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Abstract 23 

Oxygen production is an ecosystem service essential to life on Earth.  However how it should 24 

be valued is controversial and depends on several factors. Here, we commented on how 25 

valuation might be applicable to the stock or flow of oxygen, whether additional oxygen 26 

produced at the micro or macro scale provides additional human wellbeing, and whether double 27 

counting may occur if oxygen production and carbon sequestration are both valued 28 

independently and added. We concluded that the flow of oxygen produced by ecosystems 29 

should be valued when: (1) high levels of atmospheric oxygen at specific micro-scale areas 30 

(e.g., a park) provides additional benefits to local human health and additional attraction to 31 

tourists; (2) micro-scale aquatic oxygen production (e.g., in a pond or aquafarm) avoids 32 

potential loss of aquatic products; and (3) macro-scale aquatic oxygen production (e.g., in 33 

global oceans) maintains marine contributions to humans (e.g., fishery resources). However, 34 

the effects of declining global atmospheric oxygen, especially in the short term, remain unclear 35 

and hence need further research. We also concluded that the values of oxygen production and 36 

carbon sequestration can be aggregated without double counting, given that the values are not 37 

duplicated in multiple ecosystem service categories. For example, oxygen production is best 38 

considered as contributing to gas regulation while carbon sequestration contributes to climate 39 

regulation. But one should not count and add both carbon sequestration and oxygen production 40 

as contributing to both gas and climate regulation. Techniques for valuing oxygen production 41 

may include willingness to pay for additional health benefits of breathing extra high levels of 42 

atmospheric oxygen, the market price of industrial oxygen, travel cost to natural ‘oxygen bars’, 43 

the avoided cost of losing aquatic resources, and replacement cost of using artificial techniques 44 

to produce oxygen.  45 

Keywords: ecosystem service valuation, oxygen, human wellbeing, double counting 46 
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1. Introduction 47 

Ecosystems produce oxygen through photosynthesis and absorb oxygen during respiration. The 48 

net production of oxygen is a crucial component of the Earth’s life-supporting ecosystems, 49 

underpinning the wellbeing of people and the planet. Hence, oxygen production is widely 50 

considered as an ecosystem service (ES) – one of the benefits humans receive from ecosystem 51 

functions, processes, or characteristics (CBD 2020b; Costanza et al. 1997; FAO 2022; 52 

Millennium Ecosystem Assessment 2005; TEEB 2019). ES valuation in monetary units has 53 

received increasing attention worldwide to link environmental changes with socioeconomic 54 

benefits, visualise nature’s contributions to people, complement other arguments for the 55 

conservation and restoration of nature, and measure development and human wellbeing more 56 

comprehensively (Chen et al. 2022; Costanza et al. 2014; IPBES 2019a; United Nations et al. 57 

2021). However, how and when oxygen production should be valued is controversial. This 58 

paper discusses existing concerns and makes suggestions on this issue. 59 

2. Concerns about stocks and flows 60 

The ES concept is about flows (the quantity measured over a period of, or per unit of, time), 61 

rather than stocks (the existing quantity measured at a certain point in time, which may have 62 

accumulated in the past) which are called natural capital (Costanza et al. 2014; United Nations 63 

et al. 2021). It is difficult to assess the value of the total stock of oxygen, because if the current 64 

oxygen stock is fully depleted from Earth, even for a day, humans and many other species 65 

could not survive. But that is true for many other stocks in the ecosystem, including water, 66 

nitrogen, carbon, etc.  It is also true that oxygen was not always part of the Earth’s atmosphere 67 

and anerobic metabolism is possible and occurs at several locations on the current Earth where 68 

oxygen is limited.  69 



4 
 

Instead, ES valuation is about valuing the flows of oxygen production, namely, the additional 70 

amount of oxygen produced within a certain period, or per unit of time (e.g., one year). For 71 

example, provided that the oxygen produced in 2022 is x tonnes and the total oxygen stock at 72 

the end of 2022 is y tonnes in a certain region, ES valuation is about value assessment of the x 73 

(rather than the y) tonnes of oxygen. 74 

3. Concerns about additional contributions to human wellbeing 75 

Determining if the flow of an ES should be valued should consider whether an additional 76 

amount of the ES improves human wellbeing and the scale at which the valuation is conducted 77 

(Costanza et al. 1997; Costanza et al. 2017; de Groot et al. 2002). It is difficult to observe how 78 

change in oxygen production at the micro scale (e.g., a local forest or park) may affect human 79 

wellbeing at the macro scale (e.g., global, continental, national). For example, the contributions 80 

of oxygen production from a hectare of forest to global air quality is unlikely to be observed. 81 

Contributions of oxygen produced by micro-level ecosystems to micro-level human wellbeing 82 

can be observed and valued at least in the following cases. Compared to average built-up areas, 83 

breathing at natural areas with higher content of air oxygen can bring humans more health 84 

benefits, including deterring inhalation of fine particulates, regulating oxygen concentration 85 

and serotonin in blood and brain, boosting the immune system, improving neuropsychological 86 

performance and sleep quality, and alleviating mood disorders and depression (Bowers et al. 87 

2018; Jiang et al. 2018; Mao et al. 2012; Pino and La Ragione 2013; Zhu et al. 2021). Some 88 

well-preserved places (e.g., Gili Iyang Island in Indonesia, Mount Emei and Panda Reserves in 89 

China) with extra atmospheric content of oxygen that is higher than the average are advertised 90 

as natural ‘oxygen bars’ to attract visitors and boost tourism revenues (Li and Huang 2018; 91 

Sannigrahi et al. 2019; Wang et al. 2022). This demonstrates that the difference in the level of 92 

oxygen between these well-preserved areas and other average areas is valuable in terms of 93 
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improved human health and wellbeing. Moreover, if oxygen content in either fresh or marine 94 

water declines below a minimum oxygen level (often because of plastic debris and organic 95 

matter discharged, introduction of invasive plants that over-consume oxygen and shade 96 

endemic plants from light, fossil fuel use, or fertilisers’ that stimulate growth of algae that 97 

deplete oxygen when they die and decompose), the water will become a ‘dead zone’ 98 

unavailable to most aerobic aquatic life (e.g., fish, coral) (Altieri et al. 2017; CBD 2020a; 99 

Müller et al. 2015; TEEB 2009). If aerobic aquatic life cannot escape from dead zones in micro-100 

scale water (e.g., a closed pond or aquafarm), they will choke slowly and die, causing economic 101 

damage.  102 

Whether ES valuation at the macro scale should integrate oxygen production has not reached 103 

a consensus (Table 1). The Earth’s atmospheric oxygen level increased dramatically after the 104 

“Great Oxidation Event” (approximately 2.45 – 2.32 billion years ago), especially from 470 105 

million years ago when land plants emerged (Kasting 2013; Krause et al. 2018; Lenton et al. 106 

2016; Lyons et al. 2014). After a long term accumulation (Figure 1), oxygen currently accounts 107 

for roughly 21% of the atmosphere by volume, being a relatively abundant resource for life on 108 

Earth. Based on marginalist economic theory characterised by diminishing marginal value (e.g., 109 

a candy lover receives lower utility from the 100th candy than the 1st candy), the value of the 110 

additional amount of oxygen produced by global ecosystems each year may be negligible and 111 

hence does not need to be assessed. This viewpoint could be correct provided that global 112 

oxygen was not declining, because producing additional oxygen in this case only means global 113 

oxygen would just remain abundant.  114 

Table 1: A subset of peer-reviewed macro-scale ES valuation studies in/excluding the oxygen 115 

production in the last 10 years 116 
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Scales Integrating oxygen 

production 

Excluding oxygen production 

National Chen (2021); China National 

Environmental Management 

Standadisation Technical 

Commission (2020) 

Arowolo et al. (2018); Kubiszewski et al. 

(2013)  

International Jiang et al. (2021); Newton 

et al. (2018) 

Costanza et al. (2014); de Groot et al. 

(2012); Kubiszewski et al. (2017); Taye et 

al. (2021); United Nations et al. (2021) 

Figure 1: Changes in proportion of oxygen in Earth’s atmosphere 117 

 118 

Note: The red line is the GEOCARBSULFOR model, the grey envelope is generated by ±half a standard deviation 119 

change to the ocean-atmosphere δ13C record, and the black envelope is the +1 standard deviation. “One Ma” 120 

means “one million years ago”. 121 

Source: (Krause et al. 2018) 122 

However, in fact, the mass of global oxygen is declining in both the atmosphere (Figure 2) and 123 

especially marine water (Figure 3), due to (1) reduced terrestrial oxygen production along with 124 
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land degradation, (2) increasing fossil fuel combustion, (3) respiration growth of humans and 125 

livestock along with human population growth, (4) climate change and nutrients discharged 126 

into water, which together decrease oxygen solubility and oxygen resupply from the 127 

atmosphere but increase microbial respiration and metabolic oxygen demand in water, and (5) 128 

increasing solar fluxes that deoxygenate the atmosphere (Altieri and Gedan 2015; Breitburg et 129 

al. 2018; Huang et al. 2018; Liu et al. 2020; Ozaki and Reinhard 2021; Schmidtko et al. 2017).  130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

Figure 2: Temporal variation of the global atmospheric oxygen and carbon dioxide from 1990. 142 

(a) Oxygen consuming and producing processes under the Representative Concentration 143 
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Pathways (RCP) 8.5 scenario from 1900 to 2100. The shades below and above zero denote the 144 

processes that remove or produce oxygen, respectively. (b) Annual net atmospheric oxygen 145 

loss from 1900 to 2100 under the RCP8.5 scenario. (c) Annual carbon dioxide emission from 146 

1900 to 2019. 147 

 148 

Source: (a) and (b) are from Huang et al. (2018). (c) is from World Resource Institute (2022). 149 

Note: CO2 emission is also presented here, because fossil fuel burning is the major contributor to both oxygen 150 

decline and CO2 emission, and oxygen decline is like the mirror image of CO2 emission. “Gt/a” is “Gigatonne per 151 

annum”, and a gigatonne is a billion tonnes. 152 

Figure 3: Change in global marine dissolved oxygen per decade since 1960  153 
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154 

Source: (Schmidtko et al. 2017) 155 

Declining aquatic oxygen has increased dead zones exponentially since the 1960s, affecting a 156 

total global marine area of over 245,000 km2 negatively (Diaz and Rosenberg 2008). This 157 

includes reduced marine ecosystem connectivity (as fish cannot migrate through dead zones), 158 

biodiversity loss (e.g., loss of habitats, mortality of fish, crustacean, and coral reefs), alteration 159 

of the structure of food webs, marine food insecurity for humans, reduced recreation (e.g., loss 160 

of opportunities to see fish and live corals) of costal tourism, and loss of livelihoods of marine-161 

dependent people (e.g., fishery workers) (Altieri and Diaz 2019; Altieri et al. 2017; Breitburg 162 

et al. 2018). Even if some marine species (e.g., fish) may escape from dead zones into oxygen-163 

abundant water in the short term, continuous dead zone spreading will ultimately lead to 164 

ecosystem crisis and tremendous socioeconomic damage. Therefore, macro-level oxygen 165 

production in marine water is crucial to maintenance of marine ecosystem health and its 166 

contributions to human wellbeing, and hence should be valued.  167 

The effects of declining atmospheric oxygen in the long term is foreseeable, including hypoxic 168 

cities during extremely calm weather, severely muted primary productivity, and the inability 169 



10 
 

to achieve combustion, when oxygen is less than 19.5%, 16%, and 12% of the atmosphere by 170 

volume, respectively (Belcher and McElwain 2008; Cole et al. 2022; Wei et al. 2021). However, 171 

the short-term consequences of declining oxygen level in the atmosphere, such as reduction 172 

from the current 20.95% to 20.83% by 2100 (Huang et al. 2018; Liu et al. 2020), are unclear. 173 

Therefore, there should be further research on the short-term implications of changes in 174 

atmospheric oxygen production to terrestrial ecological and socioeconomic systems. 175 

4. Concerns about double counting 176 

As oxygen production and carbon sequestration are the joint outcomes of photosynthesis, some 177 

researchers may be concerned about double counting of photosynthesis when carbon 178 

sequestration and oxygen production are both valued separately and aggregated (Xue and 179 

Tisdell 2001). However, this concern confuses ESs with ecological process and misunderstands 180 

double counting. Photosynthesis is an ecological process, rather than an ES. A single ecological 181 

process may produce multiple types of ESs (de Groot et al. 2002), and double counting does 182 

not mean valuing multiple ESs produced by a single ecological process. Instead, double 183 

counting means counting the value of an ES more than once and occurs when values of 184 

overlapping ESs are assessed separately and summed (Chen 2020; Fu et al. 2011; Hein et al. 185 

2006). Oxygen production contributes to quality of air in the atmosphere, water, or soil, 186 

whereas carbon sequestration regulates global warming and water acidity (IPBES 2019b; 187 

Maikhuri and Rao 2012; Millennium Ecosystem Assessment 2005; Renforth and Henderson 188 

2017). Therefore, oxygen production and carbon sequestration provide separate, rather than 189 

overlapping, contributions to human wellbeing, and so can be valued separately and aggregated 190 

without necessarily being double counted (Chen 2021; Ouyang et al. 1999). The keyword here 191 

is “not necessarily”. 192 
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Oxygen production and carbon sequestration are both the proxies for both gas regulation 193 

(contribution to maintenance of healthy air, including the carbon/oxygen balance, maintenance 194 

of the ozone layer, removal of air-borne pollutants and bacteria) and climate regulation 195 

(regulation of temperature, precipitation and other biologically mediated climatic process, 196 

including carbon/oxygen balance, greenhouse gas absorption, rainfall and drought regulation) 197 

via net primary production (Costanza et al. 1997; de Groot et al. 2002; UNEP 2014; Wallace 198 

2007). However, if oxygen production is counted in both gas and climate regulation and then 199 

aggregated, double counting occurs. Therefore, when valuing ESs, oxygen production should 200 

only be categorised into one or the other of climate and gas regulation. 201 

Moreover, misuse of valuation techniques, such as using afforestation cost, may cause double 202 

counting. Afforestation cost is a type of valuation technique based on the cost of planting trees 203 

artificially to provide the equal type and quantity of an ES. Some studies valued carbon 204 

sequestration using afforestation cost, valued oxygen production using market price or costs of 205 

industrial oxygen, and then aggregated these two ESs’ values (Cai et al. 2020; Li and Gao 2016; 206 

Ninan and Inoue 2014; Zhao et al. 2004). In this context, value of oxygen production is double 207 

counted, because newly planted trees not only sequester carbon but also produce oxygen, 208 

namely, the afforestation cost already includes both the costs of restoring carbon sequestration 209 

and oxygen production (Xue and Tisdell 2001). To avoid double counting, the values of oxygen 210 

production and other ESs should not be assessed based on afforestation cost and then 211 

aggregated. However, there are other potential valuation techniques applicable to oxygen 212 

production in Section 5 below. 213 

 214 

5. Potential valuation techniques applicable to oxygen production 215 
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Potential cases where oxygen is produced by ecosystems, as well as relevant valuation 216 

techniques (where applicable), are summarised in Table 2. 217 

Table 2: Potential techniques valuing oxygen 218 

Scales  Cases  Techniques of value of oxygen production 

Micro-scale oxygen 

production’s effects 

on macro-scale 

human wellbeing 

Difficult to observe  Not applicable 

Micro-scale oxygen 

production’s effects 

on micro-scale 

human wellbeing 

Extra high levels of 

atmospheric oxygen 

provide additional 

benefits to local 

human health  

(1) Willingness to pay for additional health 

benefits of breathing extra high levels of 

atmospheric oxygen, either revealed in reality 

(e.g., a real-world hotel may have different 

prices for rooms with no window and rooms 

with windows) or stated in hypothetical 

scenarios (e.g., if you are travelling, would 

you be willing to pay extra money for a hotel 

located in an area with higher atmospheric 

oxygen content than other hotels?) 

(2) Market price or cost of producing equal 

extra amount of industrial oxygen into the 

local atmosphere. “Extra amount” means the 
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amount above the average atmospheric 

content. 

 Extra high levels of 

atmospheric oxygen 

provide additional 

attraction to tourists 

(1) Travel cost of those who travel to natural 

‘oxygen bars’ 

(2) Market price or cost of producing equal 

extra amount of industrial oxygen into the 

local atmosphere 

 Aquatic oxygen 

production (e.g., in a 

pond or aquafarm) 

avoids potential loss 

of aquatic products 

and resources 

(1) Economic cost of potential loss of aquatic 

products and resources avoided by aquatic 

oxygen production 

(2) Costs of using artificial techniques to 

pump equal amount of oxygen into water to 

ensure target aquatic species live and grow 

Macro-scale oxygen 

production’s effects 

on macro-scale 

human wellbeing 

Macro-scale marine 

oxygen production 

maintains ecological 

and socioeconomic 

benefits of global 

oceans 

As per above 

 Macro-scale 

atmospheric oxygen 

production 

Unclear, because effects of declining global 

atmospheric oxygen, especially in the short 

term, remain unclear 
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 219 

6. Conclusions  220 

The flow of oxygen produced by ecosystems should be valued when its contributions to human 221 

wellbeing are observable, including: (1) for specific micro-scale areas (e.g., a forest or park) 222 

when extra high levels of atmospheric oxygen provide additional benefits to local human health 223 

and additional attraction to tourists; (2) when micro-scale oxygen production in water (e.g., a 224 

pond or aquafarm) avoids potential loss of aquatic products; and (3) when oxygen production 225 

in macro-scale marine water maintains crucial ecological and socioeconomic outcomes (e.g., 226 

fishery resources). However, whether oxygen produced by macro-scale terrestrial ecosystems 227 

should be valued needs further research, because the short-term effects of declining global 228 

atmospheric oxygen need more evidence, regardless of being foreseeable in the long term.  229 

Moreover, the value of oxygen production does not necessarily overlap, but can be aggregated, 230 

with carbon sequestration. However, to avoid double counting, the values of oxygen production 231 

and carbon sequestration should not be assessed based on afforestation cost or duplicated in 232 

multiple ES categories (e.g., being added and counted in both climate regulation and gas 233 

regulation). Depending on specific cases, potential techniques valuing oxygen production may 234 

include revealed and stated willingness to pay for additional health benefits of breathing extra 235 

high levels of atmospheric oxygen, the market price of industrial oxygen, travel cost to natural 236 

‘oxygen bars’, the avoided cost of losing aquatic products and resources, and replacement cost 237 

of using artificial techniques to produce oxygen in the atmosphere and water. 238 
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