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A B S T R A C T 

In order to understand grain-surface chemistry, one must have a good understanding of the reaction rate parameters. For diffusion- 
based reactions, these parameters are binding energies of the reacting species. Ho we ver, attempts to estimate these values from 

grain-surface abundances using Bayesian inference are inhibited by a lack of enough sufficiently constraining data. In this work, 
we use the Massive Optimised Parameter Estimation and Data compression algorithm to determine which species should be 
prioritized for future ice observations to better constrain molecular binding energies. Using the results from this algorithm, we 
make recommendations for which species future observations should focus on. 

Key words: astrochemistry – methods: data analysis – methods: statistical – ISM: abundances. 
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 I N T RO D U C T I O N  

nterstellar dust grains are a crucial component of interstellar chem-
stry. Many gas-phase complex organic molecules (COMs) have been
etected in our galaxy in cold and hot cores (Boogert, Gerakines &
hittet 2015 ). There is evidence to suggest that much of the observed

hemistry takes place on the grain surfaces as opposed to the gas
hase and that these observed gas-phase molecules simply e v aporate
rom the grains some time after formation. As such, if one wishes to
nderstand how such COMs are formed, one must have a thorough
nderstanding of grain-surface chemistry (Herbst & van Dishoeck
009 ; Caselli & Ceccarelli 2012 ). 
In order to better understand how grain-surface chemistry pro-

eeds, it is important to know the reaction rate parameters. For
rain-surface reactions, these parameters may not necessarily be
he rates themselves, but rather parameters that are more specific
o the reaction rate mechanism. For diffusion-based reactions, which
re typically taken to be the dominant grain-surface reaction mech-
nism, the reaction rate parameters of rele v ance are the binding
nergies of the reacting species and reaction acti v ation energy
arriers (Hase ga wa, Herbst & Leung 1992 ). Much e xperimental
ork has been done to determine these, but there are often significant
isagreements, due to differing laboratory conditions [see Penteado,
alsh & Cuppen ( 2017 ) for a surv e y of binding energy values]. 
There exist a variety of methods to estimate the binding energies,

anging from experimental approaches (He, Acharyya & Vidali
016 ) to density functional theory (Ferrero et al. 2020 ) to machine
earning (Villadsen et al. 2022 ). Ho we ver, in our work to estimate
hese reaction rate parameters given observed abundances, Bayesian
nference is typically employed. Bayesian inference has become a
 E-mail: johannes.heyl.19@ucl.ac.uk (JH); viti@strw .leidenuniv .nl (SV) 
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biquitous tool in astrophysics and has recently found more use
ithin the field of astrochemistry. Previous work has considered

he rate-parameter estimation problem (Holdship et al. 2018 ; Heyl
t al. 2020 ) and has shown that the paucity of available grain-
urface species abundances inhibits precise estimates of these rate
arameters. The problem due to the lack of sufficiently constraining
ata has been somewhat ameliorated by considering the network
tructure (Heyl et al. 2020 ) or the underlying chemical mechanisms
o reduce the dimensionality of the problem (Heyl, Holdship & Viti
022 ). Ho we ver, it remains the case that many binding energies
annot be constrained to the point that they would be useful in
hemical codes. This is clear from a surv e y of the literature that
hows quite significant disagreements for some binding energy
alues (McElroy et al. 2013 ; Wakelam et al. 2017 ; Qu ́enard et al.
018 ). 
Observations of the ices have typically considered the molecular

ibration transitions in the infrared (IR) region (Boogert et al. 2015 ).
 number of space telescopes such as the Infrared Space Observatory

 ISO ) and Spitzer have provided observations of ice band profiles
hat have been used to determine molecular abundances. Ho we ver,
ntil now there has been insufficient resolution of the absorption
and profiles. The James Webb Space Telescope ( JWST ) observes in
he IR wavelength range of 0.6–28 μm. It provides higher spectral
esolution observations of up 2 mag, especially in the 5–8 μm
ange that potentially contains the vibrational modes of several
olecules of interest (Boogert et al. 2015 ; Boogert 2016 ). This is

articularly important as IR spectroscopy reveals the features of
arious functional groups that differ by species but can have similar
alues (Boogert 2016 ). As such, having greater resolution will ensure
hat the various absorption band profiles can be disentangled. 

In this work, we wish to provide recommendations of which
pecies should be prioritized for future ice observations in order
o reduce the uncertainties on the binding energy values. To achieve
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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his, we make use of the ‘Massive Optimised Parameter Estimation 
nd Data compression’ (MOPED) algorithm (Heavens, Jimenez & 

aha v 2000 ; Hea vens et al. 2017 ; Hea vens, Sellentin & Jaffe 2020 ).
 key output of the MOPED algorithm is a measure of how strongly
nowledge of a species’ ice-phase abundance would constrain the 
inding energies. 
We start by explaining the chemical code and network we will 

se throughout this work in Section 2 . Section 3 will be dedicated
o explaining the approach we take in this work, specifically our use
f Bayesian inference and the MOPED algorithm. We follow this up 
n Section 4 by showing the results of the Bayesian inference and
he MOPED algorithm as well as by discussing the observational 
mplications of our findings. We briefly conclude in Section 5 . 

 T H E  C H E M I C A L  C O D E  A N D  N E T WO R K  

.1 The chemical code 

n this work, the gas–grain astrochemical code UCLCHEM (Holdship 
t al. 2017 ) was used to model the chemistry of a collapsing dark
loud. The cloud was taken to collapse isothermally at 10 K from
0 2 to 10 6 cm 

−3 o v er a period of 5 Myr. By the end of this collapse,
e expect the ice-phase abundances to be representative of a dark 

loud. 

.2 Grain-surface chemistry 

.2.1 Grain-surface diffusion 

t is important to understand the grain-surface mechanisms, as this is
eeded to show why this work considers binding energies as the key
arameters that go v ern the reaction rates. 
We assume that all grain-surface reactions take place via the 

angmuir–Hinshel w ood mechanism and use the formalism de- 
cribed in Hase ga w a et al. ( 1992 ), which w as implemented in
CLCHEM in Qu ́enard et al. ( 2018 ). We believe this is a reasonable
ssumption as previous work has shown that including Eley–Rideal 
eactions does not strongly affect surface abundances (Ruaud et al. 
015 ). According to the formalism, the rate at which two species A
nd B react via diffusion is given by 

 AB = κAB 

( k A hop + k B hop ) 

N site n dust 
, (1) 

here N site is the number of sites on the grain surface and n dust is the
ust grain number density. 
In equation ( 1 ), k X hop is the thermal hopping rate of species X on

he grain surface, which is defined as 

 

X 
hop = ν0 exp 

(
−E D 

T gr 

)
, (2) 

here E D is the diffusion energy of the species, T gr is the grain
emperature, and ν0 is the characteristic vibration frequency of 
pecies X . The diffusion energy is a fraction of the binding energy
f the species, E b . In this work, this fraction is taken to be 0.5, in
ine with Qu ́enard et al. ( 2018 ). While it is known that this value can
ary between 0.3 and 0.8, there is significant uncertainty within that 
ange (Garrod & Pauly 2011 ). Furthermore, the value is not expected
o play a significant role at 10 K (Vasyunin et al. 2017 ). 

The characteristic vibration frequency, ν0 , is defined as 

0 = 

√ 

2 k b n s E b 

π2 m 

, (3) 
here k b is the Boltzmann constant, n s is the grain site density, and
 is the mass of species. While there exists some debate regarding

he validity of this expression [see Minissale et al. ( 2022 ) for a more
etailed discussion], this equation for the characteristic vibration 
requency is what is used in UCLCHEM . While a more accurate
quation that takes into account the rotation partition function of the
esorbing molecules should be used, this will not affect the ability
f Bayesian inference to constrain the binding energies of species of
nterest, which is the aim of this paper. 

The final term, κAB , which gives the reaction probability, is 

AB = max 

(
exp 

(
−2 a 

� 

√ 

2 μk b E A 

)
, exp 

(
−E A 

T gr 

))
, (4) 

here � is the reduced Planck constant, μ is the reduced mass, E A 

s the reaction acti v ation energy, k b is the Boltzmann constant, and
 = 1.4 Å is the thickness of a quantum mechanical barrier. While
alues between 1 and 2 Å have been used (Hasegawa et al. 1992 ;
arrod & Pauly 2011 ; Vasyunin et al. 2017 ), Qu ́enard et al. ( 2018 )

ound that a value of 1.4 Å matched the ice composition best. The
eaction probability represents the competition between the quantum 

echanical probability of a tunnelling through a rectangular barrier 
f thickness a , which is the first term, and the thermal reaction
robability, which is the second term. 

.2.2 Reaction-diffusion competition 

 modification needs to be made to the κAB term to take into account
he possibility that species might diffuse or evaporate before they 
an react with each other. This is the reaction-diffusion competition 
Chang, Cuppen & Herbst 2007 ; Garrod & Pauly 2011 ). The reaction
robability is now defined as 

final 
AB = 

p reac 

p reac + p diff + p e v ap 
, (5) 

here p reac , p diff , and p e v ap represent the probabilities of species A
nd B reacting, diffusing, and evaporating per unit time, respectively. 
hese quantities are defined as 

 reac = max ( νA 
0 , ν

B 
0 ) κAB , (6) 

 diff = k A hop + k B hop , and (7) 

 e v ap = νA 
0 exp 

(
−E 

A 
b 

T gr 

)
+ νB 

0 exp 

(
−E 

B 
b 

T gr 

)
. (8) 

We replace κAB with κfinal 
AB in equation ( 1 ). 

Overall, we find that equations ( 1 )–(8) show that the key quantities
re ν0 , k X hop , E b , and E A . The first three are all functions of the binding
nergies of the reacting species, indicating the binding energies are 
he crucial parameters. We assume that the acti v ation energies in
quation ( 4 ) are well known. This is reasonable, as these should
e independent of the ice composition (unlike the binding energies) 
nd can be determined theoretically or e xperimentally. Man y of the
eactions would also be expected to have zero acti v ation energy as
hey are radical–radical reactions (Qu ́enard et al. 2018 ). 

.3 The chemical network 

he chemical network consists of a gas-phase netw ork tak en from
MIST12 (McElroy et al. 2013 ) and a grain-surface network based
n Qu ́enard et al. ( 2018 ) and expanded to include the reactions from
arrod, Widicus Weaver & Herbst ( 2008 ), Minissale et al. ( 2016 ),
MNRAS 517, 38–46 (2022) 
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Table 1. The abundances and uncertainties taken for the 
network adapted from Boogert et al. ( 2015 ). 

Species Abundances relative to H Source 

H 2 O (4.0 ± 1.3) × 10 −5 Cloud 
CO (1.2 ± 0.8) × 10 −5 Cloud 
CO 2 (1.3 ± 0.7) × 10 −5 Cloud 
CH 3 OH (5.2 ± 2.4) × 10 −6 Cloud 
NH 3 (3.6 ± 2.6) × 10 −6 LYSOs 
CH 4 (2.3 ± 2.1) × 10 −6 LYSOs 
HCOOH (2.4 ± 1.3) × 10 −6 LYSOs 
NH 4 

+ (3.8 ± 1.5) × 10 −6 Cloud 
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uan et al. ( 2010 ), Fedoseev et al. ( 2016 ), Belloche et al. ( 2017 ),
ong & K ̈astner ( 2016 ), and Garrod & Herbst ( 2006 ). 
We believe that the gas-phase network is comprehensive and

ufficiently accurate that any deficiencies in the network will not have
 great effect on our results. The gas-phase netw ork w as benchmark ed
gainst observations in McElroy et al. ( 2013 ). The abundances of
pecies freezing out from the gas phase are likely to be approximately
orrect, and we therefore only need to be concerned by the accuracy
nd completeness of the grain-surf ace netw ork. We operate under
he assumption that the gas-phase network is complete. 

Our grain-surf ace netw ork is less comprehensive, but we argue it
s sufficient to reproduce the abundance of major species, given the
esults of Makrymallis & Viti ( 2014 ), Holdship et al. ( 2018 ), and
eyl et al. ( 2020 , 2022 ), which used smaller networks. The network

ncludes the freeze-out of all species, hydrogenation reactions of
ll species up to their saturated forms, and radical–radical reactions
hat have been shown to be efficient in laboratory experiments, as
ell as other diffusion reactions from the literature (see abo v e). By

ncluding all reactions known to be the main routes through which
pecies like H 2 O and CH 3 OH are formed on the grain surfaces, our
etwork is sufficient to produce accurate ice-phase abundances of
hese species. Therefore, we can properly predict how important the
inding energies of those species are to the surface chemistry. 

 A NA LY T I C A L  APPROACH  

.1 Parameters 

he aim of this work is to determine the binding energies of the
hemically reactive species. While it would be ideal to determine
he binding energies of all species in the network, the reality of
he situation is that this is not strictly necessary. In Heyl et al.
 2022 ), it was demonstrated that at 10 K, a moderate difference
n binding energies between two species results in a significant
ifference in reaction rates. As such, one can significantly reduce
he dimensionality of the problem one is trying to solve by only
onsidering the most dif fusi ve species. These are those species that
ill be the more reactive species with the greater hopping frequency

or at least one reaction in the network. The more reactive species
ere determined by considering the literature. Even though there is
idespread disagreement about the values of the binding energies,

here is less disagreement about the hierarchy of binding energy
alues. This can be seen by considering the values given in Wakelam
t al. ( 2017 ), McElroy et al. ( 2013 ), and Penteado et al. ( 2017 ). For
eactions where the literature was not definitive in specifying which
pecies had the lower binding energy, both species’ binding energies
ere included as parameters. The binding energies we considered as
arameters were the binding energies of H, H 2 , C, CH, N, CH 3 , NH,
H 4 , and O. 

.2 Bayesian inference 

.2.1 Introduction to Bayesian inference 

he goal is to estimate the binding energies of the most dif fusi ve
pecies in this network. We represent these parameters of interest as
 vector, E = ( E b, H , E b , H 2 , E b, C , E b, CH , E b, N , E b , CH 3 , E b, NH , E b , CH 4 ,
 b, O ). UCLCHEM was modified so that it took these values as an input
nd output all the final abundances of grain-surface abundances.
e represent the 72 grain-surface abundances as a vector Y = ( Y 1 ,
 2 ... Y 72 ). The mapping between E and Y is simply UCLCHEM and
e can write this as Y = f ( E ). 
NRAS 517, 38–46 (2022) 
In order to solve the inverse problem, we require abundance
easurements of grain-surface species, d . These are listed in Table 1 .
hese are taken from Boogert et al. ( 2015 ). 
Bayes’ law can be used to determine the posterior distribution of

he binding energies given the data: 

 ( E | d ) = 

P ( d | E ) P ( E ) 

P ( d ) 
, (9) 

here P ( E | d ) is the posterior probability distribution, P ( E ) is the
rior, P ( d | E ) is the likelihood, and P ( d ) is referred to as the
vidence. The prior distribution encodes the initial understanding
f the binding energy distribution. The likelihood gives the data’s
ikelihood as a function of the binding energies. Within the likelihood
unction, the physical model is encoded. The evidence serves as a
ormalizing factor and represents the marginalized likelihood. The
osterior distribution represents the updated probability distribution
f reaction rates based on the data, the prior distribution, and the
hysical model. 

.2.2 Implementation 

he prior for all binding energies was specified as a uniform
istribution between 400 and 2000 K. The abundance measurements
n Table 1 were assumed to be Gaussian, which allowed for the
pecification of a Gaussian likelihood function: 

 ( d | E ) = 

n d ∏ 

i= 1 

1 √ 

2 πσi 

exp 

(
− ( d i − Y i ) 2 

2 σ 2 
i 

)
, (10) 

here n d is the number of observations and σ i is the uncertainty of
he i th observation. Only the species for which there are abundances
re inde x ed o v er. 

The ULTRANEST PYTHON package (Buchner 2021 ) was used for
he Bayesian inference, which is based on the MLFriends algorithm
Buchner 2016 , 2019 ). The package also outputs the maximum-
ikelihood estimator, E ML . We will use this later for the MOPED
lgorithm. 

.3 The MOPED algorithm 

he aim of the MOPED algorithm is to determine which of the M
pecies in our chemical network need to be prioritized for future
ce observations in order to best constrain the posteriors for our p
arameters. In our situation, p = 9 and M = 72. In other words,
e wish to determine which species will provide us with the most

nformation upon its detection. 
Recall that we wish to determine a set of parameters E . The species

hat are found to be important may include the species already listed
n Table 1 , in which case we would aim to impro v e the uncertainties
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urrounding their v alues. Ho we ver, it is also possible that we would
eed to detect species that have not been detected yet. 

All of our future measurements will have some instrumental 
ncertainty. For our purposes, we assume that the uncertainty on 
ach measurement will be the same. We define a covariance matrix 
o summarize this: C = diag ( σ 2 

1 , σ
2 
2 , ...σ

2 
M 

). By operating under this
ssumption that we can measure any species to the same level of
bundance uncertainty, we are aiming to determine which species 
ould be the most useful to detect. In general, it might be the case

hat different species have different levels of uncertainty. 
It is likely that some species will be significantly more impactful 

n providing information about the parameters of interest. As such, 
e need to identify the species in question. To this end, we will use a
ltering technique developed by Heavens et al. ( 2000 , 2017 , 2020 ),
ho propose using a linear combination of the final abundances of
etwork, Y , to compress data points. Such a compression would be 
f the form: 

 α = b T α Y , (11) 

here α ranges from 1 to p and b α is a set of orthonormal linear
lters, such that each one contains as much information about that 
arameter that is not contained in any other b α . Y represents a vector
ontaining the final abundances for some arbitrary value of E . As a
ducial model, we typically take E = E ML , which we can determine 
sing the Bayesian inference discussed in Section 3.2 . Using the 
aximum-likelihood parameters as a fiducial model has been found 

o be sufficient (Heavens et al. 2000 , 2017 ). The value of each c α will
ltimately be more strongly influenced by the components b α that are 
arger in magnitude. As there is one species for each component, this

eans that if a component has a greater magnitude, then it contains
ore information about that parameter. 
The vectors b α are given by 

 1 = 

C 

−1 Y , 1 √ 

Y , T 1 C 

−1 Y , 1 

(12) 

nd 

 α = 

C 

−1 Y , α − ∑ α−1 
β= 1 ( Y , T α b , β ) b , β√ 

Y , T αC 

−1 Y , α −∑ α−1 
β= 1 ( Y , T α b , β ) 2 

, (13) 

here Y , α is the partial deri v ati ve of Y with respect to the parameter
. The equations for b α were derived in Heavens et al. ( 2000 ) through
 Lagrange multiplier procedure. The iterative process of determining 
ach linear filter b α from previous ones is akin to the Gram–Schmidt 
rthogonalization. This ensures that all the filters are orthonormal, 
hat is 

 

T 
α C b β = δαβ, (14) 

hich is important because it means that all the filter vectors are
ncorrelated. Note also that each component of b α is weighted 
owards species which are low in noise, as measured by the inverse
ovariance matrix, as well as species with a greater impact on the
arameter, as determined by the values in Y , α . 
Ultimately, we find that the vector of abundances of all species x ,

hich has dimensionality M , has been reduced to p numbers, where
 < M . This data compression is lossless, which means the same
nformation is included in the p values of c α . This was originally
tated in Tegmark, Taylor & Heavens ( 1997 ) and pro v en in Heav ens
t al. ( 2000 ). 

Recall that the magnitude of each component of b α gives a weight- 
ng for that species’ influence on the parameter α. To determine the
est species to prioritize detection for, we simply add the absolute
alues of the components of b α for species across all α. That is, we
erform the sum o v er our linear filters 

p ∑ 

α= 1 

[ | b 1 α| , | b 2 α| ..., | b M 

α | ] . (15) 

We now have a ‘filter sum’ for each of the M species in
ur network. We can rank the species by their filter sum in
rder to determine which ones have the greatest impact on our 
arameters. 

 RESULTS  

.1 Results of the Bayesian inference 

ig. 1 shows the marginalized posterior distributions for the binding 
nergies of interest. The marginalized prior distribution is also 
lotted for comparison. It is clear that, with the exception of atomic
ydrogen’s binding energy, the marginalized posterior distributions 
iffer very little from the prior suggesting a lack of sufficiently
onstraining data. It is for this reason that we now use the MOPED
lgorithm to identify species we need to detect to better constrain
ur posterior distributions. 

.2 Using MOPED 

e now look to use the MOPED algorithm to allow us to
ake predictions about which grain-surface species need to be 

etected in order to better constrain the posterior distribution. The 
aximum-likelihood estimate (MLE) from the inference was taken 

nd partial deri v ati ves tak en around this point. It w as found that
ear the MLE the partial deri v ati ves of Y with respect to the
inding energies of C, NH, CH 4 , and O were equal to the zero
ector. This implies that for binding energies near the MLE, the
eaction rates of the network are not sensitive to changes in the
inding energies of these species. As such, these parameters were 
ot included when calculating the filter values in the MOPED 

lgorithm. 
Fig. 2 shows the sum of the filters for all grain-surface species.

he greater the filter sum, the more important it is to detect that
olecule. Additionally, one must also consider the likely abundance 

f each species, as the species will only be observable in the ices
f its abundance is abo v e some minimum threshold. We therefore
elieve that future ice observations should prioritize species that have 
 high filter sum as well as a high abundance. In order to provide
stimates of the abundances, we inserted the maximum-likelihood 
stimator values for the binding energy, E ML , into UCLCHEM and 
btained the fitted abundances for all the species. Fig. 3 is a
catter plot of the filter sum values against the abundances for each
pecies. From this plot, we are able to identify high-importance 
pecies that are also likely to be detectable in the ices. Ho we ver,
ne needs to also account for which species are realistic targets
rom a chemical point of view. This is discussed in the next 
ubsection. 

.3 Obser v ational implications 

he MOPED analysis has resulted in a clear ranking of which
pecies should be targeted in future ice observations. This ranking is
hown in Fig. 2 . Of course, we note that many of these species
av e v ery lo w abundances and others are dif ficult to detect in
MNRAS 517, 38–46 (2022) 
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M

Figur e 1. Mar ginalized posterior distributions of the binding ener gies of the dif fusi ve species of interest. Also plotted is the prior distribution on the binding 
energies. With the exception of H, most binding energy distributions differ very little from the prior distribution. This is due to the lack of enough sufficiently 
constraining data. This moti v ates the need for further ice observations to reduce the variance of the distributions. 
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bsorption. Diatomic molecules, atomic species, and all radicals
xcept CO will be neglected in our considerations of which species to 
onsider. 

We briefly return to the issue of the network’s reliability, which
as first discussed in Section 2.3 . While one can be confident in

he abundances of CH 4 , H 2 CO, CH 3 OH, and H 2 O as their networks
re experimentally derived (Fuchs et al. 2009 ; Ioppolo et al. 2011 ;
huang et al. 2016 ; Qasim et al. 2020 ), other species should be
iewed more sceptically. This is particularly the case for sulphur.
any works indicate that sulphur may primarily be locked in other
NRAS 517, 38–46 (2022) 
orms (Woods et al. 2015 ; Vidal et al. 2017 ). It may be that the sulphur
eaction network is incomplete. Most concerning is H 2 S, which the
odel suggests is the primary sulphur reservoir on the grains. Ob-

ervations of ices have never detected H 2 S but have instead provided
pper limits of ∼10 −6 (Boogert et al. 2015 ). The most likely value of
he H 2 S abundance derived here is lower than this limit and so it may
e correct. Ho we ver, there are other species in the network such as CS
hose surface chemistry is not well understood (Woods et al. 2015 ).
aking this into consideration, it could be argued that observers
hould instead target species such as H 2 CO or HCN that have similar
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Figure 2. Bar chart showing the filter sums for each species in ascending order. Species with a larger filter sum should be prioritized for detection. Many 
of the species we observe are the intermediate species formed during the creation of the saturated species in Table 1 . This indicates that understanding these 
intermediate products is essential to better constraining the binding energies of interest. We also note that many of the highest-ranked species have already been 
detected. This suggests that future observations should aim to impro v e the level of precision of these abundance measurements. 
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lter sums and more reliable networks despite their lower predicted 
bundances. 

There is much to be gained from obtaining more precise mea- 
urements for the abundances of species listed in Table 1 . All of
hese species except for HCOOH and NH 4 
+ have high filter sums

nd high abundances in the fitted model. Ho we ver, the uncertainties
n the measured abundances are often 50 per cent of the measured
 alue. Our MOPED analysis sho ws that it would actually be much
MNRAS 517, 38–46 (2022) 
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M

Figure 3. Scatter plot depicting filter sum against the predicted abundances when the MLEs for binding energies are inserted into UCLCHEM . Given constraints 
on instrumental uncertainties, we should look to prioritize species that not only are important, as determined by their filter sums, but can also be realistically 
detected. These include saturated species such as #CH4, #NH3, #CO2, and #H2O, but also their precursors. 
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ore valuable to determine these abundances to a smaller degree
f uncertainty than it would be to measure the abundance of new
pecies. To demonstrate the effect of reducing the uncertainties
n the abundances, we redid the Bayesian analysis, but reduced
he uncertainty on water’s abundance to 10 −6 . Fig. 4 shows the
esulting binding energy posteriors. We observe significant changes
n the posterior distributions for H and O. This suggests that there
s much promise in improving the measured ice abundances for
hose molecules. Many of the absorption band profiles for these
pecies are in the wavelength range of JWST , but especially in
he 5–8 μm range that will have higher resolution compared to
pitzer (Boogert et al. 2015 ). This is promising as it is certain that
 2 O and the other abundant species can be observed and telescope

ime simply needs to be dedicated to further constraining their 
bundances. 

The IR absorption profile of HCN has been studied recently in a
aboratory setting (Gerakines, Yarnall & Hudson 2022 ). Values for
elected IR absorptions of amorphous HCN at 10 K were given,
ncluding the C–H stretch (3.19 μm), the C ≡N stretch (4.75 μm),
nd the HCN bend (12.12 μm). These as well as the combination
nd o v ertone features are well within the range of wavelengths
hat JWST will consider. As such, this would be a viable target 

olecule. 
While there might be some uncertainties relating to the sulphur

etwork, H 2 S has indeed a high fitted abundance as well as a high
NRAS 517, 38–46 (2022) 
lter sum; hence, it could potentially remain a target. There currently
nly exists an upper limit for the abundance of H 2 S, which was noted
n Smith ( 1991 ). This work identified an S–H stretch mode at 3.925
m, with Fathe et al. ( 2006 ) identifying an S–H stretching overtone
ode at 1.982 μm. 
SiH 4 is known to hav e sev eral modes in the 2.21–11.32 μm range

Kaiser & Osamura 2005a , b ). These are all within the range that will
e considered by JWST . 
H 2 CO has its C = O stretching mode at around 5.8 μm, but

his region is also host to other species with a C = O bond, such
s acetaldehyde, formic acid, and formamide (Keane et al. 2001 ;
erwisscha van Scheltinga et al. 2021 ). It is thought to have another
eature at 3.46 μm, which is, ho we ver, considerably weaker (Keane
t al. 2001 ). It is for this reason that JWST ’s increased resolution in
he 5–8 μm region would prove useful in separating out the various
omponents. 

 C O N C L U S I O N  

n this work, we have utilized the MOPED algorithm to identify
he species that would best constrain binding energies. Bayesian
nference was found to result in poorly constrained marginalized
osterior distributions for the binding energies. This was due to the
ack of enough sufficiently constraining data. The MOPED algorithm
llowed us to determine which ice species should be prioritized for
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Figur e 4. Mar ginalized posterior distributions of the binding energies of the dif fusi ve species of interest. We also plot the prior distribution and the posterior 
distributions when the uncertainty on water’s abundance is reduced to 10 −6 . We observe that this has a significant effect on the marginalized posterior distributions 
of H and O, indicating that there is promise in improving the abundance measurements for species that have already been detected. 
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uture ice observations in such a way that they would further constrain
he posteriors. By then considering which species in the fitted model 
ave the highest filter sums as well as the largest abundances, 
e come up with a list of species that should be targeted. These

pecies are H 2 O, CO 2 , NH 3 , CH 4 , CO, CH 3 OH, H 2 CO, HCN, and
 2 S. While some of these species have not been detected, some of

hem have, which suggests that more precise measurements of these 
pecies are necessary. We also comment on which features of each 
pecies are likely to appear in the wavelength range considered by 
WST . 
There are some limitations to this work. While our chemical 
etwork is for the most part reliable and reflects the current
nderstanding in the literature, there are still some uncertainties 
elating to particular species, such as sulphur. As such, if detecting
ulphur species were a priority for future observations, then more 
 ork w ould need to be done to be completely confident of the sulphur 
etwork. 
Finally, one assumption that is made is that any species that will

e detected will have the same level of uncertainty. This might not
ecessarily be true. The MOPED algorithm will fa v our species that
MNRAS 517, 38–46 (2022) 
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ave a strong dependence on the parameters, but also those that are
o w in v ariance. We have made use of the former, but not the latter
n this work. For now, the results of this work are a proof of concept
f the utility of the MOPED algorithm for this task. 
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