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Abstract 51 

The COVID-19 pandemic has been severely impacting global society since December 2019. The related 52 

findings such as vaccine and drug development have been reported in biomedical literature – at a rate of 53 

about 10,000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation 54 

and interpretation. For instance, LitCovid is a literature database of COVID-19-related articles in PubMed, 55 

which has accumulated more than 200,000 articles with millions of accesses each month by users 56 

worldwide. One primary curation task is to assign up to eight topics (e.g., Diagnosis and Treatment) to the 57 

articles in LitCovid. The annotated topics have been widely used for navigating the COVID literature, 58 

rapidly locating articles of interest, and other downstream studies. However, annotating the topics has 59 

been the bottleneck of manual curation. Despite the continuing advances in biomedical text mining 60 

methods, few have been dedicated to topic annotations in COVID-19 literature. To close the gap, we 61 

organized the BioCreative LitCovid track to call for a community effort to tackle automated topic 62 

annotation for COVID-19 literature. The BioCreative LitCovid dataset – consisting of over 30,000 articles 63 

with manually reviewed topics – was created for training and testing. It is one of the largest multi-label 64 

classification datasets in biomedical scientific literature. Nineteen teams worldwide participated and 65 

made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest 66 

performing submissions achieved 0.8875, 0.9181, and 0.9394 for macro F1-score, micro F1-score, and 67 

instance-based F1-score, respectively. Notably, these scores are substantially higher (e.g., 12%, higher for 68 

macro F1-score) than the corresponding scores of the state-of-art multi-label classification method. The 69 

level of participation and results demonstrate a successful track and help close the gap between dataset 70 

curation and method development. The dataset is publicly available via 71 

https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further development. 72 

  73 
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Introduction 74 

The rapid growth of biomedical literature poses a significant challenge for manual curation and 75 

interpretation [1-3]. This challenge has become more evident during the COVID-19 pandemic: the 76 

number of COVID-19-related articles in the literature is growing by about 10,000 articles per month; the 77 

median number of new articles per day since May 2020 is 319, with a peak of over 2,500; and this volume 78 

accounts for over 7% of all of PubMed articles [4].  79 

In response, LitCovid [5, 6], the first-of-its-kind COVID-19-specific literature resource, has been developed 80 

for tracking and curating COVID-19 related literature. Every day, it triages COVID-19-related articles from 81 

PubMed, categorizes the articles into research topics (e.g., prevention measures), and recognizes and 82 

standardizes the entities (e.g., vaccines and drugs) mentioned in each article. The collected articles and 83 

curated data in LitCovid are freely available. Since its release, LitCovid has been widely used with millions 84 

of accesses each month by users worldwide for various information needs, such as evidence attribution, 85 

drug discovery, and machine learning [6]. 86 

Initially, data curation in LitCovid was done manually with little machine assistance. The rapid growth of 87 

the COVID-19 literature significantly increased the burden of manual curation, especially for topic 88 

annotations [6]. Topic annotation in LitCovid is a standard multi-label classification task that assigns one 89 

or more labels to each article. A set of eight topics are selected for annotation based on topic modeling 90 

and discussions with physicians aiming to understand COVID-19, such as the Transmission topic, which 91 

describes the characteristics and modes of COVID-19 transmissions. The annotated topics have been 92 

demonstrated to be effective for information retrieval and have been widely used in many downstream 93 

applications. Topic-related searching and browsing account for ~20% of LitCovid user behaviors, making it 94 

the second most-used feature in LitCovid [6]. The topics have also been used in downstream studies such 95 

as citation analysis and knowledge network generation [7-9]. Figure 1 shows the characteristics of topic 96 

annotations in LitCovid. 97 

 98 

Figure 1. Characteristics of topic annotations in LitCovid up to Feb 2022. Figure 1(A) shows the frequencies of topics; 99 
Figure 1(B) demonstrates topic co-occurrences; and Figure 1(C) illustrates the distributions of the number of topics 100 
assigned per document. 101 
 102 

However, annotating topics in LitCovid has been a primary bottleneck for manual curation. Compared to 103 

other curation tasks in LitCovid (document triage and entity recognition), topic annotation is more 104 

difficult due to requiring interpretation of the biomedical literature and assigning up to eight topics. As an 105 



example of the language variation that must be addressed, we provide the following five sentence 106 

snippets reflecting the treatment topic: (1) ‘…as a management option for COVID-19-associated 107 

diarrhea…’ (PMID34741071), (2) ‘…modulating these factors may impact in guiding the success of 108 

vaccines and clinical outcomes in COVID-19 infections…’ (PMID34738147), (3) ‘…lung ultrasound 109 

abnormalities are prevalent in patients with severe disease, RV involvement seems to be predictive of 110 

outcomes…’ (PMID34737535), (4) ‘…common and virus-specific host responses and vRNA-associated 111 

proteins that variously promote or restrict viral infection…’ (PMID34737357), and (5) ‘…the unique ATP-112 

binding pockets on NTD/CTD may offer promising targets for design of specific anti-SARS-CoV-2 molecules 113 

to fight the pandemic…’ (PMID34734665). Although these sentence snippets all describe treatment-114 

related information, they use rather different vocabularies and structures. While automatic approaches 115 

have been developed to assist manual curation in LitCovid, the evaluations show that the automatic topic 116 

annotation tool has an F1-score of 10% lower than the tools assisting other curation tasks in LitCovid [6]. 117 

Increasing the accuracy of automated topic prediction in COVID-19-related literature would be a timely 118 

improvement beneficial to curators, biomedical researchers, and healthcare professionals. 119 

To this end, we organized the BioCreative LitCovid track to call for a community effort to tackle 120 

automated topic annotation for COVID-19 literature. BioCreative, established in 2003, is the first and 121 

longest-running community-wide effort for assessing biomedical text mining methods [10]. Previous 122 

BioCreative challenges have successfully organized tracks on a range of biomedical text mining 123 

applications such as relation extraction [11] and entity normalization [12].  124 

This article provides an extended overview from [13] on the BioCreative LitCovid track. It substantially 125 

describes (1) the dataset annotation characteristics, (2) detailed methods from the participating teams, 126 

and (3) in-depth evaluation results. Overall, 19 teams submitted 80 runs, and ~75% of the submissions 127 

had better performance than the baseline method [14]. The dataset and evaluation scripts are available 128 

via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ and 129 

https://github.com/ncbi/biocreative_litcovid, respectively. We encourage further work to develop multi-130 

label classification methods for biomedical literature. 131 

 132 
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Dataset, baselines, and evaluation measures 134 

The overall LitCovid curation pipeline 135 

The LitCovid curation pipeline has three primary modules: (1) document triage, identifying COVID-19 136 

related articles from new articles in PubMed, (2) topic classification, assigning up to eight topics to the 137 

COVID-19 related articles (i.e., a multi-label classification task), and (3) entity recognition, extracting 138 

chemicals and locations mentioned in these articles. Initially, the curation was done manually with little 139 

machine assistance by two (part-time) human curators with a background in biomedical data sciences. As 140 

the outbreak evolved, we developed automated approaches to support manual curation and maximize 141 

curation productivity to keep up with the rapid literature growth. The detailed implementation and 142 

evaluation of the automated approaches are fully described in the description of the LitCovid resource 143 

[6]. In summary, all automated methods were evaluated before first use and have been improved 144 

continuously. The evaluations demonstrated that automated methods can achieve exceptionally high 145 

performance for document triage and entity recognition (e.g., the F1 scores were 0.99 and 0.94 for 146 

document triage and entity recognition, respectively). In contrast, the F1 score of the topic classification 147 

was 0.80, largely due to the complexity of the multi-label classification task, which assigns up to eight 148 

topics. We therefore organized this to call for a community effort to tackle automated topic annotation 149 

for COVID-19 literature.  150 

Topic annotations in LitCovid 151 

The topic annotation step assigns up to eight topics to the COVID-19 related articles:  152 

1. Case Report: descriptions of specific patient cases related to COVID-19,  153 

2. Diagnosis: COVID-19 assessment through symptoms, test results, and radiological features for COVID-154 

19,  155 

3. Epidemic Forecasting: estimation on the trend of COVID-19 spread and related modeling approach,  156 

4. General Information: COVID-19 related brief reports and news, 157 

5. Mechanism: underlying cause(s) of covid-19 infections and transmission and possible drug 158 

mechanism of action,  159 

6. Prevention: prevention, control, mitigation, and management strategies,  160 

7. Transmission: characteristics and modes of COVID-19 transmissions, 161 

8. Treatment: treatment strategies, therapeutic procedures, and vaccine development for COVID-19.  162 

Note that by design Case Report and General Information are singleton topics, i.e., not co-assigned with 163 

other topics. This is due to their broad scope, e.g., a case report typically also contains diagnostic 164 

information.  165 

Topics are annotated mainly based on titles and abstracts of the papers; the curators may also look for 166 

other information such as full-text and Medical Subject Headings (MeSH) when needed. Previous studies 167 

have shown that many COVID-19 articles published in PubMed without abstract information are not 168 

descriptions of formal research studies but rather commentary or perspective [15]. We also find that 169 

automatic topic annotation methods achieve 10% higher F1-score on articles with abstracts available [6]. 170 

Since late August 2020, we have prioritized annotating topics for the articles with abstracts available in 171 

PubMed, when the number of daily new articles reached a record high of over 2500. 172 



Table 1. BioCreative LitCovid dataset characteristics in comparison with representative multi-label classification 173 
datasets on biomedical scientific literature. Note that the Chemical Exposure dataset does not provide dataset 174 

splits. 175 

 Dataset scale Label scale 
Annotator 

scale 

 Total 
documents 

Train Valid Test Total labels Avg labels 
per doc 

Unique 
labels 

Annotators 

Hallmarks 
of Cancer 
[16] 

1,580 1,108 157 315 2,469 1.56 10 1 

Chemical 
Exposure 
[17] 

3,661 - - - 21,233 5.80 32 1 

BioCreative 
LitCovid 
(ours) 

33,699 24,960 6,239 2,500 46,368 1.38 7 2 

 176 

Table 2. Detailed topic annotation characteristics. Note that the General Information topic is excluded as the 177 
annotation priority is given to the articles with abstracts available in PubMed.  178 

 Train Valid Test All 

 #Articles Label (%) #Articles Label (%) #Articles Label (%) #Articles Label (%) 

Case Report 2,063  (8.27%) 482  (7.73%) 197  (7.88%) 2,742  (8.14%) 

Diagnosis  6,193  (24.81%) 1,546  (24.78%) 722  (28.88%) 8,461  (25.11%) 

Epidemic Forecasting  645  (2.58%) 192  (3.08%) 41  (1.64%) 878  (2.61%) 

Mechanism  4,438  (17.78%) 1,073  (17.2%) 567  (22.68%) 6,078  (18.04%) 

Prevention  11,102  (44.48%) 2,750  (44.08%) 926  (37.04%) 14,778  (43.85%) 

Transmission  1,088  (4.36%) 256  (4.1%) 128  (5.12%) 1,472  (4.37%) 

Treatment  8,717  (34.92%) 2,207  (35.37%) 1,035  (41.4%) 11,959  (35.49%) 

 179 

Table 3. Inter-annotator agreement on a random sample of 200 articles. Note that the General Information topic is 180 
excluded as the annotation priority is given to the articles with abstracts available in PubMed. 181 

Topic 
Size 

(percentage) 
Pearson 

correlation 

Case report 15 (7.50%) 0.90 

Diagnosis 37 (18.50%) 0.71 

Epidemic Forecasting 5 (2.50%) 0.51 

Mechanism 35 (17.50%) 0.72 

Prevention 94 (47.00%) 0.84 

Transmission 4 (2.00%) 0.66 

Treatment 66 (33.00%) 0.77 

Macro-average - 0.73 

Micro-average - 0.78 

 182 

Dataset characteristics 183 

Table 1 summarizes the dataset characteristics in terms of the scale of the dataset, labels, and 184 

annotators. It also compares the dataset with representative counterparts. There are only a few existing 185 

multi-label classification datasets for biomedical scientific literature, and their size is relatively small. The 186 



Hallmarks of Cancer dataset [16] has been widely used for multi-label classification methods, which has 187 

about ~1,600 documents. Another dataset on chemical exposure assessment [17] has ~3,700 documents. 188 

In contrast, The BioCreative LitCovid dataset has ~34,000 documents in total, which is nearly 10 times 189 

larger. The training, development, and testing sets contain 24,960, 6,239, and 2,500 articles in LitCovid, 190 

respectively. Table 2 shows the detailed topic distributions of the dataset. The topics were assigned using 191 

the above annotation approach consistently. All the articles contain both titles and abstracts available in 192 

PubMed and have been manually reviewed by curators. The only difference is that the datasets do not 193 

contain the General Information topic since the priority is given to the articles with abstracts available in 194 

PubMed. The training and development datasets were made available on June 15, 2021, to all participant 195 

teams. The testing set contains held-out articles added to LitCovid from June 16 to August 22, 2021. Using 196 

incoming articles to generate the testing set facilitates the evaluation of the generalization capability of 197 

automatic tools. 198 

In addition, most existing multi-label datasets on biomedical literature were annotated by a single 199 

curator, which does not allow inter-annotator agreement to be measured. A random sample of 200 200 

articles in LitCovid was used to measure inter-annotator agreement, and two curators annotated each 201 

article independently. Table 3 shows that the micro-average of Pearson correlation of the curators across 202 

the seven topics is 0.78, which can be interpreted as ‘strong correlation’ [18]. The distribution of the 203 

topics in the random sample is also consistent with that of the entire dataset. Given the scale of the 204 

dataset, the curator each annotated half of the remaining dataset and discussed difficult cases together. 205 

Baseline method 206 

We chose ML-Net [14] as the baseline method. ML-Net is a deep learning framework specifically for 207 

multi-label classification tasks for biomedical literature. It has achieved favorable state of the art (SOTA) 208 

performance in a few biomedical multi-label text classification tasks and its source code is publicly 209 

available [14]. ML-Net first maps texts into high dimensional vectors through deep contextualized word 210 

representations (ELMo) [19], and then combines a label prediction network and label count prediction to 211 

infer an optimal set of labels for each document. We ran ML-Net with ten different random seeds and 212 

reported the median performance. 213 

Evaluation measures 214 

Evaluation measures for multi-label classification tasks can be broadly divided into two groups: (1) label-215 

based measures, which evaluate the classifier’s performance on each label, and (2) instance-based 216 

measures (also called example-based measures), which aim to evaluate the multi-label classifier’s 217 

performance on each test instance [20-22]. Both groups have unique strengths and complement each 218 

other: label-based measures quantify the effectiveness of each individual label, whereas instance-based 219 

measures quantify the effectiveness of instances which may contain multiple labels. We employed 220 

representative metrics from both groups to provide a broader evaluation of the performance. Specifically, 221 

for label-based measures, we calculated macro and micro averages on Precision, Recall, and F1-score. The 222 

macro-average computes the arithmetic average by considering all the topics equally regardless of the 223 

number of instances per class whereas  the micro-average computes the weighted average according to 224 

the number of instances. For instance-based measures, we calculated instance-based Precision, Recall, 225 

and F1-score. Out of these nine metrics, we focus on the three F1-scores because these aggregate both 226 

Precision and Recall. 227 



 228 

 229 

 230 

Table 4. Team participation details, ordered alphabetically by team name. 231 

Team name Team affiliation 
Submissions 

Bioformer Children's Hospital of Philadelphia 
5 

BJUT-BJFU 
Beijing University of Technology and Beijing 
Forestry University 

5 

CLaC Concordia University 
4 

CUNI-NU  Navrachana University and Charles University 
5 

DonutNLP 
Taipei Medical University, Taipei Medical University 
Hospital, and National Tsing Hua University 

5 

DUT914 Dalian University of Technology  
3 

E8@IJS Jozef Stefan Institute 3 

ElsevierHealthSciences Elsevier 1 

FSU2021 Florida State University 5 

ittc University of Melbourne and RMIT University 
4 

KnowLab 
University of Edinburgh and University College 
London 

5 

LIA/LS2N Avignon Université 
4 

LRL_NC Indian Institute of Technology Delhi 
5 

Opscidia Opscidia 5 

PIDNA Roche Holding Ltd 3 

polyu_cbsnlp 
The Hong Kong Polytechnic University and Tencent 
AI Lab 

5 

robert-nlp 
Bosch Center for Artificial Intelligence and Bosch 
Global 

5 

SINAI Universidad de Jaén 4 

TCSR Tata Consultancy Services 4 

 232 

 233 
Table 5. Systems and performance. The systems are categorized in terms of additional training data and knowledge 234 

sources, backbone models, and methods. The best performance in terms of each metric is also reported. 235 
Team name Systems Best performance 

 

Additional 

training data 

and knowledge 

sources 

Models and methods 

 

Micro F1 Macro F1 Instance 

F1 



Bioformer - BioBERT, PubMedBERT, and 

Bioformer 

0.9181 0.8875 0.9334 

BJUT-BJFU - FastText, TextRCNN, TextCNN, 

Transformer, and correlation 

learning 

0.8556 0.7847 0.8701 

CLaC DrugBank and 

MeSH 

Multi-input RIM model and 

ClinicalBERT 

0.8897 0.8487 0.9102 

CUNI-NU - SciBERT, dual attention 

modules, and Label-Wise-

Attention-Network 

0.8959 0.8673 0.9153 

DonutNLP - BioBERT and ensemble 

learning 

0.9174 0.8754 0.9346 

DUT914 - BioBERT and label feature 

enhancement module 

0.9175 0.8760 0.9394 

E8@IJS - Autoboot and doc2vec 0.8430 0.7382 0.8518 

FSU2021 - PubMedBERT and multi-

instance learning 

0.9067 0.8670 0.9247 

ITTC - SVM, SciBERT, Specter, 

BioELECTRA, and ensemble 

learning 

0.9000 0.8669 0.9185 

KnowLab Back translation 

(to German), 

keywords, 

journals, UMLS, 

MeSH, SJR 

journal 

categories 

BlueBERT-Base, PubMedBERT, 

JMAN, HLAN, HA-GRU, HAN, 

CNN, LSTM, and ensemble 

learning 

0.8932 0.8601 0.9169 

LIA/LS2N - TARS transformer, few-shot 

learning, and TF-IDF 

0.8830 0.8366 0.9094 

LRL_NC - Co-occurrence learning, TF-

IDF, and LGBM 

0.8568 0.7742 0.8830 

Opscidia - BERT, data augmentation, and 

ensemble learning 

0.9135 0.8824 0.9296 

polyu_cbsnlp MeSH BioBERT-Base, BioBERT-Large, 

PubMedBERT, CovidBERT, 

BioELECTRA, BioM-ELECTRA, 

BioMed_RoBERTa, and 

ensemble learning 

0.9139 0.8749 0.9319 

robert-nlp Publication type, 

keywords, and 

journals 

SciBERT 0.9032 0.8655 0.9251 

SINAI Synonyms from 

WordNet 

Logistic regression and TF-IDF  0.8254 0.7643 0.8086 



TCSR Biomedical 

entities 

BioBERT and ensemble 

learning 

0.8495 0.7896 0.8845 

 236 

Results and discussions 237 

Participating teams 238 

Table 4 provides details on the participating teams and their number of submissions. Each team is 239 

allowed to submit up to five test set predictions. Overall, 19 teams submitted 80 valid testing set 240 

predictions in total. 241 

System descriptions 242 

Out of 19 teams, 17 teams agreed to participate in the track overview and described their approaches. 243 

Table 5 summarizes their methods and associated performance. The full detail is further provided in Table 244 

S1. Overall, we notice that the transformer approach has been used extensively: 14 out of the 17 teams 245 

(82.3%) used transformers purely (nine teams) and a combination of transformers and other traditional 246 

deep learning approaches (five teams). In contrast, only two teams used deep learning approaches 247 

besides transformers only, and two teams used machine learning approaches only. This is different from 248 

previous BioCreative challenge tasks, where most teams used machine learning approaches or a 249 

combination of machine learning and deep learning techniques [11, 23-26]. In addition, of the 14 teams 250 

using the transformer approach, seven teams (50%) proposed innovative methods beyond the default 251 

approach (fine-tuning the transformers). For instance, the Bioformer team proposed a lightweight 252 

transformer architecture which reduces the number of parameters by two thirds (the detail is 253 

summarized in [27]); the DUT914 team proposed an enhanced transformer model which learns the 254 

correlations between labels for the multi-label classification task (the detail is summarized in [28]). Such 255 

innovative approaches demonstrated superior performance and achieved top-ranked results. In addition, 256 

six teams (35%) used additional data (beyond titles and abstracts) for training the models, including 257 

metadata (e.g., paper types and journals), entity annotations (e.g., UMLS [29] and DrugBank [30]), and 258 

synonyms (e.g., WordNet [31]). The individual approaches are detailed below.  259 

Bioformer team [27] 260 

We performed topic classification using three BERT models: BioBERT [32], PubMedBERT [33], and 261 

Bioformer (https://github.com/WGLab/bioformer/). For BioBERT, we used BioBERTBase-v1.1, which is the 262 

version described in the publication [32]. PubMedBERT has two versions: one version was pre-trained on 263 

PubMed abstracts (denoted by PubMedBERTAb in this study), and the other version was pre-trained on 264 

PubMed abstracts plus PMC full texts (denoted by PubMedBERTAbFull). We used Bioformer8L, which is 265 

pretrained on PubMed abstracts and one million PMC full-text articles for 2 million steps. We formulated 266 

the topic classification task as a sentence pair classification problem where the title is the first sentence 267 

and the abstract is the second sentence. The input is represented as “[CLS] title [SEP] abstract [SEP].” The 268 

representation of the [CLS] token in the last layer was used to classify the relations. We utilized the 269 

sentence classifier in the transformers python library to fine-tune the models. We treated each topic 270 

independently and fine-tuned seven different models (one per topic). We fine-tuned each BERT model on 271 

the training dataset for three epochs. The maximum input sequence length was fixed to 512. We selected 272 

a batch size of 16 and a learning rate of 3e-5. 273 



BJUT-BJFU team [34] 274 

We combined the training and development sets to create our training set, which we further grouped 275 

into ten disjoint subsets with nearly equal size and similar label distribution using the stratification 276 

method in Sechidis et al. [35]. Our method takes advantage of four powerful deep learning models: 277 

FastText [36], TextRCNN [37], TextCNN [38] , and Transformer [39]. We also consider the correlations 278 

among labels [40]. 279 

CLaC team [41] 280 

We used a multi-label classification approach, where a base network (shared by several classifiers) is 281 

responsible for representation learning for all classes. Although the classes might be related, different 282 

classes often require focus on different parts of the input. To allow a differential focus on the input, we 283 

used the multi-input RIM model [42] with 7 class modules, one for each class, each using ClinicalBERT [43] 284 

as input. We also used a gazetteer module for leveraging annotations from DrugBank [30] and MeSH [44]. 285 

The modules sparsely interact with one another through an attention bottleneck, enabling the system to 286 

achieve compositional behavior. The proposed model improves all classes, especially the two least 287 

frequent classes, Transmission and Epidemic forecasting. Moreover, the functionality of the modules is 288 

transparent for inspection [45]. 289 

CUNI-NU team [46] 290 

Our approach implemented the SPECTER model [47], which incorporates SciBERT [48] to produce the 291 

document-level embedding using citation-based transformers. SciBERT can decipher the dense 292 

biomedical vocabulary in the COVID-19 literature, making it a valuable choice. Furthermore, we used a 293 

dual attention module [39], consisting of two self-attention layers applied to the embeddings in 294 

sequential order. These self-attention layers allow each input to establish relationships with other 295 

instances. To obtain unique vectors, i.e., query (Q), key (K), and value (V), three individually learned 296 

matrices are multiplied with the input vector. A single self-attention layer can learn the relationship 297 

between contextual semantics and sentimental tendency information. The dual self-attention mechanism 298 

helps retain more information from the sentence and thus generates a more representative feature 299 

vector. However, the dual self-attention mechanism can only generate relationships amongst the input 300 

instances while completely discarding the output. A Label-Wise-Attention-Network (LWAN) [49] is used to 301 

improve the results further and overcome the limitation of dual-attention. LWAN provides attention to 302 

each label in the dataset and improves individual word predictability by paying special attention to the 303 

output labels. It uses attention to allow the model to focus on specific words in the input rather than 304 

memorizing the essential features in a fixed-length vector. Label-wise attention mechanism repeatedly 305 

applies attention L (number of labels) times, where each attention module is reserved for a specific label. 306 

Weighted binary cross-entropy is used as a loss function. This loss function was most appropriate as it 307 

gives equal importance to the different classes during training, which was necessary due to the significant 308 

imbalance in the data. Thus, this approach overcame the significant imbalance amongst class labels and 309 

attained extensive results on labels like Case study, Epidemic forecasting, Transmission, and Diagnosis. 310 

DonutNLP team [50] 311 

We proposed a BERT-based Ensemble Learning Approach to predict topics for the COVID-19 literature. To 312 

select the best BERT model for this task, we conducted experiments estimating the performance of 313 



several BERT models using training data. The results demonstrate that BioBERTv1.2 achieved the best 314 

performance out of all models. We then used ensemble learning with a majority voting mechanism to 315 

integrate multiple BioBERT models, which are selected by the results of k-fold cross-validation. Finally, our 316 

proposed method can achieve remarkable performances on the official dataset with precision, recall, and 317 

F1-score of 0.9440, 0.9254, and 0.9346, respectively. 318 

DUT914 team [28] 319 

We designed a feature enhancement approach to address the problem of insufficient features in medical 320 

datasets. First, we extract the article titles and the abstracts from the dataset. Then the article title and 321 

the abstract are concatenated as the first input part. We only take the article titles as the second input 322 

part. Additionally, we count the distribution of labels in the training set and design a tag association 323 

matrix based on the distribution. Second, we process the features to achieve feature equalization. The 324 

first input part is tokenized and then encoded by the pretrained model BioBERT [32]. The second input 325 

part is embedded randomly. Then, we concatenate the processed features and the tokenization of the 326 

title to obtain the equalized features. Finally, we design a feature enhancement module to integrate the 327 

previously obtained label features into the model. We multiply the equalized features by the label matrix 328 

to obtain the final output vector used for classification. 329 

E8@IJS team [51] 330 

Our approach [51] used the autoBOT (automated Bag-Of-Tokens) system by Škrlj et al. [52] with some 331 

task-specific modifications. The main idea of the autoBOT system is representation evolution by learning 332 

the weights of different representations, including token, sub-word, and sentence-level (contextual and 333 

non-contextual) features. The system produces a final representation that is suitable for the specific task. 334 

First, we transformed the multi-label classification task into a binary classification problem by treating 335 

each assignable topic as a binary classification. Next, we developed three configurations of the autoBOT 336 

system. The first configuration Neural includes two doc2vec-based latent representations, each with a 337 

dimensionality of 512. The second configuration, Neurosymbolic-0.1, includes both symbolic and sub-338 

symbolic features, where the symbolic features include features based on words, characters, part-of-339 

speech tags, and keywords; the dimension of the symbolic feature subspaces is 5,120. The third 340 

configuration, Neurosymbolic-0.02, has symbolic and sub-symbolic features, the same as the second 341 

configuration, but the dimensionality of the symbolic feature subspaces is 25,600. 342 

Even if the organizers’ baseline model [14] has better performance in most of the metrics, the 343 

Neurosymbolic-0.1 configuration of the autoBOT system achieves label-based micro- and macro- 344 

precision of 0.8930 and 0.9175, respectively, by which it outperforms the baseline system (for 8 345 

percentage points in terms of macro precision). Moreover, by our results of label-based F1-score (micro) 346 

of 0.8430 (Neurosymbolic-0.02 configuration) and F1-score (macro) of 0.7382 (Neural configuration), the 347 

system has results comparable to the state-of-the-art baseline system (cca. 2% below), which indicates 348 

that autoML is a promising path for future work. 349 

FSU2021 team [53] 350 

In our participation in the BioCreative VII LitCovid track, we evaluated several deep learning models built 351 

on PubMedBERT, a pre-trained language model, with different strategies to address the challenges of the 352 

task. Specifically, we used multi-instance learning to deal with the large variation in the lengths of the 353 



articles and used the focal loss function to address the imbalance in the distribution of different topics. 354 

We also used an ensemble strategy to achieve the best performance among all the models. Test results of 355 

our submissions showed that our approach achieved a satisfactory performance with an F1 score of 356 

0.9247, which is significantly better than the baseline model (F1 score: 0.8678) and the average of all the 357 

submissions (F1 score: 0.8931). 358 

ITTC team [54] 359 

Team ITTC combined traditional bag-of-words classifiers such as their implementation of MTI ML (a linear 360 

SVM model using gradient descent and the modified Huber loss [55, 56], available at 361 

https://github.com/READ-BioMed/MTIMLExtension), and neural models including SciBERT [48], Specter 362 

[47] and BioELECTRA [57]. We combined these into two ensemble methods: averaging across the results 363 

of SciBERT, MTI ML, and Specter, on the one hand, and taking the maximum of scores assigned by 364 

SciBERT and MT ML, on the other. The reason for such ensembles was that SciBERT tended to give high 365 

scores to well-represented categories such as Treatment while assigning scores close to zero for weaker 366 

classes such as Transmission, so its performance varied greatly depending on the composition of the test 367 

set. Conversely, Specter and MTI ML were more conservative but assigned more scores close to 0.5 even 368 

for underrepresented labels which improved precision for difficult categories. The ensemble based on the 369 

maximum value proved to be an effective strategy for recall, while averaging improved precision, 370 

especially for under-represented and challenging categories, which led to very strong macro precision 371 

results. 372 

KnowLab team [58] 373 

KnowLab group applied deep-learning based document classification models, including BlueBERT-Base 374 

[59] and PubMedBERT [33], JMAN [60], HLAN [61], HA-GRU [62], HAN [63], CNN [38], LSTM [64], etc., and 375 

each with a different combination of metadata (title, abstract, keywords, and journal name), knowledge 376 

sources (UMLS, MeSH, and SJR journal categories), pre-trained embeddings, and data augmentation with 377 

back translation (to German). A class-specific ensemble averaging of the top-5 models was then applied. 378 

The overall approach achieved micro-F1 scores of 0.9031 on the validation set and 0.8932 on the test set. 379 

LIA/LS2N team [65] 380 

We addressed the multi-label topic classification problem by combining an original keyword 381 

enhancement method with the TARS transformer-based approach [66] designed to perform few-shot 382 

learning. This model has first the advantage of not being constrained by the class number using a binary-383 

like classification. Second, it tries to integrate the semantic information of the targeted class name in the 384 

training process by linking it to the content. Our best system architecture then uses a TARS model fed 385 

with various textual data sources such as abstracts, titles, and keywords. Then, we applied a keyword-386 

based enhancement that consists in applying a first term frequency-inverse document frequency (TF-IDF) 387 

pass on the data to extract the specific terms of each topic with a score greater than 0.65. These terms 388 

are then framed by tags [67], the idea being to explicitly give more importance to these terms during 389 

their modeling by the TARS model. Experiments conducted during the BioCreative challenge on the multi-390 

label classification task show that our approach outperforms the baseline (ML-Net), no matter the metric 391 

considered, while being close to the best challenge approaches. 392 

LRL_NC team [68] 393 

https://github.com/READ-BioMed/MTIMLExtension


We propose two main techniques for this challenge task. The first technique is a data-centric approach 394 

which uses insights on label co-occurrence patterns from the training data to segment the given problem 395 

into sub-problems. The second technique uses document-topic distribution extracted from contextual 396 

topic models as features for a binary relevance multi-label classifier. The best performance across 397 

different metrics was obtained using the first technique with TF-IDF representation of the raw text corpus 398 

as features. To solve each of these multi-label classification sub-problems, Random k-Labelsets (RAKEL) 399 

classifier [69]  was used with LGBM [70] as base estimator. 400 

Opscidia team [71] 401 

We propose creating an ensemble model by aggregating the sub-models at the end of each fine-tuning 402 

epoch with a weighting related to the Hamming loss. These models, based on BERT, are first pre-trained 403 

on heterogeneous corpora in the scientific domain. The resulting meta-model is fed with several semi-404 

independent samples augmented by random masking of COVID-19 terms, the addition of noise, and the 405 

replacement of expressions with similar semantic features. While it is resource intensive if used directly, 406 

we consider its purpose to be distilling its rich new representation into a faster model. 407 

polyu_cbsnlp team [72] 408 

We propose an ensemble learning-based method that utilizes multiple biomedical pre-trained models. 409 

Specifically, we propose to ensemble seven advanced pre-trained models for the LitCovid multi-label 410 

classification problem, including BioBERT-Base [32], BioBERT-Large [32], PubMedBERT [33], CovidBERT 411 

[73], BioELECTRA [57], BioM-ELECTRA [6], and BioMed_RoBERTa [74], respectively. The homogeneous 412 

and heterogeneous neural architectures of these pretraining models assure the diversity and robustness 413 

of the proposed method. Furthermore, the extra biomedical knowledge of MeSH terms is also employed 414 

to enhance the semantic representations of the ensemble learning method. The final experimental 415 

results on the LitCovid shared task show the effectiveness and success of our proposed approach. 416 

robert-nlp team [75] 417 

Our system represents documents using n-dimensional vectors using textual content (title and abstract) 418 

and metadata fields (pubtype, keywords, and journal). Textual content and keywords are each encoded 419 

with SciBERT [48], and the two embeddings are concatenated. Following [76], this document 420 

representation is fed into a classification layer comprised of several multi-layer perceptrons, each 421 

predicting the applicability of a single label. The model outperforms the shared task baseline both in 422 

terms of macro-F1 and in terms of micro-F1. Also, it is at par with the Q3 of the task statistics, which 423 

means that results are better than 75% of all the submitted runs. 424 

SINAI team [77] 425 

To address the task of multi-label topic classification for COVID-19 literature annotation, the SINAI team 426 

opted for a problem transformation method that considers the prediction of each label as an 427 

independent binary classification task. This approach allowed the team to use the Logistic Regression 428 

algorithm [78] based on TF-IDF [79] representation of the tokenized and stemmed text data, which was 429 

previously subjected to a corpus augmentation process. This process consisted of using such techniques 430 

as back-translation [80] of a selection of articles tagged with the less represented labels (Transmission, 431 

Case Report, and Epidemic Forecasting) and the replacement of all nouns present in the abstracts with 432 

their synonyms retrieved from the WordNet [31]. The classifier achieved 0.91 label-based micro average 433 



precision and negligible time and computational resources required to train our classifier addresses the 434 

fast growth of LitCovid.  435 

TCS Research team [81] 436 

We propose two different approaches for the task. The first approach, System 1, uses the training and 437 

validation datasets directly, whereas the second approach, System 2, performs named entity recognition 438 

(NER) on the training and validation datasets and uses the resulting tagged data for training/validation. 439 

NER on the abstract and title texts was performed using our text-mining framework PRIORI-T [82], where 440 

we cover 27 different entity types, including human genes, SARS/MERS/SARS-CoV-2 genes, phenotypes, 441 

drugs, diseases, GO terms, etc. In both approaches, training is performed by fine-tuning a BioBERT model 442 

pretrained on the MNLI corpus [83]. Two separate BioBERT [32] fine-tuned models were created; the first 443 

model uses only the 'abstract' part of the training data, the second model uses only the ‘remaining’ part 444 

of the text, consisting of article title and metadata such as keywords and journal type. The final prediction 445 

was obtained by combining the predictions of both models, meaning that System 1 and System 2 each 446 

consist of a separate ensemble model. System 1 showed better performance than System 2 on both label 447 

and instance based F1 scores. Furthermore, System 1 showed better label-based macro and instance-448 

based F1 scores than the challenge baseline model (ML-Net) [14]. Finally, as per the challenge 449 

benchmarks, the label-based macro F1-score for System 1 was close to the median F1 score and the 450 

instance-based F1-score was close to the mean score. 451 

 452 

Table 5. Overall team submission-related statistics and the baseline performance. The baseline performance is the 453 
median of ten repetitions using different random seeds. 454 

 Label-based  Instance-based 

 Macro F1 Micro F1 F1 

Teams 

Mean 0.8191 0.8778 0.8931 

Q1 0.7651 0.8541 0.8668 

Median 0.8527 0.8925 0.9132 

Q3 0.8670 0.9083 0.9254 

Baseline 

ML-Net  0.7655 0.8437 0.8678 

 455 

Table 7. Top 5 team submission results ranked by each F1-score measure. 456 

Label-based Instance-based 

Macro  F1 Micro F1 F1 

Team Result Team Result Team Result 

Bioformer 0.8875 Bioformer 0.9181 DUT914 0.9394 

Opscidia 0.8824 DUT914 0.9175 DonutNLP 0.9346 



DUT914 0.8760 DonutNLP 0.9174 Bioformer 0.9334 

DonutNLP 0.8754 polyu_cbsnlp 0.9139 polyu_cbsnlp 0.9321 

polyu_cbsnlp 0.8749 Opscidia 0.9135 
ElsevierHealth 
Sciences 

0.9307 

 457 

Evaluation results 458 

Table 6 summarizes team submission-related statistics and the baseline performance in terms of their 459 

macro F1-score, micro F1-score, and instance-based F1-score. The detailed results for each team 460 

submission and all the measures are provided in Table S1 in the supplementary material. The average 461 

macro F1-score, micro F1-scores, and instance-based F1-scores are 0.8191, 0.8778, and 0.8931, 462 

respectively, all higher than the respective baseline scores. The baseline performance is close to the Q1 463 

statistics for all the three measures, suggesting that ~75% of the team submissions have better 464 

performance than the baseline method. 465 

Figure 2 shows the distributions of the overall performance whereas Figure 3A and Figure 3B further 466 

show the distributions of individual topic performance. Out of the seven topics, the teams achieved 467 

higher performance in terms of the median F1-score in six topics than the baseline (up to 29% higher) 468 

except the Prevention topic (only 4% lower). The results show that the performance difference is larger in 469 

the topics with relatively lower frequencies: Epidemic Forecasting (23% higher) and Transmission (29% 470 

higher). In addition, we observe that the teams achieved generally consistent performance with the 471 

correlation of manual annotations in Table 3. For instance, it had the lowest performance on the 472 

Transmission topic, which is consistent with the correlation of manual annotations in Table 3. The only 473 

exception is the Epidemic Forecasting topic, where the inter-annotator agreement had a correlation of 474 

over 0.5, whereas the teams achieved an F1-score of over 0.9. This is primarily because of the sample 475 

size: only five and 41 articles are annotated with the Epidemic Forecasting topic in the random sample for 476 

inter-annotation agreement and the entire testing set, respectively. Given the limited size, we believe the 477 

performance on the Epidemic Forecasting topic is less representative. In contrast, other topics (which 478 

have a higher number of instances) show consistent performance. 479 

 480 

Figure 2. The distributions of team submission and baseline F1-scores. Median F1-scores are shown in the legend.  481 
 482 



 483 

Figure 3A. The distributions of team submission and baseline F1-scores for individual topics from (A) Case Report to 484 
(C) Epidemic Forecasting. Median F1-scores are shown in the legend. 485 

 486 

Table 7 provides the top 5 team submission performance ranked by each of the F1-scores. The best score 487 

is 6.8%, 4.1%, and 4.1% higher than the corresponding team average score for macro F1-score, micro F1-488 

score, and instance-based F1-score, respectively. Four teams (Bioformer, DonutNLP, DUT914, and 489 

polyu_cbsnlp) consistently achieved top-ranked performance in the three rankings. As mentioned above, 490 

the Bioformer and DUT914 teams proposed innovative methods which are beyond the default transfer 491 

learning approaches. In contrast, DonutNLP and polyu_cbsnlp used an ensemble of transformer 492 

approaches which also improve the performance. This is consistent with observations from previous 493 

challenge tasks [11, 24]. 494 



 495 

Figure 3B. The distributions of team submission and baseline F1-scores for individual topics from (D) 496 
Mechanism to (G) Treatment. Median F1-scores are shown in the legend. 497 

Discussion and conclusions 498 

This overview paper summarizes the BioCreative LitCovid track in terms of data collection and team 499 

participation. It provides a manually curated dataset of over 33,000 biomedical scientific articles. This is 500 

one of the largest datasets for multi-label classification for biomedical scientific literature, to our 501 

knowledge. Overall, 19 teams submitted 80 testing set predictions and ~75% of the submissions had 502 

better performance than the baseline approach. Given the scale of the dataset and the level of 503 

participation and team results, we conclude that the LitCovid track of BioCreative VII ran successfully and 504 

is expected to make significant contributions to innovative biomedical text mining methods.  505 



One possible direction to explore is the efficiency of transformers in real-world applications. As described 506 

above, over 80% of the teams used the transformers; the top 5 team submissions also show superior 507 

performance using the transformer approach. However, it has a trade-off on the efficiency side. Existing 508 

studies show that transformers are significantly slower than other deep learning approaches using word 509 

and sentence embeddings, e.g., up to 80 times slower for biomedical sentence retrieval [84]. This is more 510 

challenging under the setting of multi-label classification (may require more than one transformer model) 511 

on COVID-19 literature (~10,000 articles per month). The Bioformer team showed one candidate 512 

approach, which only uses one third of the parameters used by the original transformer architecture and 513 

achieves similar performance. We expect more innovative transformer approaches will be developed to 514 

improve the efficiency. 515 

Another possible direction is to quantify the usability of systems by incorporating them into the curation 516 

workflow. The systems are ultimately used to facilitate data curation – it is thus important to evaluate its 517 

usability in the curation workflow, e.g., what is the accuracy of systems for new articles and how much 518 

manual curation effort can be reduced by deploying the systems? We have conducted a preliminary 519 

analysis on the generalization capability and efficiency of the systems in the LitCovid production 520 

environment [85], and we encourage more studies to perform usability evaluation and accountability of 521 

systems in the curation workflow [86, 87].  522 

A further possible direction is the development of datasets for biomedical multi-label classification tasks. 523 

As summarized above, while multi-label classification is frequently used in biomedical literature, limited 524 

datasets are available for method development. This seems the major bottleneck for innovative 525 

biomedical text mining methods. We expect a community effort for dataset construction and a 526 

combination of automatic and manual curation approaches would address this issue. Also, given the scale 527 

of the BioCreative LitCovid dataset, it would be interesting to explore whether it can support transfer 528 

learning to other biomedical multi-label classification tasks. We encourage further development of 529 

biomedical text mining methods using the BioCreative LitCovid dataset. 530 

Acknowledgment 531 

This research is supported by the NIH Intramural Research Program, National Library of Medicine. 532 

 533 

References: 534 

 535 

[1] International Society for Biocuration, “Biocuration: Distilling data into knowledge,” Plos Biology, 536 
vol. 16, no. 4, pp. e2002846, 2018. 537 

[2] S. Poux, C. N. Arighi, M. Magrane, A. Bateman, C.-H. Wei, Z. Lu, E. Boutet, H. Bye-A-Jee, M. L. 538 
Famiglietti, and B. Roechert, “On expert curation and scalability: UniProtKB/Swiss-Prot as a case 539 
study,” Bioinformatics, vol. 33, no. 21, pp. 3454-3460, 2017. 540 

[3] A. Allot, K. Lee, Q. Chen, L. Luo, and Z. Lu, “LitSuggest: a web-based system for literature 541 
recommendation and curation using machine learning,” Nucleic Acids Research, 2021. 542 

[4] Q. Chen, R. Leaman, A. Allot, L. Luo, C.-H. Wei, S. Yan, and Z. Lu, “Artificial Intelligence in Action: 543 
Addressing the COVID-19 Pandemic with Natural Language Processing,” Annual Review of 544 
Biomedical Data Science, vol. 4, 2021. 545 



[5] Q. Chen, A. Allot, and Z. Lu, “Keep up with the latest coronavirus research,” Nature, vol. 579, no. 546 
7798, pp. 193-193, 2020. 547 

[6] Q. Chen, A. Allot, and Z. Lu, “LitCovid: an open database of COVID-19 literature,” Nucleic Acids 548 
Research, vol. 49, no. D1, pp. D1534-D1540, 2021. 549 

[7] N. Fabiano, Z. Hallgrimson, S. Kazi, J.-P. Salameh, S. Wong, A. Kazi, R. R. Unni, R. Prager, and M. 550 
D. McInnes, “An analysis of COVID-19 article dissemination by Twitter compared to citation 551 
rates,” medRxiv, 2020. 552 

[8] L. Yeganova, R. Islamaj, Q. Chen, R. Leaman, A. Allot, C.-H. Wei, D. C. Comeau, W. Kim, Y. Peng, 553 
and W. J. Wilbur, “Navigating the landscape of COVID-19 research through literature analysis: a 554 
bird's eye view,” arXiv preprint arXiv:2008.03397, 2020. 555 

[9] M. H.-C. Ho, and J. S. Liu, “The swift knowledge development path of COVID-19 research: the 556 
first 150 days,” Scientometrics, vol. 126, no. 3, pp. 2391-2399, 2021. 557 

[10] C.-C. Huang, and Z. Lu, “Community challenges in biomedical text mining over 10 years: success, 558 
failure and the future,” Briefings in bioinformatics, vol. 17, no. 1, pp. 132-144, 2016. 559 

[11] R. Islamaj Doğan, S. Kim, A. Chatr-Aryamontri, C.-H. Wei, D. C. Comeau, R. Antunes, S. Matos, Q. 560 
Chen, A. Elangovan, and N. C. Panyam, “Overview of the BioCreative VI Precision Medicine 561 
Track: mining protein interactions and mutations for precision medicine,” Database, vol. 2019, 562 
2019. 563 

[12] Arighi, C., Hirschman, L., Lemberger, T., Bayer, S., Liechti, R., Comeau, D. and Wu, C., 2017. Bio-564 
ID track overview. In Proc. BioCreative Workshop (Vol. 482, p. 376) 565 

[13] Q. Chen, A. Allot, R. Leaman, R. I. Doğan, and Z. Lu, "Overview of the BioCreative VII LitCovid 566 
Track: multi-label topic classification for COVID-19 literature annotation." 567 

[14] J. Du, Q. Chen, Y. Peng, Y. Xiang, C. Tao, and Z. Lu, “ML-Net: multi-label classification of 568 
biomedical texts with deep neural networks,” Journal of the American Medical Informatics 569 
Association, vol. 26, no. 11, pp. 1279-1285, 2019. 570 

[15] A. Palayew, O. Norgaard, K. Safreed-Harmon, T. H. Andersen, L. N. Rasmussen, and J. V. Lazarus, 571 
“Pandemic publishing poses a new COVID-19 challenge,” Nature Human Behaviour, vol. 4, no. 7, 572 
pp. 666-669, 2020. 573 

[16] D. Hanahan, and R. A. Weinberg, “The hallmarks of cancer,” cell, vol. 100, no. 1, pp. 57-70, 2000. 574 
[17] K. Larsson, S. Baker, I. Silins, Y. Guo, U. Stenius, A. Korhonen, and M. Berglund, “Text mining for 575 

improved exposure assessment,” PloS one, vol. 12, no. 3, pp. e0173132, 2017. 576 
[18] P. Schober, C. Boer, and L. A. Schwarte, “Correlation coefficients: appropriate use and 577 

interpretation,” Anesthesia & Analgesia, vol. 126, no. 5, pp. 1763-1768, 2018. 578 
[19] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep 579 

contextualized word representations,” arXiv preprint arXiv:1802.05365, 2018. 580 
[20] M.-L. Zhang, and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE transactions on 581 

knowledge and data engineering, vol. 26, no. 8, pp. 1819-1837, 2013. 582 
[21] B. P. Nguyen, “Prediction of FMN binding sites in electron transport chains based on 2-D CNN 583 

and PSSM Profiles,” IEEE/ACM transactions on computational biology and bioinformatics, 2019. 584 
[22] N. Q. K. Le, D. T. Do, F.-Y. Chiu, E. K. Y. Yapp, H.-Y. Yeh, and C.-Y. Chen, “XGBoost improves 585 

classification of MGMT promoter methylation status in IDH1 wildtype glioblastoma,” Journal of 586 
Personalized Medicine, vol. 10, no. 3, pp. 128, 2020. 587 

[23] Y. Wang, N. Afzal, S. Liu, M. Rastegar-Mojarad, L. Wang, F. Shen, S. Fu, and H. Liu, “Overview of 588 
the BioCreative/OHNLP challenge 2018 task 2: clinical semantic textual similarity,” Proceedings 589 
of the BioCreative/OHNLP Challenge, vol. 2018, 2018. 590 

[24] Q. Chen, J. Du, S. Kim, W. J. Wilbur, and Z. Lu, “Combining rich features and deep learning for 591 
finding similar sentences in electronic medical records,” Proceedings of the BioCreative/OHNLP 592 
Challenge, pp. 5-8, 2018. 593 



[25] Q. Chen, N. C. Panyam, A. Elangovan, M. Davis, and K. Verspoor, "Document triage and relation 594 
extraction for protein-protein interactions affected by mutations." pp. 52-51. 595 

[26] S. Madan, J. Szostak, R. Komandur Elayavilli, R. T.-H. Tsai, M. Ali, L. Qian, M. Rastegar-Mojarad, J. 596 
Hoeng, and J. Fluck, “The extraction of complex relationships and their conversion to biological 597 
expression language (BEL) overview of the BioCreative VI (2017) BEL track,” Database, vol. 2019, 598 
2019. 599 

[27] L. Fang, and K. Wang, “Team Bioformer at BioCreative VII LitCovid Track: Multic-label topic 600 
classification for COVID-19 literature with a compact BERT model,” Proceedings of the seventh 601 
BioCreative challenge evaluation workshop. 602 

[28] W. Tang, J. Wang, H. Zhang, and X. Wang, “Team DUT914 at BioCreative VII LitCovid Track: A 603 
BioBERT-based feature enhancement approach,” Proceedings of the seventh BioCreative 604 
challenge evaluation workshop. 605 

[29] O. Bodenreider, “The unified medical language system (UMLS): integrating biomedical 606 
terminology,” Nucleic acids research, vol. 32, no. suppl_1, pp. D267-D270, 2004. 607 

[30] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, 608 
and Z. Sayeeda, “DrugBank 5.0: a major update to the DrugBank database for 2018,” Nucleic 609 
acids research, vol. 46, no. D1, pp. D1074-D1082, 2018. 610 

[31] G. A. Miller, “WordNet: a lexical database for English,” Communications of the ACM, vol. 38, no. 611 
11, pp. 39-41, 1995. 612 

[32] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “BioBERT: a pre-trained biomedical 613 
language representation model for biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 614 
1234-1240, 2020. 615 

[33] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon, 616 
“Domain-specific language model pretraining for biomedical natural language processing,” arXiv 617 
preprint arXiv:2007.15779, 2020. 618 

[34] S. Xu, Y. Zhang, and X. An, “Team BJUT-BJFU at BioCreative VII LitCovid Track: A Deep Learning 619 
based Method for Multi-label Topic Classification in COVID-19 Literature,” Proceedings of the 620 
seventh BioCreative challenge evaluation workshop. 621 

[35] Sechidis, K., Tsoumakas, G. and Vlahavas, I., 2011, September. On the stratification of multi-label 622 
data. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases 623 
(pp. 145-158). Springer, Berlin, Heidelberg. 624 

[36] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov, “Fasttext. zip: 625 
Compressing text classification models,” arXiv preprint arXiv:1612.03651, 2016. 626 

[37] Lai, S., Xu, L., Liu, K. and Zhao, J., 2015, February. Recurrent convolutional neural networks for 627 
text classification. In Twenty-ninth AAAI conference on artificial intelligence.  628 

[38] Y. Kim, "Convolutional Neural Networks for Sentence Classification." EMNLP 2014. 629 
[39] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and 630 

Polosukhin, I., 2017. Attention is all you need. Advances in neural information processing 631 
systems, 30. 632 

[40] S. Xu, and X. An, “ML2S-SVM: multi-label least-squares support vector machine classifiers,” The 633 
Electronic Library, 2019. 634 

[41] P. Bagherzadeh, and S. Bergler, “CLaC at BioCreative VII LitCovid Track: Independent modules for 635 
multi-label classification of Covid articles.” Proceedings of the seventh BioCreative challenge 636 
evaluation workshop. 637 

[42] P. Bagherzadeh, and S. Bergler, "Multi-input Recurrent Independent Mechanisms for leveraging 638 
knowledge sources: Case studies on sentiment analysis and health text mining." pp. 108-118. 639 
Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction 640 
and Integration for Deep Learning Architectures 641 



[43] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, and M. McDermott, 642 
“Publicly available clinical BERT embeddings,” arXiv preprint arXiv:1904.03323, 2019. 643 

[44] C. E. Lipscomb, “Medical subject headings (MeSH),” Bulletin of the Medical Library Association, 644 
vol. 88, no. 3, pp. 265, 2000. 645 

[45] P. Bagherzadeh, and S. Bergler, "Interacting Knowledge Sources, Inspection and Analysis: Case-646 
studies on Biomedical text processing." Proceedings of the Fourth BlackboxNLP Workshop on 647 
Analyzing and Interpreting Neural Networks for NLP. pp. 447-456. 648 

[46] A. Bhatnagar, N. Bhavsar, M. Singh, and T. Ghosal, “Team CUNI-NU at BioCreative VII LitCovid 649 
Track: Multi-label Topical Classification of Scientific Articles using SPECTER Embeddings with 650 
Dual Attention and Label-Wise Attention Network.” Proceedings of the seventh BioCreative 651 
challenge evaluation workshop. 652 

[47] A. Cohan, S. Feldman, I. Beltagy, D. Downey, and D. S. Weld, “Specter: Document-level 653 
representation learning using citation-informed transformers,” arXiv preprint arXiv:2004.07180, 654 
2020. 655 

[48] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model for scientific text,” arXiv 656 
preprint arXiv:1903.10676, 2019. 657 

[49] F. Barbieri, L. E. Anke, J. Camacho-Collados, S. Schockaert, and H. Saggion, "Interpretable emoji 658 
prediction via label-wise attention LSTMs." Proceedings of the 2018 Conference on Empirical 659 
Methods in Natural Language Processing; 2018 Oct 31-Nov 4; Brussels, Belgium. New York: 660 
Association for Computational Linguistics. pp. 4766-4771. 661 

[50] S.-J. Lin, Y.-W. Chiu, W.-C. Yeh, and Y.-C. Chang, “Team DonutNLP at BioCreativeVII LitCovid 662 
Track: Multi-label Topic Classification for COVID-19 Literature Annotation using the BERT-based 663 
Ensemble Learning Approach,” Proceedings of the seventh BioCreative challenge evaluation 664 
workshop. 665 

[51] I. Tavchioski, B. Koloski, B. Škrlj, and S. Pollak, “Multi-label classification of COVID-19-related 666 
articles with an autoML approach.” Proceedings of the seventh BioCreative challenge evaluation 667 
workshop. 668 

[52] B. Škrlj, M. Martinc, N. Lavrač, and S. Pollak, “autoBOT: evolving neuro-symbolic representations 669 
for explainable low resource text classification,” Machine Learning, vol. 110, no. 5, pp. 989-1028, 670 
2021. 671 

[53] S. Tian, and J. Zhang, “Team FSU2021 at BioCreative VII LitCovid Track: BERT-based models using 672 
different strategies for topic annotation of COVID-19 literature,” Proceedings of the seventh 673 
BioCreative challenge evaluation workshop. 674 

[54] Y. Otmakhova, and A. J. Yepes, “Team ITTC at BioCreative VII LitCovid Track 5: combining pre-675 
trained and bag-of-words models,” Proceedings of the seventh BioCreative challenge evaluation 676 
workshop. 677 

[55] T. Zhang, "Solving large scale linear prediction problems using stochastic gradient descent 678 
algorithms." Proceedings of the twenty-first international conference on Machine learning. p. 679 
116. 680 

[56] L. Yeganova, D. C. Comeau, W. Kim, and W. J. Wilbur, "Text mining techniques for leveraging 681 
positively labeled data." In Proceedings of BioNLP 2011 Workshop. pp. 155-163. 682 

[57] K. raj Kanakarajan, B. Kundumani, and M. Sankarasubbu, "BioELECTRA: Pretrained Biomedical 683 
text Encoder using Discriminators." In Proceedings of the 20th Workshop on Biomedical 684 
Language Processing. pp. 143-154. 685 

[58] H. Dong, M. Wang, H. Zhang, A. Casey, and H. Wu, “KnowLab at BioCreative VII Track 5 LitCovid: 686 
Ensemble of deep learning models from diverse sources for COVID-19 literature classification,” 687 
Proceedings of the seventh BioCreative challenge evaluation workshop, pp. 310-313, 2021. 688 



[59] Y. Peng, S. Yan, and Z. Lu, “Transfer learning in biomedical natural language processing: an 689 
evaluation of BERT and ELMo on ten benchmarking datasets,” arXiv preprint arXiv:1906.05474, 690 
2019. 691 

[60] H. Dong, W. Wang, K. Huang, and F. Coenen, “Automated social text annotation with joint 692 
multilabel attention networks,” IEEE Transactions on Neural Networks and Learning Systems, 693 
vol. 32, no. 5, pp. 2224-2238, 2020. 694 

[61] H. Dong, V. Suárez-Paniagua, W. Whiteley, and H. Wu, “Explainable automated coding of clinical 695 
notes using hierarchical label-wise attention networks and label embedding initialisation,” 696 
Journal of biomedical informatics, vol. 116, pp. 103728, 2021. 697 

[62] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, "Hierarchical attention networks for 698 
document classification." Proceedings of the 2016 conference of the North American chapter of 699 
the association for computational linguistics: human language technologies. pp. 1480-1489. 700 

[63] T. Baumel, J. Nassour-Kassis, R. Cohen, M. Elhadad, and N. Elhadad, "Multi-label classification of 701 
patient notes: case study on ICD code assignment." In Workshops at the thirty-second AAAI 702 
conference on artificial intelligence. 703 

[64] S. Hochreiter, and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 704 
8, pp. 1735-1780, 1997. 705 

[65] Y. Labrak, and R. Dufour, "Team LIA/LS2N at BioCreative VII LitCovid Track: Multi-label 706 
Document Classification for COVID-19 Literature using Keyword Based Enhancement and Few-707 
Shot Learning." Proceedings of the seventh BioCreative challenge evaluation workshop. 708 

[66] K. Halder, A. Akbik, J. Krapac, and R. Vollgraf, "Task-Aware Representation of Sentences for 709 
Generic Text Classification." Proceedings of the 28th International Conference on Computational 710 
Linguistics. pp. 3202-3213. 711 

[67] A. Caubrière, S. Rosset, Y. Estève, A. Laurent, and E. Morin, "Where are we in Named Entity 712 
Recognition from Speech?." In Proceedings of the 12th Language Resources and Evaluation 713 
Conference. pp. 4514-4520. 714 

[68] K. Tandon, and N. Chatterjee, “LRL_NC at BioCreative VII LitCovid Track: Multi-Label 715 
Classification of COVID-19 Literature using ML-Based Approaches,” Proceedings of the seventh 716 
BioCreative challenge evaluation workshop. 717 

[69] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-labelsets for multilabel classification,” IEEE 718 
transactions on knowledge and data engineering, vol. 23, no. 7, pp. 1079-1089, 2010. 719 

[70] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly 720 
efficient gradient boosting decision tree,” Advances in neural information processing systems, 721 
vol. 30, pp. 3146-3154, 2017. 722 

[71] L. Rakotoson, C. Letaillieur, S. Massip, and F. Laleye, “BagBERT: BERT-based bagging-stacking for 723 
multi-topic classification,” arXiv preprint arXiv:2111.05808, 2021. 724 

[72] J. Gu, X. Wang, E. Chersoni, and C.-R. Huang, “Team PolyU-CBSNLP at BioCreative-VII LitCovid 725 
Track: Ensemble Learning for COVID-19 Multilabel Classification,” Proceedings of the seventh 726 
BioCreative challenge evaluation workshop, vol. 24, no. 6,239, pp. 2,500, 2021. 727 

[73] S. Hebbar, and Y. Xie, "CovidBERT-biomedical relation extraction for Covid-19." 728 
[74] S. Alrowili, and K. Vijay-Shanker, "BioM-Transformers: Building Large Biomedical Language 729 

Models with BERT, ALBERT and ELECTRA."  Proceedings of the 20th Workshop on Biomedical 730 
Language Processing. pp. 221-227. 731 

[75] S. C. Pujari, T. Tarsi, J. Strötgen, and A. Friedrich, “Team RobertNLP at BioCreative VII LitCovid 732 
Track: Neural Document Classification Using SciBERT,” Proceedings of the seventh BioCreative 733 
challenge evaluation workshop. 734 



[76] S. C. Pujari, A. Friedrich, and J. Strötgen, "A Multi-task Approach to Neural Multi-label 735 
Hierarchical Patent Classification Using Transformers." In European Conference on Information 736 
Retrieval. pp. 513-528. 737 

[77] M. Chizhikova, P. López-Úbeda, M. C. Díaz-Galiano, L. A. Ureña-López, and M. Teresa, “SINAI at 738 
BioCreative VII LitCovid Track: Corpus augmentation for COVID-19 literature multi-label 739 
classification.” Proceedings of the seventh BioCreative challenge evaluation workshop. 740 

[78] J. M. Hilbe, Logistic regression models: Chapman and hall/CRC, 2009. 741 
[79] G. Salton, and C. Buckley, “Term-weighting approaches in automatic text retrieval,” Information 742 

processing & management, vol. 24, no. 5, pp. 513-523, 1988. 743 
[80] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. Hoang, K. Heafield, T. Neckermann, F. 744 

Seide, U. Germann, A. F. Aji, and N. Bogoychev, “Marian: Fast neural machine translation in 745 
C++,” arXiv preprint arXiv:1804.00344, 2018. 746 

[81] V. Saipradeep, N. Sivadasan, A. R. Rao, and T. Joseph, “Team TCSR at BioCreative VII LitCovid 747 
Track: Automated topic prediction of LitCovid using BioBERT,” Proceedings of the seventh 748 
BioCreative challenge evaluation workshop. 749 

[82] A. Rao, T. Joseph, V. G. Saipradeep, S. Kotte, N. Sivadasan, and R. Srinivasan, “PRIORI-T: A tool 750 
for rare disease gene prioritization using MEDLINE,” PloS one, vol. 15, no. 4, pp. e0231728, 2020. 751 

[83] A. Williams, N. Nangia, and S. R. Bowman, “A broad-coverage challenge corpus for sentence 752 
understanding through inference,” arXiv preprint arXiv:1704.05426, 2017. 753 

[84] Q. Chen, A. Rankine, Y. Peng, E. Aghaarabi, and Z. Lu, “Benchmarking Effectiveness and 754 
Efficiency of Deep Learning Models for Semantic Textual Similarity in the Clinical Domain: 755 
Validation Study,” JMIR Medical Informatics, vol. 9, no. 12, pp. e27386, 2021. 756 

[85] Q. Chen, J. Du, A. Allot, and Z. Lu, “LitMC-BERT: transformer-based multi-label classification of 757 
biomedical literature with an application on COVID-19 literature curation,” arXiv preprint 758 
arXiv:2204.08649, 2022. 759 

[86] C.-H. Wei, B. R. Harris, D. Li, T. Z. Berardini, E. Huala, H.-Y. Kao, and Z. Lu, “Accelerating literature 760 
curation with text-mining tools: a case study of using PubTator to curate genes in PubMed 761 
abstracts,” Database, vol. 2012, 2012. 762 

[87] K. G. Dowell, M. S. McAndrews-Hill, D. P. Hill, H. J. Drabkin, and J. A. Blake, “Integrating text 763 
mining into the MGI biocuration workflow,” Database, vol. 2009, 2009. 764 

 765 


