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ABSTRACT

Deep Gaussian processes (DGPs) provide a rich class of models that can better represent functions with
varying regimes or sharp changes, compared to conventional GPs. In this work, we propose a novel inference
method for DGPs for computer model emulation. By stochastically imputing the latent layers, our approach
transforms a DGP into a linked GP: a novel emulator developed for systems of linked computer models. This
transformation permits an efficient DGP training procedure that only involves optimizations of conventional
GPs. In addition, predictions from DGP emulators can be made in a fast and analytically tractable manner
by naturally using the closed form predictive means and variances of linked GP emulators. We demonstrate
the method in a series of synthetic examples and empirical applications, and show that it is a competitive
candidate for DGP surrogate inference, combining efficiency that is comparable to doubly stochastic
variational inference and uncertainty quantification that is comparable to the fully-Bayesian approach. A
Python package dgpsi implementing the method is also produced and available at https://github.com/
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1. Introduction

Gaussian Processes (GPs) are widely used in Uncertainty Quan-
tification (UQ) applications to emulate computationally expen-
sive computer models for fast model evaluations, reducing com-
putational efforts required for other UQ tasks such as uncer-
tainty propagation, sensitivity analysis, and calibration. The
popularity of GP emulators is attributed to their flexibility,
native uncertainty incorporation, and analytical tractability for
many key properties such as the likelihood function, predictive
distribution and associated derivatives. However, many stan-
dard and popular kernel functions (e.g., squared exponential
and Matérn kernels) that are overwhelmingly used for GP emu-
lation limit the expressiveness of emulators. A number of papers
attempt to address this challenge. For example, Paciorek and
Schervish (2003) introduce a nonstationary kernel to overcome
the nonstationary assumption of GPs with standard kernel func-
tions (hereinafter referred to as conventional GPs). Bayesian
Treed Gaussian Processes (TGPs), proposed by Gramacy and
Lee (2008), emulate computer models by splitting the input
space into several axially-aligned partitions, over which the
computer model responses can be better represented by conven-
tional GPs. Other studies such as Montagna and Tokdar (2016)
and Volodina and Williamson (2020) use augmented kernels
and mixtures of conventional kernels, respectively, to improve
the expressiveness of GP emulators.

Deep Gaussian Processes (DGPs) (Damianou and Lawrence
2013) model complex Input/Output (I/O) relations, by convolv-
ing conventional GPs. Compared to other approaches, DGPs

provide a richer class of models with better expressiveness than
conventional GPs through a feed-forward hierarchy, mirroring
deep neural networks. Although DGPs offer a rich and flexible
class of nonstationary models, DGP inference (i.e., training and
prediction) has been proven difficult owing to the need to infer
the latent layers. Efforts at meeting this challenge from within
the machine learning community center around approximate
inference. For example, Bui et al. (2016) use Expectation Propa-
gation (EP) to approximate the analytically intractable objective
function so that DGP fitting can be carried out by optimization,
for example, Stochastic Gradient Descent (SGD). Similar to EP,
Variational Inference (VI) provides the most popular approach
for DGP fitting (Damianou and Lawrence 2013; Wang et al.
2016; Havasi, Hernandez-Lobato, and Murillo-Fuentes 2018).
Doubly Stochastic VI (DSVI) (Salimbeni and Deisenroth 2017),
which has been shown to outperform EP, is the current state-of-
the-art approach and has been used by Radaideh and Kozlowski
(2020); Rajaram et al. (2020) for computer model emulation. It is
recently also implemented in GP£1ux (Dutordoir et al. 2021),
an actively maintained open-source library dedicated to DGP.
DSVI approximates the exact posterior distribution of the latent
variables of a DGP using variational distributions. However,
such approximations can be unsatisfactory because the varia-
tional distributions can often be poor representations of the true
posterior distributions of the latent variables, particularly in the
tails. As a result, although DSVI offers computational tractabil-
ity, it can come at the expense of accurate UQ for the latent
posteriors, which is essential for computer model emulation.
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To address this drawback, Sauer, Gramacy, and Higdon
(2022) provide a Fully-Bayesian (FB) inference using elliptical
slice sampling (Murray, Adams, and MacKay 2010), that
accounts for the various uncertainties in the construction of
DGP surrogates. However, computational tractability limits the
FB framework implemented in Sauer, Gramacy, and Higdon
(2022) to certain minimal DGP specifications (e.g., no more
than three-layered DGPs). Additionally, the fully sampling-
based inference employed by Sauer, Gramacy, and Higdon
(2022) is computationally expensive and thus may not be well-
suited to some UQ tasks, such as calibration or sensitivity
analysis, that involve computer model emulation.

In this work, we introduce a novel inference, called Stochas-
tic Imputation (SI) that balances the speed embraced by the
optimization-based DSVI and accuracy enjoyed by the MCMC-
based FB method. It is algorithmically effective and straight-
forward for DGP surrogate modeling with different hierarchi-
cal structures. Unlike other studies that treat DGPs simply as
compositions of GPs, we see DGPs through the lenses of linked
GPs (Kyzyurova, Berger, and Wolpert 2018; Ming and Guillas
2021) that enjoy a simple and fast inference procedure. By
exploiting the idea that a linked GP can be viewed as a DGP
with its hidden layers exposed, our approach is to convert DGPs
to linked GPs by stochastically imputing the hidden layers of
DGPs. As a result, the training of a DGP becomes equivalent
to several simple conventional GP optimization problems, and
DGP predictions can be made analytically by naturally using
the closed form predictive mean and variance of linked GP
under various kernel functions. It is worth noting that EP also
implements DGP predictions in an analytical manner. However,
linked GP provides closed form DGP predictions with a wider
range of kernel choices and more general hierarchies, allowing
more flexible DGP specifications and structural engineering
(e.g., the input-connected structure that we demonstrate in
Section 5) for computer model emulation.

Our aim is to present a novel inference approach to DGP
emulation of computer models and to compare it in terms of
speed and adequacy of UQ to the variational and FB approaches.
Performance of DGPs in general in comparison to other non-
stationary GP methods has been made elsewhere and is beyond
the scope of this work. The article is organized as follows. In
Section 2, we review conventional GPs, linked GPs, and DGPs.
Our approach for DGP inference is then presented in Section 3,
in which we detail the prediction, imputation, and training
procedures for DGP. We then compare our approach to DSVI
and FB, via a synthetic experiment in Section 4, and a real-world
example on financial engineering in Section 5. An additional
five-dimensional synthetic problem and an extra real-world
application on surrogate modeling of aircraft engine simulator
are presented in Sections S.1 and S.2 of the supplementary
materials.

2. Review
2.1. Gaussian Processes

Let X € RM*D represent M sets of D-dimensional input to
a computer model and Y(X) € RM*! be the correspond-
ing M scalar-valued outputs. Then, the GP model assumes

that Y(X) follows a multivariate normal distribution Y(X) ~
N@pX), T(X)), where u(X) € RM*! is the mean vector
whose ith element is often specified as a function of X, the
ith row of X; £(X) = 02R(X) € RM*M js the covariance
matrix with R(X) being the correlation matrix. The ijth element
of R(X) is specified by k(Xix, Xjs) + N1ix,=X;)> where k(-,-)
is a given kernel function with n being the nugget term and
1, being the indicator function. In this study we consider
Gaussian processes with zero means, that is, u(X) = 0 and
kernel functions with the multiplicative form: k(Xjs, Xjs) =
[Tio1 kaXia» Xia), where ka(Xia, Xja) = ka(1Xia — Xjal) s a
one-dimensional isotropic kernel function (e.g., squared expo-
nential and Matérn kernels) with range parameter y;, for the dth
input dimension.

Assume that the GP parameters 0%, pand y = (y1,...,¥Dp)
are known. Then, given the realizations of input x = (XL, R
x;,) " and outputy = (y1,...,ym) ", the posterior predictive
distribution of output Yy(xp) at a new input position xo € R!*P
follows a normal distribution with mean o(xg) and variance
002 (x0) given by:

10(X0) = r(x) ' R(®) "'y and

ot (xo) = o (147 —1x0) R® 'r(x)), (1)

where r(xg) = [k(X0,X14), . -.,k(X0,Xp)]". The parameters
0%, 1n and y are typically estimated for example, using
maximum likelihood or maximum a posteriori (Rasmussen
and Williams 2005), though some studies use sampling to
propagate their uncertainty. In the remainder of the study, we
let§ = {02, 1,7} be the set of GP model parameters and

9 = {02,7,7) be the corresponding set of estimated model
parameters.

2.2. Linked Gaussian Processes

Linked GPs emulate systems of computer models, where each
computer model has its own individual GP emulator. Con-
sider a system of two computer models run with M design
points, where the first model has M sets of D-dimensional input
(X € RM*D) and produces M sets of P-dimensional output
(W € RM*P) that feeds into the second computer model that
produces M one-dimensional outputs (Y € RM*1) Let the
GP surrogates of the two computer models be GP; and GP»,
respectively. Assume that the output W of the first computer
model is conditionally independent across dimensions, that is,
the column vectors W, of W are independent conditional on X.

Then, GP; is a collection of independent GPs, {ngp ) }p=1....p-
Over the design, each GP corresponds to a multivariate normal
distribution as in Section 2.1 with input X and output W,,.
The hierarchy of GPs that represents the system is shown in
Figure 1.

Assume that, given inputs X = x we observe realizations
w and y of W and Y, and that the model parameters involved
in GP; and GP; are known or estimated. Then, the posterior
predictive distribution of the global output Yy(xp) at a new
global input position xq is given by Yo (x0)|D ~ p(yo|x0; ¥, W, X),
where D = {Y =y, W = w, X = x} and p()o|y, w, x) is the pdf
of Yo(x0)|D. Note that
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Figure 1. The hierarchy of GPs that represents a feed-forward system of two com-
puter models.

P(olx0; Y, W, X) =/p(yo|Wo;y,w,x)p(WOIXo;y,w,X)dWO

P
zfp(y0|wo;y’w)HP(WOp|XO§W*p’X)dWO,
p=1
(2)

where p(yo[wo; y, w) and p(wop|Xo; Wip, X) are pdf’s of the pos-
terior predictive distributions of GP, and gPﬁ" ) , respectively;
and wo = (Wo1, . . ., wop). However, p(yo|Xo; ¥, W, X) is not ana-
Iytically tractable because the integral in Equation (2) does not
permit a closed form expression. It can been shown (Titsias and
Lawrence 2010; Kyzyurova, Berger, and Wolpert 2018; Ming and
Guillas 2021) that, given the GP specifications in Section 2.1,
the mean, fig(Xg), and variance, &02 (xp), of Yo(x0)|D have the
following analytical expressions:

fio(%0) = I(x0) "R(wW) "y, (3)
G5 (%) =y RW) " J(x0)R(W) "'y — (I(m)TR(w)‘ly)2
+0? (14n—tr {RwW Jx0)}), (4)
where

o I(x9) € RM*1 with its ith element I; = H5=1 Elky,(Wop(x0),
Wip)];
MxM el ire s P
e J(xg) € R with its ijth element J;; = ]_[p:1 E[ky(Wop
(%0), wip) kp(Wop(X0), wjp)];

and the expectations in I(x9) and J(xo) have closed form expres-
sions under the linear kernel, squared exponential kernel, and
a class of Matérn kernels (Ming and Guillas 2021, Proposition
3.4). The linked GP is then defined as a normal approximation
ﬁ(yolxo;y, w,X) to p(¥o|Xo; Y, W, X) with its mean and variance
given by fip(xo) and &02 (xg). Moreover, the linked GP can be
constructed iteratively to approximate analytically the poste-
rior predictive distribution of global output produced by any
feed-forward systems of GPs, and is shown to be a sufficient
approximation in terms of minimizing Kullback-Leibler diver-
gence (Ming and Guillas 2021).

2.3. Deep Gaussian Processes

The DGP model is a feed-forward composition of conventional
GPs and only differs from the linked GP model in that the inter-
nal inputs/outputs of GPs are latent. For example, the model
hierarchy in Figure 1 represents a two-layered DGP when the
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variable W is latent. The existence of latent variables creates
challenges to conduct efficient inference for DGP models. For
instance, to train the two-layer DGP in Figure 1 by the max-
imum likelihood approach, one needs to optimize the model
parameters by maximizing the likelihood function:

P
L=pylo) = /p(yIW) [ [pwiplx)dw, (5)
p=1

where p(y|lw) is the multivariate normal pdf of GP, and

p(Wip|x) is the multivariate normal pdf of gP}" ), However,
Equation (5) contains an integral with respect to the latent vari-
able w that is not analytically tractable due to the nonlinearity
between y and w, and the number of such intractable integrals
increases along with the depth of a DGP.

The inference challenge induced by the latent layers is tackled
in the literature by DSVT that uses the variational distribution,
a composition of independent (across layers) Gaussian distri-
butions, and thus an Evidence Lower BOund (ELBO) that can
be efficiently maximized. In addition to the common concern
that the variational approximation may not capture important
features of the posterior uncertainty, the maximization of the
ELBO can be computationally challenging due to the complexity
(e.g., nonconvexity and the large amount of model parameters)
induced by a network of GPs. Alternatively, Sauer, Gramacy,
and Higdon (2022) present a sampling-based FB inference for
DGP using MCMC. The FB approach properly quantifies the
uncertainties in DGP inference, but does so at the expense
of computational efficiency. The approach we describe in the
next section aims to blend computational efficiency of VI and
accuracy of FB for DGP emulation by combining the linked GP
with a sampling approach.

3. Stochastic Imputation for DGP Inference

We view the DGP as an emulator of a feed-forward system of
computer models in which, each sub-model is represented by
a GP and internal I/O among sub-models are nonobservable.
Thus, by imputing the hidden layers and exploiting the struc-
tural dependence of the internal GP surrogates, we uncover,
stochastically, the latent internal I/O from the observed global
I/0O. As a result, we proceed to make predictions from the DGP
using the analytically tractable linked GP.

3.1. Model

We illustrate our approach by considering the generic L-layered
DGP hierarchy shown in Figure 2, where X € RM*D s the
global input and (Y® }p=1,...p; € RM*1 are Pp global outputs.

Let W;P) € RM*1 be the output onPl(p) forp=1,...,P;and
I = 1,...,L — 1 and assume that the outputs {WI(P) }p=1,...p;

from GPs from the Ith layer are conditionally independent given
the corresponding inputs that are produced by the feeding GPs

from the (I — 1)th layer. In the rest of the work, we use {Wl(p )}
as the shorthand of (W'", ..., W w ~ wifty

and {ng )} as the set of model parameters of all GPs in the DGP
architecture.
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Figure 2. The generic DGP hierarchy considered to illustrate the Stochastic Impu-
tation (SI).

3.2. Prediction

Assume that the model parameters O(P ) of QP(P ) are known
and distinct for all p = 1,..., P and I = 1,...,L, and that
we have an observation x and y = (y(l),...,y(PL)) of the
global input X and output Y = (YW, ..., YP1)), To obtain the

posterior predictive distribution of the pth output Yép ) (x0) at

a new input position Xy, the stochastic imputation procedure

fills in the latent variables {W } by a random realization {w(p )}

drawn from p({w(p )}ly, x), the posterior distribution of latent

variables. We defer the discussion on how to draw realizations
from p({wl(p )}|y, x) to Section 3.3. After obtaining {wl(P )}, the

posterior predictive distribution p(y(()p )|xo;y, x) of Yép ) (x9) for
allp =1,..., Py can then be approximated by a linked GP with
closed form mean and variance. However, a single imputation
would neglect the uncertainties of the hidden layers, that is,
the imputation uncertainty is not appropriately assessed. There-

i wPhy of (WP
from p({w;""}|y,x), and construct N linked GPs accordingly.

Finally, the information contained in these N linked GPs can
be combined to describe the posterior predictive distribution

fore, one can draw N realizations {w;,
)

of Y(()p ) (x0) that properly reflects the uncertainty because of the
latent variables.

Note that p(y(()p ) |x0;y,X) can be approximated by a mixture
of N constructed linked GPs:

PO o5y ) = / PO Ixosy, tw” 130 p((w” Hy ) dw”)

- E{w“’) [P0 oy (W30

= ZP()/(p)|X0,Y) {w(p)}”x)

= Zp(y‘” %03y, (Wi}, )

in which p(y(p ) X035 Y> {w(P ) },x) denotes the pdf of the linked GP.
Thus, the approximate posterior predictive mean and variance

of Yép ) (x0) can be obtained by

»_ 1<

~(p ~(p

Ko :K]Z/‘LOJ
i=1

and

~ (P)

Z((ﬂff’))z + G - @M ©)

where {/L(P ) &P )) }i=1,.. N are closed form means and vari-

ances, the expresswns of which are given in (3) and (4), of the N
constructed linked GPs. The DGP prediction procedure in SI is
given in Algorithm 1.

Algorithm 1 Prediction from the DGP model in Figure 2 using

SI

Input: (i) Observations x and y; (ii) {gPl(p )}; (iii) a new input
location x.

Output: Mean and variance of

Yép)(Xo),fOrp =1,...,P.

1: Impute latent variables {W(p )} by N realizations

W, (Wi} drawn from P({W(p)”y’ x);

2: Construct N hnked GPs accordingly;

~(p) (P))z of Y(()P)

3. Compute fi; and (6,

1,...,Pr.

(X0) using (6) forall p =

In a sampling-oriented FB inference the description of the

posterior predictive distribution of Yép ) (x0) would require N

realizations of both latent variables and model parameters sam-
pled from their posterior distributions. In addition, to obtain
more precise estimates of posterior predictive mean and vari-
ance, FB also needs an adequate number of realizations of all
latent variables at the prediction locations sampled through the
posterior predictive distributions, for each of N sampled latent
variables and model parameters. The computational cost for this
prediction procedure can be expensive in tasks such as DGP-
based optimization and calibration that involve a large amount
of DGP predictions at different input positions. Analogously,
DSVI implements predictions via sampling and thus is exposed
to the same issues of the FB approach. Besides, predictions made
from DSVI (as well as other VI-based approaches) lose the inter-
polation property (Hebbal et al. 2021) that is desired in emu-
lating deterministic computer models. Our method combines
the linked GP and an MCMC method, retaining interpolation
and achieving closed form predictions (given multiple imputed
latent variables) with thorough uncertainty quantification of
predictions and imputations.

3.3. Imputation

Exact simulation of latent variables {W(p )} from p({w }|y, X) is
difficult because of the complexity of the posterior distribution
induced by the deep hierarchy of GPs. Naive application of
MCMC methods (that are poorly mixing and require fine tuning
with considerable human intervention) can greatly reduce the
efficiency and hinder the automation of DGP inference. Ellip-
tical Slice Sampling (ESS), a rejection-free MCMC technique,
has been shown (Sauer, Gramacy, and Higdon 2022) to be a
well-suited tuning-free method for latent variable simulations in
three-layered DGP models. We thus use the ESS within a Gibbs
sampler (ESS-within-Gibbs) to impute latent variables for the
generic DGP model shown in Figure 2. In general, the ESS is
designed to sample from posterior 7 (w) over the latent variable
w € RMX1 of the form:

a(w) & LWN (w; t, X), (7)
where £(w) is a likelihood function and N (w; ut, X) is a mul-
tivariate normal prior of w with mean g and covariance matrix
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Figure 3. The two-layered elementary DGP model that is targeted by ESS-within-

Gibbs to sample a realization of output W(p) from gP(”) given all other latent
variables.

wiD

Y. Note that p({w(P )}|y, x) cannot be factorized into the form

of (7) and thus ESS cannot be directly applied. However, the

conditional posteriors p(w(P )| w'? )} \ w<P )

I{w;
fromgpgp) forsomep € {1,...,Pj}and/ € {1,...,L

be expressed in the form of (7) as follows:

,¥,X) of the output

— 1} can

®)

p(w |{w(p)}\w(p),y,x) x Hp(wl(f,?l (1),.A.,wl(p),...,wl(P’))
q_
P

w2 w® L wPeD), ®)
where all terms are multivariate normal; p(wip ) |w(1) S W 0))
= p(wip)|x) when [ = 1 and

P
Hp(w(q) (1) ;P)l’.'. (Pr— 1))
i (1) ) (Pr—1)
= l_[p(y(q)|wL_1, ... ,wLp bW
q=1

when [ = L — 1. Graphically, the Gibbs sampler allows the appli-

cation of ESS for each latent variable W;p ) from a two-layered
elementary DGP shown in Figure 3. A single step ESS-within-
Gibbs that draws a realization from p({w }|y, X) is given in
Algorithm 2, where the algorithm for the ESS update on Line 3
is given in Nishihara, Murray, and Adams (2014, Algorithm 1).

Algorithm 2 One-step ESS-within-Gibbs to sample from
()

p{w;  Hy, x)
Input: A current sample {w }, drawn from p({w(p )} ly, x).
Output: A new sample {wl },+1 drawn from p({w(p )}|y, X).

1: forl=1,...,L—1do

22 forp=1,...,Pdo

3: Draw wl(p ’ from p(w(p )|{w(p )} \ w(p ),y, X) in the form

of (8) via an ESS update;
4:  end for
5. end for

TECHNOMETRICS (&) 5

3.4. Training

We have so far assumed that the model parameters 0(‘D ) of g P(p )
are known. In this section, we detail how these parameters
are optimized under SI. A naive training for the DGP model

in Figure 2 might be to impute the latent variables {Wl(p )}
by sampling from the imputer p({wl(p )} ly,x) and then to opti-
mize the model parameters {0§p )} following the training pro-
cedure for conventional GPs. However, {0(p )} are also required

by p({w }|y, x) and thus we should update our imputer with
our current best guess (in the sense of the maximum likelihood
given the imputed latent variables) of the model parameters.
We thus use an iterative training process, called the Stochas-
tic Expectation-Maximization (SEM) algorithm (Celeux and

Diebolt 1985), that updates model parameters at a given iter-
ationt € {1,..., T — 1} via the following two steps:

o Imputation-step: impute the latent variables {W(‘D )} by a sin-
(p)

gle reahzatlon {wl } drawn from the imputer p({w;""}ly,
X; {01 }) given estimates {Blp )} of {0(p)}
o Maximization-step: given the pseudo complete data

{y, {wl(p )} x}, update {a\;p ’t)} to {’6.’\(1) ’H_l)} by maximizing the
likelihood function L({O(P>}) = p(y, {w(p)}|x; {ng)}), which
amounts to separate optimization problems of individual

GPs; update the imputer to p({w(p )}|y, x; {0 lp o )}) with the

t+1
optimized model parameter estimates {0(p )}

By alternating a stochastic I-step and a deterministic M-step,

SEM produces a Markov chain {/0\? ’1)}, ces {3}"’ ’T)} that does
not converge pointwise but contains points that represent best
(i.e., maximum complete-data likelihood) estimates of model
parameters given a sequence of plausible values of latent vari-
ables (Ip 1994, 2002; Nielsen 2000), and one can then establish

pointwise estimates {70\;‘0 ) } of model parameters by averaging the
chain after discarding burn-in periods B (Diebolt and Ip 1996):

Z Pt)

t B+1

0 = VL. )

For computational and numerical advantages of SEM over EM
and other stochastic EM variants, for example, Monte Carlo
EM (Wei and Tanner 1990), see Celeux, Chauveau, and Diebolt
(1996) and Ip (2002).

The SEM algorithm forms a key part of our DGP inference
because it has properties that make SI competitive for DGP
training in comparison to FB and DSVI. FB trains the DGP by
applying MCMC methods to both latent variables and model
parameters. Although it captures the model uncertainty more
thoroughly (in principle, albeit not always in practice due to
MCMC issues on sampling model parameters), it has several
computational disadvantages in comparison to SI. First, FB
needs to store sampled latent variables in addition to sampled
model parameters and thus can require a substantial amount
of memory if the length of chain is long or the number of
elementary GP nodes in the DGP is large. SI, instead, only stores
updated model parameter estimates produced over iterations
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and is therefore more memory-efficient. The MCMC sampling
in FB over the model parameters can also be computationally
expensive itself (long chains of Gibbs-type draws with multi-
ple evaluations of correlation matrix inversions at each draw).
Rather than sampling, SI breaks the training problem of DGP
into simpler and faster optimization problems of individual GPs
and updates all model parameters in the GPs simultaneously
with little human intervention. As SEM can be shown to be
a stochastic perturbation of the EM dynamics (Ip 2002), the
training of SI can be expected to stabilize in a comparatively
small number of iterations.

DSVI trains the DGP by maximizing the ELBO, which
involves a large number of model parameters including kernel
hyperparameters, variational parameters and inducing point
locations for each layer. Although optimization of the ELBO is
computationally tractable, it embeds a simplified assumption
on latent posteriors and thus can underestimate predictive
uncertainties. In contrast, SI only involves optimizations of
conventional GPs with respect to kernel hyperparameters using
latent posteriors that are exploited thoroughly via ESS. This
makes it particularly suitable for surrogate modeling for UQ,
where we often have small-to-moderate data that are generated
by computationally expensive simulators, and where accurate
quantification of posterior uncertainties is essential.

The pseudo-code for DGP training in SI via SEM is given
in Algorithm 3. It may be argued that a large C is needed in
the I-step of Algorithm 3 in order to draw a realization from
the stationary distribution of the imputer, and thus the training
of SI can be computationally expensive to implement. However,
since SEM can be seen as an example of the data augmentation
method (Celeux, Chauveau, and Diebolt 1996), in practice one
does not need a large C for effective inference (Ip 1994; Zhang,
Chen, and Liu 2020). In our experience, C = 10 is often
sufficient to obtain appropriate samples from the imputer. In
addition, since in each I-step SEM only requires one realization,
it is not essential to conduct convergence assessment of ESS-
within-Gibbs, which is not the case for the FB approach.

Algorithm 3 Training algorithm for the DGP model in Figure 2
using SI via SEM

Input: (i) Observations x and y; (ii) initial values of model

parameters {3}‘0 ’1)}; (iii) total number of iterations T and
burn-in period B for SEM; (iv) burn-in periods C for ESS.
Output: Point estimates 5,(1’ ) of model parameters.
1: fort=1,...,T—1do
2:  I-step: draw a realization {wl(p )} from the imputer
)

pUw;  Hy, x5 {/0\?7 D }) by evaluating C steps of ESS-within-
Gibbs in Algorithm 2;

3. M-step: update model parameters by solving
individual GP training problems: 6;" D =
argmaxlogp(wl(p) |Wl(l)1’ e ,w;flfl);Ol(p)) forall p, .

4: end for

5: Compute point estimates/O\}p ) of model parameters by Equa-
tion (9).

To deliver complete inference for the DGP model in Figure 2,
one starts from Algorithm 3 to obtain estimates of model param-

eters for all individual GPs. Given the trained DGP (i.e., a net-
work of trained individual GPs {QPl(p ) }), one can then proceed
to make predictions at new input locations using Algorithm 1,
in which the multiple imputation step on Line 1 is achieved by
invoking Algorithm 2 multiple (N) times.

4. Step Function

Consider a synthetic computer model with a step-wise func-
tional form:

1, 05<x<1
-1, 0<x<05

o |
with input domain [0, 1]. In this experiment, we consider a
three-layered DGP, where each layer contains only one GP (i.e.,
Py = P, = P3; = 1). Different inference approaches are
compared by first measuring the predictive accuracy of the
trained DGP in terms of the Normalized Root Mean Squared
Error of Predictions (NRMSEPs):

\/% Do (f (xoi) — [oi)?

NRMSEP =
max{f (xoi)i=1,..,n} — min{f (xo;)i=1, .}

>

where f (xo;) and f1; denotes, respectively, the true output of the
computer model and mean prediction from the trained DGP
evaluated at the testing input position xo; fori = 1,...,n. We
then check if the uncertainty quantified by the trained DGP pro-
vides sensible indications of input region (i.e., the discontinuity
atx = 0.5) thatis deemed important by examining the produced
predictive standard deviation 6¢; fori =1,...,n.

4.1. Implementation

Ten equally spaced design points were chosen over the input
domain [0, 1], whose corresponding output are computed by
evaluating the synthetic computer model. We select n = 200
testing points whose inputs are equally spaced over the input
domain. For FB, we use the R package deepgp (available
at https://CRAN.R-project.org/package=deepgp) by setting the
total number of MCMC simulations to 10,000 and the burn-in
period to 8000 with thinning by half. These are default settings
used in exercises of Sauer, Gramacy, and Higdon (2022). DSVI
is implemented using the Python library GPf1ux (available
at https://github.com/secondmind-labs/GPflux). To ensure a fair
comparison to FB and SI, we switch oft the sparse approximation
of DSVI by setting the number of inducing points to be same
as the number of training data points (i.e., 10). The ELBO is
maximized using the Adam optimizer (Kingma and Ba 2015)
with the learning rate of 0.01 and 1000 iterations. These are
the standard settings in GPf 1ux for ELBO optimization. With
regard to SI, we implemented it using our Python package
dgpsi. The total number of SEM iterations, T, is set to 500
with the first 75% (i.e., 375) of total iterations being the burn-in
period B. The warm-up period C for the ESS in the I-step of SEM
is set to 10. 50 imputations are conducted to make predictions at
the testing input positions. These are default settings in dgpsi.
Since the default DSVI implementation mimics the effects of
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Figure 4. DGP emulators of the step function (the solid line) trained by different inference methods. The dashed line is the mean prediction; the shaded area is the predictive
interval (i.e., two predictive standard deviations above and below the predictive mean); the filled circles are training points.
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Figure 5. Predictive standard deviations of GP and DGP emulators over the input domain. The shaded area in (b) to (e) represents the interval between the 5th and 95th
percentiles (with the dash line highlighting the 50th percentile) of 100 predictive standard deviations produced by the corresponding 100 repeatedly trained DGPs; 30 out
of 100 predictive standard deviations are randomly selected and drawn as the solid lines in (b) to (e). The underlying true step function and training input locations (shown

as filled circles) are projected into all sub-figures.

the input-connected structure introduced in Duvenaud et al.
(2014) through the use of linear mean functions (Salimbeni
and Deisenroth 2017), we also explore the benefit of the input
connection (IC) to SI by explicitly augmenting the input of GPs
(in all layers except for those in the first layer) with the global
input x. The SI with the input connection is referred to as SI-
IC hereinafter. For all approaches, we use squared exponential
kernels. The nugget term (the likelihood variance in the case of
DSVI) is set to a small value (~ 107%) for interpolation. Unless
otherwise stated, we use the same setup for different inference
methods in the remainder of this study. Although the objective
of the study is to introduce SI by comparing it with other
inference approaches rather than comparing DGP to other GP
models, in this and all remaining examples we also report results
given by a conventional GP, following Salimbeni and Deisenroth
(2017) and Sauer, Gramacy, and Higdon (2022), because the
conventional GP can be seen as a one-layered DGP and is still
the most widely used model for emulation. The conventional
GP is trained by the R package RobustGaSP (Gu, Palomo, and
Berger 2018) .

4.2. Results

It is apparent from Figure 4 that, regardless of the inference
method, the DGP model outperforms the GP model in emu-
lating the underlying step function. The DGPs trained by FB,
SI, and SI-IC provide better mean predictions than that trained
by the DSVI. Both SI and FB quantify larger uncertainties than
DSVI and SI-IC around the discontinuity of the step function.
As addressed in Section 3.2, the DGP emulator trained by DSVI
loses the interpolation property as the predictive uncertainties
do not reduce to zero at some training data points. To examine
the variability of such observations on predictive uncertainties

under the randomness (due to latent simulations) involved in
different methods, we repeat each inference approach (except
for the conventional GP) 100 times and summarize predictive
standard deviations across different trials in Figure 5. It is clear
from Figure 5 that FB, SI, and SI-IC produce DGP emulators
with better uncertainty quantification of the underlying step
function than DSVI does because they highlight locations where
abrupt functional transitions present with sufficiently higher
predictive standard deviations.

Figure 6(a) summarizes the NRMSEPs of the 100 DGP
emulators produced by different approaches. We observe
that DGPs trained by FB, followed by DSVI, give the best
overall performance in terms of mean prediction accuracy.
Although DGPs produced by SI present the least accurate mean
predictions on average, their accuracy is clearly improved with
SI-IC, approaching average NRMSEPs of FB and DSVI with
moderate sacrifices of uncertainties (as shown in Figure 5).
For practicality, we compare in Figure 6(b) the single-core
computation time (including training and prediction) taken
by the packages (ie., deepgp, GPflux, and dgpsi) that
implement the four inference methods on a MacBook Pro with
Apple M1 Max processor and 32GB RAM. We note that SI-IC
is generally faster than SI because ESS updates in SI have faster
acceptances when the input connection is considered.

5. Option Greeks from the Heston Model

Option Greeks are important quantities used in financial engi-
neering to measure the sensitivity of an option’s price to fea-
tures of the underlying asset such as the spot price or volatil-
ity. The Greeks are commonly used by financial engineers for
risk hedging strategies and are essential elements of modern
quantitative risk management. Popular Greeks include Vega that
quantifies the sensitivity of an option’s price to the volatility of
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Figure 8. Three different DGP formations considered to build the emulator of Vega.

the underlying asset, Delta that controls the sensitivity of an
options price to the underlying spot price, and Gamma that
measures the sensitivity of an option’s Delta to the underly-
ing spot price. However, analytical calculations of Greeks are
rarely available and one often needs to solve Partial Differential
Equations (PDE) with numerical approaches, such as finite-
difference methods or Monte-Carlo techniques, that could be
computationally expensive (Capriotti, Jiang, and Macrina 2017),
especially when fast evaluations of Greeks are desired under
a large number of different option scenarios. Thus, building
cheap-to-evaluate surrogates of Greeks is needed.

Consider a European call option with strike price K (in $) and
time-to-maturity T (in years) whose price C¢(Ss, K, 7) at time ¢
depends on underlying asset price S; (in $), which follows the
Heston model (Heston 1993):

— g’Pgl) —

— g‘P&Z)

@ @
—gpP—

(c) 4-layer

dS; = (r — q)Sydt + / VS dW?
AV, = k(6 — Vydt + o/ VidW/,

where r is the risk-free rate; g is the dividend yield; V; is the
asset price variance with initial level Vo = vp; & > 0 is the mean
reversion rate of V; 0 > 0 is the long-term variance; oy > 0
is the volatility of V;; WP and W) are Wiener processes with
correlation p. Then, the computation of Greeks at time  requires
solving the Heston PDE given by (Rouah 2013):

%+152vﬁ+ S.o Vﬁ+la2 @
ot 20 s TP sy, T 20V 2
+ (7’— q)St& +K(9 — Vt)% = TCt (10)
N aV;



TECHNOMETRICS (&) 9

20.0 F T e
FB
DSVI
ST

15.0 - SI-IC

NRMSEP (%)
=
(=3

5.0+ % %

0.0k . | . ]
2-layer 3-layer 4-layer

(a) NRMSEP

T . . .

E B B

g . DSVI

& 3 ST

= I S1-IC

£

5}

a 6 i
]

g

B

]

S 4r 7
3

8

=

g

8 2 b
<

[

0

5]

4

<

2-layer 3-layer 4-layer

(b) Computation time

Figure 9. Comparison of FB, DSVI, SI, and SI-IC for 40 repeatedly trained DGP emulators (i.e., 40 inference trials) of Vega (V) from the Heston model. FB is not implemented
for the 4-layer formation because deepgp only allows DGPs up to three layers. The dash-dot line represents the NRMSEP of a trained conventional GP emulator.

NRMSEP = 3.95% NRMSEP = 4.22%

NRMSEP = 3.41% NRMSEP = 3.63%

10
% : 08 %
3 . E
: =
o z ]
° . 0.6
.
.
% 0.4
B/ D" A
4 .
4 4 02
0.0
02 00 02 04 06 08 10 12 02 00 02 04 06 08 10 12
Normalized mean prediction Normalized mean prediction
(c) 2-layer (SI) (d) 2-layer (SI-IC)
NRMSEP = 3.24% NRMSEP = 2.37% 10

1.2
10
2 2
5 os M %
:
S 06 1Y % o8 o .
o .,
o gl o
] 2 K
£ 02
z
[ 1
0.0
-0.2
02 00 02 04 06 08 10 12 02 00 02 04 06 08 1.0 12
Normalized mean prediction Normalized mean prediction
(a) 2-layer (FB) (b) 2-layer (DSVI)
NRMSEP = 5.47% NRMSEP = 3.56%
1.2
10 .'.
: -3 Py
2
z 08 , % o %% o
: 1
206 %° e
pot 2
Z oa :‘*,’ 3 .
o SNF
5 02 -
z 4
0.0 %
-0.2
02 00 02 04 06 08 10 12 02 00 02 04 06 08 1.0 12
Normalized mean prediction Normalized mean prediction
(e) 3-layer (FB) (f) 3-layer (DSVI)
NRMSEP = 9.26% NRMSEP = 3.41%
1.2
10 2, B
-1 Y °
2 08 L s
E] L) % e
H % .
E b o o .
& ., o
4 »% Sy
£ 04 L"-' ) -
e “os AT o R
£ 02 o
= Kl
0.0
-0.2
02 00 02 04 06 08 1.0 12 02 00 02 04 06 08 10 12
Normalized mean prediction Normalized mean prediction
(i) GP (j) 4-layer (DSVI)

Normalized predicti

0.0
02 00 02 04 06 08 1.0 12 02 00 02 04 06 08 10 12
Normalized mean prediction Normalized mean prediction
(g) 3-layer (SI) (h) 3-layer (SI-IC)
NRMSEP = 2.56% NRMSEP = 2.46% 10
) 08 :::
) E
06 2
4
o, ]
o & 1
o 9 ]
° 02%
5
z
0.0
02 00 02 04 06 08 10 12 02 00 02 04 06 08 10 12

Normalized mean prediction

(k) 4-layer (SI)

Normalized mean prediction

(1) 4-layer (SI-IC)

Figure 10. Plots of numerical solutions of Vega (V) (normalized by their max and min values) from the Heston model at 500 testing positions versus the mean predictions
(normalized by the max and min values of numerical solutions of Vega), along with predictive standard deviations (normalized by their max and min values), made by the
best emulator (with the lowest NRMSEP out of 40 inference trials) produced by FB, DSVI, SI, and SI-IC. GP represents a conventional GP emulator.

with the terminal condition Cr = max(0, St — K) at maturity T.
Figure 7 visualizes, respectively, a slice of Vega (V; = 9C;/9vy),
Delta (A; = 3C;/3S;), and Gamma (I'y = 92C;/3S?) produced
by (10) over (S, K) € [10, 200]? when 7 is fixed to 1. It can
be seen that Vega, Delta and Gamma exhibit nonstationarity

because at-the-money (ATM) options (i.e., options with strike
prices close to the underlying asset prices) are most sensitive to
asset price changes and oscillations, and thus cause a mountain
to Vega, a cliff to Delta, and a spike to Gamma over the input
domain. We compare SI and SI-IC to the other two inference
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approaches (i.e., DSVI and FB) for DGP emulation of the rela-
tionship between Greeks and (S;, K, 7). In the remainder of this
section, we focus on V;. Results for A; and I'; are given in
Section S.3 and S.4 of the supplementary materials.

To train DGP emulators of Vega, we generate 100 train-
ing data points by first drawing 100 input positions over
(S, K,7) € [10,200] x [10,200] x [1/12,3] with Latin-
hypercube-sampler (LHS), and then compute numerically
the corresponding V; from the Heston model using the
Financial Instruments Toolbox of MATLAB. 500
testing data points are obtained in the same fashion. The
model parameters (1,4, vo,k,0,0v,p) in (10) are set to
(0.03,0.02,0.04,0.04,0.3,0.9, —0.5), following Teng, Ehrhardt,
and Glinther (2018). We adopt three formations (in which each
individual GP has its one-dimensional kernel functions across
different input dimensions sharing a common range parameter)
shown in Figure 8 for DGP emulators. For each combination
of formation and inference approach we conduct 40 inference
trials. However, only DSVI, SI, and SI-IC are implemented for
the four-layer formation because deepgp only allows DGP
hierarchies up to three layers.

5.1. Results

It can be seen from Figure 9(a) that emulators produced by
SI outperform those trained by FB and DSVI under all exper-
imental settings. Figure 9(a) also shows that with the input
connection, SI could produce DGP emulators with even lower
NRMSEPs. In addition, we observe that under DSVI and SI-
IC, three-layered DGP emulators have systemically lower NRM-
SEPs than two-layered emulators. However, for both DSVI and
SI-IC increasing DGP depth to four layers shows no improve-
ment on NRMSEP.

Figure 10 presents the profiles of uncertainty quantified by
best DGP emulators, which are trained by different methods,
from 40 inference trials. The profiles show similar uncertainty
behaviors of DGPs to those in Section 4. In comparison to FB
and SI (with or without the input connection), DSVI produces
DGPs with lower uncertainties at locations where mean pre-
dictions are poor (e.g., dots in Figure 10(b), (f), and (j) that
deviate from the diagonal lines have low predictive standard
deviations) and in regions where Vega value becomes larger
and exhibits more variations, across different formations. This
can be problematic for tasks such as active learning in which
DGP emulators trained by DSVI could unnecessarily evaluate
the Heston PDE over input space where the DGP predictions
are well-behaved. Although DGPs (e.g., the three-layered one
in Figure 10(e)) from FB provide more distinct predictive stan-
dard deviations that better distinguish the qualities of mean
predictions, the three-layered DGP (in Figure 10(h)) trained by
SI-IC seems to have the overall best performance by balanc-
ing NRMSEP, uncertainty quantification, and computation (see
Figure 9(b)).

6. Conclusion

In this study, a novel inference method, called stochastic impu-
tation, for DGP emulation is introduced. By converting DGP

emulations to linked GP emulations through stochastic impu-
tations of latent layers using ESS, we simplify the training of a
DGP emulator with constructions of conventional GP emula-
tors. As a result, predictions from a DGP emulator can be made
analytically tractable by computing the closed form predictive
mean and variance of the corresponding linked GP emulators.
We show in both synthetic and empirical examples that our
method is a competitive candidate (in terms of predictive accu-
racy, uncertainty, and computational cost) for DGP surrogate
modeling, in comparison to other state-of-the-art inferences
such as DSVI and FB. In particular, we find some evidence that
it can be beneficiary to implement SI with the input connection
for better emulation performance. Empirical results suggest that
SI may not give significant predictive improvement on DGP
emulators as the number of layers in DGP increases (up to 4),
and two- or three-layered DGP emulators trained by SI with the
input-connected structure can often be satisfactory in terms of
predictive accuracy and computational expense.

SIis algorithmically simple and it is natural to treat inference
for DGP emulators as a missing data problem in which we have
missingness on internal I/O of a network of conventional GP
surrogates. This simplicity and interpretability makes SI gener-
ally applicable to any DGP hierarchies formed by feed-forward
connected GPs, and thus allows various potential emulation
scenarios, such as multi-fidelity emulation, multi-output emu-
lation, linked emulation and their hybrids, to be implemented
and explored under the same inference framework. The Python
package dgpsi we developed as a by-product of this work is
generally applicable to these advanced emulation problems and
publicly available on GitHub (at https://github.com/mingdeyu/
DGP).

Although we only discuss the emulation of determinis-
tic models in this work, extension to stochastic models is
straightforward using SI. One could add an extra Gaussian
likelihood layer to the tail of DGP hierarchy to account for
either homoscedastic or heteroscedastic (Goldberg, Williams,
and Bishop 1997) noise exhibited in the stochastic computer
simulators. Non-Gaussian likelihoods are a natural extension
and are available in dgps i. Future work worthy of investigation
include DGP emulator-based sensitivity analysis, Bayesian
optimization, and calibration, taking advantage of the DGP
emulators’ analytically tractable mean and variance imple-
mented in SI. Coupling SI with sequential design (Beck and
Guillas 2016; Salmanidou, Beck, and Guillas 2021) to further
reinforce the predictive performance of DGP emulators with
reduced computational costs is another promising research
direction. Applications of sequential designs to FB-based DGP
emulation are explored by Sauer, Gramacy, and Higdon (2022).

Although SI uses all data points in the dataset, this does
not pose a serious computational problem to typical computer
model experiments because the involved datasets are often of
small-to-moderate sizes given limited computational budgets.
However, when one has a big dataset, the method can become
practically infeasible due to the high computational complex-
ity associated to the storage, processing and analysis of the
huge amount of data points. Therefore, it would be an inter-
esting future work to scale the stochastic imputation method
to big data, for example, via sparse approximation (Snelson and
Ghahramani 2005) or GPU acceleration.
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Additional Examples and Results The file (supp_ results.pdf)
contains an additional five-dimensional synthetic problem, a real-world
example on aircraft engine model, and results for option Delta and
Gamma of Section 5. (PDF file)

Code and Data The file (supp code.zip) contains codes and data
used for synthetic and real-world examples in the manuscript and the
supplement. It includes the version of the Pyt hon package dgpsi that
produces the results in the manuscript and the supplementary materials.
The latest and future versions of the package can be accessed via https://
github.com/mingdeyu/DGP. (Zip file)
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