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Abstract—Optimal pilot design to acquire channel state infor-
mation (CSI) is of critical importance for FDD downlink massive
MIMO systems, and is still an open problem. To tackle this issue,
in this paper we propose a two-stage precoding approach based
on reduced CSI (rCSI-TSP) design framework and an efficient
algorithm, whose core is to obtain an optimal precoder while also
sparsifying physical CSI (pCSI), so as to save on CSI estimation.
The advantages of the framework are three-fold. First, the frame-
work enables to simultaneously extract and exploit statistical
and instantaneous CSI. Second, it guarantees the most needed
rCSI can be obtained and thus avoids performance loss due to
heuristic pilot design. Third, we tailor an efficient online deep-
learning based method for the TSP framework, which paves the
way for practical applications. As an example, we apply the
framework to the multi-user symbol-level precoding (SLP) and
verify performance improvements.

Index Terms—Task-oriented pilot design, perception and rea-
soning, rCSI precoding, intelligent wireless communication.

I. INTRODUCTION

The high spectrum and energy efficiency and tolerance to
simple signal processing techniques have established massive
multiple-input multiple-output (MIMO) as a key 5G technol-
ogy [1]. To reap the benefits of massive MIMO, CSI between
transceivers is indispensable. However, due to the prohibitively
high overhead associated with downlink training and uplink
feedback, the acquisition of downlink CSI is recognized as
a very challenging task for massive MIMO systems. This is
particularly pronounced for the FDD massive MIMO systems,
where the channel reciprocity between the uplink channels and
downlink counterparts cannot be exploited [1].

As an effective means to improve the system performance,
precoding has always been an active research area [2], [3].
In classical approaches, interferences are often regarded as a
limitation and are suppressed as much as possible. However,
seen from an instantaneous point of view, interferences can
be constructive and can further be exploited through symbol-
level precoding (SLP) [4]–[6]. In particular, the concept of
constructive interference (CI) was exploited to improve system
performance in [6]. As the first work on optimization based
CI precoding, a low-complexity vector precoding scheme was
proposed in [7] for multi-user downlink systems.

Because of the high dimension of channels in FDD massive
MIMO systems, two-stage precoding (TSP) design paradigm
has been widely investigated [3], [8]–[13]. In general, the first-
stage precoding is introduced to adapt to channel statistics,

while the second-stage precoding is utilized to improve system
performance (e.g., to mitigate interference or achieve spatial
multiplexing gain). The existing TSP works fall into two cat-
egories. In the first one, the two-stage precoders are designed
to achieve the above goals, however, under the assumption
that complete pCSI is available. Typically, the MIMO precoder
at the base station is partitioned into a radio frequency (RF)
precoder and a baseband precoder [9]. In particular, the RF
precoder is adaptive to slow time-scale channel statistics to
achieve array gains, and the baseband precoder is adaptive to
fast time-scale low dimensional effective channel to achieve
spatial multiplexing gains. It should be noted that the task
of estimating pCSI is very challenging in the FDD massive
MIMO systems. Therefore, it is desired to achieve the above
goals without requiring estimating pCSI in practice.

To tackle the issue of challenging CSI estimation, joint CSI
acquisition and precoding optimization design approach has
beep widely studied, which constitutes the second category.
For this category, channel statistics (e.g., channel correlation
matrix) is utilized to alleviate the burden of CSI estimation.
Typically, eigenvectors of the channel correlation matrix are
used as FDD training pilot to obtain effective/equivalent CSI,
based on which the second-stage precoder is optimized [3],
[8]. Note, however, that on the one hand, it is nontrivial to
estimate the channel correlation matrix in practice, and on the
other hand, such a method is heuristic and no optimality is
guaranteed, because, from the view of second-stage precoding
design, the obtained effective CSI may not be the most needed
or effective. In fact, optimal training pilot design for the FDD
downlink system is still an open and difficult problem.

Thanks to the fast development of machine learning (ML),
ML methods have permeated into wireless communications
and promoted learning-based CSI acquisition or precoding
designs. In terms of precoding, a deep neural network (DNN)
is typically trained to approximate an optimization-based al-
gorithm, under the assumption that CSI is available [14]. To
achieve joint processing gains (e.g., to reduce both training
and feedback overheads), core operations, including channel
estimation, quantization, feedback and multi-user downlink
precoding, are all represented by DNNs and trained in the end-
to-end manner recently [15]. However, the end-to-end based
training requires a huge number of samples, and the learned
model via offline training can be easily outdated.

To address all aforementioned issues, in this paper we



propose a rCSI based two-stage precoding design framework
and an efficient algorithm, aiming at saving on CSI estimation
by making pCSI sparse. In particular, the rCSI-TSP framework
incorporates perception and reasoning modules and functions.
Specifically, the perception module (PM), implemented via a
usual DNN, is designed to online sense and extract channel
statistics. As a result, the pCSI is not required or provided,
when compared to the first category (e.g., [9]). To guarantee
that the estimated rCSI is the most needed by the second-
stage precoder, we design elaborately the reasoning module
(RM) via algorithm unrolling (AU), i.e., to unfold a precoding
algorithm of interest and then append the unfolded network
(referred to as reasoning network) to the PM network. The
use of AU also greatly reduces the computational complexity
of precoding [16]. We tailor a data-driven and online learning
method to efficiently train the integrated network, so as to
achieve our gaols (e.g., to extract channel statistics). We verify
above advantages by applying these techniques to the FDD
downlink multi-user SLP via comprehensive simulations.

II. SYSTEM MODEL

Consider an FDD downlink multi-user communication sys-
tem, which consists of a BS equipped with N(� 1) transmit
antennas and U single-antenna users (UEs). The set of U UEs
is denoted by U = {1, · · · , U}. The channel vector between
the BS and each UE u ∈ U is represented by h̄u ∈ CN×1 with
h̄u ∼ CN (0,Ru), where Ru = E

{
h̄uh̄

H
u

}
is a positive semi-

definite covariance matrix [17]–[19]. Note that Ru describes
(transmit-side) spatial correlation, typically, caused by limited
antenna spacing, insufficient scattering environment and so on,
which widely exist in large-scale antenna systems.

Without loss of generality, PSK modulation scheme (with
constellation Du of size Ku for UE u) is considered in this
paper. Let su = ejξu ∈ Du be the intended PSK information
symbol for UE u (with ξu the argument of su) and x be the
transmitted signal. The signal received at UE u is given by

yu = h̄H
ux + nu, (1)

where nu ∼ CN (0, σ2
N) denotes random noise.

To improve energy efficiency, the idea of CI is exploited.
For the PSK modulation, the key of the CI design principle
can be captured by the following constraint (∀u ∈ U) [20]∣∣Im(h̄H

uxe−jξu)
∣∣ ≤ (Re(h̄H

uxe−jξu)− γu
)

tan(π/Ku), (2)

where, as an SNR metric, γu measures the quality of received
signal of UE u. The above constraints enforce that the CI
pushes received signals away from decision boundaries of
the PSK constellation, therefore improving the received SNR
without the need to increase the transmit power [20]. In
this paper, we consider the power-minimization SLP problem,
which can be formulated as [20]

min
x

‖x‖2

s.t.
∣∣Im(h̄H

uxe−jξu)
∣∣ ≤ (Re(h̄H

uxe−jξu)− γu
)
·

tan(π/Ku), (∀u ∈ U).

(3)

Since problem (3) is, in fact, a quadratic programming [7],
it can be efficiently solved via convex optimization tools, if
the pCSI {h̄u} is available. However, in practice it is difficult
to obtain highly-precise pCSI, especially for FDD downlink
multi-user systems. The reason is that the downlink CSI of an
FDD system is obtained conventionally via downlink training
and uplink feedback. However, overheads of both downlink
training and uplink feedback are prohibitively high for a large-
scale antenna system. Next, we propose an efficient algorithm
to address these issues via the rCSI-TSP framework.

III. MODIFIED CSI BASED PILOT AND PRECODING
DESIGN

We employ rCSI based unified pilot and precoding design
technique [21] to alleviate the burden of CSI acquisition and
feedback. For this purpose, we require the following lemma.

Lemma 1. Let F be a matrix such that the set of all column
vectors of F, denoted by F , spans vector space CN . Then,
problem (3) is equivalent to the following problem

min
v

‖Fv‖2

s.t.
∣∣Im(h̄H

uFve−jξu)
∣∣ ≤ (Re(h̄H

uFve−jξu)− γu
)
·

tan(π/Ku), (∀u ∈ U).

(4)

Due to space limitation, it is referred to [21] for the proof.
Lemma 1 indicates that to solve problem (3), it is sufficient
to solve problem (4). Compared to problem (3), the advantage
of problem (4) is that there is no need to estimate the original
pCSI {h̄u}. Instead, if modified CSI (mCSI), defined as {hu =
FHh̄u}, is available, we can still obtain the optimal precoder.
More importantly, by elaborately designing F, the acquisition
and feedback of mCSI {hu} may be much easier. Typically,
via appropriate design, {hu} may be sparse, and thus training-
and feedback-efficient. Based on Lemma 1, problem (4) can
be reformulated as

min
v

‖Fv‖2

s.t.
∣∣Im(hH

uve−jξu)
∣∣ ≤ (Re(hH

uve−jξu)− γu
)
·

tan(π/Ku), (∀u ∈ U).

(5)

In practice, {hu} should be replaced by the estimates {ĥu}.
By regarding each element of F as a pilot beam, {hu} can

be estimated, based on which problem (5) can be solved. It is
hoped that {hu} can be sparse, since in this case it is sufficient
to use an appropriate subset of F to estimate only important
elements of each hu. The subset of F (or sub-matrix of F)
is still denoted by F (or F). Note that a heuristic F is often
not optimal, because an optimal F depends on {h̄u} and has
to sufficiently match and adapt to environments. To efficiently
acquire {hu} with a much reduced CSI (rCSI) compared to
the physical CSI (pCSI), F should also be optimized, i.e.,

min
F,v

‖Fv‖2

s.t.
∣∣Im(h̄H

uFve−jξu)
∣∣ ≤ (Re(h̄H

uFve−jξu)− γu
)
·

tan(π/Ku), (∀u ∈ U).

(6)



However, it is difficult to optimize F and v simultaneously,
due to the coupling between F and v and high computational
complexity. More difficultly, solving problem (6) requires the
pCSI {h̄u}, which forms a deadlock or endless loop.

To sufficiently exploit statistical and instantaneous CSI and
meanwhile address the first difficulty, we propose our first
idea. Specifically, we distinguish time-scales of optimizing F
and v, i.e., they are not optimized simultaneously. The key is
to incorporate statistical and instantaneous information wisely
and efficiently. The proposed method is as follows:
• F is designed to capture and extract channel statistical

characteristics (in particular, spatial correlation informa-
tion). The time-scale of optimizing F is large, e.g., it is
updated every K channel coherence intervals (CCIs).

• The mCSI {hu} captures instantaneous channel charac-
teristics. The time-scale of estimating {hu} is relatively
small, i.e., it is estimated every CCI.

For clarity, the time-scales of optimizing F and updating mCSI
{hu} are illustrated in Fig. 1. There is no need to optimize F
when estimating {hu} and optimizing v (via solving problem
(5)), by distinguishing the time-scales.

CCI 1 CCI 2 CCI K CCI K+2 CCI 2K

Time-scale of 
optimizing F

Time-scale of 
optimizing F

Time-scale of 
estimating mCSI 
and optimizing v

CCI K+1

Fig. 1. Time-scales of optimizing F and estimating {hu}: mCSI {hu} is
estimated every CCI, while F is updated every K CCIs.

Next, we proceed to tackle the issue of optimizing/updating
F, so as to guarantee that the optimized F is task-oriented, i.e.,
it can sense the most needed mCSI. An obvious method is to
represent the task (i.e., the precoding algorithm) by a DNN
and train it end-to-end [15]. However, the obtained network
is sample- or data-hungry and can be easily outdated, making
this method impractical in practical environments. To avoid
wasting precious samples/data on training the precoding DNN,
we employ a convectional iterative algorithm to optimize the
precoder v. However, an optimization solver only provides a
vector v for a given realization {FHh̄u}. Due to very limited
information provided by v, it is difficult to update F.

Remark 3.1 We emphasize that this difficulty does not exist
in a complete NN based algorithm (e.g., [15]). For an NN
based algorithm, the structure and all mathematical operations
(e.g., linear transforms and subsequent element-wise nonlinear
operations) are deterministic. Hence, all information required
to update the NN (e.g., gradients) can be obtained easily.

To address the above issue, we propose a joint perception
and reasoning (JPR) framework, as shown in Fig.2. The design
methodology and individual roles of the perception module
(PM) and reasoning module (RM) are as follows:
• The PM is introduced and designed to sense the channel

environment and extract channel statistical information.

It is implemented via a usual DNN. The motivation is
that DNN-based ML methods can automatically discover
meaningful patterns from data. For the considered prob-
lem, it is in charge of representing/processing F.

• The RM is stacked on top of the PM and is treated as
an additional layer of the overall deep architecture. Note
that the RM (i.e., reasoning network) is implemented by
unfolding an iterative optimization-based algorithm. For
the considered problem, the RM is mainly responsible for
optimizing the precoder v, given simultaneous mCSI.

Although the end-to-end training method can be used to train
a JPR network, it cannot take maximum advantage of the JPR
framework. To bring its superiority into full play, a tailored
online learning method will be proposed later.
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(Neural Network) (Unfolded Iterative Algorithm)
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Fig. 2. An illustration of the joint perception and reasoning architecture.

Remark 3.2 Due to the stacked structure, information (e.g.,
gradients of the RM) required to update F can be efficiently
propagated from the RM to the PM layer by layer. Note that
because the AU technique is utilized to construct the reasoning
network, both domain knowledge and model information can
be retained, which, in contrast to the DNN-based implemen-
tation, greatly reduces the number of required samples.

IV. INTELLIGENT PILOT DESIGN VIA JOINT PERCEPTION
AND REASONING

In this section, we first employ the JPR technique to design
an efficient precoding network, and then propose an efficient
training method. Because of the linear form between pCSI and
pilot matrix F, the PM is designed as follows:

• The PM is implemented via a NN with three layers, i.e.,
an input layer, a hidden layer and a normalization layer.
The weights between the input layer and the i-th hidden
neuron is denoted by fi, i.e., the i-th column of F.

• The size of the input layer is equal to the size of the
antenna array, and the size of the hidden layer is equal
to the number of pilot budget.

• In view that transmit pilot beams are often normalized
to 1, the normalization layer is introduced. The mapping
between the i-th hidden unit and the i-th output unit, i.e.,
fi/‖fi‖, can be regarded as an activation function.

It is important to introduce the normalization layer, since it
limits the dynamic range of mCSI, which simplifies quantiza-
tion design, e.g., the uniform scalar quantization works well.



A. Reasoning Module Design

Since the RM is implemented via AU [16], the first step is to
design an iterative algorithm that can efficiently solve problem
(5). Next, we employ the dual ascent approach to address this
issue. Before presenting details, we first transform problem (5)
with complex variable into a problem with real variables.

Let v = vR + jvI and ejξu ĥu = h̃R,u + jh̃I,u, where vR
and vI represent the real part and imaginary part of complex
variable v. The real vectors h̃R,u and h̃I,u are defined similarly.
Then, problem (5) can be equivalently written as

min
vR,vI

(
vT

RQRvR + vT
I QRvI − vT

RQIvI + vT
I QIvR

)
/2

s.t.

[
Cuh̃

T
R,u + h̃T

I,u, Cuh̃
T
I,u − h̃T

R,u

Cuh̃
T
R,u − h̃T

I,u, Cuh̃
T
I,u + h̃T

R,u

] [
vR
vI

]
�
[
γu
γu

]
,

(∀u ∈ U),

(7)

where QR = Re(FHF), QI = Im(FHF) and Cu = tan(π ·
K−1
u ) are introduced for simplicity. To obtain a simpler form,

we define matrix/vector P, z, {au} and {bu} as follows:

P =

[
QR −QI
QI QR

]
∈ R2M×2M , z =

[
xR
xI

]
∈ R2M ,

aT
u =
[
Cuh̃

T
R,u + h̃T

I,u, Cuh̃
T
I,u − h̃T

R,u

]
, (∀u ∈ U),

bT
u =
[
Cuh̃

T
R,u − h̃T

I,u, Cuh̃
T
I,u + h̃T

R,u

]
, (∀u ∈ U).

Then, problem (7) can be equivalently expressed as

min
z

zTPz/2

s.t. aT
uz ≥ γu, bT

uz ≥ γu, (∀u ∈ U).
(8)

We use dual ascent method to design an iterative algorithm.
Let φ({λu, µu}) =

∑U
u=1(λuau+µubu). The Lagrange dual

problem of problem (8) is given by

min
{λu,µu}

1

2
φT({λu, µu})P−1φ({λu, µu})−

U∑
u=1

γu(λu + µu)

s.t. λu ≥ 0, µu ≥ 0, (∀u ∈ U),
(9)

where λu and µu are dual variables for constraints aT
uz ≥ γu

and bT
uz ≥ γu, respectively. If {λ?u, µ?u} solves problem (9),

the primal solution can be recovered via

z? = P−1φ({λ?u, µ?u}). (10)

Since problem (9) is separable, the coordinate ascent method
can be utilized. Moreover, each dual sub-problem has a closed-
form solution, which is given by

λu ← max

{
0, λu +

γu − aT
uP
−1φ({λu, µu})

aT
uP
−1au

}
(11)

µu ← max

{
0, µu +

γu − bT
uP
−1φ({λu, µu})

bT
uP
−1bu

}
. (12)

The derived iterative algorithm is summarized in Algorithm 1.
To design the RM, we further unfold Algorithm 1. Because

updating {λu, µu} involves matrix inversion operation P−1, it
incurs a high computational complexity. Let Λ be the diagonal

Algorithm 1: Dual Ascent Algorithm for Problem (8)

1: input: matrix P, vectors {au} and vectors {bu}
2: initialize dual variables {λu ≥ 0} and {µu ≥ 0}
3: repeat

(a) update {λu} in sequence according to (11)
(b) update {µu} in sequence according to (12)
(c) check convergence criterion

4: until some convergence criterion is met

5: output: primal optimal solution according to (10)

matrix constructed by extracting the diagonal elements of P.
Thanks to the approximate orthogonality of beams in F , Λ is
dominated for P. By letting Z = P−Λ, P can be written as
P = Z + Λ. Then, P−1 can be approximated by

(Z + Λ)−1 =Λ−1

(
I +

∞∑
n=1

(−1)n
(
ZΛ−1

)n)
(∗)
≈Λ−1 −Λ−1ZΛ−1 + Λ−1ZΛ−1ZΛ−1, (13)

where (∗) is obtained by omitting all n-order (n ≥ 3) terms.
To reduce possible errors (e.g., due to the approximation), we
introduce a trainable matrix parameter X, i.e.,

P−1 = Λ−1 −Λ−1ZΛ−1 + Λ−1ZΛ−1ZΛ−1 + X. (14)

Still using the approximate orthogonality of beams in F , X
is set to a band matrix (See Fig. 3), which greatly reduces the
scale of learnable parameters and computational complexity.
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Fig. 3. The architecture/structure of the designed precoding network.

Based on the above discussion, we can unfold Algorithm
1. For clarity, the structure of the designed precoding network
(PN), i.e., the unfolded iterative algorithm, is shown in Fig. 3.
The PN consists of L layers/iterations, and each layer consists
of 2U coordinate iteration units whose iterative formulas are
given in (11) and (12). The trainable/learnable parameters of
PN are Θ = {Xl | l = 1, · · · , L}, where Xl is the learnable
matrix parameter within the l-th layer.

B. Training Method

To bring the superiority of the JPR framework into full play,
we further tailor an online learning method.

1) Train PN and Optimize Θ: When training PN, F should
be fixed. As a mapping, the PN is denoted by G(·,Θ). The
input of G(·) includes mCSI {hu} and transmitted symbols
{su}, which are collected into X , i.e., X = {hu, su |u ∈ U}.
The predictive output for given input X is precoder x. Given a
training dataset DΘ = {X1, · · · ,Xn}, Θ is trained as follows.



For each point Xi ∈ DΘ, the forward propagation (FP) yields
a predictive output G(Xi,Θ), and the loss is calculated as

L(Xi) = ‖FG(Xi,Θ)‖2. (15)

With the loss available, Θ can be updated via the BP.
2) Train HPPN and Optimize F: The network that incorpo-

rates both RM (implemented via PN) and PM (corresponding
to F) is referred to as hybrid pilot and precoding network
(HPPN). As a mapping, HPPN is denoted by A(·,F,Θ). Note
that Θ is fixed when training HPPN. The input of HPPN is
pCSI H = {h̄u}. The predictive output for H is still precoder
x. With a training dataset DF = {H1, · · · ,Hn}, F is learned
as follows. For each Hi ∈ DF, the FP yields a predictive
output A(Hi,F,Θ). The loss is similarly calculated as

L(Hi,xi) = ‖FA(Hi,F,Θ)‖2. (16)

With the loss available, F can be updated via the BP.

Algorithm 2: Unified Pilot and Precoding Optimization

1: input: K - time-scale of optimizing F, M - number of
pilots, F - update frequency of Θ

2: initialize trainable parameters Θ and F, empty datasets
DΘ = ∅ and DF = ∅; let n = 0

3: repeat
(a) use F to transmit signal and estimate mCSI {ĥu}
(b) design precoder x with estimated mCSI via FP
(c) transmit symbols with optimized precoder x

(d) update DΘ and DF with {hu} and symbols
(e) update counter n← n+ 1

(f) update Θ and F if conditions are satisfied:
if nmodF = 0, update Θ via BP with DΘ

if nmodK = 0, update F via BP with DF

The designed online training method for JPR is summarized
in Algorithm 2. In step 1, we determine the system parameters.
We initialize the trainable parameters Θ and F and empty the
datasets in step 2. In each time-slot, we perform the following
operations. In step 3-(a), we use F to estimate mCSI , based
on which the precoder x can be obtained in step 3-(b). With
x available, we use it to transmit information symbols in step
3-(c). In steps 3-(d) and 3-(e), we update the datasets. Finally,
if the conditions are satisfied, Θ and F are updated.

V. SIMULATION RESULTS

In this section, simulation results are provided to evaluate
the proposed algorithms. For comparison, the fully-DNN SLP
(DNN-SLP) solution in [15], the fully-digital SLP (FD-SLP)
solution of [20], the fully-sweeping SLP (FS-SLP) solution in
[3] and eigen-decomposition plus sweeping SLP (EDS-SLP)
solution in [20] are chosen as benchmarks to evaluate the
proposed JPR-SLP solution. Note that the above solutions use
DNN, identity matrix I, DFT matrix and eigenvectors as pilot
beams, respectively. Symbol error rate (SER), transmit power,
training/feedback overhead and normalized MSE (NMSE) are

chosen as performance metrics. Let x̂ (or x?) denote predicted
(or optimal) precoder. Then, NMSE is defined as

NMSE = 10 log
(
‖x̂− x?‖2/‖x?‖2

)
. (17)

Without loss of generality, spatial correlation channel model
with uniform linear array is considered [18], [19]. The down-
link channel covariance matrix of UE u can be written as

Ru =

∫ θ̄u+∆u

θ̄u−∆u

Su(θ)a(θ)aH(θ)dθ, (18)

where Su(θ) denotes power angular spectrum (PAS) function
of h̄u and characterizes channel power distribution in the
angular domain [18]. [θ̄−∆, θ̄+∆] denotes angle spread (AS)
and a(·) is array response vector. Note that for more general
and complex channel models, the developed algorithms can
be applied directly. In this section, uniform distribution PAS,
i.e., S(θ) = 0.5/∆ (∀ θ ∈ [θ̄ − ∆, θ̄ + ∆]), is adopted. The
real mCSI hu and estimated mCSI ĥu satisfy

hu = ĥu + ∆hG
u + ∆hQ

u, (19)

where ∆hG
u and ∆hQ

u denote the Gaussian noise (distributed
as CN (0, σ2

GI)) and quantization noise, respectively [20]. The
simplest uniform element-wise scalar quantization is used.
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Fig. 4. The learning/convergence performance of JPR-SLP (i.e., Algorithm
2): M = 15, σ2

G = 0.04, K = 50 and Q = 8 (number of quantization bits).
The PM module or matrix F is randomly initialized.

First, we demonstrate the learning/convergence performance
of JPR-SLP (i.e., Algorithm 2), as shown in Fig. 4. It is
seen that JPR-SLP learns fast and a good NMSE performance
can be achieved with only 400 updates (or 400K time-slots).
The reason for this is that the AU technique is utilized to
generate the reasoning network, which, in fact, incorporates
much prior knowledge. As a result, less samples are required,
i.e., a small sample performance can be achieved. It is also
observed that as n (i.e., times that the PM module updates)
increases, the required transmit power decreases. The reason
for this is that as the quality of the perception matrix F
becomes better and captures more accurate precoding-sensitive
statistical information, the quality of the estimated mCSI also
becomes better. Therefore, less transmit power is required to
achieve the same performance (measured by {γu}).

The SER performance of EDS-SLP and JPR-SLP solutions
with varying pilot budget is shown in Fig. 5. It is not surprising
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Fig. 5. The SER performance of different algorithms varies with the number
of available pilots M : U = 3, N = 64, ∆ = 0.09 (AS) and QPSK.

that JPR-SLP achieves the better performance, in terms of both
required transmit power and SER. The reason for this is that
the optimization or update of the PM network is under the
guide of the RM module, which guarantees that the extracted
channel statistical information is needed most by the precoding
algorithm. In contrast, EDS-SLP is a heuristic design. As for
DNN-SLP, it is completely represented and implemented via
DNN, which requires a huge number of training sample and
has to be trained offline.
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Fig. 6. The SER performance of different algorithms: N = 64, ∆ = 0.09
(AS), M = 12 (EDS-SLP, DNN-SLP and JPR-SLP), σ2

G = 0.16 and QPSK.

TABLE I
TRAINING AND FEEDBACK OVERHEADS (NORMALIZED TO N )

Algorithm FD-SLP FS-SLP EDS-SLP JPR-SLP DNN-SLP
Training 1.0 1.0 0.1875 0.1875 0.1875
Feedback 1.0 1.0 0.1875 0.1875 0.1875

The SER performance of different SLP algorithms is shown
in Fig. 6. The training and feedback overheads are compared in
Table I. It is not surprising that JPR-SLP achieves the best SER
performance among all SLP algorithms, with inaccurate pCSI
or pCSI. The reason for this is two-fold. On the one hand,
important mCSI is sensed and captured by the PM module.
On the other hand, unimportant inaccurate mCSI is discarded,
which avoids the noise amplification effect. In addition to the
good SER performance, another important advantage of JPR-
SLP is that the training and feedback overheads of JPR-SLP

are much less than those of the other algorithms, which is very
appealing for large-scale FDD downlink systems.

VI. CONCLUSION

In this paper we proposed the rCSI-TSP framework, based
on which we further proposed an efficient precoding approach.
Firstly, we provided the theoretical foundation of rCSI-TSP.
Then, we implemented the framework by incorporating PM
and RM. In particular, the RM is implemented via AU. Based
on rCSI-TSP, we designed an efficient precoding algorithm for
the multi-user FDD downlink system.
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