f (�t))

In one-sided systems, the goal is to show that � A, A⊥ is provable for any A, where A⊥ denotes the dual of A (see 
Section 8.4 for the definition of duality). Theorem 4 can be easily adapted to the one-sided case.

7. Reflective implementation

This section details the design principles behind the L-Framework [4], a tool implementing the procedures described 
in Sections 5 and 6. The L-Framework receives as input the object logic sequent system (OL) to be analyzed, as a rewrite 
theory RS , and the specification of the properties of interest. Then, it outputs LATEX files with the results of the analyses of, 
e.g., the proof reductions needed to establish cut-admissibility. The specification of the OL follows as in Section 4 (details can 
be found in Section 7.1). As explained in Section 7.2, the implementation of the algorithms heavily relies on the reflective 
capabilities of rewriting logic. Moreover, the specification of the properties for each kind of analysis follows a similar pattern 
where a suitable functional theory needs to be instantiated (Section 7.3). The subsequent sections offer further details about 
the implementation of each kind of analysis: admissibility of rules (Section 7.4), invertibility of rules (Section 7.5), cut-
admissibility (Section 7.6), and identity expansion (Section 7.7).

For readers interested in the details of the implementation, pointers to the Maude files and definitions are given in 
this section. However, readers interested only in the results of the analyses can safely skip this section; several examples 
and instances of the definitions presented here can be found in Section 8. The file docs/tutorial.md contains detailed 
instructions on how to specify an object logic in the framework and how to configure and run the different analyses.

7.1. Sequent system specification

The starting point for a sequent system specification is the definition of its syntax and inference rules. The file 
syntax.maude contains the functional module (i.e., an equational theory and no rewriting rules) SYNTAX-BASE. Such a 
module defines the sorts Prop and Formula, as well as the subsort relation Prop < Formula. No constructors for these 
sorts are given since those depend on the OL and hence must be provided. The sort MSFormula, for multiset of formulas, is 
pre-defined here with the constructors presented in Section 4: op * denoting the empty multiset and op _;_ for multiset 
union. Some auxiliary functions, needed to produce LATEX outputs, are declared in this module. In particular, the OL may 
define a mapping to replace symbols of the syntax with LATEX macros, e.g.,

eq TEXReplacement = (’|-- |-> ’\vdash), (’/\ |-> ’\wedge) , ...
15



C. Olarte, E. Pimentel and C. Rocha Journal of Logical and Algebraic Methods in Programming 130 (2023) 100827
The sequent.maude file defines the functional module SEQUENT with the sort Sequent and the following constructors:

op |--_ : MSFormula -> Sequent . --- One sided
op _|--_ : MSFormula MSFormula -> Sequent . --- Two sided

This syntax should suffice for most of the sequent-based inference systems. As shown in Section 8, it is also possible to 
provide more constructors to deal, for instance, with dyadic systems (i.e., one-sided sequents with two separated zones).

Internally, the tool annotates sequents with inductive measures. For this purpose, the constructor

op _:_ : INat Sequent -> Sequent . --- Height annotations

is added to the specification. The sort INat (file nat-inf.maude) extends the natural numbers expressed in Peano-like 
notation as sn(z) with a constant inf denoting “unknown”. This constant is used, e.g., in the cut-admissibility procedure 
where structural cuts do not preserve/decrease the height of the derivation and, therefore, the resulting sequent does not 
have any (known) measure.

OLs are also allowed to define equations to complete the definition of the mapping TEXReplacementSeq that replaces 
the name of the rules with suitable LATEX symbols:

eq TEXReplacementSeq = (’AndL |-> ’\wedge_L), (’AndR |-> ’\wedge_R) ...

The sort Goal, the subsort relation Sequent < Goal, the constructors op _|_, and proved (for building list of sequents) 
are also defined in the module SEQUENT.

The sequent.maude file also specifies the module SEQUENT-SOLVING with auxiliary procedures for building derivation 
trees and outputting LATEX code. This module uses reflection heavily (more on this in the next section) in order to deal, in a 
general and uniform way, with the representation of any sequent regardless of its specific syntax. Moreover, Maude’s module 
LEXICAL is used for converting between strings and lists of Maude’s quoted identifiers (terms of the form ’identifier
with sort Qid). As shown below, Qids materialize the meta-representation of any term.

7.2. Reflection and the core system

A reflective logic is a logic in which important aspects of its meta-theory can be represented consistently at the ob-
ject level. In a nutshell, a reflective logic is a logic that can be faithfully interpreted in itself. In this way, the object-level 
representation can correctly simulate the relevant deductive aspects of its meta-theory. Maude’s language design and im-
plementation make systematic use of the fact that rewriting logic is reflective, making the meta-theory of rewriting logic 
accessible to the user as a programming module [24].

For the purpose of this paper, the focus is on two meta-theoretic notions, namely, those of theory/module and the 
deductive entailment relation � (see Sec. 3). Formally, there is a universal rewrite theory U in which any finitely represented 
rewrite theory R can be represented as a term R̂ , including U itself, any terms t, u in R as terms ̂t, ̂u, respectively, and a 
pair (R, t) as a term 〈R̂, ̂t 〉 in such a way that the equivalence R � t → u ⇔ U � 〈R̂, ̂t 〉 → 〈R̂, ̂u 〉 holds. Since U is 
representable in itself, a “reflective tower” can be achieved with an arbitrary number of levels of reflection.

In general, simulating a single step of rewriting at one level involves many rewriting steps one level up. Therefore, in 
naive implementations, each step up the reflective tower comes at considerable computational cost. In Maude, key function-
alities of the universal theory U have been efficiently implemented in the functional module META-LEVEL, providing ways 
to perform reflective computations.

Additional utilities for manipulating modules and terms in the L-Framework are implemented in the meta-level-
ext.maude file. For instance, all the operations on theories described in Section 5 are contained there (some of them are 
detailed below).

The module META-LEVEL implements the so called descent functions that manipulate (meta-) terms. The function 
op upTerm : Universal -> Term . returns the (meta) representation t̂ of a term t . For example, constants are rep-
resented as Id.Type (e.g., ’proved.Goal), variables as Id:Type (e.g., ’F:Formula), and functions as Id[Params] (e.g., 
the term ’_;_[Gamma:MSFormula,Delta:MSFormula] represents the multiset of formulas Gamma ; Delta).

From a well-formed (meta-) term ̂t it is possible to recover the term t (one level down). Note, however, that not all meta-
terms have a suitable representation in the theory in the level below, for instance, ’_|_[S:Sequent, F:Formula] is not 
the image of any valid sequent or formula in the module specifying the system G3ip. The function op downTerm : Term
Universal -> Universal takes as parameter the (meta) representation of a term ̂t and a term t′ . It returns the canonical 
form of t if it is a term having the same sort of t′; otherwise, it returns t′ . Usually, t′ is a term used to denote that the 
descent translation was not possible. For instance, if ̂t is expected to be the meta-representation of a formula, then t′ can 
be the constant op error : -> Formula .

At the meta-level, modules in Maude (i.e., rewrite theories) are represented as terms with sort Module. The function 
upModule can be used to obtain such a term. All the components of a module (sorts, functions, equations and rules) have a 
suitable sort and representation in the meta-level, thus making them first-class citizens. For instance, most of the analyses 
require to extend the sequent theory with new rules. The function below adds to the module M a set of rules RS:

op newModuleRls : Module RuleSet -> Module .
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eq newModuleRls(M, RS)
= (mod ’NEW-MOD is

getImports(M) --- Sorts, imports, equations, etc remain the same
sorts getSorts(M) .
getSubsorts(M) getOps(M) getMbs(M) getEqs(M)
(getRls(M) RS) --- Union of the rules of M and RS
endm ) .

Rules at the meta-level are terms of sort Rule built from the constructors

op rl_=>_[_]. : Term Term AttrSet -> Rule .
op crl_=>_if_[_]. : Term Term Condition AttrSet -> Rule .

The parameter of sort AttrSet is a set of attributes of the rule, including, e.g., the label used as identification 
([label(’AndR)]). This representation opens the possibility of manipulating rules in a simple way. For instance, consider a 
sequent rule r = (S → S ′), for some conclusion S and premise S ′ , to be proved height-preserving admissible. Consider also 
that the current goal is to show that a given ground sequent is provable with height at most suc(h). A call to the function 
below with parameters h and r produces a restricted version of r where it can be applied only on sequents annotated with 
(the constant height) h:

op inductive-rule : GroundTerm Rule -> Rule .
eq inductive-rule(gt, rl ’_:_[’n:FNat , S] => ’_:_[’n:FNat , S’] [ AS ].)

= rl ’_:_[gt , S] => ’_:_[gt , S’] [ AS ].

The module META-LEVEL offers functions to perform Maude’s operations at the meta-level. For instance, the function 
metaRewrite allows for rewriting the meta-representation of a term in a given module and metaIrredundantDisjoint-
Unify to solve unification problems. Moreover, given a theory R and two terms t, u in that theory, metaSearchPath allows 
for checking the entailment R � t → u by testing whether U � 〈R̂, ̂t〉 → 〈R̂, ̂u〉. For instance, in the following assignment:

Ans := metaSearchPath(M, SGoal, upTerm(proved), nil, ’*, bound-spec, 0) .

The term M is the meta-representation of a sequent system; SGoal is a term representing the goal/sequent to be proved; 
nil specifies that there are no additional conditions to be satisfied by the solution; ’* means that the reduction may take 
0 or more steps; bound-spec indicates the maximum depth of the search; and the final 0 is the solution number. The term 
Ans is a term of type Trace?. It can be failure or a list of trace steps showing how to perform each of the reductions 
t →r t′ where the rule r is applied to t leading to t′ . It is worth noticing that metaSearchPath implements a breadth-first 
search strategy. Hence, if SGoal can be rewritten into proved with at most bound-spec steps, then metaSearchPath will 
eventually find such proof (if the executability conditions for the rewrite theory are met [8]). Moreover, since Ans is a proof 
term evidencing how to prove the rewriting SGoal ∗→proved, it can be used to rebuild the needed derivation of SGoal in 
the sequent system at hand.

7.3. The general approach for implementing the algorithms

All the analyses implemented in L-Framework are instances of the same template:

1. A module interface (called theory in Maude) specifies the input for the analysis. This theory includes parameters such 
as: the name of the module implementing the OL; the specification, as a rewrite rule, of the theorem to be proved; the 
extra hypotheses (set of rewrite rules) corresponding to the already proved theorem; the bound for the search depth; 
etc.

2. A module implementing the decision procedures proposed in Sections 5 and 6. All algorithms follow the same princi-
ples:
(a) A function generate-cases uses unification to generate all the proof obligations to be discharged. In each kind of 

analysis, there are suitable sorts and constructors to represent the proof obligations. Normally, the cases include the 
terms denoting the premises (that can be assumed to be provable) as well as the goal to be proved.

(b) Auxiliary definitions to extend the theory with new axioms and the right inductive hypothesis. Take for instance 
the function inductive-rule explained above.

(c) A function holds? that receives as parameter one of the proof obligations, uses the functions in (b) to extend the 
theory and calls to metaSearchPath to check if the goal can be proved.

3. An extra module providing facilities to produce the LATEX output.

The following sections give some details about the components (1) and (2) for each kind of analysis. Common 
facilities for all the analyses are implemented in the theorem-proving-base.maude file, e.g., generating axioms 
(rl [ax] T => proved .) from the assumptions of the theorem.
17
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7.4. Admissibility analysis

The core procedures for automating the proof of admissibility theorems, following the definitions in Section 5.1, are 
specified in admissibility.maude. The input point is the definition of the functional theory below.

fth ADMISSIBILITY-SPEC is
pr META-LEVEL .
op th-name : -> String . --- Name of the theorem
op mod-name : -> Qid . --- Module with the OL specification
op file-name : -> String . --- Output file
op rule-spec : -> Rule . --- Rule to be proved admissible (goal => premise)
op bound-spec : -> Nat . --- Depth-search
--- Already proved admissibility lemmas (set of rules)
op already-proved-theorems : -> RuleSet .
--- Identifiers of the height preserving invertible rules
op inv-rules : -> QidList .
--- Mutual inductive rule (for mutual inductive proofs).
op mutual-ind : GroundTerm -> RuleSet .
endfth

Theories in Maude are module interfaces used for declaring parameterized modules. Such interfaces define the syntactic 
and semantic properties to be satisfied by the actual parameter modules used in an instantiation [24].

The name of the theorem is specified with the string th-name (e.g., “Admissibility of weakening.”). The identifier of 
the module mod-name (e.g., ’G3ip) is used to obtain the meta-representation of the OL module defining the syntax and 
inference rules of the sequent system. The field file-name specifies the output (LATEX) file.

The theorem to be proved is specified via a rewriting rule (a term of sort Rule). As an example, the height-preserving 
admissibility of weakening for G3ip is:

eq rule-spec =
rl ’_:_[’n:FNat, ’_|--_[’_;_[’Gamma:MSFormula,’F:Formula],’G:Formula]] =>

’_:_[’n:FNat, ’_|--_[ ’Gamma:MSFormula ,’G:Formula]]
[ label(’W) ]. ) .

This term is the meta-representation of the rule

rl [W] n : Gamma, F |-- G => n : Gamma |-- G .

Note that the premise and the conclusion have the same height, specifying that if the premise is provable with height 
at most n so is the conclusion. Since the entailment relation is undecidable in general, all the analyses are performed up to 
a given search depth (field bound-spec). Hence the procedures are sound (in the sense of the theorems in Sections 5 and 
6), but not complete.

As already explained, for modularity, the analyses can depend on external lemmas. Those auxiliary results are specified 
as already-proved-theorem (backward reasoning) and inv-rules (forward reasoning). Finally, some theorems require 
mutual induction. For instance, admissibility of contraction for the system of classical logic (Section 8.3) requires a mutual 
induction on the right and left rule for contraction. The field mutual-ind specifies the other theorems that can be applied 
on shorter derivations. For that, if the parameter of type GroundTerm is of the form ’s[h.Nat], the mutual-theorem is 
instantiated with sequents of (constant) height h.

The main procedures implementing the analysis of admissibility of rules can be found in the parametric module 
ADMISSIBILITY-ALG{SPEC :: ADMISSIBILITY-SPEC}. Consider, for instance, the task of proving the admissibility of 
a rule rs. Such a rule is specified as the parameter rule-spec in SPEC. For each rule rt of the system, proof obligations 
are generated by the module’s functionality. Following Definition 6, this is done by unifying the premise/body of rs with 
the conclusion/head of rt:

U := metaIrredundantDisjointUnify(module,
getBody(rule-spec, module) =? getHead(rt, module), ’%, N) .

Here, N is a natural number used to enumerate the unifiers. By identifying the unifier U, it is possible to obtain the resulting 
premises when rt is applied on the body/premise of rs (see Equation (2)). For that, the descent function metaXapply
enables the application of a rule to a term according to a given substitution. Computing the ground term that substitutes 
the variables by fresh constants is a routine exercise by following the inductive definition of the sort Term.

The cases for admissibility take the form adm-case(Q, M, GTC, GTP, GG), where: Q is the identifier of the rule rt in 
Definition 6; M is the module implementing the OL, GTC and GTP correspond to the conclusion and the premises in Equation 
(2), and GG is the goal to be proved ((i : S)θ in Definition 6).

A useful mnemonic that applies from now on: G is for ground, T for term, C for conclusion, P for premise(s), and the last 
G in GG for goal.

The module M above is extended as follows:
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M’ := newModuleRls(M,
inductive(getHeight(GG)) --- Theorem instantiated on shorter der.
mutual-ind(getHeight(GG))
premises(GTP) --- All premises in GTP as axioms
inv-premises(M, inv-rules, GTP) --- Closing w.r.t invertible rules
already-proved-theorems ) .

The function inductive takes as parameter the annotated height of the current goal GG. If it is of the form suc(h), 
rule-spec is instantiated with the height h (as explained in Section 7.2). Otherwise, inductive and mutual-ind return 
none (an empty list of rules). The function call premises(GTP) generates, for each sequent S in the set of premises GTP, 
a new axiom rule (S => proved); inv-premises generates further axioms by applying the invertible rules inv-rules in 
the premises GTP; and already-proved-theorems adds already proved theorems (specified as rules).

From the extended theory M’, metaSearchPath is used to check whether GG can reach proved and determine the status 
of the current proof obligation.

7.5. Invertibility of rules

The core procedures are in invertibilty.maude. The input to the invertibility analysis is specified as a realization of 
the functional theory INV-SPEC:

fth INV-SPEC is
pr META-LEVEL .
op th-name : -> String . --- Name of the theorem
op mod-name : -> Qid . --- Module with the OL specification
op bound-spec : -> Nat . --- Bound of the search procedure
op file-name : -> String . --- File name to write the output
op already-proved-theorems : -> RuleSet . --- Admissible rules

endfth

There is no need to specify the theorem to be proved, because it suffices to take each of the rules of the input module 
and “flip” it in order to obtain the invertibility lemma to be proved (see Definition 5). This procedure outputs a LATEX file 
with the invertibility status of each rule in the system. In the case of rules with two premises, each premise is analyzed 
separately (see Definition 7). This allows for proving, e.g., that the rule ⊃L in the system G3ip is invertible only in its right 
premise (see Section 8.1).

Following the same recipe for admissibility, the proof obligations for invertibility are generated by solving unification 
problems. Assume that the rule being analyzed is Q and it is to be tested invertible with respect to the rule Q’. If Q is a 
two-premise rule, then it is split into two different rules to be analyzed separately. Assume that the resulting sliced rule 
with at most one premise is R. The N-th unifier between the heads/conclusions of the rules is

T := getHead(R)
T’ := getHead(Q’, module)
U := metaIrredundantDisjointUnify(module, getHead(T) =? getHead(T’), ’%, N)

The case to be analyzed is then:

inv-case(R, Q’,
apply(T’, U), --- The sequent where R and Q’ can be applied
--- Applying Q’ and R on the resulting sequent
applyRule(apply(T, U), Q’, module, U),
applyRule(apply(T, U), R, module, U))

The first two parameters identify the case. The third parameter corresponds to the sequent where both rules can be applied, 
i.e., the conclusion in Equation (6). The fourth parameter corresponds to the premises after the application of Q’, i.e., the 
premises in Equation (6). The last parameter is the goal being proved, i.e., the premise resulting after the application of R
on the same sequent ((k : Sl)θ in Definition 7). Call GTC, GTP, and GG to the last three parameters of the case once their 
variables are replaced with fresh constants.

The inductive reasoning consists in applying, when possible, the rule R on the sequents in GTP. By induction, such 
application of R on a sequent S in GTP must preserve the height annotation of S . Hence, a modified version of R is needed:

op inductive-rule : Rule -> Rule .
eq inductive-rule( ( rl ’_:_[’s[T],T’] => T’’ [ AS ]. ) )

= ( rl ’_:_[ T, T’] => T’’ [ label(’IND) ]. ) .

Note the use of the height T (instead of s[T]) in the resulting rule. Call RI the rule resulting from the application of this 
function to the rule R being analyzed.
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Computing the set of sequents that can be assumed as axioms by induction becomes now a simple task. It suffices to 
compute one step of rewriting for each sequent GT in the set GTP as follows:

metaSearch(MRI, GT, ’G:Goal, nil, ’+, 1, k) .

The term MRI inherits all the functional description of the module specifying the OL, but it contains only one single rule, 
namely, RI. The (ground) sequent GT is rewritten to any possible list of sequents (variable ’G:Goal) in this theory in exactly 
one step (’+ means one or more steps and the bound in the 6th parameter forces it to be exactly one). The last parameter 
is used to enumerate all the possible solutions.

Finally, the OL theory M can be extended before attempting a proof of the goal GG of the current case:

M’ := newModuleRls(M, premises(GTP) --- Axioms from GTP
inductive(M, GTP, R) --- Inductive reasoning
already-proved-theorems)

7.6. Admissibility of cut

There are different cut-rules depending on the shape of the sequent system at hand (e.g., one-sided, two-sided, dyadic) 
and also on the structural rules allowed. The file cut-elimination-base.maude defines common facilities for all the cut-
admissibility procedures. Impressive enough, minor extensions to this module have been required to prove cut-admissibility 
theorems for the systems in Section 8.

The common interface is the following functional theory:

fth CUT-SPEC is
pr META-LEVEL .
op th-name : -> String . --- Name of the theorem
op mod-name : -> Qid . --- Module with the OL specification
op bound-spec : -> Nat . --- Bound of the search procedure
op file-name : -> String . --- File name to write the output
op already-proved-theorems : -> RuleSet . --- Admissible rules
op inv-rules : -> QidList . --- Invertible rules

endfth

The parametric module CUT-BASE{SPEC :: CUT-SPEC} contains the common definitions. An operator for the cut rule 
is defined op cut-rule : -> Rule . , but no equation for it is provided. Each OL is responsible for completing this 
definition. For instance, in G3ip, the cut-rule shares the context in the antecedent of the sequent between the two premises. 
Hence, the file cut-add-scon.maude (additive cut for single conclusion systems) extends CUT-BASE with the following 
equation:

eq cut-rule =
(rl ’_:_[’inf.INat, ’_|--_[’Gamma:MSFormula, ’F:Formula]] =>
’_|_[

’_:_[’h1$$:FNat,’_|--_[’_;_[’Gamma:MSFor., ’FCut$$:Formula],’F:For.]],
’_:_[’h2$$:FNat,’_|--_[ ’Gamma:MSFor. ,’FCut$$:For.]]]
[ label(’\Cut) ]. ) .

The conclusion of the rule is annotated with inf (the constant of type INat denoting “don’t know”). This specification 
is nothing else that the meta-representation of the rule in Equation (8). In all the analyses, the cut-formula is expected to 
be named as FCut$$ and the height of the two premises as h1$$ and h2$$.

The module CUT-BASE offers mechanisms to generate, in a uniform way, the proof obligations for the cut-admissibility 
procedures considered here. This is done in two steps. First, one of the rules of the system, identified as Q1, is matched 
against the first premise of the cut-rule (lcut below):

U := metaIrredundantDisjointUnify(module,
lcut =? getHead(Q1, module), ’%, N)

The unifier U must map the variables of lcut to some fresh variables. Hence, before unifying a second rule Q2 against the 
second premise of the cut-rule, denoted as rcut, the substitution U must be applied on rcut (see Definition 8):

U’ := metaIrredundantDisjointUnify(module,
apply(rcut, U) =? getHead(Q2, module), ’%, M) .

A proof obligation takes the following form:

cut-case(
cut-sub-case(TC, TP), --- Left premise (conc. and premises)
cut-sub-case(TC’, TP’), --- Right premise (conc. and premises)
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apply(getHead(cut-rule), (U ; U’)), --- Goal to be proved
apply(’FCut$$:Formula, (U ; U’)) --- The cut formula

)

The notation U ; U’ is used for composition of substitutions.
Induction on the height of the derivation is also defined in CUT-BASE in a general way and independently of the cut-rule.

op induct-height : GroundTerm GroundTerm GroundTerm -> RuleSet .
eq induct-height(’suc[gh], ’suc[gh’], GF) =

( rl getHead(cut-rule) =>
’_|_[ --- Fixing heights (gh and suc[gh’]) and the cut-formula (GF)
apply(lcut, (’h1$$:FNat <- gh ; ’FCut$$:Formula <- GF)),
apply(rcut, (’h2$$:FNat <- ’suc[gh’] ; ’FCut$$:Formula <- GF))]

[ label(’\hCut) ]. )
( rl getHead(cut-rule) =>

’_|_[ --- Fixing heights (suc[gh] and gh’) and the cut-formula (GF)
apply(lcut, (’h1$$:FNat <- ’suc[gh] ; ’FCut$$:Formula <- GF)),
apply(rcut, (’h2$$:FNat <- gh’ ; ’FCut$$:Formula <- GF))]

[ label(’\hCut) ]. ) .

The syntax x <- t is used to denote the substitution [t/x]. This specification implements ind-H in Definition 8. The first 
two parameters are the height of the left and the right premises above the cut. The last parameter is the cut-formula 
considered in the current goal.

Induction on the structure of the formula is partially defined in CUT-BASE, but additional work is needed in the specific 
OL. General definitions include, e.g.,

op induct-struct : GroundTerm -> RuleSet .
eq induct-struct(Q[LGT]) = $induct-struct(LGT) .
eq induct-struct(GT) = none [owise] .

The first equation applies to constructors for formulas (e.g., ’_/\_[A, B], representing A ∧ B) and then, induction 
applies on all the sub-terms in the list of ground terms LGT (if they are of sort Formula). If the parameter is a constant, e.g., 
’False.Formula, only the second equation applies and no inductive rule is generated. The keyword owise (a shorthand 
for otherwise) means “use this equation if all the others defining the corresponding function symbol fail”. This is syntactic 
sugar to simplify the specification and it can be encoded in plain conditional equational theories [8].

The function $induct-struct calls to induct-struct-formula for each term in LGT. The definition of induct-
struct-formula is specific for each OL. Here the one defined in cut-add-scon.maude:

op induct-struct-formula : GroundTerm -> RuleSet .
eq induct-struct-formula(GTA)

= if getType(GTA) == ’Formula --- Only sub-terms of sort Formula
then ( rl getHead(cut-rule) => --- Head unchanged

’_|_[ --- premises with height ’inf and the cut-f. fixed to GTA
apply(lcut, (’h1$$:FNat <- ’inf.INat ; ’FCut$$:Formula <- GTA)),
apply(rcut, (’h2$$:FNat <- ’inf.INat ; ’FCut$$:Formula <- GTA)) ]

[ label(’\sCut) ]. )
else none --- No rule if GTA is not a formula
fi .

The parameter GTA is a ground term denoting a proper sub-formula of the cut-formula. The cut-rule is instantiated as 
follows: the head of the rule is unchanged, the height of the premises is ’inf.INat, and the cut-formula is fixed to be 
(the ground term) GTA. The change in the height of the premises is due to the fact that cuts on smaller formulas do not 
preserve necessarily the height of the derivation.

The above definition seems to be general enough for any cut-rule and, in theory, it would be possible to define it once 
and for all the systems. However, the generated rule is problematic from the point of view of proof search. Note that both 
premises are annotated with ’inf.INat. Hence, even if the rule does not need to “guess” the cut-formula (since it is fixed 
to a ground term A), it is always possible to rewrite the goal � � G into �, A � G and later into �, A, A � G , etc. For this 
reason, in some systems, extra conditions are needed to restrict the application of this rule and reduce the search space 
(more about this in Section 8). Of course, a bad choice of such conditions may render the analysis inconclusive. A natural 
rule of thumb that worked in most of the cases was to restrict the application of this rule when the sub-formula A is not 
already in the context �.

Finally, the main search procedure must also be tailored for each OL. There is a template that, with little modifications, 
can be used in all systems reported here. In particular, OLs may define different conditions for the application of the rules 
with the aim of reducing the search space. The main definition in cut-add-scon.maude is:

ceq holds$?(cut-case( ... ))
= output ...
21



C. Olarte, E. Pimentel and C. Rocha Journal of Logical and Algebraic Methods in Programming 130 (2023) 100827
if --- Premises with implicit weakening
RS := premises-W(GTC) premises-W(GTC’) premises-W(GTP) premises-W(GTP’)

--- Invertibility lemmas on the premises
inv-premises(M, inv-rules, GTP) inv-premises(M, inv-rules, GTP’)
already-proved-theorems --- adding admissibility lemmas
--- Induction on the height of the derivation
induct-height(getHeight(gtc), getHeight(gtc’), GF)
--- Induction on the formula only in principal cases
if numFormulas(GG) <= 1 then induct-struct(GF) else none fi

In the code above, RS is the set of rules used to extend the theory of the OL before calling the search procedure. This 
extension is similar to the ones presented for admissibility and invertibility. There are, however, two new ingredients: (a) 
the way the axioms are generated and (b) the additional condition deciding whether the rule for structural induction is 
added or not to solve the current goal GG.

(a) premises-W(S) converts into an axiom the sequent S. Unlike premises(S) used in the previous sections, the resulting 
rule in premises-W(S) internalizes weakening: if S is the (ground) sequent � � F , then � � F is provable for any 
� ⊇ �. This avoids the need for adding the rule W into already-proved-theorems, thus reducing the search space. 
This simplification cannot be used, of course, in substructural logics, such as linear logic (Section 8.4).

(b) As already explained, the rule for structural induction is problematic from the point of view of proof search. In some 
OLs it is possible to control its use. For example, in G3ip, the application of ind-F can be restricted to solve only the 
principal cases (and the non-principal cases will run faster). Such cases can be identified by counting the number of 
constants of type Formula in the current goal GG (see the last line in the code above). In other systems, however, this 
simplification does not work as in the case of the system mLJ (Section 8.2) where structural induction is also needed 
in some of the non-principal cases.

Wrapping up, configuring the cut-elimination procedure requires adjusting and tuning some parameters. As shown in 
Section 8, some logics that share the same structural properties may reuse a common infrastructure. For instance, the 
cut-rule and procedures defined in file cut-add-mcon.maude (two-sided and multi-conclusion systems where weakening 
and contraction are allowed) can be used to prove cut-admissibility for the system G3cp (Sec. 8.3), mLJ (Sec. 8.2), and 
some systems for modal logics (Sec. 8.5). However, cut-admissibility is a non-trivial property and hence, full automation is 
impossible for ‘the’ general case. In each of these systems, the user must determine the invertibility lemmas that will be 
considered during the search procedure. This is done by simply modifying the input parameter inv-rules in CUT-SPEC.

7.7. Identity expansion

This analysis uses the following functional theory as interface (id-expand.maude):

fth ID-EXP-SPEC is
op mod-name : -> Qid .
op file-name : -> String .
op bound-spec : -> Nat .
op goal : GroundTerm -> GroundTerm . --- E.g., F |-- F or |- F, dual(F)
op already-proved-theorems : -> RuleSet .
--- Types different from ’Formula to be analyzed
op types-formula : -> TypeList .
endfth

Given a ground term F denoting a formula, the call goal(F) returns the sequent to be proved. This definition allows to 
consider id-expansion theorems for one-sided and two-sided systems. The last field is used to define other sorts that need 
to be considered in the analysis. For instance, the specification of modal logics includes the sort BFormula < Formula for 
boxed formulas (see Section 8.5). By adding BFormula in types-formula, the case �F � �F is generated.

8. Case studies

This section explains how structural meta-properties of several propositional sequent systems can be specified and 
proved with the approach presented in this paper. The site hosting the L-Framework includes all the logical systems 
described here, the proof-search implementation of the strategies, and the PDFs generated by the proof-search algorithms. 
The chosen methodology for proving the (meta-)theorems in this section is modular: first, it attempts to build a proof 
without any external lemma; second, when needed, it analyzes the failing cases and adds already proved theorems for 
completing the proof. This methodology allows for analyzing interdependencies between the different results inside various 
logical systems.
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Since there are no similar tools to compare the performance of the L-Framework, the main benchmark pursued is 
to show that it is flexible enough to deal with several proof-theoretic properties with little effort in defining the object 
logic and the properties of interest. In all the cases, but those reported in Section 8.4 (where the proof of cut-admissibility 
requires induction on two different rules), implementing the analyses amounts only to instantiate the interfaces/theories 
described in Section 7.

In order to show the feasibility of the L-Framework, time-related observations are reported. In all the cases, the depth 
bound (bound-spec) is set to 15 and the experiments are performed on a MacBook Pro, 4 cores 2.3 GHz, and 8 GB of 
RAM, running Maude 3.2.1. On average, the admissibility analyses are completed in about 5 seconds. Once all the auxiliary 
lemmas are added, the time needed to complete the proof of cut-admissibility depends on whether explicit structural rules 
are used (about 30 seconds) or not (about 15 seconds).

The results of this section, together with the outputs of the tool, are a valuable companion material to classical books 
such as [11,12], covering all the (rutinary) cases and bringing into light the most interesting ones that require auxiliary lem-
mas. In each of the following subsections, a different logical system is introduced and its properties analyzed at length. The 
proof of each theorem explicitly states the interdependencies between the different meta-theoretical properties. Moreover, 
due to the flexibility of the framework, it is not difficult to attempt proofs of cut-admissibility when considering different 
cut rules. This is exemplified in the system G3ip (Section 8.1), where an additive and a multiple cut rule are considered.

8.1. System G3ip for propositional intuitionistic logic

The system G3ip and its specification as a rewrite theory are presented in Section 5. The proof of meta-theoretical 
properties is next described in detail.

Weakening. Lemma 1 (see rule H in Equation (5)) and height-preserving admissibility of weakening can be proved without 
auxiliary lemmas.

Theorem 5 (Weakening and weak-height). If G3ip �n � � C , then G3ip �suc(n) � � C. Moreover, the rule W (Equation (1)) is height-
preserving admissible in G3ip.

Proof. See the specification of the theorems in g3i/prop-W.maude and g3i/prop-H.maude. The resulting proofs are in 
g3i/g3i.pdf. Both properties are proved in less than 1 second without any additional lemma. �
Invertibility. All the rules, but ∨Ri and ⊃L , are invertible in G3ip. However, the tool initially fails (in 7.6 s) to prove the 
invertibility of ⊃R , ∧R , ∧L , ∨L , and �L .

Consider the rule ⊃R . Recall that the invertibility of a rule is proven by testing the local invertibilities relative to all 
possible rules (see Definition 7). Hence, the tool proves, e.g., that ⊃R is invertible w.r.t ∧L (the symbol • denotes successor):

h3 : �6,F4,F5 � F1 ⊃ F2

•h3 : �6,F4 ∧ F5 � F1 ⊃ F2
∧L � h3 : �6,F1,F4,F5 � F2

ax/ind

•h3 : �6,F1,F4 ∧ F5 � F2
∧L

The derivation on the left of the symbol � represents the current case. On the right, the result of the proof search 
procedure applied to the goal in the conclusion. Note the application of the inductive hypothesis on the shorter deriva-
tion of height h3. All the other cases of local invertibility of ⊃R are similar, but the cases w.r.t. ⊃R and ⊃L fail when 
already-proved-theorems is empty. The proof obligation w.r.t ⊃R that cannot be rewritten to proved is in red:

h1 : �2,F3 � F4

•h1 : �2 � F3 ⊃ F4
⊃R � •h1 : �2,F3 � F4

fail

This is the dummy case where the same rule is applied on the same formula and the proof transformation should be trivial. 
If H (Theorem 5) is added to the set of already proved theorems, this case is solved:

h1 : �2,F3 � F4

•h1 : �2 � F3 ⊃ F4
⊃R � h1 : �2,F3 � F4

ax

•h1 : �2,F3 � F4
H

Regarding the failure of the invertibility of ⊃R w.r.t ⊃L

h3 : �6,F4 ⊃ F5 � F4 h3 : �6,F5 � F1 ⊃ F2

•h3 : �6,F4 ⊃ F5 � F1 ⊃ F2
⊃L � •h3 : �6,F1,F4 ⊃ F5 � F2

fail

If ⊃L is applied on the sequent �6, F1, F4 ⊃ F5 �suc(h3) F2, two premises are obtained: �6, F1, F4 ⊃ F5 �h3 F4 and 
�6, F1, F5 �h3 F2. The second premise is provable by induction. The proof of the first premise requires weakening on F1:

h3 : �6,F4 ⊃ F5 � F4 h3 : �6,F5 � F1 ⊃ F2

•h3 : �6,F4 ⊃ F5 � F1 ⊃ F2
⊃L �

h3 : �6,F4 ⊃ F5 � F4
ax

h3 : �6,F1,F4 ⊃ F5 � F4
W

h3 : �6,F1,F5 � F2
ax/ind

•h : � ,F ,F ⊃ F � F
⊃L
3 6 1 4 5 2
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Once W is added, the proofs of invertibility of ∧R , ∧L , ∨L and �L are also completed.
Some cases are vacuously discharged. For instance, there are no proof obligations for the invertibility of ⊃R w.r.t. ∧R (it 

is impossible to unify the conclusion of these rules). Moreover, the cases of the axioms I , �R , and ⊥L are trivial since the 
only proof obligation is to reduce proved into proved:

h1 : �4,F2 ⊃ F3 � F2 h1 : �4,F3 � �
•h1 : �4,F2 ⊃ F3 � � ⊃L � trivial

The rules ∨R1 , ∨R2 , and the left premise of ⊃L are clearly not invertible. The following failures provide good evidences 
that these cases do not succeed:

h1 : �2 � F4

•h1 : �2 � F3 ∨ F4
∨2 � •h1 : �2 � F3

fail and

h3• : �4,F1 ⊃ F2 � � �R � h3• : �4,F1 ⊃ F2 � F1
fail

Theorem 6 (Invertibility). All the rules, but ∨Ri and ⊃L , are height-preserving invertible in G3ip. Moreover, the right premise of ⊃L is 
height-preserving invertible.

Proof. The invertibility of ∧R , ∧L , ∨L , and �L depends on the admissibility of W (Theorem 5). The invertibility of ⊃R

and the invertibility of the right premise of ⊃L require Theorem 5 (W and H). The specification of the property is in 
g3i/prop-inv.maude. The analysis is completed in 7.7 seconds. �
Contraction. When attempting a proof of admissibility of contraction, the local admissibility cases w.r.t ⊃L , ∧L , ∨L , and �L

fail. Here is the failing case for ∨L :

h1 : �5,F2,F2 ∨ F3 � F4 h1 : �5,F3,F2 ∨ F3 � F4

•h1 : �5,F2 ∨ F3,F2 ∨ F3 � F4
∨L � •h1 : �5,F2 ∨ F3 � F4

fail

Note that the inductive hypothesis cannot be used neither on the left nor on the right premise. After adding ’OrL to the 
set of already-proved invertible rules (field inv-rules), the L-Framework completes this case as follows:

h1 : �5,F2,F2 ∨ F3 � F4 h1 : �5,F3,F2 ∨ F3 � F4

•h1 : �5,F2 ∨ F3,F2 ∨ F3 � F4
∨L �

h1 : �5,F2,F2 � F4
inv-th/ax

h1 : �5,F2 � F4
IH

h1 : �5,F3,F3 � F4
inv-th/ax

h1 : �5,F3 � F4
IH

•h1 : �5,F2 ∨ F3 � F4
∨L

h1 : �5,F2,F6,F6 � F4 h1 : �5,F3,F6,F6 � F4

•h1 : (�5,F2 ∨ F3),F6,F6 � F4
∨L �

h1 : �5,F2,F6,F6 � F4
ax

h1 : �5,F2,F6 � F4
IH

h1 : �5,F3,F6,F6 � F4
ax

h1 : �5,F3,F6 � F4
IH

•h1 : �5,F6,F2 ∨ F3 � F4
∨L

Due to unification, there are indeed two cases: one in which the disjunctive formula is contracted and one of the copies 
is principal, and another case with the disjunction not being contracted (instead, another formula F6 is). The second case 
follows without using the invertibility lemma.

Theorem 7 (Contraction). The contraction rule C (Equation (1)) is height-preserving admissible in G3ip.

Proof. The cases ∨L , ∧L , and �L require the invertibility of the respective rules (Theorem 6). The case ⊃L requires invert-
ibility of the right premise of this rule (specified in inv-rules as ’impL$$1). The proof takes 1.3 seconds. �
Cut-admissibility. Controlling the structural rules is one of the key points to reduce the search space in sequent systems. 
The system G3ip embeds weakening in its initial rule (� can be an arbitrary context) and contraction in rules with two 
premises (all rules are additive and contraction is explicit in the left premise of ⊃L ). Thus, W and C are admissible in G3ip, 
and the proof search procedure does not need to guess how many times a formula must be contracted or whether some of 
them need to be weakened. The cut-rule considered for G3ip is additive (see Equation (8)), hence also carrying an implicit 
contraction.

The proof of cut-admissibility for G3ip implements two strategies for reducing the search space (see Section 7.6):

1. If GTP is the resulting set of sequents that can be assumed to be provable, then such sequents are added as axioms 
that internalize weakening. For instance, if � � F is a (ground) sequent in GTP, then, � � F is assumed to be provable 
whenever � ⊇ �. This avoids the need for adding the rule W to the set of already proved theorems, thus reducing the 
non-determinism during proof-search: weakening is “delayed” until the leaves of the derivation are reached.

2. The inductive hypothesis on the structure of the formula is only used in the principal cases. Hence, less alternatives are 
explored when proving the non-principal cases.
24



C. Olarte, E. Pimentel and C. Rocha Journal of Logical and Algebraic Methods in Programming 130 (2023) 100827
The strategy (1) considerably affects the performance in both failing and successful attempts as explained below. The 
strategy (2) saves few seconds when all the needed auxiliary lemmas are added and the proof succeeds. In failing attempts, 
this strategy has an important impact.

Due to (1), W and C are not added to already-proved-theorems and, for the moment, consider also that none of the 
invertibility lemmas is added. This experiment leads to proofs for the trivial cases (�R , ⊥L , I and �L ) and fails for the other 
rules in almost 15 seconds.3

Non-principal cases. Usually the non-principal cases are easily solved by permuting down the application of a rule and 
reducing the height of the cut. Some of these cases are already proved in this first iteration. For instance, the case (∧L , ∨1) 
— ∧L applied on the left premise and ∨1 on the right premise — is solved as follows:

h1 : �11,F6,F7 � F12

•h1 : �11,F6 ∧ F7 � F12
∧L

h8 : �11,F12,F6 ∧ F7 � F9

•h8 : (�11,F6 ∧ F7),F12 � F9 ∨ F10
∨1

− : �11,F6 ∧ F7 � F9 ∨ F10
Cut �

•h1 : �11,F6 ∧ F7 � F12
ax/W

h8 : �11,F12,F6 ∧ F7 � F9
ax/W

− : �11,F6 ∧ F7 � F9
hCut

− : �11,F6 ∧ F7 � F9 ∨ F10
∨1

In the right derivation, hCut is an application of the cut-rule with shorter derivations. Moreover, ax/W finishes the proof 
due to the sequents assumed to be provable (on the left derivation), possibly applying W. In this particular case, weakening 
is not needed. Some other similar cases, however, fail. Take for instance the case (∧L , ∧L ):

h1 : �12,F6,F7 � F9 ∧ F10

•h1 : �12,F6 ∧ F7 � F9 ∧ F10
∧L

h8 : �12,F9,F10,F6 ∧ F7 � F11

•h8 : (�12,F6 ∧ F7),F9 ∧ F10 � F11
∧L

− : �12,F6 ∧ F7 � F11
Cut

� − : �12,F6 ∧ F7 � F11
fail

What is missing here is the invertibility of ∧L on the assumption �12, F9, F10, F6 ∧ F7 �h8 F11. If this invertibility lemma is 
added, the tool completes the case:

� h1 : �12,F6,F7 � F9 ∧ F10
ax/W

h8 : �12,F10,F6,F7,F9 � F11
inv-th/ax

•h8 : �12,F6,F7,F9 ∧ F10 � F11
∧L

− : �12,F6,F7 � F11
hCut

− : �12,F6 ∧ F7 � F11
∧L

Inspecting similar failing cases suggests the need for including also the invertibility of the rules ∧R and ∨L , and also 
the invertibility of the right premise of ⊃L . This solves some missing cases but still, the cases for ⊃L , ∧L and ∨L are not 
complete. One of the failures for (⊃L , ⊃L ) is the following:

h1 : �10,F7 ⊃ F8 � F7 h1 : �10,F8 � F11

•h1 : �10,F7 ⊃ F8 � F11
⊃L

h6 : �10,F11,F7 ⊃ F8 � F7 h6 : �10,F8,F11 � F9

•h6 : (�10,F7 ⊃ F8),F11 � F9
⊃L

− : �10,F7 ⊃ F8 � F9
Cut

� − : �10,F7 ⊃ F8 � F9
fail

The cut-formula is F11 and it is not principal in any of the premises. Once ⊃L is applied on the goal �10, F7 ⊃ F8 � F9, 
the resulting left premise is already proved (see the left-most sequent in the left derivation). The right premise can be 
proved with H (Theorem 5) if it is added to already-proved-theorems.

Principal cases. Note that in all the above derivations, due to unification, there is always more than one constant of sort 
Formula in the goal: besides the formula in the succedent of the sequent, there are formulas in the antecedent that are 
needed for the application of a left rule in the left premise of the cut. Due to the strategy (2), cuts on smaller formulas are 
not considered during the proof search for these cases. The situation is different in the principal cases. Consider for instance 
the case (⊃R , ⊃L):

h1 : �9,F6 � F7

•h1 : �9 � F6 ⊃ F7
⊃R

h5 : �9,F6 ⊃ F7 � F6 h5 : �9,F7 � F8

•h5 : �9,F6 ⊃ F7 � F8
⊃L

− : �9 � F8
Cut �

•h1 : �9 � F6 ⊃ F7
ax/W

h5 : �9,F6 ⊃ F7 � F6
ax/W

− : �9 � F6
hCut

− : �9,F6 � F7
ax/W − : �9,F6,F7 � F8

ax/W

− : �9,F6 � F8
sCut

− : �9 � F8
sCut

Rule sCut corresponds to a cut on a sub-formula. Note that the antecedent of the goal is just a constant of sort MSFormula
(�9).

Theorem 8 (Cut-admissibility). The cut-rule in Equation (8) is admissible in G3ip.

3 In the same experiment, if the strategy (2) is not considered, the case ⊃R does not finish after 15 min.
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Proof. See the specification and dependencies in g3i/prop-cut.maude. The proof requires Theorem 5. All the cases 
–except for �R , �L , ⊥L , and I– require Theorem 6. The proof is completed in 13.8 sec. �
Multiplicative cut in G3ip. Observe that, by adopting the additive version of the cut-rule, several common proof search prob-
lems are avoided, e.g., loops created by the uncontrolled use of contraction. But what if the following multiplicative cut is 
considered in G3ip instead, where the context is split between the two premises?

� � A �, A � B
�,� � B

Cut (9)

The search tree now is considerably bigger since all the alternatives on how to split the context �, � need to be considered 
(see cut-mul-scon.maude). This is an interesting question, and the discussion presented next will serve to pave the way 
to the analysis of sequent systems with linear contexts (see Section 8.4).

Note that, if only the rule H (Theorem 5) is added, then all the cases but the principal cases for ⊃ and ∧ succeed in 26 
seconds. The failure on (∧R , ∧L) is:

h1 : �2 � F6 h1 : �2 � F7

•h1 : �2 � F6 ∧ F7
∧R

h5 : �9,F6,F7 � F8

•h5 : �9,F6 ∧ F7 � F8
∧L

− : �2,�9 � F8
Cut

� − : �2,�9 � F8
fail

This case is solved by cutting with F6 and F7. However, since the cut-rule is multiplicative, the contexts �2 and �9 need 
to be contracted first. Adding contraction, on terms of sort MSFormula makes infeasible the proof search procedure: any 
subset of the antecedent context can be chosen for contraction and such rule can be applied on any sequent/goal. Instead, 
a more controlled version of contraction can be added: contract the whole context only if there are no duplicated elements 
in it. This more restricted rule cannot be applied twice on the same goal, thus reducing the number of alternatives leading 
to the following proof transformation:

h1 : �2,F6 � F7

•h1 : �2 � F6 ⊃ F7
⊃R

h5 : �9,F6 ⊃ F7 � F6 h5 : �9,F7 � F8

•h5 : �9,F6 ⊃ F7 � F8
⊃L

− : �2,�9 � F8
Cut �

•h1 : �2 � F6 ⊃ F7
ax/W

h5 : �9,F6 ⊃ F7 � F6
ax/W

− : �2,�9 � F6
hCut

− : �2,F6 � F7
ax/W − : �9,F7 � F8

ax/W

− : �2,�9,F6 � F8
sCut

− : �2,�2,�9,�9 � F8
sCut

− : �2,�9 � F8
C

Theorem 9 (Multiplicative cut). The rule in Eq. (9) is admissible in G3ip.

Proof. The specification is in g3i/prop-cut-mul.maude. See the contraction rule used in the definition of already-
proved-theorems. No invertibility lemma is needed for this proof. The analysis is completed in 25.6 seconds. �

If W is not embedded in the initial axioms and C is allowed on arbitrary contexts, there is little hope to conclude these 
proofs in reasonable time.

Identity expansion. Finally, the dual property of cut-admissibility, identity expansion, is easily proved in the L-Framework.

Theorem 10 (Identity-expansion). If F is a formula, then F � F is provable in G3ip.

Proof. See g3i/prop-ID.maude. The rule W needs to be added to the set of already proved theorems. It is used, e.g., in 
the following case:

− : F0 � F0
IH

− : F0,F0 ⊃ F1 � F0
W

− : F1 � F1
IH

− : F0,F1 � F1
W

− : F0,F0 ⊃ F1 � F1
⊃L

− : F0 ⊃ F1 � F0 ⊃ F1
⊃R �

8.2. Multi-conclusion propositional intuitionistic logic (mLJ)

Maehara’s mLJ [25] is a multiple conclusion system for intuitionistic logic. The rules in mLJ have the exact same shape 
as in G3ip, except for the right rules for disjunction and implication (see Fig. 2). The disjunction right rule in mLJ matches 
the corresponding rule in classical logic where the disjunction is interpreted as the comma in the succedent of sequents. The 
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�, A ⊃ B � A,� �, B � �

�, A ⊃ B � �
⊃L

�, A � B

� � A ⊃ B,�
⊃R

� � A, B,�

� � A ∨ B,�
∨R

Fig. 2. The multi-conclusion intuitionistic sequent system mLJ.

right implication, on the other hand, forces all formulas in the succedent of the premise to be weakened. This guarantees 
that, when the ⊃R rule is applied on A ⊃ B , the formula B should be proved assuming only the pre-existent antecedent 
context extended with the formula A. This creates an interdependency between A and B .

Weakening. The proof of admissibility of weakening in mLJ is similar to G3ip, only noting that, in the former, weakening is 
also height-preserving admissible in the succedent of sequents.

Theorem 11 (Weakening and weak-height). If mLJ �n � � �, then mLJ �suc(n) � � � (H). Moreover, the following rules are height-
preserving admissible in mLJ:

� � �

�, F � �
WL

� � �

� � �, F
WR

Proof. The three properties are specified in mLJ/prop-WH.maude. No auxiliary lemmas are needed. This theorem is proved 
in less than 3 seconds. �
Invertibility. All the rules in mLJ are invertible, with the exception of ⊃R .

Theorem 12 (Invertibility). All the rules but ⊃R are height-preserving invertible in mLJ.

Proof. See the specification in mLJ/prop-inv.maude. H (Theorem 11) is needed for all the cases but �R , ⊥L and I . This 
proof takes 15.1 seconds. �
Contraction. Contraction is also admissible, on both sides of sequents.

Theorem 13 (Contraction). The rules

�, F , F � �

�, F � �
CL

� � F , F ,�

� � F ,�
CR

are both height-preserving admissible in mLJ.

Proof. The specification is in mLJ/prop-C.maude. The proof of admissibility of CL (resp. CR ) requires the invertibility of 
�L , ∨L , ∧L , and ⊃L (resp., ⊥R , ∨R and ∧R ). �
Cut-admissibility and identity expansion. In the proof of cut-admissibility for G3ip, the application of the rule for structural 
induction (sCut) is restricted to goals with at most one term of sort Formula (corresponding to the principal cases). That 
simplification is not possible in mLJ: with that restriction, the cases for ∧R and ∨R fail w.r.t. ⊃R . Here is the case for 
(∨R , ⊃R):

h1 : �12 � (�11,F9 ⊃ F10),F6,F7

•h1 : �12 � (�11,F9 ⊃ F10),F6 ∨ F7
∨R

h8 : �12,F9,F6 ∨ F7 � F10

•h8 : �12,F6 ∨ F7 � �11,F9 ⊃ F10
⊃R

− : �12 � �11,F9 ⊃ F10
Cut �

− : �12 � �11,F9 ⊃ F10
fail

Note that the cut formula F6 ∨ F7 is principal on the left premise, but it is not on the right premise. This case cannot be 
solved by reducing the height of the cut by first applying ⊃R since this would remove the context �11 (needed in the left 
premise).

The cut-admissibility procedure for mLJ is based on the module defined in the file cut-add-mcon.maude (additive 
multiple-conclusion) where sCut is added in cases where the goal sequent has at most two terms of sort Formula. Hence, 
sCut is allowed also in non-principal cases. This solves the previous case and the search procedure finds the following proof 
transformation:

�

− : �12 � �11,F6,F7,F9 ⊃ F10
ax/W

− : �12,F7,F9 � F10
inv-th/ax

− : �12,F7 � �11,F6,F9 ⊃ F10
⊃R

− : �12 � �11,F6,F9 ⊃ F10
sCut

− : �12,F6,F9 � F10
inv-th/ax

− : �12,F6 � �11,F9 ⊃ F10
⊃R

− : �12 � �11,F9 ⊃ F10
sCut
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Theorem 14 (Cut-admissibility and ID-expansion). The following cut rule

� � �, A �, A � �

� � �
Cut

is admissible in mLJ. Moreover, for any F , the sequent F � F is provable.

Proof. For cut-admissibility (mLJ/prop-cut.maude), H as well as the invertibility of the rules ∧L , ∧R , ∨L , ∨R , and ⊃L are 
needed. For identity-expansion (mLJ/prop-ID.maude), the admissibility of WR and WL (Theorem 11) is needed. The proof 
takes 35.2 seconds. �
8.3. System G3cp for propositional classical logic

G3cp [11] is a well-known two-sided sequent system for classical logic, where the structural rules are implicit and all 
the rules are invertible. The rules are similar to those of mLJ with the exception of ⊃R :

�, F � �, G
� � �, F ⊃ G

⊃R

Weakening. Admissibility of weakening of G3cp follows the same lines as in mLJ.

Theorem 15 (Weakening and weak-height). If G3cp �n � � �, then G3cp �suc(n) � � � (H). The rules WL and WR (see Theorem 11) 
are height-preserving admissible in G3cp.

Proof. The three properties are specified in g3c/prop-WH.maude. No auxiliary lemmas are needed. �
Besides weakening and contraction, the procedures for checking admissibility of one-premise rules have been used for 

proving the admissibility of the rule H. Proposition 2 shows two further applications of such procedures.

Proposition 2. The following two rules are admissible in G3cp:

� � �, A ∧ A
� � �, A

∧w
� � �, A

� � �, A ∧ A
∧c

Proof. The specification is in g3c/prop-and.maude. Rule ∧w is height-preserving admissible. In ∧c , what it is proved is: 
If G3cp �n � � �, A then G3cp �suc(n) � � �, A ∧ A, i.e., the conclusion is provable with at most one extra derivation step. 
Here a representative case:

h1 : �2,F4 � �3,F5

•h1 : �2 � �3,F4 ⊃ F5
⊃R �

h1 : �2,F4 � �3,F5
ax

•h1 : �2 � �3,F4 ⊃ F5
⊃R

h1 : �2,F4 � �3,F5
ax

•h1 : �2 � �3,F4 ⊃ F5
⊃R

• • h1 : �2 � �3, (F4 ⊃ F5) ∧ (F4 ⊃ F5)
∧R

�

Invertibility. All the rules in G3cp are invertible.

Theorem 16 (Invertibility). All the rules in G3cp are height-preserving invertible.

Proof. See the specification in g3c/prop-inv.maude. H (Theorem 15) is needed. This proof takes 15.1 seconds. �
Contraction. An attempt of proving admissibility of contraction on the left side of the sequent fails due to ⊃L (and on the 
right due to ⊃R ). Here the failing case for CL :

h1 : �5,F2 ⊃ F3 � �4,F2 h1 : �5,F3,F2 ⊃ F3 � �4

•h1 : �5,F2 ⊃ F3,F2 ⊃ F3 � �4
⊃L � •h1 : �5,F2 ⊃ F3 � �4

fail

Due to invertibility of ⊃L , the sequent �5 � �4, F2, F2 is provable. However, induction does not apply on this sequent since 
F2 is on the right side of the sequent.

Hence, the proof of admissibility of contraction is by mutual induction on CL and CR . For instance, the case of ⊃L is 
solved by applying CR on a shorter derivation:

h1 : �5,F2 ⊃ F3 � �4,F2 h1 : �5,F3,F2 ⊃ F3 � �4

•h1 : �5,F2 ⊃ F3,F2 ⊃ F3 � �4
⊃L �

h1 : �5 � �4,F2,F2
inv-th/ax

h1 : �5 � �4,F2
IH-Mutual

h1 : �5,F3,F3 � �4
inv-th/ax

h1 : �5,F3 � �4
IH

•h : � ,F ⊃ F � �
⊃L
1 5 2 3 4
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� p⊥, p
I � 1

1
� �

� �,⊥ ⊥ � �,� �

� �1, A � �2, B

� �1,�2, A ⊗ B
⊗ � �, A, B

� �, A�B
�

� �, A � �, B

� �, A & B
&

� �, A

� �, A ⊕ B
⊕1

� �, B

� �, A ⊕ B
⊕2

Fig. 3. One-sided multiplicative-additive linear logic (MALL).

h1 : �5,F6,F6 � �4,F2 h1 : �5,F3,F6,F6 � �4

•h1 : (�5,F2 ⊃ F3),F6,F6 � �4
⊃L �

h1 : �5,F6,F6 � �4,F2
ax

h1 : �5,F6 � �4,F2
IH

h1 : �5,F3,F6,F6 � �4
ax

h1 : �5,F3,F6 � �4
IH

•h1 : �5,F6,F2 ⊃ F3 � �4
⊃L

In the second proof transformation, contraction is applied on a formula different from the implication and mutual in-
duction is not needed.

Theorem 17 (Contraction). The rules CL and CR are height-preserving admissible in G3cp.

Proof. The specification is in g3c/prop-C.maude. The proof of admissibility of CL (resp., CR ) requires the invertibility of 
�L , ∨L , ∧L , and ⊃L (resp., ⊥R , ∨R , ∧R , and ⊃R ). For CL , the specification includes the following definition for mutual 
induction:

eq mutual-ind(’suc[GT]) =
rl ’_:_[GT, ’_|--_[’Gm:MSFormula, ’_;_[’F:Formula, ’Dt:MSFormula]]] =>

’_:_[GT, ’_|--_[’Gm:MSFormula, ’_;_[’_;_[’F:Formula,’F:Formula],
’Dt:MSFormula]]] [ label(’\IHMutual) ]. ) .

eq mutual-ind (GT) = none [owise] .

This means that CR can be applied on shorter derivations of height GT (due to the pattern “’suc[GT]” in the definition of 
the equation). Similarly, the proof of CR requires mutual induction on CL (specifically for the case ⊃R ). �
Cut-admissibility and identity expansion. The proof of these properties follow the same recipe as in mLJ.

Theorem 18 (Cut-admissibility and ID-expansion). The cut-rule in Theorem 14 is admissible in G3cp. Moreover, for any F , the sequent 
F � F is provable.

Proof. For cut-admissibility (g3c/prop-cut.maude), H as well as the invertibility of the rules ⊃L , ⊃R , ∧L , ∧R , ∨L , and 
∨R are needed. For identity-expansion (g3c/prop-ID.maude), the admissibility of WR and WL is needed. The proof of 
cut-admissibility takes 22.5 seconds and id-expansion less than one second. �
8.4. Propositional linear logic

Linear logic (LL) [26] is a resource aware logic. Formulas are consumed when used during proofs, unless they are marked 
with the exponential ? (whose dual is !), in which case they can be weakened and contracted. Besides the exponentials, 
propositional LL connectives include the additive conjunction & and disjunction ⊕, their multiplicative versions ⊗ and �, 
and the unities 1, 0, �, ⊥. These connectives form actually pairs of dual operators:

(A & B)⊥ def= A⊥ ⊕ B⊥ (A ⊗ B)⊥ def= A⊥
�B⊥ (! A)⊥ def= ?A⊥ 0⊥ def= � 1⊥ def= ⊥

where A⊥ denotes the negation of the formula A. All negations in LL can be pushed inwards and restricted to the atomic 
scope. For an atomic formula A, (A⊥)⊥ def= A.

First, consider the fragment of LL without the exponentials, that is, (classical) propositional multiplicative-additive linear 
logic (MALL). The one-sided proof system for MALL is depicted in Fig. 3. As expected, the structural rules for weakening and 
contraction are not admissible in this system.

Invertibility. The well known invertibility results for MALL are easily proved in the L-Framework.

Theorem 19 (Weak-height and invertibility). If MALL �n � �, then MALL �suc(n) � � (H). Moreover, all the rules but ⊗ and ⊕i, i ∈
{1, 2}, are height-preserving invertible.

Proof. See MALL/prop-H.maude and MALL/prop-inv.maude. Due to the splitting of the context, clearly ⊗ is not invertible. 
Here two (failing) cases showing that the left premise of this rule is not invertible. The first one corresponds to invertibility 
w.r.t. � and the second one w.r.t. ⊗:

•h3 :� �,�4,�5,F1 ⊗ F2
� � •h3 :� F1,�4

fail

h3 :� F4,�6,�7,F1 ⊗ F2 h3 :� F5,�8,�9 ⊗ � •h3 :� F1,�6,�8,F4 ⊗ F5
fail �
•h3 :� (�6,�7,F1 ⊗ F2), (�8,�9),F4 ⊗ F5
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� ?A1, . . . ,?An, A

� ?A1, . . . ,?An, ! A
! � �, A

� �,?A
?

� �

� �,?A
?W

� �,?A,?A

� �,?A
?C

Fig. 4. Exponential rules for LL.

Cut-admissibility and identity expansion. Since the system under consideration is one-sided, the cut-rule has a one-sided pre-
sentation. The theory in cut-lin-osided.maude (linear cut, one sided) specifies the operation op dual : Formula ->
Formula . and the OL must define equations for it reflecting the De Morgan dualities of the connectives. Here some 
examples for the LL connectives:

eq dual(p(i)) = perp(i) . eq dual(perp(i)) = p(i) . eq dual(1) = bot .
eq dual(F ** G) = dual(F) $ dual(G) . eq dual(F $ G) = dual(F) ** dual(G).

Theorem 20 (Cut-admissibility and id-expansion). The rule 
� �, F � �, F ⊥

� �,�
Cut

is admissible in MALL. Moreover, for any formula 
F , the sequent � F , F ⊥ is provable.

Proof. The notation F ⊥ corresponds to dual(F). The proof of cut-admissibility (specification in MALL/prop-cut.maude) 
relies only on the admissibility of H. Here the principal case (⊗, �):

h1 :� F6,�4 h1 :� F7,�5

•h1 :� F6 ⊗ F7,�4,�5
⊗ h8 :� �9,dual(F6),dual(F7)

•h8 :� dual(F6 ⊗ F7),�9
�

− :� (�4,�5),�9
Cut �

− :� �4,F6
ax

− :� �5,F7
ax − :� �9,dual(F6),dual(F7)

ax

− :� �5,�9,dual(F6)
sCut

− :� �4,�5,�9
sCut �

Exponentials. Consider the one-sided system for linear logic obtained by adding the exponential ? and its dual !. The system 
LL results from the inclusion of the inference rules in Fig. 4 to those in Fig. 3. Note the explicit rules for weakening and 
contraction on formulas marked with ?.

The specification of the rule ! (called promotion) requires a new sort to guarantee that the context only contains formulas 
marked with ? (see LL/LL.maude):

--- Formulas and multisets of formulas marked with ?
sorts ?Formula ?MSFormula .
op ?_ : Formula -> ?Formula . --- a ?-Formula is built with ?
subsort ?Formula < ?MSFormula .
subsort ?MSFormula < MSFormula .
--- In Rule !, the context must contain only ?-Formulas
var CLq : ?MSFormula .
rl [bang] : |-- CLq ; ! F => |-- CLq ; F .

Theorem 21 (Weak-height, weak-! and inv.). If LL �n � �, then LL �suc(n) � � (H). The rule 
� �, !F
� �, F

W!
is height-preserving admis-

sible. Moreover, none of the rules in Fig. 4, but !, is height-preserving invertible.

Proof. See LL/prop-H.maude, LL/prop-WB.maude and LL/prop-inv.maude. The invertibility results and the admissibil-
ity of W! depend on H. Note that the rule ?C is invertible: it is always possible to apply it to later use ?W on the same 
contracted formula. However, such procedure does not preserve the height of the derivation. If the admissibility of W! is 
added to the set of already proved theorems, the invertibility of ! can be concluded. Note that the rule ! is context sensitive. 
This means that it cannot be eagerly applied, even though provability of the conclusion implies provability of the premise 
(and hence, invertible according to Definition 5). �

The cut-admissibility procedure for this system is certainly more involved. An attempt of proving this result fails in the 
case (!, ?C ):

h1 :� F4,?�3

•h1 :�!F4,?�3
! h5 :� �6,?dual(F4),?dual(F4)

•h5 :� dual(!F4),�6
?C

− :�?�3,�6
Cut

� − :�?�3,�6
fail

This is the principal case where the cut formula is !F and it is promoted, and its dual contracted. This case is solved by 
using the rule below that cuts !F with n copies of the formula ?F ⊥:
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� �, !F � �,(?F ⊥)n

� �,�
mCut (10)

Hence, the proof of cut-admissibility for this system must mutually eliminate the cut-rules in Theorem 20 and Rule (10). 
More precisely, the elimination of one of the cases of Cut relies on the application of mCut on shorter derivations and 
one of the cases in the elimination of mCut requires the application of Cut on smaller formulas. Here are the two relevant 
cases:

h1 :� F4,?�3

•h1 :�!F4,?�3
! h5 :� �6,?dual(F4),?dual(F4)

•h5 :� dual(!F4),�6
?C

− :�?�3,�6
Cut

� •h1 :�?�3, !F4
ax

h5 :� �6,?dual(F4),?dual(F4)
ax

− :�?�3,�6
mCut

h1 :� F4,?�3

•h1 :�!F4,?�3
! h6 :� �7,dual(F4), ctr(n5,?dual(F4))

•h6 :� ctr(sn5,?dual(F4)),�7
?

− :�?�3,�7
mCut

�

− :�?�3,F4
ax

•h1 :�?�3, !F4
ax

h6 :� �7,dual(F4), ctr(n5,?dual(F4))
ax

− :�?�3,�7,dual(F4)
hCut

− :�?�3,�7
Cut

In the last derivation, ctr(s n5, ? dual(F4)) denotes (?F ⊥
4 )suc(n5) and the application of Cut is on a smaller formula 

(F4 instead of !F4).

Theorem 22 (Cut-adm. and id-exp.). The following rules are admissible in LL:

� �, F � �, F ⊥
� �

Cut
� �, !F � �,(?F ⊥)n

� �,�
mCut

.
Moreover, for all formulas F , the sequent � F , F ⊥ is provable.

Proof. The procedures using mutual-induction are defined in LL/cut-ll.maude and LL/cut-ll-cc.maude (for mCut). 
The properties are specified in LL/prop-cut.maude and LL/prop-cut-cc.maude. Discharging the cases for Cut (resp., 
mCut) takes 13.2 seconds (resp. 115.6 seconds). In LL/cut-ll.maude, the definition

op mutual-induct : GroundTerm GroundTerm GroundTerm -> RuleSet .
eq mutual-induct(’suc[gh], ’suc[gh’], ’!_[GTA]) = ... --- spec. of mCut
eq mutual-induct(’suc[gh], ’suc[gh’], ’?_[GTA]) = ... --- spec. of mCut
eq mutual-induct(gh, gh’, GTA) = none [owise] .

receives as parameter the height of the two premises of the cut and the cut-formula F . If F is not a formula marked with !
or ?, no additional rule is generated (the [owise] case in the definition). Also, the pattern matching on the heights of the 
derivation allows for controlling the application of the cut-rule on shorter derivations. A similar definition can be found in 
LL/cut-ll-cc.maude.

The elimination of Cut assumes as auxiliary lemmas H and also a generalization of ?W on terms of sort ?MSFormula: 
� �

� �,?�
?GW . Note that this rule is not height-preserving admissible, but it is clearly admissible (and hence, it can be used 

only on sequents marked with ’inf.INat). Currently, the L-Framework does not support inductive proofs on the size of 
lists/multisets as needed for this auxiliary lemma. This rule is used in the following case (where the height of the derivation 
is irrelevant):

h1 :� F4,?�3

•h1 :�!F4,?�3
! h5 :� �6

•h5 :� dual(!F4),�6
?W

− :�?�3,�6
Cut

� − :� �6
ax

− :�?�3,�6
?G W

The elimination of mCut assumes H and the admissibility of W! (Th. 21), e.g.,

h2 :� F3,?�4, !F5

•h2 :�!F5,?�4,?F3
?

h7 :� �8,dual(F5), ctr(n6,?dual(F5))

•h7 :� ctr(sn6,?dual(F5)),�8
?

− :� (?�4,?F3),�8
Cut

�

− :�?�4, !F5,?F3
ax

− :�?�4,F5,?F3
W ! •h2 :�?�4, !F5,?F3

ax
h7 :� �8,dual(F5), ctr(n6,?dual(F5))

ax

− :�?�4,�8,?F3,dual(F5)
hCut

− :�?�4,�8,?F3
mCut

Also, a generalization of ?C on terms of sort ?MSFormula is used here:
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� �, F : �
� � : �,?F

?
� � : F
� � :!F ! � �, F : �, F

� �, F : � ?C
� � : �1, A � � : �2, B

� � : �1,�2, A ⊗ B
⊗

Fig. 5. Some rules of the dyadic system DyLL ([13]).

h2 :� F3,?�4, !F5

•h2 :�!F5,?�4,?F3
?

h7 :� �10,F8, ctr(n6,?dual(F5)) h7 :� �11,F9,?dual(F5)

•h7 :� ctr(sn6,?dual(F5)),�10,�11,F8 ⊗ F9
⊗

− :� (?�4,?F3),�10,�11,F8 ⊗ F9
Cut

�

•h2 :�?�4, !F5,?F3
ax

h7 :� �10,F8, ctr(n6,?dual(F5))
ax

− :�?�4,�10,F8,?F3
hCut

•h2 :�?�4, !F5,?F3
ax

h7 :� �11,F9,?dual(F5)
ax

− :�?�4,�11,F9,?F3
hCut

− :�?�4,?�4,�10,�11,?F3,?F3,F8 ⊗ F9
⊗

− :�?�4,�10,�11,?F3,F8 ⊗ F9
?GC

As explained in Sec. 8.1, arbitrary applications of contraction are problematic for proof search. Hence, in LL/prop-cut-
cc.maude, ?GC is introduced as a conditional rule that can be applied on a given multiset only if there is exactly one 
occurrence of it in the current sequent. As in the case of ?GW , the admissibility of ?GC cannot be proved in L-Framework. 
Discharging the cases of Cut (resp., mCut) takes 30 s (resp. 124 s). �
Dyadic system for linear logic. Since formulas of the form ?F can be contracted and weakened, such formulas can be treated 
as in classical logic. This rationale is reflected in the syntax of the so called dyadic sequents of the form � � : �, interpreted 
as the linear logic sequent � ?�, � where ?� = {?A | A ∈ �}. It is then possible to define a proof system without explicit 
weakening and contraction (system DyLL in Fig. 5). The complete dyadic proof system for linear logic can be found in [13].

Theorem 23 (Weak-height, weak-! and invertibility). If DyLL �n � � : �, then DyLL �suc(n) � � : � (H). The following rules are 
height-preserving admissible:

�, F , F : �

�, F : �
C

� : �

�, F : �
W

� � : �, !F
� � : �, F

W!
.

All the rules of the system but ⊕i , ⊗ and ?C are height-preserving invertible.

Proof. For the admissibility results, see the files DyLL/prop-H.maude, DyLL/prop-C.maude, DyLL/prop-W.maude and 
DyLL/prop-WB.maude. The invertibility results are specified in DyLL/prop-inv.maude. H and the admissibility of C and 
W do not require any additional lemma. The admissibility of W! depends on H. The invertibility results rely on H, W, and 
W!. �

As in the system LL, cut-admissibility in DyLL requires mutual induction on two different rules. The rule Cut! below 
internalizes the storage of formulas marked with ? into the classical context.

Theorem 24 (Cut-elim. and id-exp.). The following rules are admissible in LL:

� � : �1, F � � : �2, F ⊥
� � : �1,�2

Cut
� � : !F � �, F ⊥ : �

� � : �
Cut!

.

Moreover, for any formula F , the sequent � · : F , F ⊥ is provable.

Proof. The procedures are defined in the files DyLL/cut-dyadic.maude and, for Cut!, DyLL/cut-dyadic-cc.maude. The 
properties are specified in DyLL/prop-cut.maude and DyLL/prop-cut-cc.maude. Discharging the cases for Cut (resp., 
Cut!) takes 32.4 seconds (resp., 4 seconds). The admissibility of Cut (resp., Cut!) relies on H and W (resp., H, W and 
W!). �
Intuitionistic linear logic. The directory ILL contains the specification and analyses for intuitionistic linear logic (ILL). In this 
system, the multiplicative disjunction � is not present and the linear implication −◦ needs to be added (in classical LL, 
F −◦ G is a shorthand for F ⊥

�G). The resulting system is two-sided and single-conclusion. Formulas marked with ! on the 
left of the sequent can be weakened and contracted. The proof of cut-admissibility follows the same principles that the 
one for LL and the multicut rule below is required where !� is a multiset of formulas marked with ! (specified as the sort 
!MSFormula)

!� �!F �,(!F )n � G
!�,� � G

mCut
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� � A
�′,�� � �A,�

k
�,�A, A � �

�,�A � �
T

�� � A
�′,�� � �A,�

4

Fig. 6. The modal sequent rules for K (k) and S4 (k + T + 4).

8.5. Normal modal logics: K and S4

Modal logics extend classical logic with the addition of modal connectives (e.g., the unary modal connective �), used to 
qualify the truth of a judgment, widening the scope of logical-conceptual analysis. The alethic interpretation of �A is “the 
formula A is necessarily true”. A modal logic is normal if it contains the axiom

(k) �(A ⊃ B) ⊃ �A ⊃ �B

and it is closed under generalization: if A is a theorem then so it is �A.
The smallest normal modal logic is called K, and S4 extends K by assuming the axioms (T)�A ⊃ A and (4)�A ⊃ ��A. 

The sequent systems considered here for the modal logics K and S4 are extensions of G3cp with the additional rules for 
the modalities depicted in Fig. 6.

Structural rules. The admissibility of the structural rules follows as in Section 8.3.

Theorem 25 (Structural rules). If K �n � � �, then K �suc(n) � � � (H). Similarly for S4. Moreover, the rules WL , WR , CL , and CR

are height-preserving admissible in both K and S4.

Invertibility. As in G3cp, all the rules for the propositional connectives are invertible. Furthermore, T is invertible, but k and 
4 are not (due to the implicit weakening).

Theorem 26 (Invertibility). Only the rule T in Fig. 6 is invertible.

Proof. See the specification in K/prop-inv.maude and S4/prop-inv.maude. H is required in this proof. Below, one of the 
trivial cases showing that the rule k is not invertible:

•h2 : ��4,�5 � �,�3,�F1
�R � •h2 : unbox(��4) � F1

fail

Multisets of boxed formulas belong to the sort MSBFormula and the operation

op unbox : MSBFormula -> MSFormula . removes the boxes. �
Cut-admissibility and identity expansion. The proof of these properties for K and S4 uses the same infrastructure developed 
for G3cp.

Theorem 27 (Cut-admissibility and ID-expansion). The cut-rule in Theorem 14 is admissible in both K and S4. Moreover, for any F , 
the sequent F � F is provable in K and S4.

Proof. The specifications are in K/prop-cut.maude and S4/prop-cut.maude. In both cases, H is required as well as the 
invertibility of the propositional rules. �
Modal logic S5. Some extensions of the modal logic K do not have (known) cut-free sequent systems. In particular, consider 
the system S5, obtained by extending K with the axiom T and the rule below:

�� � A,��

�′,�� � �′,�A,��
45

(see KT45/KT45.maude). Using the same strategy as in Theorem 27, the tool is able to discharge some of the proof obliga-
tions for cut-admissibility. However, some subcases involving the rule 45 and the other two modal rules (T and k) fail. Here, 
one example:

h1 : ��13 � ��11,F8,�F10

•h1 : ��13,�14 � (��11,�12,�F8),�F10
A45

h9 : ��13,F10,�14,�F10 � ��11,�12,�F8

•h9 : (��13,�14),�F10 � ��11,�12,�F8
AT

− : ��13,�14 � ��11,�12,�F8
Cut �

− : ��13,�14 � ��11,�12,�F8
fail

This case is clearly not provable: the cut-formula �F10 is not decomposed in the left premise. Hence, cutting with F10
will not finish the proof. The only alternative is to reduce the height of the cut. The rule T cannot be applied (on F10) on 
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the last sequent. If 45 is applied on the last sequent, either F8 or one of the formulas in the boxed context �11 will lose 
the box. In both cases, none of the leaves of the left derivation can be used.

The failing cases are interesting, because they spot the point where the cut elimination procedure fails: if the goal is to 
propose a cut-free sequent system for a logic, certain shapes of rules should be avoided.

9. Concluding remarks

Related work. Tailoring adequate logical frameworks that are able to both, specify a representative class of logical sys-
tems and uniformly verify meta-level properties about the specified systems, is a challenge. Consider, for instance, the LF 
framework [27,28] based on intuitionistic logic. Since the left context is handled by the framework as a set, elaborated 
mechanisms for specifying sequent systems based on multisets are required. As a consequence, encodings become neither 
natural nor straightforward. One way of naturally specifying multisets is by adopting frameworks based on resource con-
scious logics. This is the case of LLF [29,30], grounded on (intuitionistic) linear logic. It turns out that linear logic is not 
adequate for naturally specifying contexts with different structural properties, as in the case of mLJ (Section 8.2). This can 
be partially fixed by adding subexponentials [31] to linear logic (e.g. as in SELL [32,33]). However, the resulting encodings 
are often non-trivial and difficult to automate. Moreover, since SELL is not adequate for specifying modalities behaving 
differently from its own, several logical systems cannot be naturally encoded in SELL, such as the modal sequent system K
[34].

Combining the type system of LF [27] with deduction modulo theories leads to the λ�-Calculus Modulo Theory [35]. 
Different logics and type systems can be expressed in this calculus, where connectives and quantifiers can be naturally 
defined with the aid of rewrite rules [36]. Dedukti [37] is an implementation of the λ�-Calculus Modulo Theory and it can 
be used to check proofs produced by other systems. Different from what is pursued in this paper, no automatic proofs can 
be developed in that system.

Proof assistants (Coq, Lean, Isabelle/HOL, Agda, etc.), grounded on different formal systems (set theory, higher order logic 
or different type systems) provide a robust infrastructure to build proofs. These tools have been extensively used in the 
formalization of logical systems and their meta-properties. See for instance the work in [38] that combines shallow and 
deep embeddings to reason, in a general way, about sequent systems in Isabelle. Proof assistants are usually coupled with 
mechanisms (e.g., tactic based languages) to interact with the user and automate routinary tasks. However, most of the 
proofs remain manual and the resulting procedure is usually tailored for some specific logic at hand. In this context, the
L-Framework can be seen as a companion tool to quickly spot the problematic cases before facing a more time consuming 
proving task in a proof assistant.

A completely different approach is presented in [39], where cut-elimination is obtained by considering the relation 
between the cut-rule in Gentzen’s system LK and the resolution rule for (propositional) classical logic. But, again, this 
method is restricted to systems having a (classical) semantics as a starting point.

All frameworks mentioned above have, at least, one common characteristic: the distance between the inference rules 
of the logical system and their specification as meta-level formulas. This justifies the fact that a framework is more or 
less adequate for specifying a specific class of logical systems. In [40], the web-based application Sequoia was proposed 
for specifying sequent calculi and performing basic reasoning about them. The specification is acquainted via translations 
of object-level trees into tree datatypes, using unification strategies. In this case, the specification distance is smaller, but 
proving meta-level properties becomes harder. Like Sequoia, the present work adopts the so-called ε-distance between the 
inference rules of the logical system and their specification as rewrite rules, using rewriting logic as a framework.

This paper presents many evidences that rewriting logic is an innovative and elegant framework for both specifying 
and reasoning in and about logical systems. Indeed, while approaches using logical frameworks depend heavily on the 
specification method and/or the implicit properties of the meta and object logics, rewriting logic enables the specification of 
the rules as they are actually written in text and figures [6,7]. Notions as derivability and admissibility of rules can be neatly 
formulated in the context of rewriting systems [41]. Moreover, rewriting modulo axioms greatly simplifies the definition of 
contexts in sequents, which would otherwise be represented as lists as it is the case in many proof assistants. As evidenced 
in the previous section, these features allow to achieve an impressive amount of automation in proofs.

Summary and future perspectives. Checking structural properties of proof systems is usually done via a case-by-case anal-
ysis, where all the possible combinations of rule applications in a system are exhausted. The advent of automated reasoning 
has changed completely the landscape, since theorems can nowadays be proved automatically in meta-logical frameworks 
(see e.g. [38,42]). This approach has brought a fresh perspective to the field of proof theory: useless proof search steps, 
usually singular to a specific logic, have been disregarded in favor of developing universal methods for providing general 
automation strategies. These developments have ultimately helped in abstracting out conceptual characteristics of logical 
systems, as well as in identifying effective frameworks that can capture (and help in reasoning about) them in a natural 
way.

This work moves forward towards such a direction: it proposes a general, natural, and uniform way of proving key struc-
tural properties of sequent systems by using the rewriting logic logical and meta-logical framework [7]. It ultimately enables 
modular and incremental proofs of meta-level properties of propositional sequent systems, both specified and mechanized 
in the language of Maude [8]. The approach builds on top of core algorithms that are combined and used for proving 
admissibility and invertibility of rules, as well as cut-admissibility and identity expansion of sequent systems.
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The usual Gentzen’s cut-elimination proof strategy can be summarized by the following steps: (i) transforming a proof 
with cuts into a proof with principal cuts; (ii) transforming a proof with principal cuts into a proof with atomic cuts; and 
(iii) transforming a proof with atomic cuts into a cut-free proof. While step (ii) is not difficult to solve (see, e.g., [30]), steps 
(i) and (iii) can be problematic to mechanize. The results presented in this work suggest that such steps can be automated 
to a certain degree. Once the object system has been defined, the L-Framework automatizes most of the tasks: the proof 
obligations are generated and proof search (automatic) procedures strive at discharging such obligations. In the failing cases, 
the user needs to interact with the system by manually adding, in the module interfaces, the already proved theorems she 
considers necessary to complete the proof. The proofs in Section 8 make explicit the dependencies between the results and a 
possible venue for further automation emerges: add automatically the structural rules already proved (backward reasoning) 
and also all the already proved invertible rules (forward reasoning). This strategy will suffice to complete, automatically, the 
proof of cut-elimination for some of the systems in Section 8.

Other case studies can be certainly considered. Only mild adjustments to the proposed approach and algorithms are 
needed in order to reason about (multi-)modal [43] and paraconsistent [44] sequent systems. More interesting, it seems 
also possible to have an extension to handle variants of sequent systems themselves, like nested [45] or linear nested [2]
systems. This ultimately widens the scope of logics that can be analyzed in the L-Framework, such as normal and non-
normal modal logics [46]. It is also an interesting future research path to consider first-order sequent systems. In order to 
handle such systems, more research needs to be pursued. For instance, dealing with variable instantiation and abstraction 
requires special care. These problems, in the context of rewriting logic, have been studied in [47]. In this work, first-order 
sequent systems are mechanized, including proof-search heuristics at the meta-level.

A usual concern when a new sequent system is proposed is to implement it. Few implementational efforts have provided 
tools for emerging sequent systems for logics such as epistemic, lax, deontic, knotted, linear-modal, etc., logics. It would not 
require much effort to reuse some of the algorithms presented here to implement a procedure that, given the inference 
rules of a sequent system, outputs an implementation of such a system in Maude. More interestingly, using invertibility 
lemmas would also enable the generation of a weak-focus [13] version of the original systems, thus eliminating part of the 
non-determinism during proof-search. It should be noted, however, that this depends on a deeper investigation of the role 
of invertible rules as equational rules in rewriting logic. While this idea sounds more than reasonable, it is necessary to 
check whether promoting invertible rules to equations preserves completeness of the system (e.g., the resulting equational 
theory needs to be Church-Rosser and terminating modulo the structural axioms of the operators). If the answer to this 
question is in the affirmative for a large class of systems, then the approach presented here also opens the possibility to the 
automatic generation of focused systems. These developments together with the advanced search mechanisms and strategies 
[48] in Maude, should provide a robust infrastructure for implementing proof search procedures and for testing different 
hypotheses/ideas without much modeling/programming effort.

The interaction of the user with the L-Framework is currently limited to modify the module interfaces and write 
properties using the meta-level representation of rewrite rules – which can be cumbersome. The tool can be leveraged 
to support interactive-theorem-proving in the lines of [49], and become a component of the Maude Formal Environment 
in [50]. Also, implementing new induction principles on lists/multisets may help in obtaining new automatic proofs (see 
Theorem 22).

A more ambitious endeavor would be to export the proof objects generated by the L-Framework to other proof as-
sistants. This is far from being trivial precisely due to the differences in the representation of contexts and sequents in 
different theorem provers, and also to the use of unification algorithms modulo axioms for producing proof obligations. A 
promising starting point for building this bridge is the interoperability capabilities of the system Dedukti [51].
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