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Key messages 

What is already known on this topic: 

The deep-learning-derived brain age gap (BAG) is associated with various clinical risk factors 

and can be used for risk stratification of various neurological and psychiatric diseases, including 

multiple sclerosis (MS). The clinical significance of BAG prediction in neuromyelitis optica 

spectrum disorder (NMOSD) relative to RRMS is not known. 

What this study adds: 

A deep learning model was able to estimate the brain age gap (BAG) from 3D structural MRI 

scans and is robust across multiple centers and multiple scanners. A significant BAG was found in 

NMOSD patients compared with healthy controls, although it was less marked than in RRMS 

patients. Higher disability and advanced atrophy were associated with a larger BAG in both 

NMOSD and RRMS. BAG was a predictive biomarker of EDSS worsening in NMOSD and 

RRMS. 

How this study might affect research, practice or policy: 

The BAG is a comprehensive and relevant disease marker in NMOSD and RRMS. 
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ABSTRACT 

Objective 

To evaluate the clinical significance of deep-learning-derived brain age prediction in 

neuromyelitis optica spectrum disorder (NMOSD) relative to relapsing-remitting MS(RRMS). 

Methods 

This cohort study used data retrospectively collected from 6 tertiary neurological centers in 

China between 2009 and 2018. In total, 199 NMOSD and 200 RRMS patients were studied 

alongside 269 healthy controls. Clinical follow-up was available in 85 NMOSD and 124 RRMS 

patients (mean duration NMOSD = 5.8±1.9 [1.9-9.9] years, RRMS = 5.2±1.7 [1.5-9.2] years). 

Deep learning was used to learn ‘brain age’ from MRI scans in the healthy controls and estimate 

the brain age gap (BAG) in patients. 

Results 

A significantly higher BAG was found in the NMOSD (5.4±8.2 years) and RRMS (13.0±14.7 

years) groups compared with healthy controls. A higher baseline disability score and advanced 

brain-volume loss were associated with increased BAG in both patient groups. A longer disease 

duration was associated with increased BAG in RRMS. BAG significantly predicted EDSS 

worsening in NMOSD and RRMS patients. 

Conclusions 

There is a clear brain age gap in NMOSD, although smaller than in RRMS. The brain age gap is 

a clinically relevant MRI marker in NMOSD and RRMS. 
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INTRODUCTION 

Age is an independent marker for disease progression in neuromyelitis optica spectrum disorder 

(NMOSD)1 and multiple sclerosis (MS)2, two major inflammatory demyelinating diseases of the 

central nervous system1,3. However, aging does not affect everyone in the same way, so researchers 

have sought biological markers of aging processes that may explain some of these individual 

differences and are more reflective of age-related disease processes. The so-called “brain age” 

paradigm has been designed to determine the brain’s biological age4, which can be estimated from 

anatomical brain MRI scans. By analyzing the similarity of a given brain scan with scans from a 

range of healthy individuals, machine-learning techniques can predict a person’s brain age from 

neuroimaging features, providing a novel way of indexing deviations from normal brain aging. 

Compared to calendar age, brain age may provide more comprehensive information for 

understanding disease impact in NMOSD and RRMS. 

The brain age gap (BAG) is the difference between calendar age and predicted brain age. BAG 

thus represents the deviation from an expected healthy aging trajectory. This MRI biomarker 

integrates structural alterations across the brain associated with the aging process.5,6 Previous studies 

have suggested that BAG is associated with various clinical risk factors and can be used for risk 

stratification of various neurological and psychiatric diseases including MS7. However, no one has 

investigated BAG in NMOSD patients and its ability to understand and predict EDSS worsening. 

In this study, we used a novel deep-learning brain age model to investigate the utility of BAG as 

a neuroimaging biomarker to predict EDSS worsening in NMOSD compared to RRMS in a large 

multicenter dataset. 
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METHODS 

Participants 

Data from NMOSD and RRMS patients were retrospectively collected from six tertiary 

neurological centers in China covering the period between Nov 2009 and Apr 2018. Patients who 

fulfilled the following criteria were included: (a) confirmed diagnosis of NMOSD according to 

2015 revised diagnostic criteria 8 or relapsing-remitting MS(RRMS) according to 2015 McDonald 

criteria; (b) complete demographic and clinical information, including baseline Expanded 

Disability Status Scale (EDSS) score and disease duration; and (c) good quality baseline 3D T1-

weighted structural images. Clinical evaluation, diagnosis, treatment, and follow-up assessments 

of the participants were conducted at each center by local neurologists with expertise in 

demyelinating diseases. EDSS worsening was defined as an increase in EDSS score ≥1.0 for 

baseline EDSS ≤5.5 or an increase in EDSS score ≥0.5 for baseline EDSS >5.5, as previously 

published 9. 

Data for deep-learning model training 

Training data for our deep-learning-derived brain age included MRI scans from healthy controls 

(HCs, n=9794) from publicly available datasets, including ADNI, AIBL10, GSP11 and SLIM12, as 

well as a group of healthy people scanned at Beijing Tiantan Hospital from January-December 

2019 (Supplementary Table 1, Supplementary Figure 1). After training, the model was tested 

on two further independent datasets. Internal validation data comprised another group of healthy 

participants (n=462) scanned at Beijing Tiantan Hospital from January-April 2020 on two 

different scanners (see Supplementary Table 1). The external validation dataset included healthy 

controls from the multicenter NMOSD and MS cohorts (n=267). 

Image acquisition and data preprocessing 

All the MRI images of participants as well as the validation dataset were acquired on 3.0T 

machines at near 1.0 mm isotropic resolution by MP-RAGE or similar sequences. Noncontrast 3D 

T1WI scans were affinely registered to MNI space. Skull stripping was performed by HD-BET on 

the registered scans13. The signal intensity of the resulting images was normalized by dividing by 

the mean intensity within the cerebral mask. Scans were then resampled to 1 mm isotropic 

resolution using linear interpolation and served as the input of the proposed convolutional neural 

network (CNN). 

Age at each scan was determined by either of two methods: 1) the demographic metadata (in 

years) provided by owners of the dataset; 2) calculated from the difference between date of birth 

and image acquisition date recorded in DICOM metadata, which was done in days and converted 

to years. Inconsistent data were omitted from the study. 

Brain volume measurement 

Brain volume segmentation was performed using the automated recon-all procedure in FreeSurfer 

package (version 6.0.0) as described by Fischl et al.14. The total brain volume was calculated and 



7  

normalized by dividing by the estimated total intracranial volume15. 

Model construction, training and prediction 

We built a 3D CNN called the 3D SFCN network as per the work of Peng and colleagues16. We 

modified the output structure so that the network could predict age across a larger range of 6-90 

years. Model training and mathematical details are described in the supplementary material. 

BAG was calculated by subtracting chronological age from predicted brain age, with a positive 

BAG indicating an older-looking brain. To investigate the possible influence of brain lesions on 

age prediction, we performed a correlation analysis between raw and lesion-filled 3D T1WI 

images. Lesion filling was performed by default pipeline of Lesion Segmentation Tool (LST, 

version 3.0.0, https://www.applied-statistics.de/lst.html). 

Statistical analysis 

Statistical analyses were conducted using R version 3.6.3. Graphs were plotted with ggplot2 

package. Intergroup comparison was conducted using the Chi-square test (for categorical 

variables), Wilcoxon signed-rank test (for EDSS) and student’s t-test or ANOVA with Tukey’s 

range test as post hoc analysis (for continuous variable). Survival analysis with Kaplan-Meier 

curve and Cox-proportional hazards model were used to analyze time-to-progression data. Other 

details are described in the supplementary material. All statistical tests were 2-sided, and p<0.05 

was considered statistically significant. 
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RESULTS 

Participants 

In total, 199 NMOSD patients, 200 RRMS patients, and 269 age- and sex-matched HC subjects 

were included (Table 1). Patients with NMOSD were older at baseline (41.0±13.0 yr versus 

37.1±11.4 yr, p=0.005), had a longer disease duration (4.5±5.1 yr versus 3.2±4.4 yr, p=0.006), and 

had less severe disability measured by EDSS at baseline (2.0 versus 3.5, p<0.001) than patients 

with RRMS. Of the NMOSD patients included, 52(26.1%) patients received disease-modifying 

therapy (DMT), others received immunosuppressants including cyclophosphamide, azathioprine, 

etc. In the RRMS group, 86(43.0%) patients received DMT, others received the above other 

treatment. 

Follow-up data were available for 85 NMOSD and 124 RRMS patients (median follow-up 

duration: 5.8±1.9 years and 5.2±1.7 years, respectively). During follow-up, 31 NMOSD patients 

and 42 RRMS patients experienced EDSS worsening. 

Table 1. Demographic characteristics, baseline status and deep-learning-derived brain age of 

participants.  

 NMOSD RRMS Healthy Controls p value 

Baseline 

N 199 200 269  

Age at baseline, yr [min-max] 41.0±13.0[16.9-

66.0] 

37.1±11.4[16.6-66.9] 38.5±12.7[17.0-69.0] NMOSD vs HC 

0.071 

RRMS vs HC 0.468 

NMOSD vs RRMS 
0.005 

 

Female, n (%) 176/199 (88.4) 128/200 (64.0) 152/269 (56.5) <0.001 

Seropositive for AQP4-IgG, n (%) 84/132 (63.6) - - - 

First onset to diagnosis, yr [min-

max] 

4.5±5.1[0.0-35.0] 3.2±4.4[0.0-21.0] - 0.006 

Baseline treatment with DMT, n 

(%) 

52(26.1%) 86(43.0%) - - 

EDSS at baseline, median (IQR) 

[min, max] 

2.0 (2.0) [0.0-9.0] 3.5 (3.0) [0.0-9.0] - <0.001 

Brain segmentation volume with-

out ventricles, ml [min-max] 

1058.9±94.4[798.7-

1390.1] 

1080.1±121.5[742.6-

1484.5] 

1154.6±98.5[910.7-

1434.0] 

NMOSD vs HC 

<0.001  

MS vs HC <0.001 

NMOSD vs RRMS 

0.108 

Normalized brain volume, [min-

max] 

0.750±0.038[0.647-

0.891] 

0.731±0.045[0.590-

0.858] 

0.765±0.030[0.700-

0.894] 

<0.001† 
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Continuous variables other than EDSS are reported as the mean ± standard deviation. EDSS are 

reported as the median (IQR).  

† For all pairwise comparisons, i.e. for NMOSD vs HC, RRMS vs HC and NMOSD vs RRMS.  

NMOSD: neuromyelitis optica spectrum disorder; MS: multiple sclerosis; EDSS: Expanded 

Disability Status Scale; IQR: Interquartile range; vs: versus. DMT: disease-modifying therapy. 

 

Brain morphometry of the participants 

Both the NMOSD and RRMS groups had lower brain volumes than the healthy controls 

(1080.1±121.5 ml and 1058.9±94.4 ml versus 1154.6±98.5 ml, both p<0.001). While the NMOSD 

and RRMS groups were not significantly different in raw brain volume (p=0.108), normalized 

brain volumes revealed less pronounced atrophy in NMOSD patients (0.750±0.038 versus 

0.731±0.045, p<0.001). The lesion load in the NMOSD group was lower than that in the RRMS 

group (4.9±8.1 ml versus 12.7±17.9 ml, p<0.001) (Table 1). 

Performance of the brain age prediction model 

Model training (using 9794 HCs) was terminated at epoch 108. The mean absolute error (MAE) 

before inverse linear bias correction was 2.63 years in the developmental validation set, and this 

model was used as the final model for further analysis. 

The model was then tested using 462 images for internal (across-scanner) validation and 267 

images for external validation (across-center). In the internal validation dataset, the MAE was 

2.9±3.1 years, with no significant difference across scanner types (p=0.581, n=2). The Pearson’s 

correlation coefficient (r) between age and brain age was 0.957. In the external validation set, the 

MAE was 4.5±3.9 years, and the Pearson’s r was 0.890. The MAE was not significantly different 

across different centers (p=0.660, n=5; Supplementary Table 2). 

Increased BAG in NMOSD and RRMS compared with healthy controls. 

The difference in BAG among NMOSD patients, RRMS patients, and HCs was relatively 

Total volume of lesion, ml [min-

max] 

4.9±8.1[0.0-43.9] 12.7±17.9[0.0-134.0] - <0.001† 

Deep-learning derived brain age 

Predicted brain age, yr (min-max) 46.4±16.0[18.8-

77.5] 

49.8±17.5[19.5-77.8] 39.3±13.7[14.8-73.8] <0.001† 

Brain age gap, yr (95% CI) 5.4±8.2 (4.3, 6.5) 13.0±14.7 (10.9, 15.0) 0.8±6.2 (0.1, 1.6) <0.001† 

Predicted brain age standard devi-

ation, yr (95% CI) 

6.0±3.0 (5.6, 6.5) 7.2±4.2 (6.6, 7.8) 4.8±1.1 (4.7, 4.9) <0.001† 

Follow up 

N with follow-up data, n (%) 85 (42.7) 124 (62.0) -  

Mean follow-up time, yr [min-

max]  

5.8±1.9[1.9-9.9] 5.2±1.7[1.5-9.2] - 0.020 

EDSS worsening, n (%) 31 (36.5) 42 (33.9) - 0.764 
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consistent across baseline chronological ages (Figure 1A). At baseline, patients with NMOSD had 

a significantly higher BAG than HCs (NMOSD - HC = 4.6 years, 95% CI 2.4-6.9, p<0.001), but 

patients with RRMS had a markedly higher BAG than HCs (MS - HC = 12.1 years, 95% CI 9.9-

14.3, p<0.001). BAG was lower in NMOSD than in RRMS (NMOSD -RRMS = -7.5 years, 95% 

CI 5.2-9.9, p<0.001). (Table 1, Figure 1B).  

Furthermore, we performed subgroup analysis of BAG in AQP4 seropositive versus 

seronegative NMOSD patients, as well as in NMOSD patients with versus without brain lesions. 

We demonstrated that there was no significant difference of BAG between the AQP-4 seropositive 

and seronegative subgroups (5.8±8.8 versus 4.2±6.9 years, p=0.256). However, BAG of patients 

with brain lesions was significantly higher than patients without brain lesions (7.1±8.5 versus 

3.4±7.2 years, p=0.001) (Supplementary Table 5). 

A significant difference in BAG across centers (p<0.001) was noted, although post hoc analysis 

revealed consistent trends in disease effects on BAG in all six centers (Figure 1C). Sample images 

and the corresponding output from both the NMOSD and RRMS groups were provided for better 

understanding (Figure 1D-G). 

The correlation between raw and lesion-filled 3D T1WI images was very high (R2=0.984, 

p<0.001, Supplementary Figure 3A). A Bland–Altman plot showed that the mean difference 

between raw and lesion-filled brain age was 0.28±2.11 years with no apparent systematic bias 

(Supplementary Figure 3B), indicating that the lesion filling process did not have a particular 

impact on the model. 

Correlation of BAG with clinical variables 

At baseline, univariate linear regression analysis demonstrated that BAG was positively 

associated with EDSS in both the NMOSD and RRMS groups (NMOSD r=0.217, β=0.86, 

p=0.002; RRMS r=0.268, β=2.31, p<0.001; Figure 2A). Normalized brain volume was inversely 

associated with BAG in both NMOSD and RRMS (NMOSD r=-0.202, β=-48.5, p<0.001; RRMS 

r=-0.384, β=-126.9, p<0.001; Figure 2B). Multivariable linear regression found that BAG was 

positively predictive of baseline EDSS independent of normalized brain volume and disease 

duration (NMOSD p=0.030; RRMS p=0.009; Supplementary Table 3). 

We performed 1:1 nearest neighbor propensity score matching (PSM)17 to exclude the possible 

confounding influence of clinical variables on BAG. This matching yielded adequate balance for 

all included coefficients. The mean BAG was 5.0±7.1 years in NMOSD and 11.1±12.7 years in 

RRMS after adjustment for sex, age at diagnosis, baseline EDSS, and normalized brain volume, 

with an estimated difference of -6.1 years [95% CI -8.7 to -3.4] years between NMOSD and 

RRMS (Table 2). 

Table 2. NMOSD patients exhibits lower brain age gap over RRMS adjusted for sex, age at diagnosis, 

baseline EDSS and normalized brain volume with propensity score matching.  

 NMOSD RRMS p value 
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N 119 119 - 

Age at diagnosis, yr 39.6±13.2 39.9±11.7 0.855 

Female, n (%) 96 (80.7) 97 (81.5) 1.000 

First onset to diagnosis, yr 3.8±4.0 3.5±5.1 0.661 

EDSS at baseline, median (IQR)  2.5 (2.0) 2.5 (2.0) 0.300 

Normalized brain volume 0.745±0.038 0.742±0.042 0.538 

Predicted brain age 44.5±15.5 50.0±16.9 0.008 

Brain age gap  5.0±7.1 11.1±12.7 <0.001 

Continuous variables other than EDSS are reported as the mean ± standard deviation. EDSS are 

reported as the median (IQR). 

NMOSD: neuromyelitis optica spectrum disorder; MS: multiple sclerosis; EDSS: Expanded 

Disability Status Scale; IQR: Interquartile range. 

 

The area under the curve (AUC) of the ROC for BAG in predicting progression was 0.599 in 

NMOSD and 0.670 in RRMS. The optimal cutoff of BAG was 6.1 (sensitivity 38.7%, specificity 

81.5%) for NMOSD and 24 (sensitivity 50.0%, specificity 80.5%) for RRMS (Supplementary 

Figure 4). Kaplan–Meier survival analysis indicated that BAG was predictive of progression in 

both groups. For NMOSD patients, the median time to progression for BAG > 6.1 years was 5.79 

years versus 7.99 years for BAG ≤ 6.1 years (p=0.003, Figure 2C). The median time to 

progression for BAG > 24.0 years was 5.36 years versus 8.95 years for BAG ≤ 24.0 years in 

RRMS patients (p=0.002, Figure 2D). 

 We utilized the Cox proportional hazards model to investigate whether BAG could be used to 

predict time to EDSS worsening independent of age at diagnosis, sex, disease duration, baseline 

EDSS and normalized brain volume. In univariate models, normalized brain volume and BAG 

were significantly associated with EDSS worsening in both NMOSD and RRMS patients (Table 

3, univariate model). In a multivariable model, BAG was associated with EDSS worsening in 

NMOSD patients (HR=1.02 [1.00, 1.04]). p=0.027, Table 3), independent of normalized brain 

volume (p=0.158). However, neither normalized brain volume nor BAG was significant in 

theRRMS group in multivariable analysis. Interestingly, we found baseline EDSS to be negatively 

associated with EDSS worsening in NMOSD (multivariable Model p=0.001, Table 3). 

Table 3. Univariable and multivariable Cox proportional hazards model analysis for predicting 

EDSS worsening by BAG, age at diagnosis, sex, duration between first onset to diagnosis, 

baseline EDSS and normalized brain volume.  

 Univariable Multivariable 

 NMOSD  RRMS NMOSD RRMS  

 Hazard Ratio p value Hazard Ratio p value Hazard Ratio p value Hazard Ratio p value 

N 85 124 85 124 

Number of events, 31 (36.5) 42 (33.9) 31 (36.5) 42 (33.9) 
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NMOSD: neuromyelitis optica spectrum disorder; MS: multiple sclerosis; EDSS: Expanded 

Disability Status Scale.  

 

Analysis of predicted standard deviation in brain age prediction. 

The predicted standard deviation was positively associated with BAG in all three groups (linear 

model p<0.001 in HC and NMOSD, p=0.011 in RRMS, Supplementary Figure 5A). The mean 

standard deviation in NMOSD was higher than HC and lower than RRMS (Supplementary Figure 

5B), which was consistent with the trend seen in BAG, indicating a higher model uncertainty in 

those images with greater discrepancy between apparent and chronological age. We examined 

scans with high model uncertainty and found that some of them could be attributed to low image 

quality or incomplete anatomical coverage (Supplementary Figure 5C), while others were not 

visually distinguishable from those with lower model uncertainty (Supplementary Figure 5D). To 

analyze whether the difference in BAG was driven by the difference in predicted standard 

deviation, we performed PSM with predicted standard deviation added as a covariate. The 

difference in BAG between NMOSD and RRMS, as well as NMOSD and RRMS versus HC, 

remained statistically significant after PSM adjusted for age, sex, duration to diagnosis, baseline 

EDSS, normalized brain volume and predicted standard deviation (p<0.001, Supplementary 

Table 4). 

  

n(%) 

Age at diagnosis, yr 1.04[1.00, 1.08] 0.032 0.99[0.96, 1.02] 0.540 1.02[0.98, 1.06] 0.398 -  

Sex=Male 0.52[0.07, 3.90] 0.527 1.23[0.65, 2.34] 0.523 -  -  

First onset to diagnosis, 

yr 

0.97[0.89, 1.05] 0.416 1.00[0.91, 1.11] 0.890 -  -  

EDSS at baseline 0.68[0.54, 0.85] <0.001 0.91[0.73, 1.12] 0.364 0.65[0.50, 0.83] 0.001 -  

Normalized brain vol-

ume (%) 

0.90[0.81, 1.00] 0.049 0.91[0.85, 0.98] 0.009 0.92[0.81, 1.04] 0.158 0.92 [0.85, 1.02] 0.107 

Brain age gap, yr 1.06[1.00, 1.13] 0.031 1.02[1.00, 1.04] 0.029 1.07[1.01, 1.14] 0.027 1.02 [0.98, 1.04] 0.633 
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DISCUSSION 

In this study, we developed a deep learning model to accurately predict age from 3D structural 

MRI scans and demonstrated its robustness in the context of multiple centers and MRI scanners. 

Using this model, the BAG was estimated to be approximately +5 years in NMOSD and +13 years 

in RRMS. Baseline BAG was independently predictive of  EDSS worsening in both NMOSD and 

RRMS, suggesting its additional clinical value as a noninvasive biomarker for early triage, 

stratified follow-up management and clinical trial enrollment. 

Previous nondeep learning studies on age prediction tasks reported 2.9- to 5.0-year MAEs on 

their validation sets7,18,19 (some of which included multimodality-derived features, including fMRI 

and DTI), while deep learning studies reported validation MAEs as low as 2.14 years, such as in 

the original SFCN study16. We reached similar performance levels of MAE = 2.5 years in the 

developmental validation set, and the performance was maintained in an internal test set, 

demonstrating the usefulness of our model and highlighting the versatility and potential of deep-

learning-based methods. We have also shown that the whole-brain CNN-based model was robust 

within scanners and centers, supporting the clinical use of the brain-age paradigm. 

BAG has been investigated extensively as a comprehensive biomarker for accelerated aging. 

Increased BAG has been observed in dementia20, epilepsy21 and traumatic brain injury22. We report 

for the first time the meaningfulness of BAG in NMOSD as well as the difference between NMOSD 

and RRMS. We found a BAG of 5.4 [95% CI 4.3 to 6.5] years in NMOSD patients, which, although 

lower than RRMS, is still marked compared to healthy controls. The degree of BAG increase in 

NMOSD is similar to what has been reported in epilepsy (4.5 years)21 and traumatic brain injury 

(4.7 years)22.   

BAG in NMOSD was positively associated with baseline EDSS score and whole-brain atrophy, 

with associations comparable to those in RRMS but with a generally less steep slope. BAG was also 

predictive of EDSS worsening in NMOSD, which is in line with the idea that BAG is a composite 

marker of abnormal aging and a disease-related brain. Furthermore, subgroup analysis of NMOSD 

patients demonstrated that BAG of patients with brain lesions was significantly higher than patients 

without brain lesions. This indicates that brain involvement may accelate brain aging in NMOSD 

patients. Future studies with larger sample size are required to validate this finding. 

In a recent study of brain age using Gaussian Processes (GP) regression on multiple sclerosis, the 

authors reported 11.9 [95% CI 10.3 to 13.4] years BAG in RRMS patients in the European 

MAGNIMS cohort7, which is consistent with our result of 13.0 [95% CI 10.9 to 15.0] years BAG 

in Chinese MS patients. Furthermore, increased BAG was predictive of EDSS worsening in MS, 

also consistent with previous work7. Even though we used a fundamentally different methodology 

and datasets, these results provide additional evidence for the usefulness of BAG in the evaluation 

of MS patients. Moreover, using deep learning can substantially shorten the runtime of the analysis 

pipeline. This acceleration in computation time is potentially of great benefit for widespread 

application in a clinical setting. 
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Comparing NMOSD and MS is difficult given the difference in confounding factors that may 

influence BAG. It has been reported previously that the atrophy patterns in NMOSD and MS are 

different. NMOSD exhibits more atrophy in the spinal cord but less atrophy in the brain23, which 

can partially explain the lower BAG in NMOSD given the strong association between BAG and 

brain atrophy. To address the influence of confounding effects such as demographics and brain 

volume, we used propensity score matching to sample a subset with matched baseline 

confounding factors. In this matched subset, the difference in BAG between NMOSD and MS was 

still significantly different even when matched for normalized brain volume. This finding indicates 

that the brains of RRMS patients appear older than those of NMOSD patients even at the same 

level of atrophy, implying that BAG can be seen as a global estimation that integrates information 

beyond simple brain volumetry while being more accessible and informative than tables of 

volumetric measurements. 

The uncertainty and distributional pattern of predicted brain age is an important field of research 

that has attracted little attention. A recent study modeled brain-age uncertainty with a single-layer 

neural network that addressed aleatoric uncertainty with quantile regression and epistemic 

uncertainty with the Monte Carlo drop-out technique24. In contrast to other studies that utilize 

quantile regression, the novel method in our study renders aleatoric uncertainty a natural derivative 

since the model output itself is a distribution instead of the point estimate used in previous studies4. 

Epistemic uncertainty was not derived in this study due to computational cost. Although the 

uncertainty correlated positively with BAG, the PSM analysis indicated that the BAG difference 

between NMOSD and RRMS remained statistically significant even after adjustment for predicted 

standard deviation. We observed that the predicted standard deviations were higher in those scans 

without enough information for brain age inference (i.e., low image quality, etc., and in those with 

a greater discrepancy between predicted and actual age. This observation suggests a potential use 

case for the predicted standard deviation. The quantification of individual-level uncertainty in this 

way could provide an integrated, intuitive metric for image quality control, especially in healthy 

people, as well as provide a measure of ‘confidence’ for applications in clinical contexts. 

Our study has a few limitations. First, the follow-up duration was relatively short, and the sample 

size of patients with follow-up was small, which may have introduced selection bias. Second, 

although previous studies have suggested the longitudinal utility of brain age in healthy cohorts6 

and accelerated aging measured by BAG has been observed in MS cohorts7, our cohort lacked 

sufficient follow-up assessments for this type of analysis. Finally, the interpretability of the results 

needs to be further improved; specifically, the anatomical meaning of brain age remains ill-defined. 

Deep-learning-based methods have been cast as ‘black boxes’; however, tools such as class 

activation mapping, guided backpropagation and occlusion analysis are emerging that aim to extract 

mechanistic information from the network.25 However, the translation of these methods to three-

dimensional data is complex, and they have yet to be validated for use in interpreting medical 

imaging data. Additionally, our study relied on 3D T1WI MRI, which is not always available in 

clinical contexts. Future work will take advantage of brain-age models developed to work on routine 

clinical 2D scans26. 
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In conclusion, NMOSD demonstrated a significant BAG compared with healthy controls, 

although less marked than RRMS. BAG is a predictive biomarker of EDSS worsening in both 

NMOSD and RRMS. 
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Figure 1. Deep learning derived brain age vs chronological age in neuromyelitis optica spectrum 

disease (NMOSD), multiple sclerosis (MS), and healthy control (HC). (A) Deep learning derived brain 

age vs chronological age in NMOSD, MS and HC group. Predicted brain age is consistently higher in 

NMOSD and MS group compared with HC group. (B) NMOSD patients exhibits lower brain age 

gap (BAG) over MS and lower BAG over HCs. (C) The difference of BAG across centers in 

NMOSD, MS and HC group. The tendency that MS-BAG > NMOSD-BAG > HC-BAG remains 

consistent even if there are significant differences across centers. (D, E, F, G) A sample input and 

prediction result of NMOSD and MS patient. Solid line indicates brain age estimation and dashed lines 

indicate standard deviation of prediction. The predicted brain age was 42.0±5.1 years for (D) and 

70.0±7.2 years for (E), yielding BAG of 6.0 years and 42.0 years namely. Both (D) and (E) experienced 

disability progression in follow-up sessions. Predicted brain age for (F) and (G) was 39.2±5.6 years and 

66.1±4.4 years yielding BAG of -1.8 years and 12.1 years namely. These patients with lower BAG 

didn’t experience disability progression within follow up period.  

Figure 2. Correlation of brain age gap (BAG) with clinical variables and its prognostic value. (A) 

Increased BAG was associated with more severe baseline disability status in both neuromyelitis 

optica spectrum disease (NMOSD), multiple sclerosis (MS), which was more prominent in MS 

patients. (B) Normalized brain volume was strongly negatively associated with BAG both in 

NMOSD and MS indicating possible contribution of atrophy in increased BAG. (C, D) Survival 

curve of BAG predicting disability progression in NMOSD and MS patients. Cutoff point was 

determined by 80% specificity. Operating cutoff point for for NMOSD is set to BAG > 6.1 

(sensitivity 38.7%, specificity 81.5%),MS is set to BAG > 24.0(sensitivity 50.0%, specificity 

80.5%).  


