PopArt: Ranked Testing Efficiency
lason Papapanagiotakis Bousy, Earl T. Barr, David Clark

Abstract—

Too often, programmers are under pressure to maximize their confidence in the correctness of their code with a tight testing budget.
Should they spend some of that budget on finding “interesting” inputs or spend their entire testing budget on test executions? Work on
testing efficiency has explored two competing approaches to answer this question: systematic partition testing (ST), which defines a
testing partition and tests its parts, and random testing (RT), which directly samples inputs with replacement. A consensus as to which is
better when has yet to emerge. We present Probability Ordered Partition Testing (POPART), a new systematic partition-based testing
strategy that visits the parts of a testing partition in decreasing probability order and in doing so leverages any non-uniformity over that
partition. We show how to construct a homogeneous testing partition, a requirement for systematic testing, by using an executable oracle
and the path partition. A program’s path partition is a naturally occurring testing partition that is usually skewed for the simple reason that
some paths execute more frequently than others. To confirm this conventional wisdom, we instrument programs from the Codeflaws
repository and find that 80% of them have a skewed path probability distribution. POPART visits the parts of a testing partition in
decreasing probability order. We then compare POPART with RT to characterise the configuration space in which each is more efficient.
We show that, when simulating Codeflaws, POPART outperforms RT after 100,000 executions. Our results reaffirm RT’s power for very
small testing budgets but also show that for any application requiring high (above 90%) probability-weighted coverage POPART should be
preferred. In such cases, despite paying more for each test execution, we prove that POPART outperforms RT: it traverses parts whose

cumulative probability bounds that of random testing, showing that sampling without replacement pays for itself, given a nonuniform

probability over a testing partition.

1 INTRODUCTION

Programmers test programs to check correctness, find bugs
and prevent their recurrence. Testing is inherently under-
approximate and resource-bound. As a result, testing only
exercises a small proportion of the behaviours of almost
all programs, especially those found in industry, because
most programs have a vast number of behaviours. Testing
efficiency is therefore key to improving software quality.
Testing has two key costs: finding inputs that maximize a
tester’s confidence and executing the tested program.

A testing campaign selects an input, executes the subject
under test (SUT), until it exhausts its testing budget. Some
tests executed during the testing campaign are redundant
because they exercise the same program behaviour, and thus
provide no new information. A testing partition evaluates
the results of the campaign, grouping redundant executions.
Testing must execute its subject; it can, however, minimise the
cost of input selection by randomly sampling inputs, usually
uniformly with replacement. This strategy is called random
testing (RT). The alternative is to spend some of the test
budget to sample inputs from the testing partition without
replacement, avoiding redundant tests; this strategy is called
systematic partition testing (ST). Intuitively, RT wins when
it rarely executes redundant or low-value tests; otherwise,
ST wins. Researchers have debated the question of whether
and when RT is more efficient than ST, or vice versa, since
the early 1980s [1], [2]. Empirical work was contradictory;
theoretical work in 1990s favoured ST [3], [4], [5].

In 2014, Bohme and Paul introduced UST, a fault-
revelatory partition strategy, which they claim to be ideal,
that uniformly samples the testing partition and therefore
its input coverage increases linearly, in expectation. They
showed that, under any realistically feasible test budget,

RT is more efficient than UST. Although Bohme and Paul
do not invoke it, the principle of indifference [6] justifies
their assumption: Given no additional knowledge about a
population, the best option is indeed to sample it uniformly.

Knowing the ground truth probability distribution over
a program’s inputs is a hard epistemic problem and is, in
general, unknowable. Worse, this distribution interacts with
any testing partition defined over the inputs, making the
probability distribution over parts even harder to know. That
said, it is highly unlikely that the distribution arising from
their interaction is uniform. The uniform distribution is a
special case of a probability distribution; its measure is zero
against the space of all probability distributions.

So, while we cannot know an arbitrary program’s likely
behaviours, we do know that some behaviours are more likely
than others; i.e. they are unlikely to be uniformly distributed.
Key to maximising a tester’s confidence is executing inputs
that matter within the test budget. Inputs that a program
is most likely to see in deployment are those that exercise
paths with the highest probability weight. Domain experts
often have an intuition about which program inputs and
behaviours are more frequently observed; testers can use
elicitation techniques [7] to capture these intuitions to create
a probability distribution that prioritises the test of frequent
or critical inputs.

We present probability-ordered partition testing
(POPART), a novel systematic partition testing method that
drops the uniformity assumption over its testing partition
in order to achieve higher testing efficiency, outperforming
UST. POPART can work with any homogeneous testing
partition, that is, a testing partition that does not assign
to the same part both failing and passing input values
with respect to an oracle. In Section 3, we show how to
construct such a partition using an executable oracle and a

subject program’s program paths, which naturally arise in
imperative programs and align with, because they define,
program behaviour. POPART builds the oracle-defined path
partition of the program under test and ranks the parts with
respect to their probability-weighted input coverage. It then
explores the parts in decreasing probability order, under a
resource bound. As a systematic partition testing technique,
POPART samples the testing partition without replacement.

We then turn to the comparison of POPART with RT.
First, in Section 3, we analytically compare the two methods,
defining the break-even point, the time at which their testing
efficiency becomes equal, then prove that, beyond this break-
even point, POPART’s efficiency is higher. Then, Section 4
presents the results of a simulation-based comparison that
both confirms our theoretical results and explores the effect
that different input parameters, such as the testing budget,
the relative cost of POPART with respect to RT’s execution
and the testing partition probability distribution, have on the
testing efficiency of both methods.

The results of the comparison show that each testing
method has its place in a practitioner’s toolkit and the
comparison characterises the space in which each is best.
One intuitive view of entropy in information theory is as
a measure of how flat a distribution is: maximal entropy
is, under this view, maximally flat. By indexing probability
distributions by their entropy to measure their “flatness”, we
show that as the entropy of the testing partition decreases,
the break-even point is reached exponentially faster. Indeed,
when part probabilities are sufficiently different (i.e. testing
partition with a skewed probability distribution) and high
probability-weighted coverage is required, POPART has
an exponentially smaller cost than RT. For non-uniform
probability distributions, POPART outperforms RT when the
coverage goal exceeds 90%, otherwise RT wins (Figure 7).
The existence of such skewed probability distributions have
been the subject of research on e.g. hot paths. In Section 2,
we perform a case-study over programs from the Codeflaws
repository [8] to confirm that indeed 80% of sampled pro-
grams induce a highly skewed path probability distribution,
best approximated by a decreasing exponential function.
When we simulate code to match Codeflaws, it takes fewer
than 100,000 RT executions to reach POPART and RT’s break-
even point (see fig. 5). Our theoretical and simulation-based
comparisons of POPART and RT both reaffirm the superiority
of random testing when testing budgets are small, high
coverage is not needed, or when dealing with near-uniform
testing partitions.

Even when the test budget is highly constrained and high
coverage is not required, however, POPART can still be useful.
Its ability to work directly over the testing partition allows
ranking of parts using a different metric such as importance.
For example, a physics simulation may be designed to
work best on certain input ranges, some of a program’s
inputs might contain sensitive data, or the tester might just
be more interested in specific values (as when bug fixing)
regardless of the probability in deployment. Like with the
input probability distribution, learning input importance in
deployment is also a hard problem which requires domain
experts to approximate.

Our key contributions follow:

2

e We present Probability Ordered Partition Testing
(POPART), a new systematic partition testing strategy
that leverages the non-uniformity of homogeneous
testing partitions.

o We prove that combining an executable oracle with a
program’s path partition creates the smallest testable
homogeneous testing partition.

e We present both analytical and simulation-based
comparisons of POPART with RT, showing that when
simulating Codeflaws, POPART outperforms RT after
100,000 executions and, more generally, POPART
outperforms RT on skewed distributions when the
probability-weight input coverage target exceeds 90%.

POPART’s implementation, and the scripts and data used
to evaluate it, can be found at 10.6084/m9.figshare.18544298.

2 MOTIVATING EXAMPLE

Not all paths are created equal; in almost all programs, some
paths execute more often than others. In a popular program,
a path that implements an important feature will execute
more often than an error-handling path. This has been subject
of research trying to optimize code based on the frequency of
its execution and focus their resources on hot paths [9], [10];
branch prediction is built into CPUs to exploit them [11].
In the field of reliability engineering, Musa [12] argued
that software testing should leverage such usage profiles
to prioritize the discovery of likely-to-occur bugs.

One reason some paths execute more often than others is
the fact that not all of a program’s inputs are created equal:
in the field, a program encounters some of its inputs far more
often than others, as dictated by the probability distribution
over its inputs, or usage profile. Researchers rarely study
this source of hot paths, since it requires gathering telemetry
from programs in the field or domain expertise, and resort
instead to uniformly sampling inputs.

Another reason for hot paths is program structure: some
paths simply handle more inputs, which makes them fre-
quent under many input distributions, notably the uniform.
To quantify this second source of non-uniformity in path exe-
cution frequency, we sampled 10 programs from Codeflaws,
a curated corpus of real programs with real bugs [8]. Using
PIN [13], we instrumented these programs, not their runtime
or libraries, to output their decisions at each conditional jump.
Codeflaws programs take integers and strings as inputs. To
generate a string, we uniformly select a length modulo a
bound, then uniformly fill it with characters. We executed
the instrumented programs 100,000 times (ca. 20 hours) on
uniformly sampled inputs and harvested their paths.

The resulting path probability distributions are far from
uniform. Inline with the conventional wisdom, all tested
programs followed the pattern of some paths being sig-
nificantly more likely to execute than others. Figure 1
shows the distribution of the estimated probabilities for two
programs. To approximate their distributions, we sorted the
empirical path probabilities in decreasing order and used
curve fitting [14]. For the curve fitting process we used the
following functions: 1. exponential f(z) = a - ", 2. power
f(z) = a-2°, 3. polynomial f(x) = a-x>+b-z+ cand 4.
logarithmic f(z) = a - In(x) + b. An exponentially decreasing
(negative exponent) function best fits 9 of the 10. The last

10.6084/m9.figshare.18544298

CODEFLAWS: 585

s

- 10 =

> 0.201 E
B 0151 r0-8 5
s} =)
© 0.10 r0.6
a =
£ 0.051 L 0.4 ®
o 35
0.004 , - 0.2 §

0 10 20
paths in decreasing probability order

CODEFLAWS: 122

C

11.00 S

>]

£ 0.2 2

2 L0.75 3

Q [m]
[e]

S 0.1 v

L 0.50 2

5 ©

o =2

0.01 , : oo [0.25 £

(@]

0 10 20 30
paths in decreasing probability order

Fig. 1: The empirical probability distributions over the paths of two Codeflaws programs (585 left and 122 right), when
executed on uniformly sampled inputs. Both are best approximated by an exponentially decreasing function.

o L0 T e e
g i 7
7
8 0.8 1 v
5 e
3 7
< 0.6 1 7
© ‘/
£ s
=) R4
T 0.4 Ve
= 7
E /’/ ----- PopArt8
801 7 RT
) s —-- UST4
& ol
0 100000 200000 300000 400000

Time in RT executions

Fig. 2: Unlike UST, POPART is a systematic testing technique
able to capitalize on skewed probability distributions over
testing partitions. This allows POPART to match RT and over-
take it after ~ 26k test executions despite a X8 slowdown.

program had only 2 paths, so we excluded it. The mean
normalised entropy' of the approximate path probability
distributions is 0.69. None were uniform.

Figure 2 shows how RT, a systematic testing approach,
which we call uniform systematic testing (UST), that uniformly
selects parts without replacement, and POPART cover the
probability-weighted input space over time. The three testing
methods are simulated on a skewed testing partition with
100,000 parts that have an normalised entropy of 0.69.
Here, we use time to abstractly represent a test budget and
normalise execution times such that it takes unit time for RT
to execute one test, 4 units of time for UST and 8 units of time
for POPART?. By sampling parts uniformly, UST’s expected
coverage of the input space grows linearly. In contrast, both
RT and POPART both prioritise high probability parts, with
RT sampling them with replacement while POPART visits
them in decreasing probability order (no replacement).

As a program’s input space and the size of a testing
partition grows (i.e. the number of parts), even a large tech
company’s testing budget cannot cover all of them. Paul and

1. Normalised entropy captures how far from uniform a probability
distribution is and allows us to compare probability distributions with
different event space sizes.

2. The relative cost of UST follows the related work of Bohme and Paul
[15]. We doubled POPART’s cost over UST to account for its probability
computations, Section 4 explores the effect of changing this value.

Bohme argued [15] that the point where RT’s line intersects
UST’s is well beyond a realistic testing budget. We agree
with them; assuming the execution of a test takes 1 second, it
would take ~ 4.6 days of CPU time for UST to overtake RT
in this example. In contrast, it takes ~ 7 hours for POPART to
become more efficient than RT, a manageable testing effort
(e.g. can run overnight). Furthermore, Figure 2 shows that
even when POPART has lower probability weighted input
coverage than RT, it is not far off. Combined with the fact that
POPART exactly measures its coverage and does not rely on
an expected value as does RT, could result in POPART being
preferred in certain scenarios (e.g. when exact lower bounds
of coverage are required for certain reliability assessment).
The result of comparing testing methods varies by changing
the parameters such as the size of the testing partition, the
probability distribution over it the relative cost of each testing
method. Section 4 explores how these variables affect the
output of such comparison.

3 SYSTEMATIC TESTING WITH POPART

Probability Ordered Partition Testing (POPART, PA for
brevity) is a systematic partition testing method aimed
at maximizing probability-weighted input coverage under
a resource budget. It visits a testing partition’s parts in
descending order of their probability weight.

For POPART to work, it needs a testing partition that is
aligned with an oracle. We discuss how such a partition,
called homogeneous, can be created using an executable oracle
and the path partition. Then, we show how a probability
distribution over a program’s input values induces a prob-
ability distribution over any testing partition and how the
probability-weighted testing partition can be used to assess
the testing efficiency of a testing strategy. The core difference
between POPART and RT is POPART’s ability to sample
without replacement the testing partition. We connect RT
with the coupon collectors problem and use it to prove the
point in time at which POPART’s efficiency surpasses that of
random testing. Finally, we compare POPART with a uniform
systematic testing (UST) technique.

3.1

A testing partition is an arbitrary partition over a program’s
inputs used to select tests. A useful testing partition is one
where the result of testing one element of a part generalises

Creating a Homogeneous Testing Partition

to all the elements of that part. A testing partition that has
this property is homogeneous. Given an oracle O(F,) that
tests a program F’ on input ¢ and returns true (tt) or false (ff),
a testing partition P is called homogeneous with respect to O if
there is no part p € P such thati,j € p A O(F, i) # O(F, j).
That is, every part may contain only failing or only passing
inputs but not both. The testing efficiency literature has
studied some testing partitions that are not homogeneous
and whose part therefore must be sampled multiple times
(Section 6.3).

For efficiency, homogeneity alone is not enough. Indeed,
the identity partition is homogeneous but offers no advan-
tage over directly sampling a program’s input space. So
another important property of testing partitions is their size
or cardinality. Systematic testing requires homogeneity.

To make an arbitrary testing partition homogeneous,
we can intersect its parts with the oracle O’s partition
to form a new partition. Given a testing partition P
and an oracle O for the program F, let the oracle-
infused partition, OiP, split each part a; € P into up
to two parts b; = {i|i€a; AO(F,i)=tt} and b; =
{i|i€a; NO(F,i) = ff}. OiP is both homogeneous with
respect to O and all the elements in any part of OiP are
equivalent under P; that is, every part of OiP is a subset of
a part from P. We capture this relationship in the following
partial order: P < P’ iff Vpe P,Ip' € P’ - p C p'.

We now show that OiP is the homogeneous least upper
bound of this partial order.

Theorem 3.1 (Minimality of OiP).
OiP = lub {P" < P | P’ is homogeneous}

Proof. OiP < P and is homogeneous by construction. Vp €
P, OiP partitions p into at most two homogeneous, but
different parts, again by construction. Suppose 3P’ - OiP <
P" < P.Then Ip € P,p’ € P',p, € OiP -p, C p' C p.
Since OiP homogeneously partitions p into different parts
and p, C p/,p’ cannot be homogeneous. O

The difficulty of constructing OiP lies in the fact that the
oracle’s bi-partition of the input space is unknown a priori
so it is, in general, impossible to assess whether an arbitrary
testing partition is homogeneous under that oracle. Previous
research has assumed homogeneous testing partitions without
proving it (Section 6). Testing itself provides a means for
assessing homogeneity. Deterministic programs execute a
path to produce their output. They cannot vary their be-
haviour along a path. Therefore, for deterministic programs,
a computable homogeneous testing partition is one whose
homogeneity can be incrementally under approximated via
execution, in the course of a testing campaign.

We now show how, using an executable oracle, we
can construct such partition. Paths, and more specifically,
path conditions, which are the conjunction of all conditions
encountered along a path, partition a program’s input space
and form the program’s path partition. Under this partition,
all inputs that exercise a path (i.e. satisfy the same path
condition) belong to the same part. Of course, the path
partition of a program F' may not be homogeneous under O.
If, however, the testing oracle O is executable, the program
transformation ¢ in Listing 1 builds a program whose path
partition is homogeneous with respect to O.

Listing 1: Given an executable oracle O, the program
transformation ¢ yields a program whose path partition
is homogeneous with respect to the oracle.
$(F,0) =
Run o = F(i) for k steps
if F(i) has not terminated
return unknown
else
return O(F,i,o)

O WN =

Any path terminating at line 4 in a program transformed
by ¢ corresponds to a set of inputs for which the program
does not terminate in k steps. If it does terminate, the
program F', the input i and the output o are given to the
oracle. The oracle returns tt on passing inputs, ff on failing
inputs or unknown, when it cannot decide because it is only
a partial specification or because it does not terminate. In
essence, ¢ applies Theorem 3.1 to the path partition, creating
the smallest homogeneous testing partition for a program’s
path partition. Importantly, it constructs this partition under
realistic assumptions: namely, it handles partial oracles and
non-terminating programs. In the rest of the paper, we
assume such a testing partition: that is, the path partition of
an oracle-infused program.

3.2 A Tale of Two Distributions

We rarely have the luxury of testing a program that is

“finitely testable”, i.e. one whose entire input space, I, can be

exhaustively tested with a feasible testing budget. Instead, we
must sample its behaviour, either over its inputs or the parts
of a testing partition®. Two probability distributions govern
either sampling: the input probability distribution and the
part probability distribution. In general, knowing either
distribution is a difficult epistemological problem. Domain
experts often have an intuition about which program inputs
and behaviours are frequent, important, or both; testers can
use elicitation techniques [7] to capture these intuitions and
use them to prioritise the testing of frequent or critical inputs.
When we cannot elicit a useful distribution, we resort to
the principle of indifference [16] and resort to a uniform
distribution: denoted U for the input distribution and U”
for the part distribution.

Let X be a discrete probability distribution over inputs
in I. X can be inferred from observing the program’s
usage, also called a usage or an operational profile, or
it can be a synthetic probability distribution, created for
testing purposes. Previous work formalizing testing has
equated input frequency and importance. While testing more
likely inputs can increase the tester’s confidence about the
correctness of the program more quickly [12], this often does
not hold. Consider a cyberphysical system with safety-critical
values: the value of testing the system with these safety-
critical values might greatly outweigh their in-deployment
probability. To reflect that, a synthetic probability distribution
should be used, one that combines a usage profile with an
importance weight.

3. Section 3.1 discusses partition homogeneity and how we can build
such a testing partition.

The idea behind systematic testing is to use sampling
without replacement over parts to avoid wasting the test
budget on redundant tests. As noted above, it too obeys a
probability distribution. The input probability distribution is
a naturally occurring distribution, the existence of which
has been extensively explored in the field of reliability
engineering. In contrast, S ('S’ for section or slice), the part
probability distribution, has been overlooked. Often, it has
been assumed to be uniform, like the input distribution &,
and for the same reasons*. This assumption does not hold in
practice, as Section 2 showed. The reason follows:

Observation 3.1. The input probability distribution, X, induces
a probability distribution over the parts of a testing partition, S
where the probability of each part p; € P is

P(p;) = Z P(z),z € I.

TEDP;

To see why consider a set 4, let X ~ X A4 for some
distribution X4, be a random variable over A and let S =
{z1,229,..., 2z, } be samples drawn from X. For any partition
P over A, S samples the random variable Y = {p | Jy €
S Np e P}. Sampling X without replacement only samples
Y without replacement when P is the identity partition.

3.3 Measuring Testing Efficiency

By convention, testing efficiency is the ratio of coverage over
resources spent. Usually, coverage is measured via syntactic
structures but this has been shown to be suboptimal: Gay
et al. report

“test inputs generated specifically to satisfy struc-
tural coverage criteria via counterexample-based
test generation were typically less effective than
randomly generated test inputs” [17], [18], [19].

Kuhn et al. [20] argue that testing should supplement struc-
tural coverage with some form of input coverage. Our
work, like previous studies [21], [22], focuses on probability-
weighted input coverage; this allows us to rigorously com-
pare testing methods in terms of the probability of observing
tested behaviours.

Let A be a testing method, given b, a temporal testing
budget’. It selects and tests a program F' on a subset of F’s
inputs. Because it may sample with replacement, A(P, S, t)
returns a multiset M whose support set is I. By sampling I,
A necessarily also samples P under S: implicitly and with
an induced S in the case of RT or explicitly with a chosen S
under ST (Section 3.2): specifically, @ = {p; | i € M Np; €
P} C P. We lift P from inputs to partitions by defining
P(pj) = Liep, P(D)-

We call probability-weighted input coverage (pic) the cumula-
tive probability weight of each part in Q.

pic(Q) = > P(p;))

P;EQ

4.”In the absence of any relevant evidence, a rational agent will
distribute their credence (or ‘degrees of belief’) equally amongst all the
possible outcomes under consideration”-Benjamin [16].

5. We focus on time as the resource for testing. To account for space,
one could construct a wrapper around the testing method which, upon
reaching a memory limit, returns the set of explored testing parts.

5

|M| — |Q| counts the redundant tests A executes. The higher
the pic a testing method can achieve for a given testing
budget the more efficiently covers the testing partition P and,
by extension, the probability-weighted input space of the
program F'.

Definition 3.1 (Testing Efficiency). Given a testing strategy
A, a testing partition P over the inputs of the subject under test,
and a probability distribution S over over P, the expected testing
efficiency of A on P under S in time t is

(A, P, 8, 1) = %piC(E(A(RS?t))). o)

It is possible to compute the testing efficiency of a
particular test suite on a specific computer, i.e. dropping
expectation on the right-hand side of Equation (2). We are,
however, in keeping with most research in testing efficiency,
more interested in the general testing efficiency of a testing
method A. This makes the testing efficiency an expected
value of applying A to a program.

The goal of testing is to increase the testers’ confidence
that a program is correct. In measuring probability-weighted
input coverage, we quantify the probability of observing
one of the tested behaviours under the assumed input
probability distribution S. If then S is an approximation of
the in-deployment usage profile, maximizing the probability-
weighted input coverage corresponds to minimizing the
probability of a user encountering an untested behaviour.
Alternatively, a test engineer might have a different strategy
in determining his confidence in a programs’ readiness for
deployment. She can, for example, deem some particular
input values (e.g. safety-critical, limit values) more important
based on experience. Re-weighting the usage profile or
constructing a new, synthetic probability distribution, allows
focusing a testing campaign on values of interest.

3.4 Sampling With and Without Replacement

The core difference between RT and ST is that RT samples
with replacement and ST without replacement. We define
RT and connect it to the Coupon Collectors problem to derive
the expected number of input samples (tests) it needs to take
to discover a part of P.

Definition 3.2 (Random Testing). Given a program F, random
testing (RT) tests F' by sampling F’s input I under the probability
distribution X with replacement.

By convention, we assume the expected cost of testing, i.e.
executing, each sample is one unit of time. As is traditional,
we have defined RT to sample the tested program’s input
domain. Nonetheless, it simultaneously also samples the
testing partition P, using a probability distribution over P’s
parts induced by &, as Observation 3.1 explains.

Bohme and Paul derived the following expression for
RT’s pic as a function of time, under the, just stated, standard
assumption that each test takes unit time [22, Lemma 2].

[P
pic(RT(P,S,1) = |13 P(p;) (1 —P(p;))!|)

i=1

Intuitively, by sampling the input space, RT gradually
discovers parts of the testing partition P, initially covering

many new parts and gradually slowing down as repeated
samples fall in the already explored parts. This process
is an instance of the classical coupon collectors problem
which seeks to answer the following question: “Given N
coupons, how many coupons do you expect you need to
draw with replacement before having drawn at least %
different coupons?” [23]. For random testing, coupons are
the parts of P which are drawn by sampling S.

Ferrante and Saltalamacchia derived an analytical expres-
sion of the expectation of collecting k coupons by sampling
with replacement from any given probability distribution [24].
We adapt their proposition 1 [24, §3.2] to our setting.

Let C be the random number of executions to discover
the k™ part. NB: Cj, is only the additional executions
to discover the kth part; it does not include the execu-
tions needed to find the previously discovered parts. Let

P(p1,...,pk) =1 —P(p1) — ... — P(px), for k < N. For any
k€ {2,...,N}, the expected value of Cy is
E[Ck] =

Z _ _ P(p1) - ';P(pk’—l)

4
P(p1)P(p1,p2) - - - P(p1,p2, - - -)

P1#P2F£ - #pr—1EP 1 Pr—1)
and the expected executions to discover k different parts is

k

E[Cn(K)] =) E[C,].

s=1

©)

Equation (5) is monotonic since E[Cn(k + 1)] =
E[Cn (k)] + E[Ci+1] and E[Cy4+1] > 0; we now show that
Equation (4) is also. This is necessary in order to later on, in
theorem 3.4, prove that POPART will be more efficient than
RT after some testing budget b.

Lemma 3.2. E[O}C_ﬂ < E[Ck}

Proof idea. Any point in the coupon collector’s problem
can be modelled as a single step in geometric distribution.
Accumulate the probability of the coupons collected so
far: the complement is the chance of a new coupon. The
coupon collector’s problem is dynamic in the sense that
the probability of a concrete subcollection k is not fixed,
so neither is the cost of one of size k + 1. We handle
this by modelling the probability of a subcollection as a
random variable and taking its expectation. This contrasts
with Equation (4) which directly defines this expectation via
exhaustive enumeration. Below, we show that the expected
cost to reach a subcollection of size k is necessarily less than
that to reach a subcollection of size k + 1 by modelling each
as a separate instance of the geometric distribution, albeit
this pair of geometric distributions has the property that
the success probability of the smaller subcollection is, by
construction, greater than that of the larger subcollection.

Proof. Let D be the set of coupons.

Let Dy, C D with cardinality k& be the subset of D
discovered after E[Cn (k)] expected coupon purchases.

Let By, = > ,cp, P(b) be the probability of Dy,.

To move from Dj_; to Dy, one must pick a new coupon,
ignoring any previously picked coupons. This is the geomet-
ric distribution. The expected probability of picking an old
coupon at the arbitrary subcollection Dj,_1 is E[Bj_1], so
the expected probability of a new coupon is 1 — E[Bj_1].

6

Under the geometric distribution, the expected trials to a
success is the inverse of the probability of a success, so the
expected trials to move from Dy_; to Dy, is m. The
set Dy, contains all elements of Dj_; plus the k-th coupon
¢k, i.e. Dy = D1 U{cx} = By = Bg—1 + P(cx) and, since
probabilities are positive, E[By_1] < E[Bj].

E[Bk_ﬂ < E[Bk] == 1-— E[Bk-_ﬂ >1-— E[Bk]
1 1
1—E[Br1] = 1—E[By]

= E[Ck_1] < E[C}]

=

O

Definition 3.3 (Systematic Partition Testing). Given a program
F and a testing partition P equipped with a distribution over its
parts S, systematic testing (ST) tests F' by sampling P’s parts
under S without replacement.

Unlike RT, a ST technique Ag directly samples the testing
partition P without replacement. This allows it to discover
exactly one new part with each test. Let) C P be the parts
tests; Ag's pic is simply pic(Q). However, Ag’s sampling has
a cost. Let the expected cost for sampling be A units of time.
As such the expected number of parts discovered by Ag in
time ¢ is:

t

E(|A4s(P,S,0)]) = « (©)

3.5 POPART vs. RT

We define POPART and then compare it against random
testing to show that it is more efficient on skewed testing
partitions. Intuitively, POPART maximises the probability-
weighted input cover of a subject program’s inputs.

Definition 3.4 (Probability Ordered Partition Testing). Given
a program F' and a testing partition ‘P equipped with a distri-
bution over its parts S, POPART tests I' by visiting P’s parts
in decreasing pic under S without replacement.

POPART is an instance of Ag, so its expected cost to
discover a part is A. Let O = (p1,p2,---) be POPART’s
greedy ordering of P’s parts by representative probability
weight and let O, be O’s prefix of length k. Given time ¢,
POPART visits the first d = L%J parts in O (Equation (6)), in
expectation (since execution times are expected values), so
its testing efficiency is:

(PA, P, 8,1) = pic(E(PA(P, 8,1))) = 1piclO0) ()

POPART’s sensitivity to the probability weight of a parti-
tion’s parts allows it to possibly achieve higher probability-
weighted input coverage than random testing. One immedi-
ate, if contrived, example is the partition P equipped with
: S =(0.4,0.3,0.1,0.1,0.1). Given time ¢ = 6 and relative
cost A = 2, the probability-weighted coverage of random
testing (Equation (3)) is pic(RT (P, S, 6)) = 0.78, while that
of POPART is pic(POPART(P, S, 6)) = 0.8.

More importantly, Section 4 shows that it is easy to
construct plausible counterexamples in which POPART outper-
forms RT, despite its higher execution cost per test. Sampling
without replacement is the reason. To show this, we use the

—— PopArt: xA /_,-"-
£ 30001 —._ RT: ~E(Cy(x) P
g :
‘s ot
= 2000 - 5
2 o
£ &:
£ 1000 - o
5 %
e o:
om:
0_ -
0 10000 20000 30000

Time in RT executions

Fig. 3: Assuming the testing partition obeys Zipf-Mandelbrot
and POPART execution cost is 8 times more expensive than
RT’s, POPART and RT break-even after =~ 22,000 concrete
executions. From that point onward, POPART is more efficient
due to RT’s repeated sampling.

expected number of tests needed to discover a fixed number
of parts; but first, consider the following lemma.

Lemma 3.3.

|PA(P,S,t)| = |RT(P,S,t)| =
Elpic(PA(P, S,t))] > E[pic(RT (P, S,t))]

Proof. POPART is an ideal systematic partition testing strat-
egy that samples S in order of probability weight; each subset
of parts that POPART returns has maximal probability weight
for its cardinality, which RT can only, at best, match. O

The question of which method does better then turns into
the problem of computing the number of parts visited by
each for in a given amount of time. For POPART, this is easy:
as a systematic method, it discovers one part in A units of
time. To do the same for RT, we need to solve Equation (5),
which as Ferrante and Saltalamacchia point out, is computa-
tionally intractable for domains larger than 10. Luckily, they
also show how to approximate E[C'y (k)] with the following
function [24, §3.3], when the underlying distribution follows
the Zipf-Mandelbrot law [25], a generalisation of Zipf’s law:

0
k

(SN +0)) -0

Figure 3 plots the number of distinct parts RT testing
and POPART discover when the testing partition obeys a
Mandelbrot distribution with parameters § = 2,¢ = 10
over a domain of size N = 100,000. We use Equation (8) to
approximate E[Cy (k)] and fix A = 8 i.e. each of POPART’s
tests takes 8 times more time than one of RT’s. In Section 4,
we use simulation to approximate E[Cy (k)] on a wider set of
probability distributions. Initially, RT’s cheaper cost allows it
to discover more parts, but, as it starts to repeatedly sample
inputs that belong to already visited parts, POPART catches
up. After time x = 22.196, both methods have discovered
the same number of parts, 2775. We name this the break-

E[CN(k)]zm ~

®)

7

even point: before it, RT has discovered more parts; after it,
POPART has the upper hand.

Definition 3.5 (Break-even point). Given a testing partition P
and a probability distribution over it S, the break-even point of
POPART and RT is the smallest number of parts k > 1 such that
POPART covers them with fewer resources than RT.

This break-even point occurs because POPART incurs A,
a constant expected cost to discover a new part, whereas
RT’s cost of discovering new parts is ever increasing, as
shown in Lemma 3.2. When this break-even point occurs
depends on both &, the probability distribution over parts
and A, POPART’s slowdown. Let P(p1),P(p2),...,P(pn)
be probability weights of P’s parts under S indexed in
decreasing probability order i.e. P(p;) > P(p;+1). Then, the
break-even point is the smallest positive value k such that:

kA <E[Cy (k)] ©)

Evaluating the right-hand side of Equation (9) using
Equation (4) and Equation (5) is, as previously mentioned,
computationally intractable for larger domains. If the parts
of P follows a Zipf-Mandelbrot probability distribution
with known 6 and ¢ parameters, we can use Equation (8).
Alternatively, we can use Equation (10) as an upper bound
on E[Cn (k)].

1 1
PG 1o (XFP(pr)

Equation (10) replaces the number of expected samples to
get new parts, C;, with their value when using RT under the
assumption that random testing samples parts in decreasing
probability order. This assumption is not, in fact, strong,
since, in expectation, RT will sample parts in that order since
the probability of RT sampling each part is equal to its
probability under S. It takes just a single sample to discover
the first part since no part has already been seen. Once RT
has already discovered i — 1 parts, the cost (i.e. number of
samples) of finding a new one follows, as shown in the
proof of Lemma 3.2, a geometric distribution and is equal to
E[C] = =iy

When the break-even point has been reached, POPART will
have a higher pic than RT and will continue to do so for
any subsequent point in time. We show this in the following
theorem.

E[Cn (k)] <1+ (10)

Theorem 3.4 (When Without Replacement Pays for Itself).
Given resources b, a testing partition P and a probability
distribution over the parts, S, POPART outperforms (i.e. makes
better use of b) RT, in expectation, whenever b exceeds the point
where POPART’s and RT’s path discovery cost breaks even:

Ik € Ns.t. kA <E[Cn (k)] AkA <b —
Vt > kA, pic(E[POPART(P, S, t)]) > pic(E[RT(P, S, t)]).
(11)

Proof idea, the antecedent of the implication of the
theorem statement assumes that POPART and RT reach a
break-even point before exhausting b. First, we use Lemma 3.3
to show that at the break-even point, POPART has a higher pic

than RT. Then, we show, by induction, that, if the antecedent
is true for k parts, it must be true for all values > k.

Proof. When kA < E[Cn(k)] A kA < b holds, k is the
number of parts such that kA, the time POPART takes
to cover those parts, is less than E[Cy(k)], the time RT
needs, and that kA occurs before the time budget b. Since
both methods have discovered the same number of parts, it
follows, from Lemma 3.3, that

IRT(P, S, kA)| < |[PA(P, S, kA)| = k —
pic(E[PA(P, S, kA)]) > pic(E[RT(P, S, kA)])

Now, we show that the theorem holds for any value
t > kA < Vt: |PA(P,S,t)| > k. We do so by induction
on the number of parts after the first k parts: that is, we prove
that Vi > k, kA < E[Cn (k)] = iA <E[Cn(7)].

Base case: The existence of a break-even point is true
under the assumption of the implication of the theorem
statement when ¢ = k.

Induction hypothesis: Assume 3i > k: iA < E[Cn(7)].

iA S E[CN (Z)] . Equation (5) (12)
iN <Y E[C,] = (13)

s=1
iA <E[Cy] +--- +E[C;] == Lemma3?2 (14)
iA <iE[C;] = (15)
A < E[C)] (16)

Induction step:

(i+1)A <E[CN(i+1)] < (17)
iA+ A <E[Cn(9)] + E[Cit1] (18)
Eq. (16) =Lm32 A <E[Ci11] (19)
Eq. (19), Eq. (12) = Eq. (18) (20)
O

The practical relevance of Theorem 3.4 turns on the
magnitude of A and the feasibility of test budgets b that
allow POPART to catch up to RT. As Figure 5 shows,
the time it takes to reach the break-even point decreases
exponentially with decreasing entropy of the testing partition.
Both our experiment in Section 2 and related work [12]
support the idea that in practice, program paths induce a
highly skewed probability distribution. This leads us to the
following conjecture.

Conjecture 1. Given a skewed path probability distribution, the
break-even point is reachable within a realistic testing budget.

We empirically argue that this conjecture holds in Sec-
tion 4.1 where we look at both the pic and the time at which
the break-even point occurs.

3.6 Uniform Systematic Testing

Bohme and Paul analysed uniform systematic testing (UST),
a form of ST restricted to uniformly sampling undiscovered
parts [22]. Their choice of the uniform distribution rests
on the principle of indifference [16] as the only reasonable
solution to the hard epistemic problem of inferring the true

8

distribution over a program’s testing partition. They char-
acterise this method as ideal ST, show that, despite wasting
resources on redundant test executions, RT outperforms it
over realistic test budgets, then conclude that, since UST is
idealised ST, that RT outperforms ST. We summarise their
finding and compare it to POPART, a ST strategy for which
their finding does not hold.

Definition 3.6 (Uniform Systematic Testing®). Given a program
F and a testing partition P, uniform systematic testing (UST)
tests F' by sampling P’s parts uniformly without replacement.

Uniform sampling without replacement renormalises to
uniform over the undiscovered parts at each step. UST is an
instance of Ag, so its cost to take each sample is A units of
time. Because it specifies a uniform probability distribution
over undiscovered parts, UST’s expected pic(UST) increases
linearly [22, Lemma 1]:

pic(E[UST(P, U, t)])

t €[0,AlP|] (21)

CAP]
Bohme and Paul results imply that RT is more efficient
than UST in practice [22, §5]. In our notation, this claim is

Jt < bs.t. e(RT,P,S,t) > e(UST, P, U, t) (22)

The testing efficiency of RT on the left of Equation (22)
takes S, not U! because, execution of uniformly sampled
inputs generates a distribution over the parts of the testing
partition P that are unlikely to be uniform, Observation 3.1
in Section 3.2. Indeed, Section 2 presents strong evidence
that they are nonuniform in practice. Thus, this result not
only compares sampling with and without replacement but
across two different probability distributions. This difference
in distribution extends to the efficiency computation: that
Equation (22) values the same part differently on the two
sides of the inequality. Let the most probable part have
probability % under S. RT earns % for it, while all UST ever
earns is ﬁ. This fact also intuitively explains the result. RT
does, statistically and in practice, come close to visiting the
testing partition’s parts in greedy order and maximising its
pic as Section 4.2 shows, while UST is unlikely to and would
not be rewarded for doing so, even if it did.

4 TESTING STRATEGIES UNDER SIMULATION

In this section, we use simulation to compare POPART
with Random Testing (RT) and uniform systematic testing
(UST). Of particular interest is S, the induced probability
distribution over the parts and the size of its support. In
Section 4.1, we explore the break-even point of POPART and
RT, varying the slowdown A of POPART and measuring
how long it takes to reach the break-even point and at what
pic it occurs. This result gives us our first takeaway: the
importance of focusing engineering efforts into lowering A
for any implementation of POPART which in turn, brings the
break-even point much earlier.

Throughout our comparisons, we use entropy to measure
the flatness of a probability distribution. When all parts of

6. This definition is equivalent to Bohme’s and Paul’s Systematic
Testing Technique.

a testing partition are equiprobable, the probability distri-
bution over parts is horizontal and entropy is maximized’.
Conversely, when all but one parts have probability zero, the
entropy of the testing partition is zero. We use entropy to
indicate how far from uniform a probability distribution
is. Section 4.2 shows how the entropy of S affects the
performance of POPART, RT and UST. Our results show
that each testing method wins depending on the probability
distribution over the testing partition, the slowdown of
systematic techniques and the target pic. However, under
realistic assumptions, UST loses to both RT and POPART.
Therefore, most of this section focuses on comparing the
latter two methods. We find POPART is more efficient
when targeting pic above ~ 0.9; otherwise, it loses to RT,
confirming RT’s superiority over systematic methods for
lower coverage targets. The takeaway is to choose POPART
only for pic targets above ~ 0.9. Practitioners can use these
takeaways to inform their choice of a testing strategy.

Testing methods discover the parts of a testing partition
‘P. This section reports the pic that each method achieves in
time ¢ on probability distributions S with different supports.
We normalise time such that RT’s input sampling and test
execution takes expected unit time and different A values
for POPART and UST.

Our simulations are subject to the usual internal va-
lidity threats. Our model, presented in Section 3, may
not correctly capture all the parameters of the compared
testing strategies. To combat this threat, we adopted models
from prior work and augmented them by ranging over
probability distributions indexed by their entropy. Second,
the scripting that performs and reports the results of the
simulations: the interested reader can inspect them at
10.6084 /m9.figshare.18544298. Our choice of the probabil-
ity distributions in Section 4.1 (Normal, Uniform, Zipf-
Mandelbrot) represents an external threat to validity. We
selected the Normal and Uniform probability distributions
because related work has used them; we selected the Zipf-
Mandelbrot distribution based on the results of Section 2,
which empirically showed path probabilities following a
power-law.

41

Section 3.5 introduced the concept of a break-even point, the
point where POPART and RT have discovered the same num-
ber of P’s parts and, after which, following from Theorem 3.4,
POPART has higher efficiency than RT. Using simulation,
we set out to find this break-even points for different
distributions. We do so by selecting three distributions, a
power-law represented by the Zipf-Mandelbrot distribution,
the normal and the uniform distribution, and vary the size
of their support (the number of parts in P) from 1, 000 to
100,000 as well as the relative cost of POPART compared
to RT, A. In practice, we expect useful and interesting
distributions to follow a power-law distribution and show
the results on the other two distributions as baselines. This
is supported by both our case study of codeflaws programs
presented in Section 2 and previous work on estimating part
execution frequencies [12].

PoOPART Break Even Analysis

7. The value of the maximum entropy depends on the size of the
support of the probability distribution

9

Figure 4 shows the results of our simulations for all three
probability distributions over parts. The first thing to notice is
that, the more skewed a probability distribution is, the earlier
the break-even point comes. Under a uniform distribution
(Figure 4c), POPART cannot leverage path ordering to quickly
increase its pic while at the same time incurs a slowdown
A. It has to “wait” until RT starts repeatedly sampling the
same parts to catch up (if possible). On the other hand, when
S follows a power-law (Figure 4a), the break-even point is
reached earlier.

Beyond the distribution over parts, two more factors
affect the probability-weighted input coverage at which
break-even points occur. The first one is the relative cost
of POPART compared to RT, A. As expected, if POPART’s
executions are only A = 2 times slower than RT’s, break-
even points are reached earlier than when it is A = 8
times slower. Finally, our simulations showed that when
S is skewed, increasing the size of P brings the break-even
point to a lower pic. This last observation is a promising
result for POPART since, in practice, testing partitions, like
the oracle-infused path partition, are both skewed and have
a very large number of parts.

Figure 4 shows the pic at which POPART and RT break
even for different path probability distributions S but how
much time is needed to reach that point? To answer this
question we generated multiple probability distributions of
varying entropy values and simulated both testing methods
to compute how much time is needed to reach the break-
even point. The results in Figure 5 show that the entropy
of S largely determines how quickly the break-even point is
reached. The time to reach the break-even point decreases
exponentially with decreasing entropy of S.

To generate probability distributions with supports of
size N with different entropies, we used the Zipf-Mandelbrot
distribution with parameters c, § where the probability of
the k-th element is given by the following PMF:

1/(k + ¢)? y
7u7whereHN,c,9:Z

© i=1

R
Increasing 6, increasingly skews S (lower entropy); in
contrast, increasing c¢ pushes S towards the uniform dis-
tribution (higher entropy). The maximum possible entropy
of a distribution increases as its support size increases. For
presentation purposes, we normalise S’s entropy by dividing
it by the entropy of the uniform distribution with the same
support.

For Figure 5, we fixed the size to N = 100,000 and varied
the parameters c and 6. For each probability distribution, we
simulate RT 10 times and compute the mean. Since POPART
is deterministic for a given distribution, this experiment
requires only a single simulation per slowdown (A) value.

4.2 Entropy Determines POPART’s Efficiency

The entropy of the path probability distribution, H(S),
significantly affects the efficiency of POPART. Here, we ex-
plore this observation by generating probability distributions
of varying entropy and simulating POPART on them. We
similarly simulate RT for the same probability distributions
to show its difference from POPART. We generate these prob-
ability distributions using the Zipf-Mandelbrot distribution

10.6084/m9.figshare.18544298

10

1.0
- _ F Yt bt 1.007¢-9-rrmngrnnnnna
e I [s . R s .
TIRY P . e A=2 0.95 1 . £=2
o \ -%- A=4 L 087 -%- A=4 ° -%- A=4
a 1 4 A=6 g : -4 A=6 5 0907 4 A=6
069 1 0.74 %
' Y —-e- A=8 ’ . —-e- A=8 —e- A=8
- : 0.85 -
Sl 0.6
0.4 B \\‘-----..._____‘_‘ -. [TEEEEEEEEEEEERE ® 0.80 4 ..'.- [IECEETEELEREET [)
0 50000 100000 0 50000 100000 0 50000 100000
size of P size of P size of P
(a) S = Mandelbrot(0 = 2, ¢ = 10) (b) S = Normal(c? = @) (c) S = Uniform

Fig. 4: For three different probability distributions over the tes
point for POPART and RT for different values of A (relative

ting partition 7P, we compute using simulations the break-even
cost of POPART). The x-axis represents the size of P and the

y-axis the probability-weighted input coverage at which POPART and RT have explored the same number of parts. Skewed
probability distributions, such as the Zipf~-Mandelbrot, bring the break-even point earlier, especially for larger testing partitions.

Time to reach the Break-Even
point between RT and PopArt

@ A=2 8
1 -%- A=4 gt
1057 ..¢- A=6 /‘,:;;"—'x
1-e- 0=38 .:::({‘A’({
10% 4
[} 3
E
‘}_ 4
107 5
102 4
10 - T T

T T
0.4 0.6
Mormalised Entropy

0.8

Fig. 5: Slightly lowering the entropy of S exponentially
reduces the time to reach the break-even point. The yellow
line indicates the normalised entropy of path probability
distributions harvested in Section 2. |P| = 100,000.

introduced in Equation (23). Our simulations show that,
when S is non-uniform and when high probability-weighted
input coverage is necessary, POPART outperforms RT.

Figure 6 shows how much time it takes for POPART
and RT to achieve a certain amount of pic for probability
distributions indexed by normalised entropy. The probability
distributions are over a support of size N = 100,000. To
account for the randomness of RT, we repeat each RT
simulation 10 times and keep their average. As in Section 3,
our time unit is the expected cost of a single RT test execution;
POPART has an x8 slowdown, i.e. A = 8. Figure 6a shows
that POPART’s ability to leverage skew in S allows it to
quickly reach high pic when S is far from uniform.

Figure 6b shows how random testing performs for the
same part probability distributions. RT has similar behaviour
to POPART; under a non-uniform distribution S, it is very
likely to sample the high-probability parts first and does

PopArt8

104

0.2 0.4 0.6 0.8

Normalised Entropy
(a) POPART (A = 8)
Random Testing

1.0

106

10°

104

pic

103 3
m
102

10!

107

0.2

0.4 0.6 0.8
Normalised Entropy

1.0

(b) Random Testing

Fig. 6: For different probability distributions generated using
Equation (23) with N = 100,000, we simulate POPART and
RT to show the time it takes for each method to achieve a
certain pic for distributions with different entropies.

so with a much lower cost. However, upon reaching a
probability-weighted input coverage higher than 0.9, it starts
to significantly slowdown, due to repeated samplings of
already tested parts. Going towards more uniform distribu-

Time difference between PopArt8 and RT for
probability distributions indexed by theiqg’ntgosgy

—————|
0.25
0.9 o
0.00 g
[=1
0.8 1 —0.25 =
g —0.50 Fc:-a
(=1 i
0.7 2
-0.75 3
[s4]
0.6 - :
1.00 §,
-1.25
0.5
. . —1.50

T T T
05 06 07 08 09 10
Normalised Entropy

Fig. 7: For non-uniform probability distributions over the
testing partition, POPART (A = 8) is faster than RT when the
target probability-weighted input coverage is above ~ 0.92.

tions, RT does become slower to gain pic but at the same time
is unlikely to draw new samples from the already visited
parts making it faster than POPART.

Figure 7 directly compares POPART with a slowdown
A = 8 and RT, on probability distributions with normalised
entropy higher than 0.5 and pic > 0.5. We focus on this
region since it is where the two methods most differ and
because we believe it to be the most practically relevant, as
testers who care about coverage aim to maximise coverage.
Probability distributions with lower normalised entropy tend
to have a few high probability parts and a very long tail of
near-zero probabilities. For example, the Zipf-Mandelbrot
distribution used in Figure 4a has a normalized entropy of
0.69.

Figure 7 shows that, for non uniform S, when the target
pic is above = 0.92, POPART (A = 8) is faster than RT. On
the other hand, lower pic targets and uniform part probability
distributions favor RT. Interestingly, the boundary between
the two methods appears almost constant for distributions
with normalised entropy between 0.5 and 0.85. A graph, like
this one, for their software, would help practitioners, who
care about probability-weighted input coverage, make an
informed selection of a testing method. Given an estimation
of the entropy of the distribution S if a pic higher than
~2 0.92 is desired, then POPART (A = 8) should be preferred;
otherwise, we should use RT.

While the boundary between which testing method is
more efficient between RT and POPART (A = 8) remains
around a fixed pic value (=~ 0.92) when H(S) < 0.85, the
time it takes to reach 0.92 probability weighted coverage
changes significantly depending on S’s entropy. The time to
reach the aformentioned boundary is in fact the time it takes
to reach the break-even point as shown in Figure 5 for A = 8.

For comparison with the UST testing strategy, Figure 8
shows the time difference to achieve different pic targets
across different part distributions. Here UST has a slowdown
A = 4 while POPART keeps the same A = 8 slowdown used
in figures 6a and 7. The result is that UST (A = 4) is faster
for part probability distributions very close to uniform since

11

Time difference between PopArt8 and UST4 for
probability distributions indexed by their entrog)%ooo

300000

0.9 =2
3
200000 7
o
0.8 100000 =R
5
[=]
2 0 3
0.7 =)
—100000 @@
0.6 200000 &
' 4

—300000

0.5
—400000

0.5 0.6 0.7 0.8 0.9 1.0
Normalised Entropy

Fig. 8: POPART (A = 8) is faster than the uniform systematic
testing strategy, UST (A = 4), on all but the most uniform
part probability distributions despite being 100% slower.

POPART (A = 8) gets no leverage from its ordering but is 2
times slower than UST (A = 4). Part distribution with lower
entropy heavily favours POPART (A = 8). It should be noted
that the y-axis goes up to 0.999 pic. If a tester requires 100%
probability-weighted input coverage, she should use UST
over both POPART and RT.

Based on the results shown in Figure 7 and Figure 8, it
is clear that each testing technique has a part of the space
on which it outperforms its competitors. Our contribution
to the testing efficiency research is in introducing POPART
and highlighting the space in which it wins over previously
studied testing strategies. Previous work has already shown
that a uniform S is unlikely, which makes POPART a com-
petitive option when testing needs require a high degree of
probability-weighted input coverage such as critical systems.

5 REALISING POPART

Implementing POPART rests on constructing the testing
partition P and using an input probability distribution to
induce a part probability distribution S. For POPART to
achieve wide-spread use, its overhead (A) must be much
smaller than the eight-fold slowdown we have assumed,
outside of Section 4.1 where we vary A, in Section 4.
Nonetheless, POPART can be built and used today using the
tools of probabilistic program analysis which combines symbolic
execution with model counting [26], [27]. Symbolic execution
uses the path partition, a partition that is naturally aligned
with program behaviors. Using it, every path m; defines a
part of the path partition such that = € p; & m; A 2. Model
counting is used to count the number of inputs satisfying a
path constraint, allowing for such analysis to compute path
probabilities.

Filieri ef al. developed a path selection strategy [28], F'PS,
for probabilistic symbolic execution which upon reaching a
conditional, computes the probabilities of both branches
and selects one at random based on these probabilities.
An interesting feature of F'PS is that it effectively samples
without replacement the path partition and traverses paths
with a probability that is proportional to the probability of

sampling an input from the corresponding part [28, thm 1].
While FPS does not guarantee that paths will be traversed
in exact decreasing order of probability, as Section 5.2 shows,
the order in which paths are tested is very close to POPART’s.

Our POPART prototype extends Java Symbolic Pathfinder
(SPF) [29]. It implements Filieri et al.’s probabilistic path
traversal, using the LattE model counter [30]. Using these
tools permits our prototype to compute exact pic, unlike RT
and UST, which must estimate pic using Equation (3) and
Equation (21). Running our implementation on a Macbook
Pro 2018 (2.2GHz cpu, 16GB ram) inside a Linux Mint virtual
machine, we observe an average slowdown of A ~ 6.5 in
steady state, when subtracting VM and symbolic execution
start-up time to mitigate against measurement instability [31].
To be conservative, we used A = & in Section 4.

Both symbolic execution and exact integer model count-
ing significantly limit the types of programs that this im-
plementation can test. Symbolic execution has significantly
improved over the last decade and now handles industrial
scale code such as cyberphysical control systems in the
aerospace industry [32], [33] and addresses modern software
engineering challenges such as testing deep neural networks
and smart contracts [34], [35]. However, path explosion
remains a problem for any exact path-based method, such as
symbolic execution. Using F'PS to prioritise the most likely
paths allows POPART cover most of the probability-weighted
input space with a small number of paths, given that the
path probability distribution has low entropy.

Propositional model counting [36], [37] is a natural fit
with symbolic execution as both techniques work with
symbolic representations of the path constraints. It comes
however at a significant cost (it belongs to the #P complexity
class) as it has to count all possible solutions to a query. Barvi-
nok’s algorithm [38], [39] speeds up the solution, making it’s
complexity linear in the number of variables, but restricts the
types of constraints to linear integer constraints. Since LattE,
uses Barvinok’s algorithm, our implementation inherits these
limitations. To relax these restrictions, approximate model
counting based on sampling could be used instead [37] which
does not limit the type of constraints it can be applied to but
is only effective for small input domains.

Below, we conduct two case studies to showcase the
different aspects of F/PS and its relationship to POPART.
Each case study symbolically executes a harness that calls
a subject program. Our implementation of FPS takes as
input the number of symbolic variables and a minimum and
maximum value for those symbolic integer variables; those
are then passed to the LattE model counter that computes
the probabilities of branches and paths. The first case study
is a sanity check: it shows that our implementation of F/PS
does indeed prioritise high probability paths. Because F/PS
is probabilistic, its pic may differ from POPART’s for a given
testing budget. Our second case study investigates how
important this difference is.

5.1

To experimentally observe whether using symbolic execution
with Filieri’s et al. probabilistic path selection strategy F'PS,
does indeed prioritise high probability paths, we compare
pairs of sorting functions such as merge sort and quick sort.

FPS’s pic Over Time

12

PIC over time for Merge-Quick Sort

i e T
4l
‘I
0.8 ; In 124 iterations, PPA has
/ achieved a pic of .995
0.6 l,’
g F It takes an additional 350 iterations
0.4 4 r to cover the remaining .005 pic
’t
/
0.2 Il
/
!
/
004
T T T T T
0 100 200 300 400

Paths

Fig. 9: Probability-weighted input coverage as a function of
paths traversed by F/PS when comparing Merge and Quick
sort.

A testing harness is creating an array, passing it to both
functions, and finally comparing their output. At the end of
each path traversal, the implementation computes the path
probability and prints it. We are interested at the rate with
which FPS gains probability-weighted input coverage. For
this experiment, we need to concretize the size of the arrays
that are being sorted since Symbolic PathFinder does not
handle arrays with symbolic length. The results shown in
Figure 9 are for arrays of 5 elements with values in the range
[—999,1000] and a uniform probability over them.

Figure 9 shows that FPS does, indeed, traverse the
high probability paths first, quickly covering most of the
probability-weighted input space. We observe that the paths
form two sets with regard to their probability weight. The
first 124 paths explored have a significantly higher proba-
bility, accounting for 99.5% of the total probability weight.
Interestingly, this is also the case for other pairs of sorting
functions, such as (merge sort, selection sort), for which
F'PS achieved a pic of 0.995 in the first 123 iterations (out
of 208 paths) and (bubble sort, selection sort) where FPS
calculated a pic of 0.995 in 122 iterations (out of 523 paths).
On average, our implementation took 80 milliseconds to
execute a path, reaching the 0.995 pic mark in ~ 9.8 seconds.
These examples are good cases for POPART, since their path
conditions induce a skewed probability distribution on the
paths which POPART leverages to quickly cover most of the
probability-weighted input space.

5.2 Comparing FPS and POPART

In Section 3 we showed how selecting the paths in decreasing
probability order leads to better pic over time than random
testing and partition testing with uniform path selection
probability. Our implementation of F'PS, is likely to exercise
the paths in decreasing probability order. Its path traversal
order will be, at best, POPART’s greedy order and, at
worst, the complete opposite (meaning that after ¢ iterations,
POPART will have exercised the 7 less likely paths) due to the
probabilistic nature of the path selection strategy used.

To measure how far from POPART’s order is FPS’s imple-
mentation on average, we generated 10 random programs and
used ran FPS on each 100 times. It took our implementation
20 milliseconds, on average, to execute a path through both
programs. We then compare how the average pic achieved
over time compares with the greedy order, with the results

Comparing PopArt with
the order achieved by PPA

pic

—== PopArt
—— PPA (avg. 100 runs)

T T T T
1500 2000 2500 3000
Paths

T T
500 1000

[=

Fig. 10: Comparing the pic per number of parts explored
achieved by FPS vs POPART. FPS manages to stay very
close to the theoretical best (POPART), having a difference of
at most 0.15 pic accross all 100 runs.

shown in Figure 10. These indicate that using the probabilistic
path selection technique achieves near-optimal pic over time
while only storing the symbolic states of a single path unlike
what a greedy approach would do as discussed below.

Two interesting observations for this experiment are that
first the gap between the greedy and probabilistic path
selection closes rapidly as more paths are explored. Second,
the performance of F'PS is very consistent despite being
a randomized process. Intuitively, at best it can explore
the paths in the exact greedy order therefore having the
average so close to the greedy path order suggests that there
should be few “bad” outliers. To confirm this we did the
Kolmogorov-Smirnov test between the average curve and
all executions of FPS on the generated programs; the result,
k-s = 0.151, means that the furthest the individual curves
have been from the average at any point is 0.151.

It is possible to have a path selection strategy such
that paths are explored in decreasing monotonic order
with regards to their probability. This can be achieved if
symbolic execution always selects the branch with the highest
probability out of all the explored edges of the CFG. Doing
so will achieve the greedy path order but loses the property
of being a DFS-like (entry to exit) traversal of the CFG. This
is a significant drawback for practical symbolic execution
since in order to find the most likely path it might have to
compute and store most program states. Therefore it is likely
to run out of resources for any non-trivial program.

6 RELATED WORK

POPART as presented in this paper is both very different
and also similar to random testing. Both methods are guided
by the input probability distribution and the probability
distribution it induces over the testing partition. These
distributions allow each to quantify software dependabil-
ity as Thévenod-Fosse and Waeselynck argue [40]. Rather
than rely on deterministic or arbitrary test case generation,
using a usage profile, a probability distribution over inputs
derived from their in-deployment frequencies, allows both
quantifying and prioritising likely faults [12], a core concern

13

of reliability engineering. While other types of testing might
reveal more errors, they lack the necessary framework to
quantify the degree of input-output behavioral coverage
they achieve and therefore are not suitable for reliability
engineering. Both POPART and RT can do so because they
are guided by the usage profile rather than heuristics.

The closest research on quantifying the progress of a
testing campaign is Bohme and Falk’s [41] and Bohme
et al.’s [42] work on fuzzing. However, unlike the expected
probability input coverage computed for RT and POPART,
their work can only bound the probability of a fuzzer finding
a new program behaviour; that is, their framework can
only provide statistical guarantees about the fuzzer’s input
probability distribution which can be arbitrary far from the
user’s usage profile, making the result incompatible with
reliability testing.

Our work on POPART can be seen as a novel instance
of the test case prioritisation problem [43]. Test case pri-
oritisation (TCP) is the problem of selecting and ordering
a subset of the test cases available in a test suite with the
goal of maximizing some measure given that only a limited
number of tests can be executed; this is the core concept of
POPART too, i.e. maximise coverage under a given resource
bound. The novelty of POPART comes from the measure it
uses to rank and evaluate the parts of its testing partition.
Probability-weighted input coverage is unlike traditional
TCP approaches that use structural coverage measures such
as branch or statement coverage [44]. Another difference
of POPART from TCP methods is that it does not require a
test suite, instead, it uses a testing partition which is either
provided or can be constructed as shown in Section 3.

In the rest of this section, we first discuss the challenges
of software reliability testing, then, we review the attempts
of software engineering researchers at characterizing and
comparing random testing with partition and systematic
testing. Finally, we discuss probabilistic program analysis
upon which rests our implementation of POPART.

6.1

POPART is a systematic testing strategy that visits the parts of
a homogeneous testing partition in decreasing order of their
probability weight, without replacement. Its implementation
rests on the advances made in the field of probabilistic
program analysis which combines symbolic execution [45]
and model counting [36] in order to precisely reason about a
program’s paths and their probabilities. Symbolic execution
is used to traverse the program paths and using its symbolic
representation of path constrains allows for computing path
probabilities using model counting.

Geldenhuys et al. were first to introduce probabilistic
symbolic execution (PSE) [27], which used the LattE model
counter [30] to count the number of inputs traversing a path
and, under the assumption of a uniform input probability
distribution, compute its probability. Since then researchers
have worked on improving the engineering of PSE in Java-
Pathfinder [26], applying the techniques to solve problems,
such as software change quantification in change impact
analysis [46]. They have adapted model counting to the
specific needs of program analysis by decomposing queries,
rewriting them to a normal form and caching the results [47],

Probabilistic Program Analysis

[48], and modifying them to support non-uniform input
distributions [49].

Core to POPART’s implementation is Filieri’s et al. path
selection strategy based on path probabilities [28]. Filieri’s
et al. work, aimed at increasing the efficiency of probabilistic
program analysis, proved that using the probability of
each branch to choose which branch to explore will visit a
program’s paths in the same order as if one directly uniformly
sampled the program’s input domain. This property makes
symbolic execution visit paths in an order very close, in
expectation, to their probability weight, which POPART
requires, as shown in Section 5.2.

6.2 Reliability Testing

Testing remains the most common approach for validating
software. Developers often employ a mix of different testing
methods to increase their confidence in the correctness of
their product [50], [51]. Broadly, these testing methods either
generate their inputs manually or automatically. In manual
testing, a developer selects a set of inputs. Automatic testing
relies on a combination of heuristics and randomness to
generate test input.

A special category of automatic testing, closely related to
POPART, is statistical testing [40], [52]. Any form of testing
that selects inputs based on an input probability distribution
that captures the in-deployment usage, also called usage
profile, allows it to establish a statistical measure of reliability
of the underlying software under that usage profile. This is
in contrast with other stochastic testing methods, such as
fuzzing [53], [54], which despite their randomness, do not
allow for a direct statistical assessment of the reliability of the
tested software since, as Musa et al. [55, §5] observe “making
a good reliability estimate depends on testing the product as
if it were in the field”, a constraint not met by the arbitrary
distributions induced by fuzzing.

Fuzzing has recently made great progress and seen
increasing adoption by practitioners thanks to increasingly
available computational power and to a series of improve-
ments, in both its theory and implementation [56], [57], [58].
Google’s fuzzing platform OSS-Fuzz, for example, found
30,000 bugs in 500 open source projects [59]. Yet, despite
being able to find faults, fuzzing does not directly assess the
reliability of a program under a usage profile. This is due
to its reliance on heuristics that, while maximizing a target
measure, ¢.g. line coverage, introduce sample bias with an
unknown divergence from a program’s behaviour under its
expected usage. The closest to reliability testing via fuzzing is
Bohme’s et al. work [41], [42], [60] on modeling fuzzers and
estimating the probability of the discovery of a new program
behaviour during a fuzzing campaign.

Leveraging usage profiles to guide testing effort has
been a longstanding goal of reliability testing in software
engineering [61]. Musa [12], [62] was one of the pioneers who
investigated usage profiles and argued for their importance,
highlighting ways in which practitioners could reduce the
very large space of possible input probability distributions.
Similarly, Whittaker and Poore showed how to model usage
profiles as Markov chains and derive reliability measures of
the distribution of failures within the software [63]. How to ef-
fectively use a usage profile for reliability in software testing

14

has mostly concerned the aerospace and telecommunication
industries [64], which have been historically tightly regulated.
As software increasingly pervades the global economy and
becomes integral to critical infrastructure, we argue that the
scope for usage profiles should be expanded.

There are two core challenges in effectively applying the
principles of reliability engineering to software testing. First,
we need to capture the usage distribution in some form
and then have an efficient mechanism to sample it. Neither
is easy [65, §13.3]. The first is usually approximated by a
combination of domain knowledge of some expert and usage
data [66], [67]. We acknowledge the difficulty of defining
a good usage profile; POPART itself does not attempt to
solve this problem but instead relies on good input, as usual,
specifically a good usage profile, to produce meaningful
results. We note, however, that POPART can tolerate noise
in the usage profile and, further, its user can restrict the
usage profile to a subset of the program’s inputs for which
the usage profile is better known, zeroing or falling back
on the uniform for the rest. The difficulty of the second
challenge, generating input data by sampling some arbitrary
distribution, is perhaps best captured in the structured input
generation problem (SIG) [68]. SIG is the problem of sampling
an arbitrary structure under some probability distribution,
such as uniformly sampling C programs. It poses two
challenges: 1) efficiently building valid structures and 2)
ensuring that the sampling procedure over valid structures
obeys a given distribution.

To date, research has focused on the first subproblem. Re-
searchers have tried to address SIG by using symbolic meth-
ods [68], [69], [70], generative grammars and fuzzing [71],
[72], [73]. Visser et al. [68] proposed a method for symbolic
execution which using lazy initialisation allows it to generate
complex data structure based on the control flow of a
program. Boyapati et al. [70] presented Korat, a tool that
uses function specifications written in Java to automatically
generate possible input data structures up to a predefined
bound. To test programs using database systems, Emmi
et al. [69] implemented a multilingual concolic execution
that generates well-formed SQL queries. Compilers and
interpreters are another type of program that only accepts
highly structured inputs. To better test them, Godefroid
et al. [71] proposed a whitebox fuzzing technique that builds
a symbolic grammar that is then used to generate valid
inputs. To test a PDF parser, Godefroid et al. [72] showed how
a neural network can be used to generate input grammars
which are then given to a fuzzer. An interesting feature
of their work is that they encode a usage distribution in a
recurrent neural network and then, use it to guide the fuzzing
process. Finally, Olsthoorn et al. [73] combined search-based
test case generation with grammar-based fuzzing, using the
former to create the general structure of an object and the
later to fill the fields such as strings.

To assess reliability, generating valid structured input
is not enough. To see why, imagine building an arbitrary
number of valid inputs that are arbitrarily unlikely to ever be
encountered in the field. The subproblem of generating struc-
tured data that follows a usage profile has not been addressed
and remains unsolved. Like all work to date, POPART itself
does not address this problem. Instead, POPART assumes that
it is given a usage profile that the user defined to impose a

useful distribution over a subject program’s structured inputs.
Future work would be combining POPART’s implementation
with Visser’s et al. [68] symbolic input generator. Their
combination would apply Filieri’s et al. [28] path selection
strategy to guide the construction of structured inputs and
could impose a distribution over these structured inputs,
induced by a program’s paths, that would require only a
usage profile over primitive data types.

6.3 Random Testing vs. Partition Testing

Testing consumes resources, which are necessarily finite,
if not scarce. Testing efficiency studies how best to spend
testing resources. Over the last decades, research in test
efficiency has compared random testing (RT) to partition
testing (PT) and systematic testing (ST) in search of the
most efficient method in different settings. The interest in
these testing methods stems from their ability to provide
quantitative reliability estimations of software [2], [74].

RT does not waste resources on selecting test inputs, but
rather conserves all resources for sampling the input domain
and testing the target program. The principle idea is that
spending resources to select inputs does not pay off in gen-
eral, because of the cost of selection and the fact that selecting
redundant tests is rare. Indeed, Hamlet empirically showed
RT’s utility due to its speed, implementation simplicity, and
absence of bias [75].

In contrast, PT expends resources to divide the input
domain and subsequently sample from its subdomains [3],
[76]. The goal of partition testing is, is to leverage an
equivalence relationship (which defines the partition) over
subsets of inputs to generalise the result of a single test to an
entire subdomain.

The ideal partition to use for systematic partition testing
would be the test oracle partition. A test oracle imposes a bi-
partition on a program’s input domain, separating the inputs
on which the program computes the correct output from
those on which it does not. This partition is ideal because
it is total and all inputs in a part behave in the same way
with respect to the oracle, i.e. parts are homogeneous [2], [3]. In
practice, unless a formal specification is given and covers all
inputs, test oracles are partial and impose a tri-partition that
divides a program’s input domain into correct, incorrect and
unknown for values on which the oracle is not defined or does
not halt. The oracle partition, or more concretely, an input’s
assignment to one of its parts, is, however, unknowable a-
priori (otherwise we would not need testing) and therefore a
different testing partition is needed.

In practice, we cannot use the test oracle partition, so
partition testing resorts to dividing the input domain into
test subdomains. Subdomains are sampled for test input
values and finally, evaluated against the test oracle. These
test subdomains have two problems in practice — overlap
and non-homogeneity. In the literature, this division into test
subdomains has traditionally been called a partition, despite
not necessarily being a mathematical partition, because
the test subdomains may neither cover the domain nor
be disjoint. The first issue is not a problem in practice,
because testing is finite and can rarely exhaustively check
all test subdomains. The intersection of test subdomains has,
however, proven to be a problem in practice. Researchers call

15

such test subdomains overlapping, because they permit an
input value to be a member of more than one subdomain [77].
When dividing the input domain using criteria, such as
branches or statements, it is difficult (and unlikely) to be able to
guarantee no overlap between subdomains. Test subdomains
can be non-homogeneous: they can include inputs belonging to
both a correct and an incorrect oracle part. This arises when
the input domain is divided into test subdomains using
criteria other than the test oracle’s.

Constructing a set of testing subdomains that are non-
overlapping and homogeneous is hard in practice because
of the undecidability of the test oracle’s equivalence relation.
This is perhaps why some of the previous work on partition
testing has used the term “partition” aspirationally when
in fact they considered non-homogeneous and possibly
intersecting subsets of the input domain. Under these as-
sumptions, a single test from each subdomain is not enough
to allow for generalisation which lead researchers to define
different sampling strategies with the common element
that they are sampling with replacement. To distinguish the
different types of partition testing, in the rest of this section,
we will refer to partition testing with replacement as PT,
and to partition testing without replacement, also called
systematic, as ST. Unlike PT,, ST assumes a standard,
mathematical partition, that is, in terms of PT, its partition
is homogeneous with non-overlapping parts, by definition.
In Section 3.1 we showed how an executable oracle can
be used to create a partition that is both homogeneous with
respect to the given oracle and by construction has, assuming
deterministic executions, non-overlapping subdomains since
it is induced by program paths. Whether to spend testing
resources to construct a testing partition to sample or simply
use RT has been a long-running debate.

Duran and Ntafos [1] were the first to experimentally
investigate the difference of testing efficiency between RT
and PT,. They used synthetic examples and small programs
to compare PT, and RT in terms of error finding and
coverage. They found that “random testing can be cost-
effective for many programs”, igniting the search for a better
PT method. Hamlet and Taylor [2], followed up on Duran’s
and Ntafos” work with more comprehensive experiments
that varied the division into test subdomains, the failure
rates (i.e. percentage of failing inputs in each subdomain)
and subdomain probabilities. They found PT, to be slightly
more efficient than RT when low probability parts had a
high failure rate.

These partially contradicting empirical results were met
with scepticism by Hamlet who argued that rather than
rely on small scale experiments, researchers should instead
analytically compare testing methods, something that allows
generalizations and rigorous comparisons [78]. Following
that direction, Weyuker and Jeng [3] adopted the assumption
of previous empirical results [1], [2] and analytically showed
the necessary conditions to minimize and maximize the
probability that PT, triggers at least one fault. Extending
this result, Chen and Yu [4] analyzed the worst case for PT,
and showed that, when sampling parts proportionally to
their size, PT,. cannot be worse than RT. In 1999, Gutjahr [5]
further generalised the work of Weyuker and Jeng. Gutjahr
introduced a probabilistic model for failure rate and showed
that PT,. is up to k times better at finding errors than RT,

when it divides inputs into k subdomains.

POPART differs from and extends Gutjahr’s result in two
ways: the measure of testing efficiency and the assump-
tions it makes. POPART measures pic, which it seeks to
maximise; Gutjahr’s work measures time to error discovery.
Additionally, Gutjahr’s equates the execution cost of PT,
and RT, in contrast, our work models the difference of
RT and POPART with the A parameter, allowing for a
more flexible and realistic comparison since any non-trivial
partition scheme will impose a computational overhead.
Gutjahr’s theoretical result rests on the strong assumption
of uniform input probability. POPART, in contrast makes
only the standard assumption of most programs — that
users do not give it garbage input. Specifically, POPART
requires a good usage profile to produce meaningful results.
As Section 6.2 shows, inputs are unlikely to have a uniform
distribution when the program is used. Further, even a
uniform input distribution induces a highly skewed part
probability distribution (Section 2). These facts call for testing
efficiency research to better model both the probability
distributions over inputs and the probability distribution
over parts. Finally, POPART is a systematic testing technique
which differs from Gutjahr’s work that models partition
testing with replacement (PT,).

Arcuri et al. [21] and Chen et al. [79] both extensively
summarise the evolution of the RT vs. PT, debate. Arcuri
et al. improved on Ciupa’s et al. [80] empirical work on the
types of faults discovered by random testing, proving a
lower bound for the probability of RT covering a set of
targets. For PT,., Chen ef al. proved theorems on the expected
behaviour of PT, using proportional sampling and note that
previous work (including theirs) assumes an actual partition,
i.e. disjoint testing subdomains. Weyuker et al. studied the
problem of overlapping subdomains and recognized the
need “to find systematic or formal methods of constructing
the problem partition” [81]. One such method is symbolic
execution, which our implementation of POPART uses. Sym-
bolic execution, in theory, guarantees that the generated path
conditions partition the input space. This requires symbolic
execution to perfectly model all possible explicit and implicit
(e.g. exceptions, interrupts) state transitions. Further, it must
be equipped with an SMT solver capable of solving the
resulting queries. While, in general, these queries can be
undecidable, in practice, they often are not as witnessed by
the success SMT solvers in the last two decades.

Systematic testing, as mentioned earlier, is any testing
strategy whose testing partition is an actual partition, so its
parts are disjoint, and, further, that testing a single input
from each part is sufficient to test it, effectively assuming
the homogeneity of its parts. Thus, systematic testing can
safely sample its parts without replacement. Sharma et al. [82]
empirically compared RT with ST by testing different Java
containers, finding RT to be on-par with ST. Subsequently
Bohme and Paul analytically compared the two methods and
crowned RT as the most efficient testing method [22]. They
show that an ideal systematic technique, UST (Definition 3.6),
is less efficient than RT for feasible testing budgets.

Bohme’s and Paul’s result might look like it contradicts
Gutjahr’s [5] result on the difference of RT and PT,; it
does not. Two key differences allow them to escape Gut-
jahr’s result. First, UST uniformly samples parts without

16

replacement, while Gutjahr’s result used sampling with
replacement. Second, their analytical comparison measures
the input coverage not the time to the first failure. Given these
differences, they show that RT is initially more efficient than
UST up to a point in time X. They then argue X is beyond
reasonable testing budget limits, making RT more efficient,
within the limits of what is feasible. Their model accounts
for the slowdown ST incurs for test selection; in this, our
work follows their lead using A to model the multiplicative
slowdown of POPART over RT’s execution time. By dropping
the uniform sampling assumption over the testing partition
and visiting parts in decreasing probability order (Section 3),
we defined POPART, a novel, ST technique that does not
uniformly sample parts, thereby sidestepping Bohme’s and
Paul’s result, to achieves higher testing efficiency than
RT within feasible resource bounds (i.e. < Bohme’s and
Paul’s X) for realistic path probability distributions when
high coverage is needed (Section 4). Cyberphysical control
systems must, because of regulation, achieve such high
coverage which has pushed NASA towards using symbolic
execution [32]. We show that the entropy of distribution over
a program’s testing partition governs how quickly POPART
reaches the break even point, after which it is more efficient
than RT; POPART reaches this break even point exponentially
faster the lower this entropy is (excepting certainty).

7 CONCLUSION

“Testing is the most commonly used approach for software
assurance, yet it remains as much judgment and art as
science. We suggest that structural coverage measures must
be supplemented with measures of input space coverage,
providing a means of verifying that an adequate input model
has been defined.” —Kuhn et al., Input Space Coverage
Matters [20].

We have striven to rise to Kuhn et al.’s challenge. Our
work views programs as a set of input-output behaviours,
weighted by the probability of an input probability distribu-
tion. We presented POPART, a systematic probabilistic testing
method that visits the parts of a testing partition in decreas-
ing probability order, where part probabilities are induced
from a user-provided input distribution. This allows POPART
to focus the testing resources on the most likely program
behaviours. Comparing it with random testing, we found
POPART to be more efficient when coverage demands are
above 92%. Finally, our comparison of PopArt with RT takes
into account the entropy of the testing partition and shows
how it affects the performance of both methods. We showed
that both testing methods can leverage nonuniformity to
increase their efficiency compared to a uniform systematic
testing approach and that, as the entropy of the testing
partition decreases, PopArt outperforms RT exponentially
earlier.

ACKNOWLEDGEMENTS

This work has been partially supported by the EPSRC funded
research project EP/P005888/1 Information Theory and Test
Suite Selection.

REFERENCES

(1]
(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]
[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

J. W. Duran and S. C. Ntafos, “An evaluation of random testing,”
IEEE transactions on Software Engineering, no. 4, pp. 438-444, 1984.
D. Hamlet and R. Taylor, “Partition testing does not inspire
confidence.” Transactions on Software Engineering (TSE), vol. 16,
no. 12, pp. 1402-1411, 1990.

E.]. Weyuker and B. Jeng, “Analyzing Partition Testing Strategies,”
Transactions on Software Engineering (TSE), vol. 17, no. 7, pp. 703-711,
1991.

T. Y. Chen and Y. T. Yu, “On the Relationship Between Partition
and Random Testing,” Transactions on Software Engineering (TSE),
vol. 20, no. 9144263, pp. 636-638, 1994.

W. J. Gutjahr, “Partition testing vs. random testing: The influence
of uncertainty,” IEEE Transactions on Software Engineering, vol. 25,
no. 5, pp. 661-674, 1999.

J. Weisberg, “Formal Epistemology,” in The Stanford Encyclopedia of
Philosophy, winter 2017 ed., E. N. Zalta, Ed. Metaphysics Research
Lab, Stanford University, 2017.

A.O'Hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite,
D. J. Jenkinson, J. E. Oakley, and T. Rakow, “Uncertain judgements:
eliciting experts’ probabilities,” 2006.

S. H. Tan, J. Yi, Yulis, S. Mechtaev, and A. Roychoudhury, “Code-
flaws: A programming competition benchmark for evaluating auto-
mated program repair tools,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017, pp.
180-182.

J. R. Larus, “Whole program paths,” ACM SIGPLAN Notices, vol. 34,
no. 5, pp. 259-269, 1999.

D. Ung and C. Cifuentes, “Optimising hot paths in a dynamic
binary translator,” ACM SIGARCH Computer Architecture News,
vol. 29, no. 1, pp. 55-65, 2001.

D. A. Jiménez, “Code placement for improving dynamic branch
prediction accuracy,” ACM SIGPLAN Notices, vol. 40, no. 6, pp.
107-116, 2005.

J. D. Musa, “Operational profiles in software-reliability engineer-
ing,” IEEE software, vol. 10, no. 2, pp. 14-32, 1993.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan
notices, vol. 40, no. 6, pp. 190-200, 2005.

Wikipedia contributors, “Curve fitting — Wikipedia, the free
encyclopedia,” 2021, [Online; accessed 21-October-2021]. [Online].
Available: https:/ /en.wikipedia.org/wiki/Curve_fitting

M. Bohme and S. Paul, “On the efficiency of automated
testing,” International Symposium on Foundations of Software
Engineering (FSE), pp. 632-642, 2014. [Online]. Avail-
able: http://doi.acm.org/10.1145/2635868.2635923{%}5Cnhttp:
//dl.acm.org/ citation.cfm?doid=2635868.2635923

B. Eva, “Principles of indifference,” April 2019. [Online]. Available:
http:/ /philsci-archive.pitt.edu/16041/

M. Staats, G. Gay, M. Whalen, and M. Heimdahl, “On the danger of
coverage directed test case generation,” in International Conference
on Fundamental Approaches to Software Engineering. Springer, 2012,
pp. 409-424.

G. Gay, M. Staats, M. W. Whalen, and M. P. Heimdahl, “Moving
the goalposts: coverage satisfaction is not enough,” in Proceedings of
the 7th International Workshop on Search-Based Software Testing, 2014,
pp. 19-22.

A. Rajan, M. W. Whalen, and M. P. Heimdahl, “The effect of
program and model structure on mc/dc test adequacy coverage,”
in Proceedings of the 30th International Conference on Software
Engineering, ser. ICSE '08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 161-170. [Online]. Available:
https://doi.org/10.1145/1368088.1368111

R. Kuhn, R. N. Kacker, Y. Lei, and D. Simos, “Input space coverage
matters,” Computer, vol. 53, no. 1, pp. 3744, 2020.

A. Arcuri, M. Z. Igbal, and L. Briand, “Random testing: Theoretical
results and practical implications,” IEEE Transactions on Software
Engineering, vol. 38, no. 2, pp. 258-277, 2011.

M. Bohme and S. Paul, “A probabilistic analysis of the efficiency
of automated software testing,” IEEE Transactions on Software
Engineering, vol. 42, no. 4, pp. 345-360, 2015.

Wikipedia contributors, “Coupon collector’s problem — Wikipedia,
the free encyclopedia,” 2021, [Online; accessed 29-August-2021].
[Online]. Awvailable: https://en.wikipedia.org/wiki/Coupon_
collector%27s_problem#Extensions_and_generalizations

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

(35]

[36]

(37]

[38]

(39]

[40]

[41]

[42]

[43]

17

M. Ferrante and M. Saltalamacchia,
lector’s problem,” Materials matematics,
https://ddd.uab.cat/record /132177.
Wikipedia contributors, “Zipf-mandelbrot law — Wikipedia,
the free encyclopedia,” 2021, [Online; accessed 31-August-2021].
[Online]. Available: https:/ /en.wikipedia.org/wiki/Zipf%E2%80%
93Mandelbrot_law

W. Visser and C. S. Pdsdreanu, “Probabilistic Programming for
Java using Symbolic Execution and Model Counting,” South Africa,
vol. 10, 2017. [Online]. Available: https://doi.org/10.1145/3129416.
3129433

J. Geldenhuys, M. B. Dwyer, and W. Visser, “Probabilistic
symbolic execution,” in International Symposium on Software
Testing and Analysis (ISSTA), 2012, p. 166. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2338965.2336773

A. Filieri, C. S. Pdsdreanu, W. Visser, and]. Geldenhuys, “Statistical
symbolic execution with informed sampling,” in International
Symposium on Foundations of Software Engineering (FSE), 2014, pp.
437-448. [Online]. Available: http://dlLacm.org/citation.cfm?doid=
2635868.2635899

C. S. Pasareanu, W. Visser, D. Bushnell,]. Geldenhuys, P. Mehlitz,
and N. Rungta, “Symbolic PathFinder: Integrating symbolic execu-
tion with model checking for Java bytecode analysis,” Automated
Software Engineering, vol. 20, no. 3, pp. 391-425, 2013.

J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, “Effective
lattice point counting in rational convex polytopes,” Journal of
symbolic computation, vol. 38, no. 4, pp. 1273-1302, 2004.

T. Kalibera and R. Jones, “Rigorous benchmarking in reasonable
time,” in Proceedings of the 2013 international symposium on memory
management, 2013, pp. 63-74.

C. S. Pasdreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level symbolic
execution and system-level concrete execution for testing nasa
software,” in Proceedings of the 2008 international symposium on
Software testing and analysis, 2008, pp. 15-26.

M. Souza, M. Borges, M. d’Amorim, and C. S. Pasareanu, “Coral:
Solving complex constraints for symbolic pathfinder,” in NASA
Formal Methods Symposium. Springer, 2011, pp. 359-374.

D. Gopinath, C. S. Pasareanu, K. Wang, M. Zhang, and S. Khur-
shid, “Symbolic execution for attribution and attack synthesis in
neural networks,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion,).
IEEE, 2019, pp. 282-283.

J. He, M. Balunovi¢, N. Ambroladze, P. Tsankov, and M. Vecheyv,
“Learning to fuzz from symbolic execution with application to
smart contracts,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 531-548.

C. P. Gomes, A. Sabharwal, and B. Selman, “Model counting,”
Frontiers in Artificial Intelligence and Applications, vol. 185, no. 1, pp.
633-654, 2009.

C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman, “From
sampling to model counting,” IJCAI International Joint Conference on
Artificial Intelligence, pp. 2293-2299, 2007.

A. 1. Barvinok, “A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed,” Mathematics of
Operations Research, vol. 19, no. 4, pp. 769-779, 1994.

A. Barvinok, “Lattice points, polyhedra, and
complexity,” Geometric ~ combinatorics, —p. 21, 2007.
[Online]. Available: http:/ /books.google.fr/books?hl=
enf{&}Ir={&}id=W{_]SPdwfPTw8C{&}oi=fnd{&}pg=PA21{&}dq=
{%}22Lattice+Points, +Polyhedra, +and+Complexity({%}22{&}ots=
RkcEsr5xvZ{&}sig=beEc4W]JSmOo0zRznQeMvi6iUIhWw

P. Thévenod-Fosse and H. Waeselynck, “An investigation of statis-
tical software testing,” Software Testing, Verification and Reliability,
vol. 1, no. 2, pp. 5-25, 1991.

M. Bohme and B. Falk, “Fuzzing: On the exponential cost of
vulnerability discovery,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 713-724.

M. Béhme, V. J. Manes, and S. K. Cha, “Boosting fuzzer efficiency:
An information theoretic perspective,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 678—
689.

S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE transactions
on software engineering, vol. 28, no. 2, pp. 159-182, 2002.

“The coupon col-
pp. 1-35, 2014,

https://en.wikipedia.org/wiki/Curve_fitting
http://doi.acm.org/10.1145/2635868.2635923{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2635868.2635923
http://doi.acm.org/10.1145/2635868.2635923{%}5Cnhttp://dl.acm.org/citation.cfm?doid=2635868.2635923
http://philsci-archive.pitt.edu/16041/
https://doi.org/10.1145/1368088.1368111
https://en.wikipedia.org/wiki/Coupon_collector%27s_problem#Extensions_and_generalizations
https://en.wikipedia.org/wiki/Coupon_collector%27s_problem#Extensions_and_generalizations
https://en.wikipedia.org/wiki/Zipf%E2%80%93Mandelbrot_law
https://en.wikipedia.org/wiki/Zipf%E2%80%93Mandelbrot_law
https://doi.org/10.1145/3129416.3129433
https://doi.org/10.1145/3129416.3129433
http://dl.acm.org/citation.cfm?doid=2338965.2336773
http://dl.acm.org/citation.cfm?doid=2635868.2635899
http://dl.acm.org/citation.cfm?doid=2635868.2635899
http://books.google.fr/books?hl=en{&}lr={&}id=W{_}SPdwfPTw8C{&}oi=fnd{&}pg=PA21{&}dq={%}22Lattice+Points,+Polyhedra,+and+Complexity{%}22{&}ots=RkcEsr5xvZ{&}sig=beEc4WJSmOozRznQeMvi6iUIhWw
http://books.google.fr/books?hl=en{&}lr={&}id=W{_}SPdwfPTw8C{&}oi=fnd{&}pg=PA21{&}dq={%}22Lattice+Points,+Polyhedra,+and+Complexity{%}22{&}ots=RkcEsr5xvZ{&}sig=beEc4WJSmOozRznQeMvi6iUIhWw
http://books.google.fr/books?hl=en{&}lr={&}id=W{_}SPdwfPTw8C{&}oi=fnd{&}pg=PA21{&}dq={%}22Lattice+Points,+Polyhedra,+and+Complexity{%}22{&}ots=RkcEsr5xvZ{&}sig=beEc4WJSmOozRznQeMvi6iUIhWw
http://books.google.fr/books?hl=en{&}lr={&}id=W{_}SPdwfPTw8C{&}oi=fnd{&}pg=PA21{&}dq={%}22Lattice+Points,+Polyhedra,+and+Complexity{%}22{&}ots=RkcEsr5xvZ{&}sig=beEc4WJSmOozRznQeMvi6iUIhWw

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]
[54]
[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

G. Rothermel, R. H. Untch, C. Chu, and M.]J. Harrold, “Test case
prioritization: An empirical study,” in Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Main-
tenance for Business Change’(Cat. No. 99CB36360). 1EEE, 1999, pp.
179-188.

C. Cadar and K. Sen, “Symbolic execution for software
testing: three decades later,” Communications of the ACM,
vol. 56, no. 2, pp. 82-90, 2013. [Online]. Available: http:
//dlacm.org/ft{_}gateway.cfm?id=2408795{&}type=html

A. Filieri, C. S. PAsAreanu, and G. Yang, “Quantification of
software changes through probabilistic symbolic execution,” Pro-
ceedings - 2015 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, pp. 703-708, 2016.

W. Visser,]J. Geldenhuys, and M. B. Dwyer, “Green: Reducing,
Reusing and Recycling Constraints in Program Analysis,”
Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, pp. 58:1-58:11, 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2393596.
2393665{%}5Cnhttp:/ /doi.acm.org/10.1145/2393596.2393665

T. Brennan, N. Tsiskaridze, N. Rosner, A. Aydin, and T. Bultan,
“Constraint Normalization and Parameterized Caching for Quanti-
tative Program Analysis *,” Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering - ESEC/FSE 2017, pp. 535-546,
2017.

A. Filieri, C. S. Pasareanu, and W. Visser, “Reliability analysis
in Symbolic PathFinder,” in International Conference on Software
Engineering (ICSE), 2013, pp. 622-631.

D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Méntyld, “Benefits
and limitations of automated software testing: Systematic literature
review and practitioner survey,” in 2012 7th International Workshop
on Automation of Software Test (AST). 1EEE, 2012, pp. 36-42.

V. Garousi and M. V. Méntyld, “When and what to automate in
software testing? a multi-vocal literature review,” Information and
Software Technology, vol. 76, pp. 92-117, 2016.

J. A. Whittaker and M. G. Thomason, “A markov chain model
for statistical software testing,” IEEE Transactions on Software
engineering, vol. 20, no. 10, pp. 812-824, 1994.

M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for
software security testing and quality assurance. ~Artech House, 2018.
M. R. Lyu et al., Handbook of software reliability engineering. 1EEE
computer society press CA, 1996, vol. 222.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 2329-
2344.

A. Zeller, R. Gopinath, M. Bohme, G. Fraser, and C. Holler, “The
fuzzing book,” 2019.

S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 725-741.

K. Serebryany, “Oss-fuzz-google’s continuous fuzzing service for
open source software,” 2017.

M. Bohme, “Stads: Software testing as species discovery,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 27, no. 2, pp. 1-52, 2018.

J. Brown and M. Lipow, “Testing for software reliability,” in
Proceedings of the international conference on Reliable software, 1975,
pp. 518-527.

J. D. Musa, “Sensitivity of field failure intensity to operational
profile errors,” in Proceedings of 1994 IEEE International Symposium
on Software Reliability Engineering. 1EEE, 1994, pp. 334-337.

J. A. Whittaker and J. Poore, “Statistical testing for cleanroom
software engineering,” in Proceedings of the Twenty-Fifth Hawaii
International Conference on System Sciences, vol. 2. IEEE, 1992, pp.
428-436.

J. A. Whittaker and]. Voas, “Toward a more reliable theory of
software reliability,” Computer, vol. 33, no. 12, pp. 36—42, 2000.

J. Horgan and A. Mathur, “Software testing and reliability,” The
Handbook of Software Reliability Engineering, pp. 531-565, 1996.
H.-G. Gross, Component-based software testing with UML. Springer
Science & Business Media, 2005.

P. A. Brooks and A. M. Memon, “Automated gui testing guided
by usage profiles,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, 2007, pp.
333-342.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

18

W. Visser, C. S. Pasareanu, and S. Khurshid, “Test input generation
with java pathfinder,” in Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, 2004, pp.
97-107.

M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation
for database applications,” in Proceedings of the 2007 international
symposium on Software testing and analysis, 2007, pp. 151-162.

C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated test-
ing based on java predicates,” ACM SIGSOFT Software Engineering
Notes, vol. 27, no. 4, pp. 123-133, 2002.

P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based white-
box fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2008, pp. 206-215.
P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine
learning for input fuzzing,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1EEE, 2017,
pp- 50-59.

M. Olsthoorn, A. van Deursen, and A. Panichella, “Generating
highly-structured input data by combining search-based testing
and grammar-based fuzzing,” in 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2020,
pp- 1224-1228.

M. Z. Tsoukalas, J. W. Duran, and S. C. Ntafos, “On some
reliability estimation problems in random and partition testing,”
IEEE Transactions on software Engineering, vol. 19, no. 7, pp. 687-697,
1993.

R. Hamlet, “Random testing,” Encyclopedia of software Engineering,
2002.

P. Ammann and J. Offutt, “Using formal methods to derive test
frames in category-partition testing,” in Proceedings of COMPASS’94-
1994 IEEE 9th Annual Conference on Computer Assurance. IEEE, 1994,
pp- 69-79.

T. Y. Chen and Y.-T. Yu, “On the expected number of failures de-
tected by subdomain testing and random testing,” IEEE Transactions
on Software Engineering, vol. 22, no. 2, pp. 109-119, 1996.

R. Hamlet, “Theoretical comparison of testing methods,” in Pro-
ceedings of the ACM SIGSOFT'89 third symposium on Software testing,
analysis, and verification, 1989, pp. 28-37.

T. Y. Chen, T. Tse, and Y.-T. Yu, “Proportional sampling strategy: A
compendium and some insights,” Journal of Systems and Software,
vol. 58, no. 1, pp. 65-81, 2001.

L. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and B. Meyer, “On the
number and nature of faults found by random testing,” Software
Testing, Verification and Reliability, vol. 21, no. 1, pp. 3-28, 2011.
E.]J. Weyuker and T. J. Ostrand, “Theories of program testing and
the application of revealing subdomains,” IEEE Transactions on
software engineering, no. 3, pp. 236246, 1980.

R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov,
“Testing container classes: Random or systematic?” in Interna-
tional Conference on Fundamental Approaches to Software Engineering.
Springer, 2011, pp. 262-277.

http://dl.acm.org/ft{_}gateway.cfm?id=2408795{&}type=html
http://dl.acm.org/ft{_}gateway.cfm?id=2408795{&}type=html
http://dl.acm.org/citation.cfm?id=2393596.2393665{%}5Cnhttp://doi.acm.org/10.1145/2393596.2393665
http://dl.acm.org/citation.cfm?id=2393596.2393665{%}5Cnhttp://doi.acm.org/10.1145/2393596.2393665

	Introduction
	Motivating Example
	Systematic Testing with PopArt
	Creating a Homogeneous Testing Partition
	A Tale of Two Distributions
	Measuring Testing Efficiency
	Sampling With and Without Replacement
	PopArtvs. RT
	Uniform Systematic Testing

	Testing Strategies Under Simulation
	PopArt Break Even Analysis
	Entropy Determines PopArt's Efficiency

	Realising PopArt
	FPS's pic Over Time
	Comparing FPS and PopArt

	Related Work
	Probabilistic Program Analysis
	Reliability Testing
	Random Testing vs. Partition Testing

	Conclusion
	References

