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Abstract 

Background:  In the last decade, non-invasive blood-based and neurophysiological biomarkers have shown great 
potential for the discrimination of several neurodegenerative disorders. However, in the clinical workup of patients 
with cognitive impairment, it will be highly unlikely that any biomarker will achieve the highest potential predictive 
accuracy on its own, owing to the multifactorial nature of Alzheimer’s disease (AD) and frontotemporal lobar degen-
eration (FTLD).

Methods:  In this retrospective study, performed on 202 participants, we analysed plasma neurofilament light (NfL), 
glial fibrillary acidic protein (GFAP), and tau phosphorylated at amino acid 181 (p-Tau181) concentrations, as well as 
amyloid β42 to 40 ratio (Aβ1–42/1–40) ratio, using the ultrasensitive single-molecule array (Simoa) technique, and neu-
rophysiological measures obtained by transcranial magnetic stimulation (TMS), including short-interval intracortical 
inhibition (SICI), intracortical facilitation (ICF), long-interval intracortical inhibition (LICI), and short-latency afferent inhi-
bition (SAI). We assessed the diagnostic accuracy of combinations of both plasma and neurophysiological biomarkers 
in the differential diagnosis between healthy ageing, AD, and FTLD.

Results:  We observed significant differences in plasma NfL, GFAP, and p-Tau181 levels between the groups, but not for 
the Aβ1–42/Aβ1–40 ratio. For the evaluation of diagnostic accuracy, we adopted a two-step process which reflects the 
clinical judgement on clinical grounds. In the first step, the best single biomarker to classify “cases” vs “controls” was 
NfL (AUC 0.94, p < 0.001), whilst in the second step, the best single biomarker to classify AD vs FTLD was SAI (AUC 0.96, 
p < 0.001). The combination of multiple biomarkers significantly increased diagnostic accuracy. The best model for 
classifying “cases” vs “controls” included the predictors p-Tau181, GFAP, NfL, SICI, ICF, and SAI, resulting in an AUC of 0.99 
(p < 0.001). For the second step, classifying AD from FTD, the best model included the combination of Aβ1–42/Aβ1–40 
ratio, p-Tau181, SICI, ICF, and SAI, resulting in an AUC of 0.98 (p < 0.001).

Conclusions:  The combined assessment of plasma and neurophysiological measures may greatly improve the dif-
ferential diagnosis of AD and FTLD.
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Background
Alzheimer’s disease (AD) and frontotemporal lobar 
degeneration (FTLD) are a major and increasing global 
health challenge, with cases estimated to reach 150 mil-
lion worldwide in 2050 [1], due to the constant increase 
of elderly people as younger age mortality declines [2]. In 
this scenario, several priorities are being identified, par-
ticularly in view of the development of disease-specific 
and disease-modifying therapies that target distinct pro-
teinopathies; the foremost concern is to promptly iden-
tify patients with a neurodegenerative disorder from 
healthy ageing with high diagnostic confidence and then 
discriminate neurodegenerative disorders from one 
another, to benefit patients with tailored therapies and 
prognostic counselling.

Currently, validated markers, divided into imaging 
modalities and cerebrospinal fluid (CSF) measures, are 
used on clinical grounds and have proven to be highly 
accurate in diagnosing dementia [3]. However, several 
drawbacks may limit the use of these markers; thus, they 
are considered only in selected cases. In particular, some 
are able to identify AD but are unhelpful in other forms 
of dementia (i.e. amyloid positron emission tomography 
[PET] imaging or CSF Aβ42 and tau concentrations), and 
others are not useful in early disease stages at the sin-
gle subject level (i.e. brain magnetic resonance imaging 
[MRI]); moreover, the invasiveness of the procedure (i.e. 
CSF analysis) or the expensiveness (i.e. amyloid PET) may 
further limit their availability. Notably, the ideal marker, 
besides having high accuracy and reliability, should be 
non-invasive, simple to perform, and inexpensive [4].

In the last decade, non-invasive blood-based biomark-
ers have been extensively studied and refined, showing 
great potential in the identification of neurodegenerative 
disorders, even in the prodromal phases of disease [5–9]. 
Moreover, neurophysiological techniques, such as tran-
scranial magnetic stimulation, have been shown to be 
non-invasive and accurate in the discrimination of differ-
ent dementing conditions [10–12].

As each biomarker (blood-based or neurophysiologi-
cal) has shown great potential for the individualized pre-
diction of neurodegenerative conditions, in the clinical 
workup of patients with cognitive impairment, it will be 
highly unlikely that any biomarker will achieve the high-
est potential predictive accuracy on its own, owing to 
the multifactorial nature of AD and FTLD and its het-
erogeneous clinical presentations. Consequently, there 
is a necessity to identify a combination of measures that 

should be integrated to produce the most accurate, eas-
ily accessible, non-invasive, and cost-effective diagnostic 
algorithm for the classification of common neurodegen-
erative disorders.

The aim of the current study was to examine the diag-
nostic accuracy of blood-based and neurophysiological 
biomarkers, both taken individually and in combination 
with other biomarkers, in a two-step phase. In the first 
step, patients with neurodegenerative dementia, i.e. AD 
or FTLD, should be discriminated from healthy controls, 
whilst in the second step, AD should be identified from 
other conditions such as FTLD.

Materials and methods
Participants
This retrospective study included 202 participants from 
the Centre for Neurodegenerative Disorders, Depart-
ment of Clinical and Experimental Sciences, University 
of Brescia, Brescia, Italy.

The cohort consisted of 127 patients meeting probable 
clinical criteria for a syndrome in the FTLD spectrum, 
namely 67 behavioural variant frontotemporal dementia 
(bvFTD), 44 primary progressive aphasia (PPA), 7 cor-
ticobasal syndrome (CBS) and 9 progressive supranu-
clear palsy (PSP) [13–16]. Moreover, 48 patients fulfilling 
clinical criteria for AD [17] and 27 healthy controls (HC), 
recruited among spouses or caregivers, were included as 
well.

Each patient underwent a neurological evaluation, rou-
tine laboratory examination, and a neuropsychological 
and behavioural assessment. In all cases, the diagnosis 
was supported by brain structural imaging, whilst CSF 
concentrations of tau, p-Tau181, and Aβ1–42 were meas-
ured in a subset of cases (n = 142, 64.5%), as previously 
reported [18]. Furthermore, in familial cases (based on 
the presence of at least one dementia case among the 
first-degree relatives) and early-onset sporadic cases, 
genetic screening for GRN, C9orf72, and MAPT P301L 
mutations was performed; given the low frequency of 
MAPT mutations in Italy [19], we considered only the 
P301L mutation, and we sequenced the entire MAPT 
gene only in selected cases.

Each participant underwent blood collection for meas-
urements of serum NfL, GFAP, p-Tau181, Aβ1–42, and 
Aβ1–40 biomarkers. Moreover, each included patient 
underwent transcranial magnetic stimulation (TMS) 
protocols that partially and indirectly reflect the activ-
ity of several neurotransmitters, including GABAA by 
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short-interval intracortical inhibition (SICI), glutamate 
by intracortical facilitation (ICF), GABAB by long-inter-
val intracortical inhibition (LICI), and acetylcholine by 
short-latency afferent inhibition (SAI) [20–22].

Clinical evaluation
At baseline, patients underwent a standardized neu-
ropsychological battery which included the Mini-Mental 
State Examination (MMSE), the short story recall test, 
the Rey complex figure (copy and recall), the phonemic 
and semantic fluencies, the token test, the clock-drawing 
test, and the trail-making test (part A and part B) [23]. 
Disease severity was assessed with the clinical dementia 
rating plus National Alzheimer’s Coordinating Center 
(NACC) behaviour and language domains (CDR plus 
NACC FTLD) global and sum of boxes, whilst the level 
of functional independence was assessed with the basic 
activities of daily living (BADL) and the instrumental 
activities of daily living (IADL) questionnaire. Further-
more, neuropsychiatric and behavioural disturbances 
were evaluated with the neuropsychiatric inventory 
(NPI) [24].

HCs underwent a brief standardized neuropsycho-
logical assessment (MMSE ≥ 27/30); psychiatric or other 
neurological illnesses were considered exclusion criteria.

Serum biomarkers
Plasma was collected by venipuncture, processed, and 
stored in aliquots at − 80  °C according to the standard-
ised procedures. Plasma NfL concentration was meas-
ured using a commercial single-molecule array (Simoa) 
NF-Light® assay (Quanterix, Billerica, MA) according 
to the manufacturer’s instructions [25]. Plasma p-Tau181 
concentration was measured using an in-house Simoa 
assay developed at the University of Gothenburg [8]. In 
brief, the capture antibody (AT270, Invitrogen) which is 
specific for the threonine-181 phosphorylation site [26] 
was coupled to paramagnetic beads whilst the detec-
tor antibody (Tau12, BioLegend) was raised against the 
N-terminal epitope amino acid 6-QEFEVMEDHAGT-18 
on human tau protein. Detailed analytical procedures 
and assay validation have been previously described [8]. 
Plasma GFAP, Aβ1–42, and Aβ1–40 concentrations were 
measured using commercial Simoa assays (Quanterix, 
Billerica, MA). All measurements were carried out using 
an HD-X analyser (Quanterix, Boston, MA) in one round 
of experiments, using one batch of reagents with opera-
tors blinded to clinical information.

Transcranial magnetic stimulation
A TMS figure-of-eight coil (each loop diameter 
70 mm – D702 coil) connected to a monophasic Mag-
stim Bistim2 system (Magstim Company, Oxford, UK) 

was employed for all TMS paradigms, as previously 
reported [27]. Electromyographic (EMG) recordings 
were performed from the first dorsal interosseous mus-
cle using 9  mm diameter, Ag–AgCl surface-cup elec-
trodes. The active electrode was placed over the muscle 
belly and the reference electrode over the metacar-
pophalangeal joint of the index finger. Responses were 
amplified and filtered at 20 Hz and 2 kHz with a sam-
pling rate of 5 kHz.

Resting motor threshold (RMT) was determined on the 
left motor cortex as the minimum intensity of the stimu-
lator required to elicit motor evoked potentials (MEPs) 
with a 50-μV amplitude in 50% of 10 consecutive trails, 
recorded during full muscle relaxation.

SICI-ICF, LICI, and SAI were studied using a paired-
pulse technique, employing a conditioning test design. 
For all paradigms, the test stimulus (TS) was adjusted to 
evoke a MEP of approximately 1-mV amplitude.

For SICI and ICF, the conditioning stimulus (CS) was 
adjusted at 70% of the RMT, employing multiple inter-
stimulus intervals (ISIs), including 1, 2, and 3 ms for SICI 
and 7, 10, and 15 ms for ICF [28, 29]. LICI was investi-
gated by implementing two supra-threshold stimuli, with 
the CS adjusted at 130% of the RMT, employing ISIs of 
50, 100, and 150  ms [30]. SAI was evaluated employing 
a CS of single pulses (200  μs) of electrical stimulation 
delivered to the right median nerve at the wrist, using a 
bipolar electrode with the cathode positioned proximally, 
at an intensity sufficient to evoke a visible twitch of the 
thenar muscles [31]. Different ISIs were implemented 
(0, + 4), which were fixed relative to the N20 component 
latency of the somatosensory evoked potential of the 
median nerve.

For each ISI and for each protocol, ten different paired 
CS-TS stimuli and fourteen control TS stimuli were 
delivered to all participants in a pseudo-randomized 
sequence, with an inter-trial interval of 5 secs (± 10%).

The conditioned MEP amplitude, evoked after deliver-
ing a paired CS-TS stimulus, was expressed as a percent-
age of the average control MEP amplitude. The average 
values for SICI (1, 2, 3 ms ISI), ICF (7, 10, 15 ms ISI), LICI 
(50, 100, 150 ms ISI), and SAI (0, + 4 ms ISI) were used 
for analysis.

Stimulation protocols were conducted in a randomized 
order. Audio-visual feedback was provided to ensure 
muscle relaxation during the entire experiment, and tri-
als were discarded if EMG activity exceeded 100  μV in 
the 250  ms prior to TMS stimulus delivery. Less than 
5% of trials were discarded for each protocol. All of the 
participants were capable of following instructions and 
reaching complete muscle relaxation; if, however, the 
data was corrupted by patient movement, the protocol 
was restarted, and the initial recording was rejected.
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Statistical analysis
Continuous and categorical variables are reported as 
median (interquartile range) and n (%), respectively. 
Differences in clinical variables, biomarker concentra-
tions, and neurophysiological measures between the 
groups were compared by Kruskal–Wallis H test, Mann–
Whitney U test, χ2 test, or Fisher’s exact test where 
appropriate.

A rank-based partial correlation was run to assess the 
relationship between serum biomarkers, clinical vari-
ables, and TMS measures, correcting for age.

To identify the most accurate combination of biomark-
ers, the initial model selection was performed using the 
R package MuMIn, which tests all different combinations 
of variables and then ranks the models according to the 
Akaike Information Criterion (AIC). AIC is a model per-
formance metric which considers the trade-off between 
model fit and sparsity. Whilst R2 and AUC explain how 
well a model performs on the observed data, AIC rather 
explains how well a model would perform on unseen 
data. In other words, the larger the difference in AIC val-
ues between the two models, the less likely it is that the 
model with the higher AIC value would provide better 
predictive performance on unseen data than the model 
with the lower AIC value. The model with the lowest AIC 
was selected as the model with the best trade-off between 
fit and complexity and then a stepwise removal of varia-
bles was performed as long as the ΔAIC was < 2 from the 
model with the best fit to end up with a “parsimonious 
model” [32, 33]. Further variables were removed using 
a stepwise procedure in subsequent models to illustrate 
the added value of different variables and combinations 
of variable. Receiver operating characteristics (ROC) 
curve analyses were plotted, and the area under the curve 
(AUC) including 95% confidence interval (CI) values are 
reported. Comparisons of AUC were performed using 
DeLong statistics.

A two-sided p-value < 0.05 was considered significant 
and corrected for multiple comparisons using false dis-
covery rate (FDR) when appropriate. Statistical analyses 
were performed using IBM SPSS (v.25.0.2), GraphPad 
Prism (v.9.3.1), and R (v.4.21).

Data availability
All study data, including raw and analysed data, and 
materials will be available from the corresponding author, 
B.B., upon reasonable request.

Results
Participant characteristics
A total of 202 patients were included in the present study, 
namely 127 FTLD, 48 AD patients, and 27 HC. Demo-
graphic and clinical characteristics, fluid biomarker 

levels, and neurophysiological measures are reported 
in Table  1. We observed significant differences in NfL, 
GFAP, and p-Tau181 levels between the groups but not for 
the Aβ1–42/Aβ1–40 ratio. NfL and GFAP levels were sig-
nificantly increased in FTLD and AD, compared to HC 
(p = 0.005 and p < 0.001, respectively), whilst p-Tau181 lev-
els were significantly increased in AD patients compared 
to FTLD and HC (both p < 0.001) (see Fig. 1). Regarding 
neurophysiological measures, AD showed decreased SAI 
compared to FTLD and HC (both p < 0.001), whilst FTLD 
showed reduced SICI, ICF, and LICI compared to AD 
and HC (both p < 0.001) (see Fig. 1).

Correlations between serum biomarkers, 
neuropsychological scores, and neurophysiological 
measures
Age-corrected biomarker concentrations correlated 
with several neuropsychological scores. In particular, 
we observed significant correlations between NfL and 
CDR plus NACC FTLD sum of boxes (r = 0.37, p < 0.001), 
NPI (r = 0.28, p < 0.001), and MMSE scores (r =  − 0.19, 
p = 0.013), but also with neurophysiological scores as 
SICI (r = 0.17, p = 0.025) and SAI (r =  − 0.21, p = 0.006). 
GFAP also showed significant correlations with MMSE 
scores (r =  − 0.34, p < 0.001) and LICI (r =  − 0.16, 
p = 0.036).

p-Tau181 values strongly correlated with the Aβ1–42/
Aβ1–40 ratio (r =  − 0.30, p < 0.001), whilst NfL strongly 
correlated with GFAP levels (r = 0.29, p < 0.001).

Diagnostic accuracy of blood‑based biomarkers 
and neurophysiological measures
For the evaluation of diagnostic accuracy, we adopted a 
two-step process which reflects a clinical judgement on 
clinical grounds. The first step allows us to classify each 
subject as “case” (i.e. patient with dementia) or “control”. 
If the subject falls into the “case” category, the next order 
of classification was considered, and the AD vs FTLD 
classifier was carried out.

As shown in Fig. 2A, the best single biomarker to clas-
sify “cases” vs “controls” was NfL (AUC 0.94 [95% CI 
0.90–0.98], p < 0.001), followed by GFAP (AUC 0.86 [95% 
CI 0.80–0.92], p < 0.001). In the second step, as shown in 
Fig. 2B, the best single biomarker to classify AD vs FTLD 
was SAI (AUC 0.96 [95% CI 0.92–0.99], p < 0.001), fol-
lowed by ICF (AUC 0.87 [95% CI 0.82–0.93], p < 0.001).

We subsequently applied a data-driven model selec-
tion process to choose the best combination of biomark-
ers with the lowest AIC, removing as many variables as 
possible whilst maintaining a similar model performance 
defined as being within two AIC points of the lowest AIC 
model identified (ΔAIC < 2). Thereafter, variables were 
removed further in a stepwise procedure to examine 
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the performance of the more basic models (i.e. the most 
accurate model with exclusively neurophysiological or 
blood-based biomarkers, a model with only a single neu-
rophysiological or blood-based biomarker, and a model 
with the combination of one neurophysiological and one 
blood-based biomarker).

The best model for classifying “cases” vs “controls” 
included the predictors p-Tau181, GFAP, NfL, SICI, ICF, 
and SAI, resulting in an AUC of 0.99 (95% CI 0.99–
1.00), p < 0.001 (see Fig.  3). By selecting exclusively 
blood-based biomarkers (p-Tau181, GFAP, and NfL) 

or neurophysiological measures (SICI, ICF, and SAI), 
we obtained very similar results (AUC 0.96 [95% CI 
0.93–0.98], p < 0.001 and AUC 0.96 [95% CI 0.93–1.00], 
p < 0.001, respectively). Even higher accuracy was reached 
by combining the best blood-based biomarker (NfL) 
(AUC 0.94 [95% CI 0.90–0.98], p < 0.001) with the best 
neurophysiological measure (SICI) (AUC 0.85 [95% CI 
0.78–0.92], p < 0.001), resulting in an AUC of 0.96 (95% 
CI 0.94–0.99), p < 0.001 (see Fig. 3).

For the second step, classifying AD from FTD, the best 
model included the combination of Aβ1–42/Aβ1–40 ratio, 

Table 1  Demographic and clinical characteristics of HC, AD, and FTLD patients

Results are expressed as median (interquartile range), unless otherwise specified

FTLD Frontotemporal lobar degeneration, AD Alzheimer’s disease, HC Healthy controls, MMSE Mini-Mental State Examination, NPI Neuropsychiatric inventory, CDR 
plus NACC FLTD Clinical dementia rating plus National Alzheimer’s Coordinating Center behaviour and language domains, BADL Basic activities of daily living, IADL 
Instrumental activities of daily living, NfL Neurofilament light chain, GFAP Glial fibrillary acidic protein, Aβ Amyloid beta, TMS Transcranial magnetic stimulation, SICI 
Average short-interval intracortical inhibition (1, 2, 3 ms), ICF Average intracortical facilitation (7, 10, 15 ms), LICI Average long-interval intracortical inhibition (50, 100, 
150 ms), SAI Average short-latency afferent inhibition (0, + 4 ms) expressed as the ratio of the unconditioned motor evoked potential
a Significant difference compared to AD
b Significant difference compared to FTD
c Significant difference compared to HC

Variables HC AD FTLD p-value

Number 27 48 127

Age, years 48.0 (38.0–68.0)a, b 68.5 (61.8–73.0)c 64.0 (58.0–70.0)c  < 0.001

Sex, female % 55.6 44.3 47.8 n.s

Education, years 11.0 (8.0–13.0) 8.0 (7.5–13.0) 10.0 (8.0–13.0) n.s

Age at onset, years – 65.5 (59.0–71.0) 62.0 (55.0–68.0) n.s

Disease duration, years – 2.0 (1.0–3.0) 2.0 (1.0–3.0) n.s

MMSE 30.0 (29.0–30.0) 24.5 (22.0–27.0) 26.0 (21.0–27.0)  < 0.001

NPI – 5.0 (2.0–8.0)b 11.0 (8.0–18.0)a  < 0.001

CDR plus NACC FTLD – 2.0 (1.5–3.5)b 4.0 (2.0–8.0)a  < 0.001

BADL (lost) 0.0 (0.0–0.0)b 0.0 (0.0–0.0)b 0.0 (0.0–1.0)a, c 0.001

IADL (lost) 0.0 (0.0–0.0)a, b 0.0 (0.0–1.0)c 1.0 (0.0–2.0)c  < 0.001

Serum biomarkers

  NfL (pg/mL) 6.7 (4.9–12.1)a, b 21.1 (14.1–26.6)b, c 30.3 (19.2–44.8)a, c  < 0.001

  GFAP (pg/mL) 66.3 (40.7–92.2)a, b 202.5 (130.2–243.5)b, c 131.8 (94.6–199.6)a, c  < 0.001

  p-Tau181 (pg/mL) 4.0 (2.6–5.9)a 11.5 (6.5–19.0)b, c 5.2 (3.2–9.4)a  < 0.001

  Aβ1–42/Aβ1–40 ratio 0.09 (0.08–0.10) 0.08 (0.07–0.11) 0.09 (0.07–0.11) n.s

TMS measures

  SICI 0.28 (0.16–0.39)b 0.32 (0.25–0.41)b 0.62 (0.53–0.78)a, c  < 0.001

  ICF 1.45 (1.33–1.80)b 1.31 (1.18–1.54)b 0.91 (0.77–1.03)a, c  < 0.001

  LICI 0.40 (0.23–0.63)b 0.43 (0.25–0.57)b 0.63 (0.43–0.83)a, c  < 0.001

  SAI 0.48 (0.40–0.54)a 0.88 (0.78–0.98)b, c 0.51 (0.47–0.59)a  < 0.001

(See figure on next page.)
Fig. 1  Serum biomarker concentrations and neurophysiological measures in participants by clinical diagnosis. A PLasma NfL. B GFAP. C Aβ1–42/
Aβ1–40 ratio. D p-Tau181. E average SICI. F ICF. G LICI. H SAI values in participants by clinical diagnosis. HC, healthy controls; AD, Alzheimer’s disease; 
FTLD, frontotemporal lobar degeneration; NfL, neurofilament light; GFAP, glial fibrillary acidic protein; SICI, average short-interval intracortical 
inhibition (1, 2, 3 ms); ICF, average intracortical facilitation (7, 10, 15 ms); LICI, average long-interval intracortical inhibition (50, 100, 150 ms); SAI, 
average short-latency afferent inhibition (0, + 4 ms) expressed as the ratio of the unconditioned motor evoked potential (MEP). Bar graphs represent 
the median values, and error bars represent the interquartile range. *p < 0.050; **p < 0.010; ***p < 0.001 after multiple-comparisons corrected post 
hoc tests
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Fig. 1  (See legend on previous page.)
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p-Tau181, SICI, ICF, and SAI, resulting in an AUC of 
0.98 (95% CI 0.96–1.00), p < 0.001 (see Fig. 4). Consider-
ing exclusively blood-based biomarkers, the best model 
included GFAP, p-Tau181, and NfL (AUC 0.82 [95% CI 
0.75–0.88], p < 0.001), whilst the best model with exclu-
sively neurophysiological measures included SICI, ICF, 
and SAI (AUC 0.98 [95% CI 0.96–1.00], p < 0.001). By 
combining the best blood-based biomarker (p-Tau181, 
AUC 0.70 [95% CI 0.61–0.78], p < 0.001) with the best 
neurophysiological measure (SAI, AUC 0.96 [95% CI 
0.93–0.99], p < 0.001), we obtained an AUC of 0.96 (95% 
CI 0.93–0.99), p < 0.001 (see Fig. 4).

Discussion
In the last years, a giant step forward has been made in 
identifying new diagnostic markers in neurodegenerative 
dementias, ranging from imaging and neurophysiology to 
biological measures. However, to spread the use of these 
markers extensively, beyond research referral centres, 
they need to be easily accessible, inexpensive, not time-
consuming, and procedurally easy to perform.

In this view, the recently proposed blood-based bio-
markers hold the potential to be available in any centre 
[34], and TMS intracortical excitability measures may be 
considered an adjunctive screening tool to be performed 
during outpatient visits [35].

In the present work, we aimed at assessing the classi-
fication accuracy of these markers, taken individually or 
in combination, in a large sample of consecutive patients 
with AD or FTLD and healthy controls. We adopted an 
intuitive and straightforward step-by-step approach 
resembling clinical reasoning, and at first, we aimed at 
discriminating ongoing neurodegenerative dementia 
from healthy ageing, and then we sought to identify AD 
cases from other conditions such as FTLD. We consid-
ered the best parsimonious model fit, the best model fit 
with either blood-based or TMS markers, and the best 
model fit with a single marker.

Our results supported the usefulness of blood NfL 
dosage as the first screening tool to classify patients with 
neurodegenerative dementia as compared to healthy 
subjects (AUC = 0.94), with a further slight increase in 
accuracy when it was combined with other blood-based 
biomarkers, such as GFAP or pTau181 (AUC = 0.96) or 
with TMS assessment indirectly evaluating GABAergic 
neurotransmission, i.e. SICI (AUC = 0.96) (see Figs.  2 

and 3). On the other hand, in this cohort, TMS intra-
cortical excitability measures indirectly assessing cho-
linergic dysfunction, i.e. SAI, were found to be the best 
single marker to classify AD compared to FTLD patients 
(AUC = 0.96). In this case, minor further improvements 
in classification accuracy were obtained when consider-
ing all TMS measures, i.e. SICI and ICF (AUC = 0.98) or 
Ab1–42/Ab1–40 ratio and pTau181 markers (AUC = 0.98) 
(see Figs. 2 and 4).

Taken together, these findings confirm and extend pre-
vious data, corroborating the utility of non-invasive and 
cost-effective markers on clinical grounds in diagnosing 
patients with dementia and dementia subtypes, and sug-
gest a specific use of these tools depending on the clinical 
question. Compared to well-established diagnostic mark-
ers, such as CSF or PET tracers [36], this approach had 
a robust performance and similar accuracy, when mark-
ers were considered individually and even more when 
assessed in combination.

There has been great progress in validating blood-
based biomarkers for individualized prediction of neu-
rodegenerative diseases, and it has been widely and 
consistently demonstrated that serum/plasma NfL and 
GFAP are markers of neurodegeneration and astrogliosis, 
respectively [36, 37], even though not sufficiently helpful 
in discriminating between AD and FTLD [38, 39]. Con-
versely, plasma Aβ1–42/Aβ1–40 ratio or pTau181 are able 
to identify AD with high accuracy as compared to other 
neurodegenerative disorders [6, 40]. We indeed reported 
a twofold increase of plasma pTau181 in AD as compared 
to FTLD and HC, but we failed to demonstrate signifi-
cant differences in Ab42/Ab40 ratio between the groups 
(see Table 1 or Fig. 1), possibly due to the methodological 
differences in sampling procedures [40, 41] or insufficient 
robustness (too low fold change between cases with and 
without brain amyloidosis) of this biomarker [42].

Along with blood-based markers, TMS intracorti-
cal connectivity measures, which rely on the biological 
bases of diseases and their associated specific neuro-
transmitter impairment, are able to identify a now well-
established cholinergic deficit in AD and a significant 
impairment in GABA and glutamatergic circuits in 
FTLD [43–46]. Indeed, SAI, a marker of sensorimo-
tor integration, has been shown to partially reflect 
the activity of cholinergic circuits [47]. Furthermore, 
SICI is considered to reflect short-lasting postsynaptic 

Fig. 2  ROC curve analysis. ROC curves for differentiating A “cases” vs “controls” and B AD vs FTLD patients. ROC, receiver operating characteristic; 
AUC, area under the curve; HC, healthy controls; AD, Alzheimer’s disease; FTLD, frontotemporal lobar degeneration; NfL, neurofilament light; GFAP, 
glial fibrillary acidic protein; SICI, average short-interval intracortical inhibition (1, 2, 3 ms); ICF, average intracortical facilitation (7, 10, 15 ms); LICI, 
average long-interval intracortical inhibition (50, 100, 150 ms); SAI, average short-latency afferent inhibition (0, + 4 ms) expressed as the ratio of the 
unconditioned motor evoked potential (MEP)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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inhibition mediated through the GABAA receptors at 
the level of local interneurons, whilst ICF is thought to 
represent a net facilitation most likely mediated by glu-
tamatergic NMDA receptors [20, 28, 31].

Limitations
We acknowledge that this study entails some limitations. 
First, the generalizability of these findings needs to be 
further demonstrated in future studies. Second, other 

Fig. 3  Model selection process and performance of predicting “cases” vs “controls”. The logistic regression model selection process with the best 
model fit by data-driven selection with the lowest AIC. The parsimonious model shows the model that had a similar performance (ΔAIC < 2) with as 
few significant predictors as possible. In subsequent models, predictors were removed in a stepwise procedure. Comparisons between AUCs were 
performed using DeLong statistics, *p < 0.05, **p < 0.010, ***p < 0.001 compared to the best model fit. ROC curves combining different models are 
plotted on the right side of the figure. AUC, area under the curve; AIC, Akaike Information Criterion; HC, healthy controls; NfL, neurofilament light; 
GFAP, glial fibrillary acidic protein; SICI, average short-interval intracortical inhibition (1, 2, 3 ms); ICF, average intracortical facilitation (7, 10, 15 ms); 
SAI, average short-latency afferent inhibition (0, + 4 ms) expressed as the ratio of the unconditioned motor evoked potential (MEP)

Fig. 4  Model selection process and performance of predicting AD vs FTLD. The logistic regression model selection process with the best model 
fit by data-driven selection with the lowest AIC. The parsimonious model shows the model that had a similar performance (ΔAIC < 2) with as 
few significant predictors as possible. In subsequent models, predictors were removed in a stepwise procedure. Comparisons between AUCs 
were performed using DeLong statistics, *p < 0.05, **p < 0.010, ***p < 0.001 compared to the best model fit (ref ). ROC curves combining different 
models are plotted on the right side of the figure. AUC, area under the curve; AIC, Akaike Information Criterion; AD, Alzheimer’s disease; FTLD, 
frontotemporal lobar degeneration; NfL, neurofilament light; GFAP, glial fibrillary acidic protein; SICI, average short-interval intracortical inhibition 
(1, 2, 3 ms); ICF, average intracortical facilitation (7, 10, 15 ms); SAI, average short-latency afferent inhibition (0, + 4 ms) expressed as the ratio of the 
unconditioned motor evoked potential (MEP)
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recently proposed blood biomarkers may be considered 
in the near future, and the model may be further refined 
also considering different assays on the market. Third, 
we did not have neuropathological confirmation of the 
present case series; however, each subject underwent 
comprehensive clinical and neuropsychological evalua-
tion along with structural and functional imaging assess-
ment. Finally, we did not compare the performance 
of blood-based and neurophysiological markers with 
more validated determinations in CSF or with imaging 
measures.

Conclusions
Despite these limitations, the implementation of this 
model may be proposed as the first screening tool in sub-
jects with the suspected cognitive decline with cost ben-
efits, especially in primary care centres. These findings 
support the use of blood-based biomarkers and TMS 
intracortical excitability measures to identify patients who 
may undergo secondary CSF or imaging testing. Future 
studies should evaluate their performances in the prodro-
mal stages of dementia.
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