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17  ABSTRACT

18  Understanding the spatio-temporal distribution of strain during the Cenozoic growth of the Tibetan
19  Plateau is important for constraining the geodynamic process underpinning plateau formation.
20  Offset Quaternary landforms and historic earthquake data suggest an along-strike change in
21  deformation style for the eastern margin of the Tibetan Plateau, characterized by a transition from
22 SEE-verging shortening to right-lateral shear from the southern to northern segment of the Long-
23 Men Shan fault zone within a distance of ca. 500 km. When and how this along-strike variable
24  deformation pattern formed is central for understanding the uplift history and spatio-temporal
25  distribution of strain in the eastern margin of the Tibetan Plateau and the underpinning
26 geodynamics. To address this scientific question, we report a suite of low-temperature
27  thermochronology data from the northern segment of Long-Men Shan fault zone that show a
28  contrast in post late Cretaceous cooling and exhumation histories between the hinterland (west of
29  the marginal Yingxiu-Beichuan fault) and the foreland side (east of the fault). Before the Eocene
30 (ca. 40 Ma), the hinterland underwent significant exhumation but the foreland side only
31  experienced minor cooling and exhumation. However, after the Eocene (ca. 40 Ma), there was a

32 reversal such that only minor exhumation occurred in the hinterland whereas the foreland side
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experienced accelerated exhumation. This differential post-Eocene behavior between the
hinterland and the foreland sides indicates a coeval tectonic transition from shortening-dominated
to strike-slip-dominated. This would reduce hinterland rock uplift and tectonic and topographic
loading over the foreland basin, leading to enhanced foreland exhumation through isostatic
adjustments. A compilation of fault deformation history in the eastern Tibetan Plateau shows a
second tectonic transition, characterized by the formation of the south-striking Huya and Minjiang
faults in the late Miocene. Our results highlight the importance of progressive late Eocene and late

Miocene tectonic transitions in shaping the eastern margin of the Tibetan Plateau.

Keyword: Low-temperature thermochronology, Tibetan Plateau, Tectonic transition, Exhumation,

Plateau growth

1. Introduction

The Tibetan Plateau, the world’s highest and largest orogenic plateau, resulted from a series
of continental accretions and collisions during the Mesozoic and Cenozoic (Powell and Conaghan,
1973; Chengfa et al., 1986; Yin and Harrison, 2000). Ongoing convergence between the Indo-
Asian continents has led to the outward plateau growth (Tapponnier et al., 2001; Royden et al.,
2008; Wang et al., 2008; Molnar et al., 2010). The eastern Tibetan Plateau margin (i.e. the Long-
Men Shan in the physiographic sense), where the structures are defined by the SW-striking Long-
Men Shan fault zone (LMSFZ), has a thick crust (60-65 km), ca. 20 km thicker than the foreland
Sichuan basin to the east (e.g., Zhang et al., 2009). This plateau margin is one of the steepest intra-
continental scarps, where elevations drop from peaks exceeding 5 km at the plateau margin to ca.
500 m in the Sichuan foreland basin within 50 km (Fig. 1c and 1d).

The plateau margin has been regarded as a premier natural laboratory for understanding
the geodynamic mechanisms responsible for the uplift and growth of the Tibetan Plateau
(Burchfiel et al., 1995; Chen & Wilson, 1996; Kirby et al., 2002; Royden et al., 2008; Hubbard
and Shaw, 2009; Wang et al., 2012; Tian et al., 2013; Jiang et al., 2019). However, debate
continues as to whether the main geodynamic driver for the formation and support of the steep
plateau margin was due to upper crustal shortening (Hubbard and Shaw, 2009; Tian et al., 2013,
2015; Tan et al., 2019), lower crustal thickening and flow (Clark et al., 2005a; Royden et al., 2008),
simple-shear shortening of the lithosphere (Yin, 2010) or crust (Guo et al., 2013), pure-shear
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deformation of the lithosphere (Yin, 2010), or reactivation of pre-existing structures by
transpressional shear (Sun et al., 2018).

Geodynamic models for the formation of the eastern margin of the Tibetan Plateau should be
compatible with along-strike structural variations along the LMSFZ. Along the southern segment
of the LMSFZ, studies suggest east-verging shortening accompanied by the development of an
early Cenozoic foreland basin (southwest Sichuan Basin) (Jia et al., 2006; Tian et al., 2016). This
shortening has been episodically reactivated through to the present-day, as shown by late Miocene
enhanced rock exhumation, whose spatial variation is correlated with reverse faulting (Tian et al.,
2013), and coeval parallel folds and thrusts in the foreland (Jia et al., 2006; Hubbard and Shaw,
2009). Ongoing shortening is responsible for recent earthquakes such as the 2013 M. 6.9 Lushan
earthquake (Xu et al., 2013). Moving north, in the central segment of the LMSFZ, structural
analyses (Wang et al., 2014), offset landscape markers (Densmore et al., 2007; Godard et al., 2010),
and the 2008 M. 7.9 Wenchuan Earthquake and associated aftershocks (Xu et al., 2009; Yu et al.,
2010; Zhang et al., 2010) indicate that deformation is characterized by eastward shortening,
accompanied by a right-lateral component of slip. Further north, in the northern segment of the
LMSFZ, structural analyses (Wang et al., 2014), offset late Cenozoic landforms (Fan et al., 2008;
Jia et al., 2010) and the focal mechanisms of aftershocks of the Wenchuan earthquake (Yu et al.,
2010) indicate that the fault converts to right-lateral strike-slip.

It remains unclear when the observed variation in along-strike deformation first initiated along
the plateau margin. A growing number of structural, magnetic fabric and Ar-Ar geochronology
studies indicate shortening structures in both the southern and central segment of the LMSFZ since
the early Cenozoic or even earlier (Xu et al., 1991; Dirks et al., 1994; Chen and Wilson, 1996;
Burchfiel et al., 1995; Kirby et al., 2002; Tian et al., 2016; Xue et al., 2017; Airaghi et al., 2018;
Yan et al., 2011; 2018). However, exactly when right-lateral deformation in the northern LMSFZ
initiated remains unknown.

A better understanding of the structural evolution of the LMSFZ would provide new
constraints for reconstructing strain migration history along major faults defining the eastern
Tibetan Plateau, including the LMSFZ, Huya, Minjiang and East Kunlun faults (expressed as
Tazang and Bailongjiang fault branches) (Fig. 1), some of which have been studied (e.g., Kirby et
al., 2002; Wang et al., 2011; Ren et al., 2013; Tian et al., 2018). Any geodynamic models for

explaining the eastward growth of the Tibetan Plateau should be compatible with the strain
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migration among these faults.

This work focuses on the northern part of the LMSFZ, where prominent right-lateral features
have been reported, yet few tectonomorphic studies have taken place (Figs. 2 and 3). We present
a set of new thermochronological data from a ca. 150-km-long surface transect straddling the
hinterland to the foreland of the plateau margin. These data provide new constraints on the rock
cooling and exhumation histories, which are used to reconstruct the morphotectonic evolution of
the area and strain migration among major faults over a broader region. Combining a compilation
of previous earthquake and seismic imaging results, we show how the northern segment of LMSFZ
experienced a significant tectonic transition from upper crustal shortening to right-lateral shear in
the Eocene and how strain migrated in the eastern Tibetan Plateau. Our findings have important

implications for the evolution and geodynamics of the eastern Tibetan Plateau margin.

2. Topographic and geological setting

The elevation and slope in the northern segment of LMSFZ, the study area of this work, are
significantly lower than the southern and central segments (Figs. 1b, 1c¢). Topographic swaths,
calculated using 90 m resolution Shuttle Radar Topography Mission (SRTM) digital elevation
model and a 10 km moving window, show that elevations increase from ca. 600 m in the western
Sichuan Basin to peak elevations at ca. 4000 m in the northern segment of LMSFZ over a distance
of ca. 95 km (Fig. 1c), with a topographic gradient of ca. 3%. In contrast, topographic gradients
along the southern and central segments are ca. 10% (Fig. 1d).

The LMSFZ shares common borders with the E-W striking Qinling orogen to the north, the
rhombic Sichuan Basin to the east and the Songpan-Ganze terrane to the west (Fig. 1a). The area
has experienced at least two orogenic events during the Mesozoic and Cenozoic. Early Mesozoic
orogeny is characterized by intra-continental shortening in response to the amalgamation of the
South China and Qiangtang continental blocks to North China (Chen et al., 1994; Yan et al., 2011;
2018). Mesozoic shortening is documented as thrusting of strongly folded early Paleozoic strata
over Triassic-Jurassic sediments in the western Sichuan Basin (Fig. 2). This folding was
accompanied by the development of a Mesozoic syn-deformation foreland basin (Sichuan Basin)
(SBGMR, 1991; Li et al., 2003; Jia et al., 2006), and Mesozoic structures and metamorphic events
along the LMSFZ (SBGMR, 1991; Burchfiel et al., 1995; Yan et al., 2011; 2018). Cenozoic

deformation reactivated Mesozoic structures in response to continued indentation of the Indian



126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156

subcontinent into Eurasia. The deformation shows significant along-strike variations, as outlined
above.

Structures along the LMSFZ are defined by three SW-striking sub-parallel faults, namely the
Guanxian-Anxian, Yinxiu-Beichuan and Wenchuan-Maoxian faults, from east to west (Fig. 1).
These faults dip steeply to the southwest, as shown by surface geological mapping (Fig. 2),
deformation of Quaternary sediments (Densmore et al., 2007) and deep seismic reflection profiles
(Jia et al., 2006; Guo et al., 2013; Feng et al., 2016) and borehole studies (Li et al., 2013). Further
west, several more NE-NEE-striking faults developed in the hinterland area. These are the
Qingchuan fault, Xueshan fault and East Kunlun faults (including the Tazang, Bailongjiang and
Hanan fault branches). These faults link with the N-striking and W-dipping Huya and Minjiang
faults, which have accommodated >7 km rock exhumation during the late Cenozoic (Tian et al.,
2018). It is worth noting that, as indicated by Kirby et al. (2000), the east end of the Xueshan fault
was truncated by a Mesozoic granite (Fig. 2), indicating pre-intrusion initiation of the fault. Except
for this fault, other faults were all active during late Cenozoic time, as indicated by earthquake
activities, offset landforms and fault exhumation (e.g., Kirby et al., 2000; Ren et al., 2013; Tian et
al., 2018).

Late Cenozoic deformation of the LMSFZ is of a listric thin-skinned style, as shown by the
following three lines of evidence. First, listric geometries are shown by both surface geology and
seismic reflection profiles in all segments of the LMSFZ (Jia et al., 2006; Feng et al., 2016). Second,
inversion of fault slip using high-resolution geodetic data (GPS and InSAR) suggest most of the
earthquake slip occurred on steeply dipping fault planes that root into a sub-horizontal décollement
fault (e.g., Wang et al., 2011). Third, enhanced late Miocene erosion in the southern and central
segment of the LMSFZ shows a westward decreasing trend, consistent with the pattern of rock
uplift over an upper crustal listric fault (Tian et al., 2013; Tan et al., 2017).

late Cenozoic deformation in the northern segment of the LMSFZ, the study area of this work,
is transpressional. First, seismic profile imaging suggests underground structures of the region are
characterized by a flower structure rooting into the Qingchuan fault and overprinting earlier
deformation (Fig. 4a). Second, surface rupture of the 2008 Wenchuan earthquake produced ca. 2
m coseismic slip in both vertical and horizontal directions (Liu-Zeng et al., 2009). Focal
mechanisms of the aftershocks are mainly right-lateral strike-slip (Figs. 1b, 4b). Third, Holocene

right-lateral slip rates are estimated by offset terraces to fall in the range of 1-10 mm/yr (Densmore
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et al., 2007; Godard et al., 2010). Over a longer time-scale, ca. 1-2 mm/yr slip rate estimates were
determined using offset streams (ca. 4-5 km) and dating of corresponding fluvial sediments (Jia et

al., 2010).

3. Previous thermochronological studies

Thermochronological studies in the eastern Tibetan Plateau have provided important
constraints on the exhumation history of rocks and the geodynamic mechanisms that are
responsible for it. Reported data from the eastern Tibetan Plateau, compiled in figure 1, suggests
a spatially variable erosion pattern. In the southern and central segments of the LMSFZ, 2-5 km
of episodic rock exhumation occurred during both the Oligocene — early Miocene and late Miocene
times (Wang et al., 2012). However, in the Min Shan, more than 7 km of exhumation occurred
during the late Miocene, preceded by only minor (<1 km) Oligocene — early Miocene exhumation
(Tian et al., 2018). Similar to the Min Shan, the evolution of the plateau interior is characterized
by slow pre-late Miocene exhumation, followed by enhanced rates of exhumation (ca. 0.3-0.5
km/myr) since ca. 10 Ma (Arne et al., 1997; Kirby et al., 2002; Clark et al., 2005b; Ouimet et al.,
2010; Roger et al.,2011; Tian et al., 2015; Ansberque et al., 2018). In the Sichuan Basin, thermal
history modelling suggests slow exhumation before ca. 30-45 Ma, followed by enhanced
denudation (Richardson et al., 2008; Tian et al., 2012).

Comparatively few apatite fission-track ages are reported for the northern segment of LMSFZ.
They range from 30-70 Ma (Arne et al., 1997; Enkelmann et al., 2006; Yan et al., 2011; Li et al.,
2012), which are significantly older than the regions to the south. These results suggest that the

northern segment probably has experienced a different exhumation history from other segments.

4. Sampling, experimental methods and results
4.1. Sampling and analytical strategies

We applied multi-thermochronology methods, including apatite U-Th-He (AHe), zircon U-
Th-He (ZHe) and apatite fission-track (AFT) analyses along a ca. 150-km-long surface transect in
the northern segment of the LMSFZ, comprising four granites, seven sandstones and one meta-
sandstone (Table 1, Figs. 2-3). AFT ages of five of the samples (HS15-19) were reported in the
study of Tian et al. (2018), which focused on the late Cenozoic rock exhumation and deformation

of the adjacent Min Shan region. In this work, we produce a more detailed reconstruction of the
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thermal and tectonic evolution for a larger area. We present new AFT length measurements, AHe
and ZHe ages for the samples of Tian et al. (2018) and seven new samples.

Our surface transect of the samples covers major faults in the northern LMSFZ, which are the
Qingchaun fault, Yingxiu-Beichuan fault, Guanxian-Anxian fault from west to east (Fig. 3). The
dataset comprises eight samples (HS12-HS19) from the west side of the Yingxiu-Beichuan fault,
ruptured by the 2008 Wenchuan Earthquake, and a further four samples (HS2, HS4, HS7 and HS11)

from the east side.

4.2. Analytical Methods

Apatite and zircon concentrates were obtained by standard crushing, sieving, electromagnetic
and heavy liquid mineral separation techniques.

AFT analysis used a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-
MS) method (Tian et al., 2018). Apatites were mounted in epoxy resin on glass slides, ground, and
polished to an optical finish to expose internal grain surfaces. Mounts were etched in 5-M HNO3
for 20 s at 21 °C to reveal fossil tracks. An aluminum coating (ca. 57 nm thickness) was applied
to the etched mounts using a vacuum coating unit so as to enhance the reflectivity of the polished
surface and minimize internal reflections under the microscope (Gleadow et al., 2009). Apatite
grains with polished surfaces parallel to prismatic crystal faces and homogeneous track
distributions were selected using a Zeiss Axio Imager M1m microscope. Then stacks of high-
resolution digital images of each selected grain were taken at a total magnification of 1000x under
both transmitted and reflected light using a Zeiss camera. The pixel size (ca. 0.0698-0.0705
um/pixel) of the images was precisely calibrated. Track counting was performed using the
coincidence mapping protocol and then verified and corrected manually (Gleadow et al., 2009).
Uranium measurements of selected grains were carried out on an Agilent 7700 ICP-MS using a
pulsed (Q-switched) Nd:YAG (neodymium-doped yttrium aluminum garnet) laser with a
wavelength of 213 nm. Laser ablation under consistent laser conditions (25-um diameter beam
size, ca. 2.5-J/cm; energy, and 10-Hz repetition rate) was applied to selected grains and NIST-612
(uranium standard) for 25 s. NIST-612 glass 2**U/**Ca ratio and apatite “*Ca were used as internal
standards to correct for drift in instrument sensitivity and variations in ablation volume between
dated grains, respectively. Etch pit diameters (Dpar) of grains were also determined on tracks,

which were counted for age determination or measured for confined track lengths. The detailed
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results are tabulated in Table 1.

For (U-Th)/He analysis, grains were immersed in ethanol and examined under polarized light
to detect possible mineral inclusions and digitized photographs were taken for the calculation of
an a-ejection correction factor (Ft) (Ketcham et al., 2011). Only good-quality euhedral grains,
where possible, were selected for analysis. Grains were loaded into Pt capsules and thermally
outgassed under vacuum at ca. 900 °C for 5 min for apatite and ca. 1,300 °C for 15 min for zircon,
using a fiber optically coupled diode laser with 820 nm wavelength. A spike of *He was used to
determine gas volumes measured using a Balzers quadrupole mass spectrometer. The uncertainty
in the sample “He measurement is estimated at <1%. Outgassed apatite grains were then spiked
and digested at room temperature. For zircon analyses, outgassed grains were first taken out of
their Pt capsules and transferred to Parr bombs where they were spiked with **U and **°Th and
digested at 240 °C for 40 hr in HF. Standard solutions containing the same spike amounts as
samples were treated identically, as were a series of unspiked reagent blanks. A second bombing
in HCl for 24 hr at 200 °C ensured dissolution of fluoride salts and final solutions were diluted to
10% acidity for analysis on a Varian quadrupole ICP-MS. For single zircon crystals digested in
small volumes (0.3—0.5 ml), U and Th isotope ratios were measured to a precision of <2%. Unless
otherwise indicated, apparent ZHe ages were calculated and corrected for a emission following
the approach of Farley et al. (1996). Durango apatite and Fish Canyon Tuff zircons were run as
standards with each batch of samples analyzed and served as an additional check on analytical
accuracy. Based on the standards, we estimated a precision of ca. 6% or less at £ 1o, which
incorporates the a correction-related constituent and considers an estimated 5-pm uncertainty in
grain size measurements, gas analysis, and ICP-MS uncertainties. The detailed results are tabulated

in Table 2.

4.3. Structural observations

Our field observations along the Yingxiu-Beichuan fault zone in the northern segment of the
LMSFZ show that folded early Paleozoic strata were cut by brittle faults (Fig. 5). Shear senses
were determined from brittle kinematic indicators including steps and fractures (Fig. 5b-c). A
stereonet plot of all field measurements of fault planes and striations suggests the fault zone
consists of brittle NNE-NE-trending right-lateral, ESE-trending left-lateral and SE-trending

tensional micro-faults (Fig. Se).
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The combination of micro-faults with different slip senses can be explained by the classical
Riedel shears along a NE-striking main right-lateral shear zone (Fig. 5f, Tchalenko, 1970). In the
study area, right-lateral strike-slip faults (red in Fig. 5e) correspond to the R and P structures, left-
lateral ones are R’ shears (blue in Fig. Se), whereas those extensional fractures (magenta in Fig.

Se) are tensional joints.

4.4. Thermochronology results

In total, we present twelve AFT ages, forty-six single-grain AHe ages from seven samples and
twelve single-grain ZHe ages from three samples (Fig. 3). To facilitate comparison, these data are
projected onto the AA’ swath (Fig. 6).

AFT data

AFT ages show diachroneity between the east and west sides of the Yingxiu-Beichuan fault.
Eight samples (HS12-HS19) from the west side of the fault produce AFT ages ranging between
40.8 £ 4.1 and 72.8 £ 5.8 Ma; whereas three samples (HS2, HS4, HS7, HS11) from the east side
between 86.4 + 6.6 and 103.7 + 4.8 Ma, are significantly older. Further, AFT ages of the Jurassic
- Cretaceous sandstone samples (HS2, HS4 and HS7) from the east side are slightly younger than
their depositional ages, indicating they are partially reset. Those from the west side and sample
HS11, which are pre-Mesozoic sandstone and Mesozoic granite, are younger than their deposition
or formation ages and thus fully reset (Table 1).

In addition, the samples from the east side are low elevations (500-600 m); whereas those
from the west side of higher elevations (650-1700 m), despite the relatively younger and consistent
AFT ages (Fig. 7a and Table 2). This indicates AFT age is controlled by fault rather than elevations,
which would predict relatively younger ages at lower elevations.

Mean track lengths (MTL) from the west side of the Yingxiu-Beichuan fault are consistent,
ranging between 12.9 £ 0.2 pm and 13.7 + 0.1 um; whereas those from the east side are relatively
shortening varying from 11.9 = 0.1 um to 12.9 + 0.2 um (Fig. 6, Table 2). The slightly shorter
MTL and wider track length distribution (as shown by greater relative standard deviations) of
samples from the east side indicate a longer period of residence in the AFT partial annealing zone
(60-120°C) than western samples.

Dpar values fall in a narrow range between 1.4-2.0 um, ruling out the possibility of

compositional differences for explaining the age differences seen on either side of the fault.
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AHe and ZHe data

AHe ages also show evident differences between the two sides of the Yingxiu-Beichuan fault.
AHe ages of five sandstone and granite samples (HS12, HS14, HS16, HS17, HS19) from the west
side of the fault yield latest Cretaceous - early Oligocene single-grain ages; and their weighted
means calculated using IsoplotR (Vermeesch, 2018) are 50 + 4.1, 62.5 £ 2.7, 43.9 £ 3.6, 57.2 £
2.3 and 44.8 + 3.0 Ma, respectively (Table 2, Fig. 6). Single-grain AHe ages of two samples (HS4
and HS7) from the east side of the fault are mostly Eocene — Miocene with a couple of late
Cretaceous — Paleocene outliners. Their weighted means are 43.6 = 1.8 and 34.5 + 2.0 Ma,
respectively (Table 2, Fig. 6), slightly younger than those from the west side.

All ZHe data come from the west side of the Yingxiu-Beichuan fault. ZHe analyses of three
granite samples (HS14, HS16 and HS19) yield early — late Cretaceous single-grain ages, with
weight mean ages of 104.6 + 3.6, 100.8 £ 4.3, 116.4 + 4.7 Ma, respectively (Table 2, Fig. 6).

5. Data interpretation
Age-closure temperature plot

A plot of ages for different thermochronometers versus their closure temperatures shows an
early Cretaceous - Eocene phase of enhanced cooling for samples from the west side of the
Yingxiu-Beichuan fault (Fig. 7b). To further test this observation thermal history models were

produced for each sample.

Inverse thermal history modeling

Inverse thermal history modeling of individual and joint samples uses the Bayesian
transdimensional Markov Chain Monte Carlo protocol of Gallagher (2012, QTQT program version
5.7.0). In the modeling, the multi-kinetic annealing model of Ketcham et al. (2007) was used for
modeling AFT data, using projected lengths and Dpar values as kinetic parameters. Helium
diffusion in apatite and zircon was modeled using the radiation damage accumulation and
annealing models of Flowers et al. (2009) and Guenthner et al. (2013), respectively. The equivalent
radius of each analyzed AHe and ZHe grain is used in the modeling. For detailed information
concerning the sequence of steps and parameter settings, see Gallagher (2012).

Reasonable geological constraints can eliminate geologically unreasonable thermal paths, and
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make inverse modeling results more informative. However, too many constraints may artificially
drive the modeling results (Vermeesch and Tian, 2014). Prior geological constraints include the
following: (1) present-day temperature for surface samples (15 = 15 °C) (Figs. 8 and 9); (2) default
time-temperature space, 100 °C (x 100% variation, if inputs include ZHe data) or 70 °C (£ 100%
variation, if inputs are AFT and AHe data) during the time of the oldest age + 100% variation. (3)
For Jurassic-Cretaceous sandstone samples (HS2, HS4 and HS7), an constraint at the time of
deposition and a temperature of 20 + 20 °C was used as well (Fig. 9). The broad temperature and
time ranges give the modeling sufficient freedom to search for data-constrained thermal histories.

For the modeling, half million iterations were run to derive stable inverse model results.

Thermal modelling results and interpretations

Thermal history modeling for five samples from the west side of the Yingxiu-Beichuan fault
shows relatively rapid late Cretaceous-Eocene cooling, followed by slow cooling to the present
day (Fig. 8). This first-order cooling pattern is consistent with the age — closure temperature plot
(Fig. 7b). Detailed thermal histories of these samples vary slightly in terms of the cooling rates
and the end time of the late Cretaceous-Eocene phase of cooling. For example, the cooling in
samples HS12, HS17, HS19 occurred at relatively higher rates than other samples (HS14 and
HS16). The complete exhumation of sample HS19 at about 30 Ma is slightly later than the other
samples (45-40 Ma). These second-order cooling features probably indicate differential vertical
displacements. Further, for samples HS14, HS16 and HS19, from which ZHe data were acquired
and used, the modelling results suggest ambiguous and slow cooling before the late Cretaceous
(Fig. 8b, 8c and 8e).

Modeling for the four samples (HS2, HS4, HS7 and HS11) from the other side of the Yingxiu-
Beichuan fault shows a contrasting thermal history characterized by ambiguous pre-Eocene
cooling/heating with large uncertainties, followed by accelerated rates of cooling commencing at
ca. 40-50 Ma (Figs. 9a-c).

To summarize, our low-temperature thermochronology data and temperature history
inversions show a contrast in post late Cretaceous cooling histories between the hinterland (west
of the marginal Yingxiu-Beichuan fault) and the foreland (east of the fault). As late Cretaceous —
Cenozoic magmatism activity is absent in the northern segment of the LMSFZ (Fig. 2 and SBGMR,

1991), the cooling histories inferred from our data reflect coeval rock exhumation. Before the
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Eocene (ca. 40 Ma) the hinterland underwent significant cooling and exhumation but the foreland
only experienced minor exhumation. However, after the Eocene, there was a reversal such that
only minor exhumation occurred in the hinterland whereas the foreland side experienced
accelerated exhumation. This indicates exhumation was mainly controlled by the differential rock

uplift across the Yingxiu-Beichuan fault.

6. Discussion
6.1. Pre-Cenozoic topographic growth in the LMSFZ

The development of the high topographic relief in the LMSFZ has been previously regarded
as resulting from late Cenozoic deformation (Kirby et al., 2002; Godard et al., 2009; Tian et al.,
2013; Tan et al., 2019). However, our observations that the enhanced rock cooling and exhumation
in the northern LMSFZ mainly occurred during late Cretaceous-Eocene time highlight the
importance of pre-Cenozoic topographic development in the area, as surface erosion is a non-linear
positive function of topographic relief (Montgomery and Brandon, 2002). From this perspective,
the post-Eocene decelerated exhumation suggests a reduction of topographic relief.

The inferred late Cretaceous-Eocene relief development is consistent with recent structural
observations in the southern segment of LMSFZ, which show late Cretaceous — Paleogene upper
crustal duplexing, foreland basin development and associated growth strata in the foreland (Tian
et al., 2016). The late Cretaceous-Eocene phase of rock exhumation is absent from previous low-
temperature thermochronology studies in the southern and central segments, probably because
thermochronological fingerprints of the early exhumation have been unroofed by more intensive
and deeper (>7 km) late Cenozoic exhumation (Godard et al., 2009; Wang et al., 2012; Cook et al.,
2013; Tian et al., 2013; Tan et al., 2019).

The late Cretaceous-Eocene topographic development probably indicates a coeval phase of
crustal shortening in the LMSFZ, similar to the southern LMSFZ as introduced above (Tian et al.,
2016). This phase of shortening is likely to be a far-field effect of the closure of the Neo-Tethys
ocean and early Cenozoic continental collision between the India sub-continent and Eurasia, as
have been identified in regions further north (e.g., Ratschbacher et al., 2003; Hu et al., 2006).

One might argue that late Cretaceous-Eocene cooling and exhumation may reflect erosional
decay of pre-existing topography. However, such a scenario cannot explain the prior slow

exhumation during the early Cretaceous and the subsequent acceleration, given that paleoclimate
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became arider from early to late Cretaceous time (Wang et al., 2013; Farnsworth et al., 2019).
Further, erosional decay in the fold-and-thrust belt may result in a coeval isostatic rebound and
thus the erosion of the foreland basin, which is inconsistent with the observations (pre-Eocene

minimum cooling or burial heating, Fig. 9).

6.2. Early Cenozoic tectonic transition in the northern LMSFZ

Geological and seismic evidence suggest the initiation of right-lateral slip in the northern
LMSFZ occurred before at least late Cenozoic time (Figs. 4 and 5), as introduced above.
Considering the presence of late Cretaceous shortening, the northern LMSFZ should have
experienced a Cenozoic phase of tectonic transition from shortening to right-lateral slip, which
overprinted earlier deformation features (Figs. 4 and 5).

We propose that the transition occurred at Eocene time, as evidenced by the post Eocene
differential exhumation between the hinterland and the foreland (Fig. 10). On one hand, given that
we observed low rates of post Eocene rock exhumation in the hinterland areas, it is likely that the
areas underwent a phase of relief reduction and tectonic quiescence or local strike-slip deformation
without significant vertical uplift since the Eocene (ca. 40 Ma). On the other hand, enhanced post
Eocene cooling and exhumation in the western part of the Sichuan Basin (east of the Yingxiu-
Beichuan fault) requires a mechanism for explaining its uplift and denudation. The proposed
Eocene tectonic transition from shortening to right-lateral slip predicts a decrease in the tectonic
and topographic loading over the western margin of the Sichuan foreland basin. Such a reduction
in loading would induce crustal isostatic rebound of the Sichuan Basin, which is characterized by
low heat flow, high strength and elasticity (Wang et al., 2010; Xu et al., 2011; Chen et al., 2013),

explaining the post-Eocene exhumation in the western Sichuan Basin (Fig. 10).

6.3. Strain migration in the eastern Tibetan Plateau
Over a broader region of the eastern margin of the Tibetan Plateau, Cretaceous — Cenozoic
deformation has been accommodated by different structures in different manners during different
times. These structures include LMSFZ, Huya, Minjiang, Tazang, Bailongjiang and Hanan faults.
During the late Cretaceous — early Cenozoic, crustal shortening in the eastern margin of the
Tibetan Plateau has been mapped on the NE-trending LMSFZ and the Hanan fault. On the LMSFZ,

the shortening is documented by the following lines of evidence: (1) Upper crustal thrust duplexing
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in the southern and central segment of the LMSFZ, as shown by structural and magnetic fabric
studies (Tian et al., 2016; Xue et al., 2017; Airaghi et al., 2018), are dated as late Cretaceous-
earliest Paleocene by Ar-Ar method (Tian et al., 2016; Airaghi et al., 2018). (2) Another line of
evidence comes from the formation of a coeval foreland basin (ca. 1.5 km thick non-marine
sediments) in the southwest corner of the Sichuan Basin (Jia et al., 2006; Tian et al., 2016). (3)
Accelerated late Cretaceous — Eocene rock exhumation in the hinterland of the northern LMSFZ
also support the prevailing of late Cretaceous — early Cenozoic shortening, as discussed above. On
the Hanan fault, late Cretaceous shortening was mainly documented by the folding of Cretaceous
deposits (dated by paleomagnetic method) in the Hui-Cheng basin by NNW-SSE shortening (Li
et al., 2019; Hu et al., 2020). The development of these NE-trending reverse faults and folds
indicates a regional NW-SE contractional stress-field (Fig. 11a).

The Eocene tectonic transition from shortening to strike-slip faulting occurred on both the
northern segment of LMSFZ (as discussed above) and the Hanan fault (Fig. 11b). Late Cretaceous
shortening of the Hui-Cheng basin was overprinted by strike-slip displacement along NE-trending
faults, whose age was inferred as the Paleogene (Li et al., 2019). These structures suggest a SW-
NE contractional stress regime oblique to the LMSFZ.

In the southern segment, shortening lasted from late Cretaceous to the entire Cenozoic, as
shown by the following lines of evidence. First, foredeep deposits extended to the Oligocene
(SBGMR, 1991; Burchfiel et al., 1995). Further, post-Eocene shortening have occurred within the
southwestern part of the Sichuan Basin, as exampled by the thrust underpinning the Xiongpo
thrust-related anticline, whose ages is constrained as the Eocene by enhanced cooling and
exhumation in the hanging wall (Richardson et al., 2008). Third, Miocene shortening has been
documented by differential rock exhumation across the faults in the southern and central LMSFZ
(Cook et al., 2013; Tian et al., 2013; Tan et al., 2017).

Late Miocene time also witnessed a major tectonic change that is the initiation of the south-
striking Huya and Minjiang faults (Fig. 11c). Recent thermochronology studies revealed evident
late Cenozoic (ca. 10 Ma) differential rock exhumation across those two faults, with a higher
exhumation rate (ca. 0.7 km/m.y.) in the hanging wall, which has been interpreted as resulting
from NE-ward upper crustal thrusting (Tian et al., 2018). This phase of shortening also occurs in
nearby faults along the southern and central LMSFZ, as introduced above.

Modern active deformation in the eastern margin of the Tibetan Plateau follows the late
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Cenozoic structures (Fig. 11c). First, active deformation, shown by earthquake focal mechanisms,
transformed from reverse, via oblique, to strike-slip from southern to northern LMSFZ, similar as
the post-Eocene along-strike variable deformation along the fault zone. Second, several large
historic earthquakes (M. > 6.5), with strike-slip and reverse focal mechanisms, had occurred on
the Huya and Minjiang faults. Third, Tazang and Bailongjiang faults have also been actively
deformed by left-lateral slip, as shown by recent large earthquakes (Fig. 11c). Displaced
geomorphic features, dated by radiocarbon and optically stimulated luminescence methods,
indicate a millennial slip rate of 1.4-3.2 mm/yr and 1.5-0.2 mm/yr along its western and

easternmost parts of the Tazang fault, respectively (Ren et al., 2013).

6.4. Implications for plateau growth mechanisms

These new results have important implications for the growth of the Tibetan Plateau. One
group of models highlight lithospheric scale shortening and lateral extrusion of coherent crustal
blocks along major pre-existing mechanically weak belts (Tapponnier et al., 2001; Jiang et al.,
2019). However, the lithospheric extrusion conflicts with the finding of this paper as well as
numerous other studies that indicate deformation in the LMSFZ is of a thin-skinned style (Jia et
al., 2006; Tian et al., 2013; Feng et al., 2016). Furthermore, the extrusion model predicts Oligo-
Miocene shortening in the LMSFZ (Tapponnier et al., 2001), which cannot explain the observed
Eocene transition of deformation.

The second group of models infers that uplift of the Tibetan Plateau resulted from lower crustal
thickening, which has been redistributed by gravitation-driven ductile flow away from the plateau
interior to the margins (Royden et al., 2008). This model is consistent with geophysical
observations, such as negative seismic velocity anomalies and high electrical conductivity in the
middle-lower crustal (Xu et al., 2007; Bai et al., 2010). But the channel flow model predicts late
Miocene deformation across the plateau margins after crustal thickening in the southern and central
plateau, which is inconsistent with our Eocene observations.

Lastly, pure-shear shortening in the lower crust may have occurred (Yin, 2010; Tan et al.,
2019). However, as indicated by the rock exhumation pattern restored by thermochronology data,
deformation reflected by rock exhumation in the eastern margin of the Tibetan Plateau is of a short
wave-length and controlled mostly by upper crustal structures (Tian et al., 2013, 2018; Tan et al.,

2019; and this work). Therefore, shortening in the lower crust or lithosphere should be minor, as
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it predicts long-wavelength deformation and exhumation on the surface.

An increasing number of studies, including this one, reported early Cenozoic deformation
along the current plateau margins. For example, structural, geochronological and
thermochronological studies indicate early Cenozoic shear in the Qinling-Dabie orogen
(Ratschbacher et al., 2003; Hu et al., 2006), exhumation and reverse faulting in the Qilian Shan
and western Qinling (Clark et al., 2010; Duvall et al., 2011; Wang et al., 2017; Zhuang et al., 2018;
Zhang et al., 2020), upper crustal shortening and duplexing in the southern segment of the LMSFZ
(Tian et al., 2016), rock exhumation in the southeastern Tibetan Plateau (Liu-Zeng et al., 2018),
transpressional deformation in the Altyn Tagh fault (northern Tibetan Plateau) (Wu et al., 2019).
These studies support rapid strain transfer from the collision zone towards regions that now form
the plateau margins, and this draws attention to the role of early Cenozoic deformation in plateau

formation.

CONCLUSIONS

Our new low-temperature thermochronology results from the northern segment of the LMSFZ
identified a late Cretaceous — Eocene phase of cooling and exhumation followed by low rates of
exhumation in the hinterland, west of the Yingxiu-Beichuan fault. This contrasts with the foreland
side of the mountain range, which is characterized by a significant acceleration of post-Eocene
exhumation. These results support a major tectonic change from shortening-dominated to strike-
slip-dominated in the middle Eocene. Before ca. 40 Ma, the deformation in the northern segment
of the LMSFZ was characterized by upper crustal shortening. The Eocene transition into a strike-
slip regime predicts a decrease in the tectonic and topographic loading over the western margin of
the foreland Sichuan Basin, causing the observed post-Eocene cooling and exhumation in the
western part of the basin.

A compilation of fault deformation history in the eastern Tibetan Plateau suggests that the
Eocene tectonic transition from shortening to strike-slip faulting have occurred on other NE-
trending faults (such as the Hanan fault). The compilation also shows a late Cenozoic tectonic
transition, characterized by the formation of the south-striking Huya and Minjiang faults in the late
Miocene. Our results highlight the importance of progressive late Eocene and late Miocene

tectonic transitions in shaping the eastern margin of the Tibetan Plateau.
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slickensides on which horizontal strike-slipping striations developed. (b) A
northeastward view of representative SE-striking slickensides with sub-vertical top-
down normal striations. (¢) A downward view of brittle fractures (filled by calcite),
indicating right-lateral slip. (d) A northeastward view of vertical ESE-striking
extensional fractures. (e) Schmidt’s stereonets of slickensides and striations with red
pairs for right-lateral strike-slipping, blue for left-lateral, purple for extensional joints
and gray ones without unambiguous slipping senses. (f) Schematics of Rediel shears
(modified after Tchalenko, 1970) for explaining the observed faults with different
senses of shear, compiled in panel d. In the study area, right-lateral strike-slip faults
correspond to the R and P structures, left-lateral ones are R’ shears (blue in panel d),

and those extensional fractures (c, purple in panel d) are tensional joints.
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each model. The two black lines show the 95% credible intervals of the expected model.
The maximum likelihood model is the best data fitting model. The maximum posterior
model is sensitive to the range of the prior specified for the general thermal history
model. The maximum mode model is the temperature value at each one-million-year
step that has the greatest number of paths passing through it. The thick vertical line
marks the present temperature (15 + 15°C). The vertical gray area in the left column

marks the time range of 50-40 Ma.
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Fig. 9. Thermal history modeling results for samples east of the Yingxiu-Beichuan fault.

Explanations for elements of these panels are the same as the Fig. 6. In this panel, black

box mark geological constraints.
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Fig. 10. Schematic diagrams showing the evolution of the northern Longmen Shan.
Prior to the Eocene, reverse faults dominated the northern Longmen Shan. These
accommodated significant amounts of upper crustal shortening, inducing rock uplift
and exhumation west of the fault before ~50-40 Ma. Later deformation evolved to right-
lateral shear with minor reverse faulting, similar to Quaternary deformation. This
transition explains the observed minimum post-Eocene cooling and exhumation west
of the Yingxiu-Beichuan fault. It reduced tectonic loading over the western margin of
the Sichuan Basin, resulting in crustal isostatic rebound and the observed onset of

exhumation east of the Yingxiu-Beichuan fault.
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Fig. 11. Late Cretaceous — Cenozoic deformation sequence of faults in the eastern

Tibetan Plateau. (a) During late Cretaceous — late Eocene, mapped deformation
includes shortening structures in the LMSFZ and the Hanan fault, indicating a regional
NW-SE contractional stress-field. As the Sichuan Basin is likely stable, such a
contraction likely results from SE-verging shortening. (b) Late Eocene time witnessed
the onset of right-lateral slip along the Hanan, Qingchuan and the northern segment of
the Yingxiu-Beichuan faults, which suggest the stress regime in the area may have
transferred to be oblique to the LMSFZ. (¢) South-trending oblique Minjiang and Huya
reverse faults initiated at the late Miocene. Such oblique slip has also occurred on other
adjacent faults as shown by focal mechanisms of major earthquakes with magnitudes

more than 5 (see Fig. 1 for details).
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