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1 Introduction

Parton-shower simulations lie at the core of the majority of experimental and phenomeno-
logical studies in collider physics, accounting for the physics of parton branching across
several orders of magnitude in momentum scale, independently of any specific observ-
able. As such, one of the key questions, for both existing and new parton showers, is to
understand and demonstrate their accuracy as compared to the standard QCD tool for
multi-scale problems, namely logarithmic resummation. In a companion paper [1], we re-
cently formulated new classes of initial-state parton showers (PanGlobal and PanLocal)
specifically designed to achieve next-to-leading logarithmic (NLL) accuracy in the context
of hadron-hadron collisions. That paper included a number of tests of the kinematic recoil
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properties of the shower in the presence of two or three emissions, and validation against
exact fixed-order matrix elements for spin and colour degrees of freedom. Those tests
provided strong evidence that the new showers resolve key problems that are found in a
standard [2–7] transverse-momentum ordered dipole approach, problems similar to those
observed some time ago in final-state showers [8] and related to long-standing discussions
about the treatment of initial-state recoil [5–7, 9].

In this paper we present a number of all-order logarithmic tests in the context of
colour-singlet production in proton-proton collisions. We test the new PanScales showers
and, for the purpose of comparison, our implementation of a standard dipole shower,
which we refer to as Dipole-kt. These are the first all-order logarithmic tests to be carried
out for initial-state showers, extending the developing body of recent work for final-state
showers [8, 10–13]. The tests serve two purposes. Firstly, they provide verification of the
NLL accuracy for the PanScales showers across a wide range of observables, for an arbitrary
number of emissions and taking into account all-order evolution of the strong coupling and
the parton distribution functions (PDFs). Secondly, for showers that are not NLL accurate
for a specific observable, they enable us to quantify the size of the deviation from the NLL
result. While we will not go so far as to examine detailed phenomenological consequences
in this paper,1 for each of the observables that we consider, we will comment on how it
relates to widely discussed phenomenological questions.

We start our discussion with a brief review of the showers that we consider (sec-
tion 2) and then turn to a number of observables. One critical new test relative to the
final-state case is the verification of the accuracy of PDF evolution (section 3), and we com-
ment briefly also on a practical observable that could be used for related measurements
in data. We then consider a variety of global event quantities with distinct resummation
structures. These include the jet-veto acceptance probability and observables related to
0-jettiness [14] (section 4), for which the results are qualitatively similar (and in some cases
quantitatively identical) to corresponding final-state tests. We then turn our attention to
a particularly important global observable, the colour-singlet transverse momentum distri-
bution (section 5), for which we test not just the Sudakov region, but also the characteristic
power-suppressed region identified long ago by Parisi and Petronzio [15]. Then follow tests
of energy flows in limited angular regions (section 6), which play a role in many collider
contexts, and a study of another basic observable, the average particle multiplicity (sec-
tion 7). We conclude with some exploratory phenomenological studies of the impact of
our NLL showers on the Z-boson transverse momentum distribution and on the azimuthal
correlations of jets (section 8).

2 Brief overview of the showers and the testing approach

Throughout we consider the production of a colourless boson in proton-proton collisions,
either q̄(p̃a)q(p̃b)→ Z or g(p̃a)g(p̃b)→ H, at a proton-proton centre-of-mass energy

√
s and

with Born invariant mass squared m2
X = (p̃a+ p̃b)2. The 4-momentum of the colour-singlet

1To do so would require matching with fixed-order and possibly an interface to hadronisation, neither
of which are currently available within the PanScales approach for hadron-collider processes.
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(hard system) is defined as

Qµ = mX(cosh yX , 0, 0, sinh yX) , (2.1)

where X = Z,H, and yX denotes the rapidity of the hard system. All partons are consid-
ered to be massless. We will compare the all-order behaviour of a standard dipole shower,
which we refer to as Dipole-kt, and the PanScales showers introduced in ref. [1] suitable for
hadron-hadron collisions. Here we give a brief summary of these showers, and full details
can be found in ref. [1].

For all showers, the momentum of a newly emitted parton k is decomposed as

pk = akp̃i + bkp̃j + k⊥, (2.2)

where p̃i,j are the pre-branching momenta of the dipole constituents. By convention, i
labels the emitter and j the spectator. The vector k⊥ is space-like, orthogonal to p̃i,j and
satisfies k2

⊥ = −2akbkp̃i · p̃j . The coefficients ak and bk are related to a shower-specific
ordering variable v and an auxiliary rapidity-like variable η̄.

Dipole-kt showers: our Dipole-kt class of showers follows in the long line of dipole
showers inspired by refs. [16–18]. It shares substantial similarities with the dipole showers
available in all the major Monte Carlo event generators, e.g. Pythia [7],2 Sherpa [4] and
Herwig [5]. In the soft-collinear limit, the ordering variable v corresponds to the transverse
momentum of the emission |k⊥|.

The recoil scheme for emissions from final-final (FF) or final-initial (FI) dipoles is fully
dipole-local, i.e.

pi = aip̃i + bip̃j − k⊥ , (2.3a)
pj = bj p̃j , (2.3b)

where the coefficients ai, bi and bj can be related to ak and bk using p2
i,j = 0 and pi±pj+pk =

p̃i ± p̃j , taking the + sign if the recoiler j is in the final state, − otherwise. For emissions
from initial-initial (II) dipoles, the recoil is instead distributed globally, i.e.

pi = aip̃i , pj = p̃j , (2.4)

followed by an event-wide boost (excluding the last emitted parton) that restores momen-
tum conservation.

In the case of emissions from initial-final (IF) dipoles, where the initial-state parton is
identified with the emitter, we consider two recoil schemes: one local and one global (see e.g.
refs. [5, 6]), reflecting the variety of schemes implemented in public parton shower codes. In
the fully local scheme, the transverse recoil is assigned to the final-state (spectator) parton,
exactly like in the FI dipole. This implies that only II dipoles can impart transverse
momentum recoil to the hard colour-singlet system. It is well-known that this leads to
wrong predictions for the Z transverse momentum distribution at the NLL-level [5–7, 9],

2Specifically the shower with local recoil for initial-final dipoles, which is not its default.
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but it remains widely used, hence it will be of interest to quantify its deviation from the
NLL expectation. In the global scheme, the recoil is distributed according to eq. (2.3) (but
with a positive sign for k⊥). Next, all the particles in the event are boosted to realign
pi with the beam axis. This effectively implies that the transverse recoil is redistributed
across the event.

For any dipole type where the assignment of transverse recoil depends on which end
of the dipole is the emitter, the choice of emitter is based on the end of the dipole that is
closer in angle to the radiation in the dipole centre-of-mass frame (with a smooth transition
between the two regions). This means that the rapidity-like auxiliary generation variable
η̄ coincides with the rapidity measured in the emitting-dipole frame.

PanScales showers: in the PanScales showers, we use a class of evolution variables v
that is parametrised in terms of a quantity βps, which determines the relation between v,
transverse momentum κ⊥ and rapidity η̄Q. Specifically, we define

v = κ⊥
ρ

e−βps|η̄Q| , with ρ =
(
s̃is̃j
Q2s̃ij

)βps
2

, (2.5)

where s̃i,j = 2p̃i,j · Q, with s̃ij = 2p̃i · p̃j the dipole mass squared. The precise relation
between κ⊥ and |η̄Q| on one hand, and the k⊥, ak and bk of eq. (2.2) on the other, depends
on the shower, as discussed in ref. [1].

The PanScales showers come in two variants, PanLocal and PanGlobal. PanLocal
always employs dipole-local recoil, resembling the global option of Dipole-kt. This means

pi = aip̃i + bip̃j ± fk⊥, (2.6a)
pj = aj p̃i + bj p̃j ± (1− f)k⊥, (2.6b)

where f = 1 for the PanLocal dipole variant (i.e. the emitter takes the entire transverse
recoil of the emitted parton), and f = e2η̄

e2η̄+1 in the PanLocal antenna variant (the transverse
recoil is shared between the emitter and the spectator). The sign ± in front of k⊥ depends
on whether the parton is in the initial-state (+) or in the final state (−).

For a given dipole, the choice of effective emitter is based on the sign of η̄Q (except in
a transition region around η̄Q = 0), i.e. taking the dipole end that is closer in the event
frame rather than the emitting-dipole frame. All the coefficients in the kinematic map are
then fixed by imposing local momentum conservation and that the post-splitting partons
be on shell. When, following the mapping, an initial-state parton is misaligned with the
beam axis, a Lorentz transform is applied to the whole event so as to realign it, with the
constraint that the hard-system rapidity is preserved.

In the PanGlobal shower, for all dipole types, only the longitudinal components are
conserved locally

pi = (1± ak)p̃i, (2.7a)
pj = (1± bk)p̃i, (2.7b)
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while the transverse recoil is assigned directly to the colour singlet system. Further rescal-
ings are then applied to the two initial-state momenta so as ensure that the hard-system
mass and rapidity are preserved.

The fixed-order considerations of ref. [1] lead us to expect that PanLocal dipole/antenna
with 0 < βps < 1 and PanGlobal with 0 ≤ βps < 1 are NLL accurate. In this article, we
consider the PanLocal dipole and antenna showers with βps = 0.5, and the PanGlobal
shower with βps = 0 and 0.5.

As in earlier PanScales work, we provide an all-order validation of the logarithmic ac-
curacy of our showers by comparing their predictions to known resummations. Considering
the logarithm L of some observable, we take one of two limits (depending on the observ-
able’s resummation properties): αsL fixed with αs approaching 0, used for checking LL and
NLL accuracy; or αsL2 fixed with αs approaching 0, used for checking double-logarithmic
(DL) and next-to-double logarithmic (NDL) accuracy. We account for subleading-colour
effects, using the NODS method of ref. [8], which nests full-colour energy-ordered double-
soft matrix-element corrections. This is expected to result in full-colour NLL accuracy for
all observables except non-global ones, which have only leading-colour accuracy for the
single-logarithmic (NLL) terms. Spin correlations for initial-state radiation are included
in the PanScales code using our adaptation and extension of the Collins-Knowles algo-
rithm [12, 13, 19–22], as discussed and studied in ref. [1]. The observables that we examine
in this paper are insensitive to spin correlations at our target NLL/NDL accuracy and our
runs are performed without them.3

When we show results, our errors bands correspond to one standard deviation (σ),
and showers are considered to pass a given test if the deviation from the expected accuracy
(NLL or NDL) is < 2σ.4

For most of our observables, a novel feature relative to earlier PanScales work is the im-
pact of parton distribution functions on NLL and NDL terms. The handling of the αs → 0
limits in the evolution of the PDFs is the subject of appendix A. Besides this, the numerical
techniques that we use are largely the same as in previous PanScales work [8, 11–13]. In
general we will express our results in terms of quantities such as λ = αsL or ξ = αsL

2. A
translation to physical momentum scales is given in table 1 of ref. [8].

3 Single-logarithmic comparisons with DGLAP evolution

The first test we perform on our showers is to establish whether they correctly reproduce
DGLAP evolution. We assume an initial d̄d→ Z or gg → H event, at fixed initial rapidity
yX , and perform parton showering down to an effective transverse momentum cutoff scale,
pt,cut. Focusing on the Z case, let ı̂ be the flavour of one of the two partons entering the

3Spin correlations involve an O(1) speed cost (the cost depends on event multiplicities) and it was
beneficial to trade that cost for extra statistics.

4An astute reader may complain that for 5% of tests we therefore expect failure, insofar as the error is
dominated by statistical effects (which is not always the case). When we see a failure that is borderline
larger than 2σ, we generally generate additional statistics until a clear conclusion can be drawn.
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hard scattering process and x̂ its momentum fraction,

x̂± = mZ√
s

exp(±yZ) , (3.1)

where the sign matches the sign of the z-momentum of the incoming parton. After parton
showering, the incoming parton has a flavour i and a momentum fraction x. This is the
parton effectively extracted from the proton at a factorisation scale of the order of pt,cut.
Our tests here determine whether, for a given ı̂ and x̂ the distribution over i, x matches
that expected from DGLAP evolution.

The distribution over i, x is dominated by single logarithmic terms, αnsLn, where
L = ln pt,cut/mZ . To understand how to determine the expectation, let us introduce
Dij(z, αsL), a single-logarithmic DGLAP evolution operator such that the PDFs satisfy

fı̂(x̂,m2
Z) =

∑
j

∫ 1

x̂

dz
z
zDı̂j(z, αsL)fj

(
x̂

z
, p2
t,cut

)
, (3.2)

where fi(x, µ2) is the density of partons of flavour i, carrying momentum fraction x at a
factorisation scale µ.5 The DGLAP expectation for the distribution over the flavour i, and
momentum fraction x at the shower cutoff scale is given by

1
σ

dσi
dx = 1

fı̂(x̂,m2
Z)

∫ 1

x̂

dz
z
Dı̂i(z, αsL)fi

(
x̂

z
, p2
t,cut

)
δ

(
x̂

z
− x

)
. (3.4)

It is interesting to ask how eq. (3.4) relates to a physical observable that could be measured
at colliders. Leaving aside the question of flavour, one could imagine clustering an event
with some inclusive jet algorithm, with a jet transverse momentum threshold pt,min, playing
the role of pt,cut, and then determining the distribution of x± defined as

x± =
∑

i∈X, jets

Ei ± pz,i
Ep ± pz,p

. (3.5)

Here X is the hard system (for example the Drell-Yan pair), Ep and pz,p are the energy and
z-momentum of the incoming proton, and the choice of sign depends on whether one is con-
sidering the proton (and incoming parton direction) with positive or negative z-momentum.
Phenomenologically the distribution of x± is very sensitive to the pattern of forward-jet
radiation. It is infrared and collinear safe and thus calculable within perturbation theory.
At single-logarithmic accuracy, the distribution of x± coincides with eq. (3.4) so long as
one chooses L = ln pt,min/mZ and sums over flavours i and ı̂ (the latter with a suitable
hard-cross section weight). One could extend the measurement of x± to be differential
in the relative azimuthal angles of multiple initial-state hard jets, which would introduce
sensitivity to spin correlations.

5Given an initial conditionDij(x, 0) = δijδ(1−x), the evolution operator satisfies the differential equation

∂λDij(x, λ) =
∑
k

1
π

∫ 1

x

dz
z
Pik(z)Dkj(x/z, λ) . (3.3)
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For the purpose of comparing the shower to the DGLAP expectation we are free to
use either eq. (3.5) or the direct shower-record information on the incoming parton x after
showering. We choose the latter because it also gives easy access to the flavour information.
We show results with a tiny value of αs = 5 × 10−6 and a large value of L = −105, so as
to render negligible any terms beyond single-logarithmic accuracy.6

We obtain the DGLAP prediction using the HOPPET evolution code [23], which pro-
vides a straightforward way to evaluate eq. (3.4), as long as one ensures that x is not
too close to x̂, to avoid systematic effects associated with HOPPET’s discretisation. The
HOPPET evolution is performed at single logarithmic accuracy, i.e. leading-order (LO)
evolution in the standard DGLAP nomenclature. Since LO DGLAP evolution is purely
single logarithmic, we are free to use any finite αs such that αsL = −0.5 as in the shower.
The treatment of PDFs, both in the shower and within HOPPET, is further discussed in
appendix A. In particular, our approach for handling PDFs when working at very small αs
values and large logarithms is discussed in appendix A.2, while the choice of PDFs at the
evolution starting scale is described in appendix A.3.

Results are shown in figure 1. We take
√
s/mZ = 1000 and yZ = 0 such that x̂ =

0.001, and set ı̂ = d̄. We then consider three scenarios: the flavour of the incoming
parton remained the same (i = d̄); it became a gluon (i = g), which implies that at least
one flavour-changing splitting occurred; or it became any other flavour (i 6= d̄, g), which
implies that at least two flavour-changing splittings occurred. The results are shown for
the PanGlobal βps = 0 and the PanLocal (dipole) βps = 0.5 showers (similar results are
obtained for the other showers, including both IF-recoil options of Dipole-kt). We obtain
agreement with the predictions of standard DGLAP evolution (with LO evolution, i.e. NLL
accuracy in our context) to within statistical accuracy.7 The size of the statistical error
depends on the value of the PDFs, and is below 0.1% in a substantial part of the x range,
but increases in regions where the PDF is small or the flavour in question is accessible only
in rare events.

For completeness figure 2 shows the distributions for gg → H events with
√
s/mH =

1000 and yH = 0, where we examine i = g, the sum over quarks i =
∑
k qk, and the sum

over anti-quarks i =
∑
k q̄k. Again, the agreement is good to within statistical errors, both

for the PanScales showers (shown) and the standard Dipole-kt showers (not shown). We
have also tested different values of λ and

√
s.

6In practice we use one-loop running of the coupling (rather than standard two-loop running), and do
not include the KCMW two-loop cusp anomalous dimension. For purely single-logarithmic quantities, these
choices have no impact on the results. Furthermore, in order to keep the event multiplicity under control,
in the shower we discard radiation with a momentum fraction below some finite but small threshold e−11,
cf. appendix D of ref. [12]. In separate runs with a moderate value of αs, we have verified that such a cut
does not impact the results. We use similar techniques also in sections 4–6, discarding radiation that will
not affect the observable under study, again with a verification at finite αs that this procedure does not
affect the results.

7This is less trivial than it sounds, both in terms of verifying the correctness of the implementation, and
in terms of the interplay discussed in the past with the choice of ordering variable [24, 25].
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Figure 1. Ratio of the DGLAP evolution produced by the parton shower versus the DGLAP
evolution as calculated with HOPPET. The results are shown as a function of the momentum
fraction x carried by the parton extracted from the proton. The forward evolution in our HOPPET-
based reference calculation is constrained to end with the ı̂ = d̄ flavour, such that it reflects the
starting point of the (backwards-evolving) shower, which we take to be dd̄ in this case. We work
with yZ = 0 and

√
s/mZ = 1000, such that the maximal x fraction a parton can have is 0.001. We

take λ = αsL = −0.5. The three columns then show different extracted flavours i that led to this
ı̂ = d̄ state, where we focus on the i = d̄ (left), i = g (middle) and i 6= {d̄, g} (right) cases. We show
the PanGlobal shower with βps = 0 (upper panels), and the PanLocal dipole shower with βps = 0.5
(lower panels).

4 NLL tests for global observables

A range of important collider observables belong to the class of “global observables”, so-
called because they are sensitive to radiation in the whole of phase space. These observ-
ables vanish in the absence of any radiation. They include phenomenologically important
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Figure 2. Same as figure 1 but with the gg → H process.

quantities such as the colour-singlet transverse momentum and the leading-jet transverse
momentum. It is therefore of critical importance to understand the logarithmic accuracy
of showers for these observables.

Global observables share the feature that the probability (or cumulative distribution)
for a (dimensionless) observable O to take a value smaller than eL can be written as [26, 27]

Σ(O < eL) ≡ Σ(αs, αsL) = H(αs) exp
[
−Lg1(αsL) + g2(αsL) +O(αnsLn−1)

]
+ . . . , (4.1)

where the ellipses denote corrections that are suppressed by powers of eL (recall that L is
large and negative). The function H(αs) is the hard function multiplying the resummed
series and we shorten αs(m2

X)≡αs. One may take H(αs)=1 at NLL accuracy. In general,
the NkLL function αk−1

s gk+1(αsL) resums terms of αnsLn−k+1. In order to validate the
NLL accuracy of the shower, we examine the ratio of the parton shower evaluation of Σ
to the analytic NLL evaluation, and check whether that ratio converges to 1 when one
extrapolates αs → 0.
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In this section we concentrate on observables measured on the hadronic final state.
Given its particular phenomenological importance and subtle analytic resummation prop-
erties, the discussion of the transverse momentum of the Z/H boson is deferred to section 5.
All of the tests here use

√
s = 5mX and yX = 0. We have also carried out a number of

tests with yX = 2, which give identical results, so we do not display them here.

4.1 Leading jet transverse momentum and the azimuthal difference between
the two leading jets

We start by considering the transverse momentum, pt1, of the hardest jet in the colour-
singlet production the process. The quantity Σ(pt1) corresponds to the efficiency of a
jet veto in colour-singlet production processes — recall that jet vetoes are widely used to
reduce backgrounds to Higgs and other electroweak production processes (e.g. backgrounds
with leptons and missing energy from top-quark production, which inevitably also involve
jets). Here we consider jets defined with the Cambridge/Aachen (C/A) algorithm with
R = 1 [28, 29], keeping in mind that the NLL prediction is independent of the jet radius
R and is the same [30] for all members of the generalised-kt family, including the anti-
kt algorithm [31]. In figure 3a we show the αs → 0 extrapolation for the ratio of the
shower cumulative distribution to the NLL result, for the pp → Z process. We see that
the PanScales showers reproduce the analytic answer, i.e. limαs→0 ΣPS/ΣNLL = 1. That is
not the case for Dipole-kt showers, with discrepancies of up to 20% for global IF recoil at
extreme values of λ, and 25% with the local IF recoil Dipole-kt variant.

One comment is that these significant effects are in a region corresponding to jet
transverse momenta of the order of a few GeV, which is much smaller than typical jet veto
scales.8 However, jet activity at such low momenta is relevant also in studies of multiple
interactions and the underlying event [34, 35]. Specifically, underlying event studies of-
ten examine energy and charged-particle flow in different azimuthal regions of the event,
defined with respect to the Z transverse direction. Another context in which azimuthal
correlations are important is in the identification of ridge-like structures in high-multiplicity
pp collisions [36, 37].

To give some insight into possible azimuthal structures induced by parton showers, we
study a specific observable, namely the distribution of the difference in azimuthal angles
between the two highest-pt jets, ∆φ12. At NLL, this distribution is flat in |∆φ12| and reads

Σ(∆φ12, pt2|pt1) ≡ Σ(∆φ12, pt2, pt1)
Σ(pt1) = 1

π

(
e2CiR′0(−b0λ) ln pmax

t2 /pt1 − e2CiR′0(−b0λ) ln pmin
t2 /pt1

)
,

(4.2)
with the R′0 function as given in eq. (B.11a). Figure 3b shows the αs → 0 limit of that
distribution, normalised to the NLL result, for events where αs ln pt1/mZ < −0.5 and 0.3 <
pt2/pt1 < 0.5. Again we see that the PanScales showers reproduce the NLL expectation.
The Dipole-kt showers do not, with up to 85% (55%) discrepancies when a local (global)

8For example, inH →WW studies, it is common to use a 30 GeV jet veto, which translates to λ ' −0.16.
Jet vetoes are also used in slepton (e.g. ref. [32]) and electroweakino (e.g. ref. [33]) searches, with λ values
reaching of the order of −0.3.
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Figure 3. (a) Ratio of the shower and NLL results for the cumulative distribution for the hardest
jet transverse momentum, pt1, with −0.62 < λ < 0 and αs → 0 for pp → Z events. (b) Difference
in azimuthal angles between the two leading jets in a pp → Z event, where the first jet has
λ = αs ln pt1/mZ ≤ −0.5, while the second one has 0.3 ≤ pt2

pt1
≤ 0.5. In the αs → 0 limit,

the λ < −0.5 condition effectively fixes λ = −0.5. In both plots, we have shifted the horizontal
locations of the markers for the two PanLocal showers, so as to avoid having all the symbols overlap.

IF recoil is employed, a consequence of the way in which they perform the transverse
momentum recoil. Note that in the αs → 0 limit, the two jets that are relevant for
figure 3b are nearly always both soft and well separated in rapidity. Consequently, at NLL
accuracy, the observable is not affected by spin correlations.

A final comment in this section is that the NLL discrepancies that we observe for the
IF-global Dipole-kt variant are expected (and observed) to be the same as those for related
observables in e+e− collisions [11] (modulo the fact that the latter’s results were at leading
colour, while here we use the NODS colour scheme [8]).9 Indeed, the choice of the evolution
variable, as well as the dipole being partitioned in its rest frame, is common to both initial-
and final-state formulations, at least in the soft-and-collinear limit relevant for these NLL
discrepancies.

4.2 Generic global event shapes

Next, we discuss a wider range of global event shape observables. For this purpose, it is
useful to introduce three families of observables:

Sp,βobs =
∑

i∈partons

pti
Q

e−βobs|yi−yX | , (4.3a)

Sj,βobs =
∑
i∈jets

pti
Q

e−βobs|yi−yX | , (4.3b)

Mj,βobs = max
i∈jets

pti
Q

e−βobs|yi−yX | , (4.3c)

9For the leading jet pt in figure 3a, the discrepancy at λ = −0.5 agrees with what was found for Mβ=0

in figure 11 of ref. [8].
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NLL accuracy tests - pp Z

Figure 4. Summary of deviations from NLL for several global observables for the process qq̄ → Z

and λ = −0.5. Red squares denote a clear NLL failure; amber triangles indicate a NLL fixed-
order failure that is masked at all orders; green circles are used when the shower passed both the
numerical NLL tests and the fixed-order recoil tests. The αs → 0 result is obtained by quadratically
extrapolating the shower results at αs = 0.00625, 0.003125 and 0.0015625, and includes a systematic
error that is evaluated as the change in the αs → 0 extrapolation when one uses αs = 0.0125 instead
of αs = 0.003125. The showers include a dynamic cutoff ∆ = 18, which functions as discussed in
our earlier e+e− tests [8, 11].

where pti and yi are respectively the transverse momentum and rapidity of parton or jet
i, yX is the rapidity of the colour-singlet system, and jets are again defined with the C/A
algorithm with R = 1. The “S” observables involve a sum over either particles or jets,
while the “M” observables examine a maximum across jets. Each family is parametrised
by a variable βobs, which determines the relative weighting of central versus forward parti-
cles/jets. Note thatMj,0 coincides with the transverse momentum of the hardest jet shown
in figure 3a, while Sp,1 coincides with the widely studied 0-jettiness (τ0) of ref. [14], which
is also used in the Geneva [38, 39] matching procedure. For all of the observables, the LL
resummation structure depends on βobs. For a given value of βobs, the Mj,βobs observables
differ from the Sp,βobs and Sj,βobs at NLL, while the Sp,βobs and Sj,βobs observables differ from
NNLL onwards. The resummation formulas up to NLL are summarised in appendix B.

In our numerical tests, we take βobs = 0, 0.5, 1. In figure 4 we show the ratio of the
shower to the NLL result for the cumulative distribution Σ(O < eL), as calculated in the
limit αs → 0 for λ = −0.5. As in the final-state case [11], we find that standard dipole
showers fail to reproduce the all-order NLL results for βobs = 0 observables, as represented
by the red squares. This failure is a consequence of incorrect assignment of transverse recoil
to earlier emissions [1]. Its impact on logarithmic terms can be examined analytically with
a fixed-order study analogous to that in the final-state case [10]. Concerning the βobs =
0.5, 1 cases, the αs → 0 dipole-shower results appear to agree with the NLL predictions.
However the studies of similar observables in the final-state case showed that dipole-type
showers induce spurious all-order leading-colour super-leading logarithms, (αsL)n(αsL2)p
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(section 2-d of the supplementary material of ref. [11]). Because these issues arise from the
soft-collinear region, which is effectively treated identically in the final-state and (global-IF)
initial-state cases, they will inevitably arise also in the initial-state case (for local-IF recoil,
we expect similar problems). Accordingly we colour these dipole-shower points in amber.
The green circles for the four PanScales showers in figure 4 indicate that their predictions
are in agreement with the NLL results, and the analysis of recoil in ref. [1] ensures the
absence of the fixed-order issues that cause us to colour the dipole showers in amber.

As a final remark, we remind the reader that in these studies, subleading Nc corrections
have been included according to the NODS method [8] for both the dipole-type showers
and the PanScales showers, so as to concentrate on the impact of recoil. In contrast,
standard dipole showers choose the colour factor according to whether the emitting dipole
end that is closer (in the dipole centre-of-mass frame) is a gluon (CA/2) or a quark (CF ).
This results in incorrect terms already at LL, in analogy with the final-state discussion in
ref. [10]. The numerical impact will be the same as in the all-order final-state study [8].

5 The transverse momentum of the colour-singlet system

The next observable that we discuss is the cumulative distribution for the transverse mo-
mentum of a massive colour singlet (here, Z or H boson) produced in proton collisions. It
has wide relevance for LHC phenomenology, and for example its understanding is critical
forW mass extractions [40–42].10 It is also widely used in matching showers and fixed-order
calculations [44, 54–56].

The colour singlet ptX distribution is a more subtle observable than those studied in
the previous subsections, essentially because it has two resummation regimes. In one of
the regimes, that with moderately small ptX , the suppression of the cross section is driven
dominantly by the Sudakov suppression of emissions and the NLL prediction can be written
in terms of our standard resummation formula, eq. (4.1), where L = ln ptX/mX . The other
regime concerns asymptotically small values of ptX , which are typically obtained by a vector
cancellation between the recoils from two or more gluons emitted with pt’s substantially
larger than ptX . In this regime, eq. (4.1) breaks down [57], and the NLL resummation
instead generally requires b-space resummation [15],11 giving a result for Σ that scales as
p2
tX . The transition between the two regimes occurs where R′ = |∂L(Lg1(αsL))| = 2 and

it is reflected in a 1/(R′ − 2) divergence in the g2(αsL) function of eq. (4.1), cf. eqs. (B.5)
and (B.13) of appendix B. The location of the transition corresponds to λ ' −0.48 for
Z production and λ ' −0.32 for Higgs production (both for nf = 5). In the region of
moderately small ptX (“Sudakov region”) we will carry out our tests in the same way
as earlier, while for asymptotically small ptX (“power-scaling region”) we will adopt a
somewhat different procedure. We start with the former.

10One should keep in mind, that in many applications parton showers are reweighted so that the colour-
singlet transverse momentum distribution agrees with high-order matched resummed and fixed order predic-
tions, such as [43–53]. Still, even if such a procedure results in a correct colour-singlet transverse momentum
distribution for the reweighted shower, it will not in general correctly account for correlations between the
colour singlet and the full pattern of hadronic energy deposition. We leave the detailed study of such
questions to future, more phenomenological work.

11A direct pt-space solution to this issue is presented in ref. [58].
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Figure 5. Ratio of the cumulative distribution for the colour-singlet transverse momentum to the
NLL analytic result, in the αs → 0 limit, for (a) qq̄ → Z and (b) gg → H events. The results are
shown for Dipole-kt with local (red dashed line) and global recoil (green dotted line), PanGlobal
with βPS = 0 (blue solid line) and βPS = 0.5 (blue circles), and PanLocal with βPS = 0.5, both for
the antenna (black triangles) and dipole (black squares) variants. For clarity, the PanLocal antenna
(dipole) points have been slightly shifted towards the left (right), with respect to the values actually
used, which coincide with the PanGlobal βps = 0.5 ones.

5.1 Sudakov region

In figure 5 we show the αs → 0 extrapolation of the ratio of the shower to the NLL
prediction for the colour singlet transverse momentum, with a range of showers. The
results are shown for qq̄ → Z (figure 5a) and gg → H (figure 5b). We use eq. (4.1) as
our NLL reference together with ingredients from eqs. (B.3a), (B.5) (using βobs = 0), and
eq. (B.13). We consider only λ ≥ −0.42 (Z) and λ ≥ −0.26 (H), to stay well away from
the breakdown of the ptX -space NLL resummation. The PanScales showers that are shown
all agree with the NLL prediction. Conversely, the Dipole-kt showers fail to reproduce the
correct NLL result. For the qq̄ → Z process, we see a 35% (10%) discrepancy of the NLL
terms at λ = −0.42 using the Dipole-kt shower with a local (global) recoil. For the gg → H

process we find a 7% (3%) difference at λ = −0.26. Performing a comparison at the same
value of λ = −0.25 for both processes, we find a 3% (1%) discrepancy for qq̄ → Z versus
7% (2%) for gg → H, with local (global) IF recoil in the Dipole-kt shower.12

5.2 Power-scaling region

Now let us turn to the second resummation regime, namely that where R′ > 2 and the
dominant mechanism to produce a small ptX is a vector cancellation between the transverse
recoils of different emissions. A first remark is that the tests shown in figure 5 already probe

12One can develop an intuition for the sizes of the effects across different observables and different pro-
cesses with the help of a fixed-order analysis of the kind carried out in ref. [10]. Many of the results from
that article carry over to the initial-state case, however we leave a detailed analysis to the interested reader.
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Figure 6. (a) m2
ZdΣ(ptZ)/dp2

tZ , as determined with four showers. In QCD this quantity tends to
a calculable (non-zero) constant for ptZ → 0 [15]. (b) For the three showers that tend to a non-zero
constant, the plot shows the αs → 0 limit of the deviation of that constant relative to the NLL
expectation, with the usual (red) green colour coding for (dis)agreement with NLL.

this mechanism, because the NLL result is sensitive to it even in the regime of R′ < 2,
through the g2 function in eq. (4.1), specifically the part in eq. (B.13). Still, the R′ > 2
regime is conceptually important and it is therefore of interest to explicitly examine the
behaviours of different showers.

It is useful to recall the structure of the standard b-space result for the resummation
of the transverse-momentum distribution [15, 59, 60],

dΣ
dp2

tX

=
∫ ∞

0

db
2 bJ0(bptX)ΣV (b0/b) , (5.1)

with b0 = 2e−γE , ΣV the b-space resummed distribution, and J0 the Bessel function of
the first kind and order 0. Observe that for ptX → 0 the result tends to a non-zero
constant, whose value can be straightforwardly obtained by replacing J0(bptX) → 1 in
eq. (5.1). Figure 6a shows the small-ptX behaviour of the distribution for Z production,
in four showers. Three of them, PanGlobal, PanLocal and Dipole-kt(global), indeed tend
to a non-zero constant. In contrast the variant of Dipole-kt with local recoil for IF dipoles
tends to zero in this limit, i.e. it has the wrong scaling behaviour. This is because, after
the first emission, the event consists of two IF dipoles, and from that point onwards, no
further transverse recoil is taken by the Z boson. Therefore the only mechanism for ptZ to
be small is Sudakov suppression of the first emission, which is a much stronger suppression
than the vector cancellation.13

For those showers that do tend to a non-zero constant, it is worth checking the value
of that constant, which is a prediction of the NLL resummation. The expected value can

13For processes such as gg → H with two II dipoles, one does recover the correct power-dependence of
the scaling (i.e. the plateau), because the Higgs recoil induced by an emission off one II dipole can have a
vector cancellation with recoil induced by an emission off the other II dipole. However the normalisation
of the plateau is still expected to be wrong, as is the whole shape of the distribution for αsL ∼ 1.
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be deduced from eq. (5.1), simply setting ptX = 0 on the right-hand side. Note that at
our NLL accuracy, ΣV coincides with the cumulative distribution of the leading jet pt,
or equivalently (still at NLL), in a pt-ordered shower, the shower ordering variable. We
use the distribution of the latter (or a transverse-momentum like analogue in βps = 0.5
showers) to evaluate eq. (5.1), because it facilitates the αs → 0 extrapolation.

To determine the asymptotic normalisation of the shower, one needs to evaluate the
height of the plateau in figure 6a. As can be seen in the plot, this is somewhat delicate
because on one hand the approach to the asymptotic value is fairly slow,14 and on the
other hand the statistical errors grow rapidly at small ptZ . For each value of αs that we
study, we estimate the ratio of the shower plateau height to the NLL expectation in a ptZ
region where eq. (5.1) is within 3% of its asymptotic value, assigning as a systematic error
the change induced when increasing ln ptZ by one. We then perform a linear extrapolation
of the αs = 0.2 and 0.3 ratios to obtain the ratio at αs = 0, with a further systematic
obtained from the change in the result when instead using αs = 0.2 and 0.4. Finally, we
account for the fact that the plateau is determined in a region that is 3% away from the
asymptotic region with a further overall 3% systematic error (which ultimately dominates
the total error). The final ratios, with total statistical and systematic errors are shown
in figure 6b. The PanGlobal (βps = 0) and PanLocal (βps = 0.5) showers are consistent
with the NLL expectation, while the Dipole-kt shower (with global IF recoil) clearly has
the wrong normalisation.

The reader will have noticed that in contrast with all other results in this paper, the
results here have been obtained with quite large values of the coupling. Furthermore the
coupling has been kept fixed in the shower (and in the associated PDF translation). This is
because it is considerably more difficult to simultaneously explore αs → 0 and ptX → 0 than
for other observables. Furthermore, at large values of αs, had we used a running coupling,
we would have had to disentangle logarithmic effects from power-suppressed but potentially
non-negligible effects associated with the regularisation of αs near the Landau pole.

6 Single non-global logarithms for a rapidity-slice

Many standard hadron collider observables are non-global, i.e. sensitive to radiation in
restricted parts of angular phase space. For example, almost any isolation criterion for
leptons or photons involves restricting the energy flow in a region around the object. Mea-
surements of the top mass, as obtained from decay kinematics, inevitably use jets that miss
some radiation from the decay products. For all of these observables, the resummation in-
volves non-global logarithms [61, 62], which can only be correctly reproduced with dipole
showers [63].

To assess the ability of the shower to capture non-global logarithms (NGLs), we com-
pute the scalar sum of the transverse momenta pti of the final-state particles in a rapidity
slice (excluding the colour-singlet particle) [61, 62]. Taking ∆ to be the half-width of a

14For example, with the setup of figure 6a, αs = 0.2, one would reach the transition point where R′ = 2 at
ptZ/mZ = exp(−π/(2CFαs)) ≈ 2.8 10−3, which is almost two orders of magnitude larger than the observed
plateau. With a running coupling we expect the transition between the two regimes to be more rapid.
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Figure 7. (a) Cumulative distribution for the transverse-momentum in a rapidity slice of |y −
yX | < 1 as a function of λ for the PanGlobal βps = 0 shower. The top panel shows the expected
(dashed) and the shower (solid) results, and the bottom panel shows the ratio between the two.
(b) Difference between the shower ΣPS and the expected single-logarithmic result (ΣSL) for a fixed
value of λ = −0.5 for all showers. Colour coding is the same as in figure 4.

slice centred at the rapidity, yX , of the colour-singlet system, we define the observable as

Sslice
∆ =

∑
i∈partons

pti Θ(∆− |yi − yX |) . (6.1)

The NGLs are single-logarithmic terms of the form λn = αnsL
n, where L = ln(pt/Q),

created by the emissions of soft large-angle gluons near the edge of the slice and we obtain
our reference resummation from the code developed for ref. [64], which uses the strategy
of ref. [61].

To test the shower accuracy, we take a rapidity-slice window of full-width 2 (∆ = 1)
and scan over values of −0.5 < λ = αsL < 0.15 Figure 7a shows PanGlobal βps = 0 shower
results, as compared to the single logarithmic expectations, illustrating perfect agreement
across the full range of λ. Figure 7b shows results for several showers at a fixed value of
λ = −0.5, demonstrating that all showers agree with the expected result. The Dipole-kt
showers are coloured amber because they fail to pass fixed-order tests (see ref. [11]) and
are subject to spurious leading-colour super-leading logarithms.

Note that this is the only one of our tests that has been performed at leading colour
(CF = CA/2 = 4/3) rather than full colour. The NODS scheme used elsewhere in this

15The results are obtained with asymptotically small values of αs, so as to avoid a need for extrapolation.
In the shower, collinear (initial and final-state) radiation at emission angles smaller than ∼ e−ηmax,gen , with
ηmax,gen = 13, is discarded (both from the observable calculation and from subsequent showering) in order
to keep the event multiplicity under control. In finite-coupling runs for the PanScales showers, we have
verified that such a cut does not impact the results.
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article is fully accurate for non-global logarithms in colour singlet production only up to
and including α2

s. Nevertheless, in e+e− collisions it was found to be numerically very
close [8] to the full-colour result [65] for non-global observables. For a corresponding full-
colour comparison in hadron collisions, one would need an extension of the results of ref. [66]
to include Coulomb/Glauber-gluon related (coherence-violating) iπ terms, or of refs. [67]
or [68] to processes without hard Born jets.

7 Particle (or subjet) multiplicity

The particle multiplicity is one of the most fundamental observables at any collider. At
hadron colliders specifically, a good understanding of the particle multiplicity from the hard
process is important in accurately extracting the properties of the underlying event. From
a theoretical point of view, with a well-defined infrared cutoff, the resummation structure
of particle multiplicity is very similar to that of subjet multiplicity, and our tests here
effectively apply to both.

From an analytic perspective, the resummation structure of multiplicity differs from
all other observables presented above since its cumulative distribution cannot be written
in the form of eq. (4.1), and its logarithmic accuracy has to be determined at the level of
Σ rather than ln Σ. The analogue of eq. (4.1) for such non-exponentiating observables is

Σ(L) = h1(αsL2) +
√
αsh2(αsL2) + . . . , (7.1)

where the NkDL function αk/2s hk+1(αsL2) resums terms of αnsL2n−k. That is, the function
h1 captures the double logarithmic (DL) enhancement, h2 the next-to-double-logarithmic
(NDL) contribution and so on. In the multiplicity case, the logarithm that needs to be
resummed is L = ln(kt,cut/mX), where, up to NDL accuracy, kt,cut may be either a shower
transverse momentum cutoff (for particle multiplicities) or a jet algorithm transverse mo-
mentum cut for a suitably defined subjet multiplicity.

Recently, the subjet multiplicity in colour singlet production has been computed up
to NDL accuracy [69] (earlier calculations gave similar structures [70–72]). In a shower
context, up to NDL, it applies equally well to the number of particles in the event (Nshower)
when one sets the strong coupling to zero below a given value of kt,cut.

To test the NDL terms in eq. (7.1), we compute the following ratio

Nshower −NNDL
NNDL −NDL

, (7.2)

which vanishes in the αs → 0 limit if the shower is correct at NDL accuracy.16 The result
of computing eq. (7.2) with all showers, at two different energies and for two different hard
processes (pp→ Z and pp→ H) is shown in figure 8. We observe that all showers are con-
sistent with the full-colour NDL expectation, within the small statistical errors. Relative

16Practically, we run the shower for different values of kt,cut, i.e. ln kt,cut = {−31.25,−62.5,−125,−1000},
keeping ξ ≡ αsL

2 = 5 fixed (L = ln kt,cut/mX) and use all four points to perform a cubic polynomial
extrapolation down to αs → 0. The error that we quote on Nshower is purely statistical.
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Figure 8. Extrapolation of Nshower−NNDL
NNDL−NDL

to αs = 0 at a fixed value of ξ = αsL
2 for all showers,

two different energies (
√
s = 5mX , left, and

√
s = 1000mX , right), and the two processes under

study, i.e. pp→ Z and pp→ H.

to our other tests, the critical feature of the multiplicity is that it probes the soft-collinear
nested structure of the shower. At NDL accuracy, it also probes the hard-collinear correc-
tion to the splitting function, the 1-loop running of the coupling, the DGLAP evolution
of PDFs, and the colour scheme. Since these features are common across all of our show-
ers, no discrepancy is expected between the PanScales showers and Dipole-kt, and none
is observed.

8 Exploratory phenomenological results with toy PDFs

A proper phenomenological study of the PanScales showers would require a number of
elements that are not yet mature, such as the inclusion of quark-mass effects and interfacing
to a program such as Pythia [73, 74] so as to include hadronisation and multi-parton
interactions. Nevertheless, even without these effects it is still of potential interest to
examine the results from the showers in a physically relevant regime rather than the regimes
of extreme small coupling and large logarithms used in the body of the paper.

As parton showers become more accurate, one critical element to include in physical
studies is an estimate of residual uncertainties. In the results that follow, we will include
renormalisation- and factorisation-scale variation uncertainties, so as to provide one mea-
sure of residual higher-order uncertainties. However, it is important to bear in mind that
these scale variations cannot account for uncertainties associated with the showers’ im-
proper handling of the effective matrix element in various phase-space regions (e.g. the
hard region, or the double-soft region). A study of how to do so robustly goes beyond the
scope of this section, so instead we will use the range of variation within showers of a given
logarithmic-accuracy class as an indication of such further residual uncertainties.
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Our treatment of renormalisation scale variation is inspired by [75], though it differs
in the details. Specifically for showers that have been established to be NLL accurate,
for an emission carrying away a momentum fraction z, the emission strength is taken
proportional to

αs(µ2
r)
(

1 + Kαs(µ2
r)

2π + 2αs(µ2
r)b0(1− z) ln xr

)
, µr = xrµ

central
r , (8.1)

where b0 and K are defined below in appendix B, eqs. (B.4). This factor generalises the
factor αs(µ2

r)(1 +Kαs(µ2
r)/(2π)) in eq. (2.3) of [1], which was given for the central choice

µr ≡ µcentral
r = ρveβps|η̄Q| (i.e. xr = 1 in eq. (8.1)), cf. eq. (B.27) of [1]. The reason for

including a factor (1− z) in the compensation term of eq. (8.1) (i.e. the term proportional
to b0), is that it ensures that scale compensation is active for soft emissions, z → 0,
but not for hard emissions, where one would need the higher-order ingredients such as
those from ref. [76] in order to justify the inclusion of scale-compensating terms. For LL
showers we will include the K term, but not the scale compensation term proportional to
b0. The justification for this is that a soft emission’s kt is not preserved after subsequent
emissions and therefore one cannot unambiguously identify the correct scale-dependent
terms for a given emission. All showers use 2-loop evolution of the coupling. We take
αs(mZ) = 0.118 and we implement an infrared cutoff on the shower by setting αs(µr) = 0
for µr < xr × 0.5 GeV.

We will use a 5-flavour PDF and a 5-flavour running of the coupling, so as to avoid
complications related to the handling of flavour thresholds. The PDF used for the results
in this section has the initial condition of eq. (A.6) at a scale of µf = 0.5 GeV, evolved to
higher scales with HOPPET. Aside from the issue of having 5 flavours down to the infrared
cutoff, it is reasonably similar to a physical PDF, however not to the extent that one can
make direct comparisons with data. Accordingly the results here should be interpreted in
terms of their broad trends, rather than specific values at any given phase space point.
Factorisation scale variations are implemented by adding an ln xf term to the expression
for lnµf in eq. (B.1) of [1], as used in eq. (2.3) of that paper. The scale variations that we
use in the plots are a 5-point set, (xr, xf) = {(1, 1), (1/2, 1), (2, 1), (1, 1/2), (1, 2)} and we
will use the envelope generated by this set as our overall scale uncertainty band.

In the logarithmic accuracy tests in this paper, we have used the NODS colour scheme
for all showers, including the Dipole-kt showers. Here, we retain that choice for PanScales
showers, but instead use the colour-factor from emitter scheme in the Dipole-kt case, as
this is the colour scheme adopted by standard dipole showers.

We will consider two observables: the interjet ∆φ12 distribution of section 4.1 and the
transverse momentum of the Z-boson, ptZ , as discussed in section 5. Let us start with the
ptZ distribution, given its broad phenomenological importance. The top panel of figure 9
shows the ptZ distribution for the PanGlobal (βps = 0) shower, normalised to the integral of
the distribution up to ptZ = mZ/4. The reason for this normalisation is to reduce sensitivity
of the results to the high pt region, where fixed-order matching would be required to obtain
a reliable prediction. Each of the remaining panels shows the ratio of a given parton shower
(with is scale variations) to the xr = xf = 1 PanGlobal (βps = 0) result.
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Figure 9. The ptZ distribution as predicted in a variety of parton showers. The plots use a
semi-physical setup, for a pp centre-of-mass energy 13.6 TeV. The Born events involve dd̄ scattering
with a Z rapidity of zero, and the showers use 5-flavour toy PDFs defined through the initial
condition of eq. (A.6) at a scale of 0.5GeV. The top panel shows the ptZ distribution with the
PanGlobal (βps = 0) shower and the remaining panels show the ratio to that distribution for each
of several showers. For each shower, the band corresponds to the envelope of the renormalisation
scale (xr) variations (dashed lines) and factorisation scale (xf) variations (dotted lines), as described
in the text.

The first feature of figure 9 that we comment on is that the scale uncertainty bands
are significantly smaller for the NLL PanScales parton showers than for the LL dipole-kt
showers. This is because only the NLL showers include the b0 scale-compensation term
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in the renormalisation scale uncertainty of eq. (8.1). Next, we observe variations from
one NLL shower to the next, by an amount commensurate with the renormalisation and
factorisation scale uncertainties. This is a consequence of different approximations for
shower elements that are beyond NLL (for example the effective treatment of the double
soft region, the specific mapping from shower scale to transverse momentum in the hard
collinear region, and the absence of matching to the hard Z + jet matrix elements). The
final comment concerns the LL showers: for the Dipole-kt (global) shower, the central
value (solid curve) is rather similar to that from the PanGlobal showers. This is consistent
with the observations in figures 5a and 6a, from which one expected ∼ 10% agreement of
Dipole-kt(global) with the PanGlobal shower, except in the deepest part of the infrared
region. In contrast, the Dipole-kt (local) shower shows larger differences, also as expected,
notably in the different scaling behaviour at low pt values, ptZ . 2 GeV. One should keep
in mind that for phenomenological applications, some of this difference might be absorbed
into a tune of intrinsic transverse momentum of partons within the proton. However doing
so might well be physically wrong, since the intrinsic transverse momentum manifests itself
in the final state through counterbalancing transverse momentum assigned to the proton
remnant (i.e. concentrated just at high rapidity) rather than to soft gluon radiation (i.e.
spread across all rapidities).

In practical high-precision applications, parton showers results are often reweighted
so as to reproduce high-accuracy resummation and fixed-order predictions for ptZ [43–53].
However, for a given ptZ , such reweighting leaves the pattern of final-state emissions un-
changed. Therefore it is also of interest to study the structure of the final state. We do
so in figure 10, looking at the difference in azimuth between the two leading jets, ∆φ12.
This is a close analogue of the distribution studied in section 4.1, but adapted so as to
be phenomenologically realistic. Specifically, we cluster all final-state partons (excluding
the Z-boson) with the anti-kt algorithm [31] with a radius of R = 0.4, as implemented
in FastJet 3.4 [77]. We consider only jets with |y| < 2.5, require at least two jets, where
the hardest has 20 < pt1 < 30 GeV and the second hardest has 0.3 < pt2/pt1 < 0.5.17

We also require a minimum rapidity separation between the jets, |∆y12| > 1, so as to
reduce the impact of large-angle g → gg (and qq̄) splitting and to eliminate jet-clustering
induced artefacts associated with a suppression of the distribution for ∆φ12 < R. We
then consider the distribution of ∆φ12, normalised to the number of events that passed the
cuts. This is shown in figure 10a for an on-shell Z. Figure 10b shows similar results, but
with two changes: a stronger requirement on the separation between the two leading jets,
|∆y12| > 1.5, to further reduce the impact of large-angle g → gg/qq̄ splitting (uncontrolled
because the showers lack the double-soft matrix element); and replacing on-shell Z-bosons
with off-shell Z-bosons with an invariant mass of 500 GeV, so that the 20 GeV jets are less
affected by the lack of hard matrix element corrections.

The two plots in figure 10 can be compared to their analogue in the asymptotic loga-
rithmic limit, figure 3b. One caveat is that the former normalises to the cross section for

17This is a rather soft jet, and in practice one might use charged-track jets for such a study, so as to limit
sensitivity both to pileup and to calorimeter fluctuations. One should also keep in mind that additional
soft jets from multi-parton interactions — not included here — would also affect the results.
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Figure 10. The ∆φ12 distribution between the two leading jets, for events that pass the cuts
described in the text, (a) for events on the Z pole and a requirement |∆y12| > 1.0, and (b) for
events where the Z is off-shell, with an invariant mass of 500 GeV, and a requirement |∆y12| > 1.5.
The bands correspond to the variation of renormalisation and factorisation scales. Most of the
impact of this variation vanishes because the plots are normalised to the number of events that
pass the cuts and instead it is the differences between showers within a given logarithmic accuracy
class that better provides a measure of residual shower uncertainties.

the jets to pass the transverse momentum and rapidity selection cuts (as would most likely
be done experimentally), while the latter normalises to the asymptotic NLL expectation
of eq. (4.2), which is simple only in the absence of rapidity cuts on the jets. A first feature
to comment on is that in figure 10, the PanScales showers are not flat in ∆φ12, unlike
the case in figure 3b. This is because in a non-negligible fraction of the events with two
jets passing the cuts, those two jets effectively came from a large-angle g → gg (or qq̄)
splitting, and so have ∆φ12 close to 0, resulting in the enhancement seen in that region.
We have verified that increasing the ∆y12 cut, e.g. to 2, leads to a degree of flattening of
the distribution for all of the PanScales showers, as does eliminating the |y| < 2.5 selection
on the jets (which increases the relative contribution of configurations with large rapidity
separations).18 Among the PanScales showers there is some spread between the showers in
figure 10a, notably between the PanGlobal variants on one hand and the PanLocal vari-
ants on the other. This spread largely vanishes when probing a more asymptotic kinematic
region, figure 10b, and further investigation shows that the reduction of spread stems both
from the increase in colour singlet mass and the ∆y12 requirement. Note that the renormal-
isation and factorisation scale variation are far from encompassing the spread in figure 10a
(in part because the scale variations are divided out by the normalisation). This is a sign
that scale variation alone is not sufficient for probing the uncertainties in parton showers,
as in many other contexts, and that one also needs to investigate uncertainties related to
uncontrolled limits of matrix elements.19

18For comparison, the αs → 0 limit used in the NLL tests of figure 3b effectively ensures that the two
jets are nearly always well separated in rapidity.

19This point was touched on in ref. [75], but should, we believe, be further explored.
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To close our discussion, we turn to the Dipole-kt results in figure 10. The variant with
local-IF recoil has a substantially different shape from the NLL showers. Even though the
shape differs from the asymptotic limit in figure 3b (again because of residual g → gg/qq̄

splittings), the enhancement at ∆φ12 ' π, relative to the NLL showers, is qualitatively
as expected from that plot. In contrast, we see that the Dipole-kt variant with global-IF
recoil in figure 10a is fairly similar to the NLL showers. In this kinematic region, the log-
arithms are not yet very large. As a result the smaller LL versus NLL differences (for this
observable) of the Dipole-kt(global) shower as compared to Dipole-kt(local), are commen-
surate with the beyond-NLL differences between PanScales showers. However, the results
in figure 10a, if taken alone, would give a false sense of confidence in the phenomenological
adequacy of the Dipole-kt(global) shower for this observable. In particular exploring a
more asymptotic kinematic region, as in figure 10b, reveals clear differences also between
Dipole-kt(global) and the NLL PanScales showers.

9 Conclusions

In this article, we have carried out over a dozen distinct all-order tests of the logarithmic
accuracy of parton showers for colour-singlet production at hadron colliders.

On one hand, these tests were designed to probe distinct classes of next-to-leading log-
arithmic effects, covering all of the main aspects that a shower should be able to handle. On
the other, each of the observables also connects with important phenomenological aspects
of LHC physics. The tests probed nested emissions in the hard collinear region (DGLAP
tests of section 3);20 nested emissions in the soft large-angle region (non-global observ-
ables of section 6); nested emissions in both the soft and collinear regions (multiplicities
of section 7); and the higher-order structure of double logarithmic Sudakov resummation,
including both recoil and the scale and scheme of the coupling in the Sudakov form fac-
tor (global observables of sections 4 and 5). All of these tests were carried out with the
NODS colour scheme of ref. [8], and with comparisons to full-colour resummation (with
the exception of non-global observables).

For the PanLocal shower (with βps = 0.5) and the PanGlobal showers (βps = 0 and
0.5), all tests were successful. For the Dipole-kt showers, we considered two variants,
one with dipole-local (“local”), the other with event-wide (“global”) recoil in initial-final
dipoles. Both had visible discrepancies relative to NLL for all global observables that
connect directly with transverse momentum measurements. This includes the jet veto
acceptance (figure 3a), a number of generic global observables (figure 4) and the colour-
singlet transverse momentum distribution (figures 5 and 6). Note that our Dipole-kt tests
used our NODS colour scheme. Had we used the colour treatment that is effectively
standard for dipole showers (colour-factor-from-emitter in the language of ref. [8]), we
would also have seen subleading-Nc issues in the Dipole-kt showers at LL for βobs > 0
global observables, NLL for βobs = 0 and DL for multiplicities.

20With the exception of spin-correlation tests, for which we are not aware of any all-order results, besides
those that could be obtained with our code.
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A number of steps remain for practical phenomenological applications of the PanScales
showers. These include the matching to fixed-order calculations, the extension of our
validations and tests to hadron-collider processes with final-state jets, the inclusion of finite
quark masses and the interface to hadronisation and multi-particle-interaction models.
Nevertheless, the advances presented here provide an important step in the formulation
and validation of NLL-accurate showers for hadron collisions. The first exploration of the
phenomenological impact of our NLL showers in section 8 shows some of the potential
benefits from the control of logarithmic accuracy.
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A Parton distribution functions

The inclusion of a ratio of parton distribution functions in the branching kernel for initial-
state emissions is a vital component of a complete hadronic parton shower. While the
PanScales showers follow the backwards evolution in much the same way that all other
widely-used showers do, the numerical demands on the implementation are often of a very
different order. Below, we discuss some of the numerical details in our handling of PDFs.
Appendix A.1 outlines our procedure for overestimating the PDF ratio that appears in
the branching kernels. Appendix A.2 outlines how we obtain PDFs for use in limits with
extreme values of the logarithm and tiny values of αs. Finally, appendix A.3 provides the
specific functional form that we use for our PDFs when testing logarithmic accuracy.

A.1 Overestimating the PDF ratio

In the PanScales formalism, the differential branching probability for initial-state emissions
may be written as

dPı̃̃→ijk = αs(k2
⊥)

2π

(
1 + αs(k2

⊥)K
2π

)
dv2

v2 dηdϕ
2π×

× xifi(xi, µ2)
x̃ifı̃(x̃i, µ2)

xjfj(xj , µ2)
x̃jf̃(x̃j , µ2)

[
g(η)ziP IS/FS

ik (zi) + g(−η)zjP IS/FS
jk (zj)

]
, (A.1)

where µ is the factorisation scale to be used in the PDFs and the rest of the notation is as
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in ref. [1]. To implement these branchings in the shower using the standard veto algorithm,
an overestimate is required for the branching probability. In the absence of the PDF
ratios (i.e. for final-state branchings), the branching probability is easily overestimated by
a constant, αsCA/π. This is not quite as straightforward anymore when the PDF ratio is
included. The shower is maximally efficient if the overestimate is as tight as possible, but
it will not produce the correct distributions if regions exist where the branching probability
is not correctly overestimated.

We implement a solution that maintains the simplicity of the final-state case as much
as possible by introducing a further overhead factor CPDF(x̃, ı̃) that depends on the cur-
rent longitudinal momentum fraction x̃ of an initial-state parton, as well as its flavour ı̃.
The generic overestimate constant αsCA/π is multiplied by this overhead factor, and the
acceptance probability is divided by it.

The overhead factor is evaluated by filling grids with values of CPDF(x̃, ı̃) for all ı̃s and
for equally-spaced values of − ln 2x̃ for x̃ < 1/2, or − ln 2(1−x̃) for x̃ > 1/2. Then, for every
pair (x̃, ı̃) in the grid, a secondary grid scan is performed over x > x̃ and all factorisation
scales that can be accessed in the shower, so as to identify the maximum branching weight
given in eq. (A.1). Once a maximum is found, another grid search is performed in the cell
of the previously-identified maximum. This process is repeated four times and the result
is then multiplied by a margin factor 1.2 and stored in the CPDF(x̃, ı̃) grid.

At the beginning of the shower evolution and after every shower branching, an ade-
quate overhead factor can then be determined by probing the CPDF(x̃, ı̃)-grid at the current
longitudinal momentum fraction and flavour of the initial-state partons. While this pro-
cedure is not guaranteed to determine an overestimate over all of phase space, we find
that the modest margin factor of 1.2 avoids any issues without significant detriment to
efficiency. This method is applicable in principle to any reasonably well-behaved PDF set,
as long as we remain in a region of fixed number of flavours, i.e. stay away from potential
mass threshold effects that can cause the overhead factor to diverge.21 For our all-order
tests, we make use of the toy PDFs given in appendix A.3.

21To understand the nature of the difficulty around heavy-flavour thresholds, we imagine using an NLO
PDF, such that the heavy-quark distribution is zero below the heavy-quark mass mQ and starts evolving
from scale µ = mQ. As a result the heavy-quark PDF scales as lnµ/mQ ' (µ−mQ)/mQ in the immediate
vicinity above mQ. This is problematic, because for a heavy-quark (ı̃) that backwards evolves to a gluon
(i), as has to happen if the evolution scale is close to the heavy-quark threshold, the PDF ratio in eq. (A.1)
diverges as 1/(µ−mQ). This cannot be compensated for by a tabulated overhead factor. We illustrate the
type of solution that we might consider with the example of a transverse-momentum ordered shower where
v ≡ κ⊥ ≡ µ. For a dipole containing an initial-state heavy quark, we could perform a change of variable,
replacing our current logarithmic generation variable lnκ⊥ ≡ lnµ, with generation of ln(µ −mQ), which
would entail the inclusion of a Jacobian factor µ/mQ−1. That Jacobian would then cancel the 1/(µ−mQ)
factor that arises from the PDF ratio in eq. (A.1). Another possibility would be that for heavy-quark
PDFs, we replace the µ2 → µ2 + m2

Q in the scale of the PDF in eq. (A.1) and tabulate the (large, but
finite) overhead factor all the way down the shower cutoff. The first scheme would ensure that a heavy
quark always branches back to a gluon by the time the shower crosses µ = mQ, while the second scheme
would allow for intrinsic heavy flavour at the shower cutoff scale. We have not implemented either of these
solutions as yet, and so defer further discussion both of their practicalities and phenomenological behaviour
to future work.
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A.2 PDFs at extreme scales

Standard PDF evolution tools are not well-suited to our requirements of being able to
evaluate PDF ratios in the limit where αs → 0 with αsL fixed. At the accuracy we intend
to probe, NLL or NDL, it is sufficient to make use of PDFs with purely collinear, single-
logarithmic DGLAP evolution. This means that only leading-order splitting functions and
1-loop running of αs are required.22 In this situation, the PDF evolution is a function
purely of an evolution time parameter t = αsL. We can leverage this fact to evaluate PDFs
at extremely small scales without having to explicitly perform the DGLAP evolution to
those scales.

In what follows we use µ to denote a factorisation scale within the shower (which
operates over asymptotic scales) and µpdf to denote a factorisation scale in the PDF evolu-
tion (which operates over standard physical scales). We start by generating a five-flavour,
one-loop PDF set between a lower scale µpdf,0 and a high scale µpdf,1, with a value of
αs,pdf(µ2

pdf) similar to the physical value. This task can be handled by DGLAP evolu-
tion codes. We choose to use the HOPPET library [23]. The PDF scale µpdf,1 is then
mapped onto the shower initial hard transverse momentum scale µ1. Lower scales are then
related by

tpdf(µpdf|µpdf,1) = tshower(µ|µ1) . (A.2)

At the NLL accuracy that we are aiming for, where it is sufficient to use one-loop DGLAP
evolution, the left-hand side is given by

tpdf(µpdf|µpdf,1) =
∫ µpdf,1

µpdf

dq
q

αs,pdf(q2)
π

=
− ln

(
1 + β0 αs,pdf(µ2

pdf,1) lnµ2
pdf/µ

2
pdf,1

)
2πβ0

,

(A.3)
and we have

µpdf(µ) = µpdf,1 exp
(

αs(µ2
1)

αs,pdf(µ2
pdf,1)

ln µ

µ1

)
, (A.4)

where αs(µ2
1) is the value of the coupling used in the shower evolution at the hard scale

(µ1). The shower PDF can then be evaluated as

fi(x, µ2
pdf(µ)) . (A.5)

The choice of the numerical values of µpdf,1, µpdf,0 and αs,pdf(µ2
pdf,1) is somewhat arbitrary,

only requiring that the DGLAP evolution is performed over a range that is wide enough
to cover the kinematic range of the shower, and that the evolution is numerically stable.
The above procedure then facilitates consistent comparison of shower runs with a variety of
values of αs(µ2

1), as long as the upper boundary of the shower, µ1, always remains anchored
to the same PDF scale µpdf,1.

22The shower itself still needs a 2-loop running coupling. This is critical for NLL accuracy in the soft-
collinear region, a region that does not significantly contribute to PDF evolution.
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A.3 PDF choice

We employ a toy PDF set whose functional form is defined at the starting scale for the
evolution µpdf,0 = 1 GeV, with the coupling at that scale set to αs(µ2

pdf,0) = 0.5. For the
gluon PDF at that scale we take

g(x) = Ng x
β (1− x)5 , (A.6a)

with β = −0.1 and Ng = 1.7. For the quark PDFs we define

uv(x) = Nuv x
α (1− x)3 , (A.6b)

dv(x) = Ndv x
α (1− x)4 , (A.6c)

d̃(x) = Nd̄ x
β (1− x)6 , (A.6d)

ũ(x) = Nd̄ x
β (1− x)7 , (A.6e)

with α = 0.8, Nuv = 5.1072, Ndv = 3.06432 and Nd̄ = 0.1939875. We then use

u(x) = uv(x) + 0.8ũ(x) , (A.6f)
d(x) = dv(x) + 0.8d̃(x) , (A.6g)
ū(x) = 0.8ũ(x) , (A.6h)
d̄(x) = 0.8d̃(x) , (A.6i)
s(x) = s̄(x) = 0.2(d(x) + d̃(x)) , (A.6j)
c(x) = c̄(x) = b(x) = b̄(x) = 0.15(ũ(x) + d̃(x)) , (A.6k)
t(x) = t̄(x) = 0 . (A.6l)

In the above equations the forms for the PDFs are all implicitly to be understood as being
at the factorisation scale µpdf,0. The PDF uses nf = 5 light flavours, as with the rest of
our results in this paper. For the purposes of mapping shower scales to PDF scales, as in
appendix A.2, we use µpdf,1 = 107 GeV.23

B Resummation formulae

In this appendix we summarise the NLL analytic resummation expressions used in sec-
tion 4.24 We consider a continuously global observable [27] that, for a single soft or collinear
emission with transverse momentum kt and rapidity y takes the form

O = kt
Q
e−βobs|y−yX |, (B.1)

23For figure 6, because of the use of fixed coupling in the shower, we needed a particularly large range
of PDF evolution (which uses 1-loop running of the coupling), and used µpdf,0 = 0.5 GeV, αs(µ2

pdf,0) = 1.2,
µpdf,1 = 1020 GeV. An alternative solution would have been to adapt HOPPET to have the option of
evolving the PDFs with a fixed coupling.

24Here we do not discuss the question of coherence-violating (“super-leading”) logarithms [78, 79], whose
role in resummations for colour-singlet production processes at hadron colliders remains to be further
investigated (see also footnote 15 of ref. [1]).
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with 0 ≤ βobs ≤ 1 and yX the rapidity of the massive colour-singlet boson. The probability
that the observable is smaller than eL, where L is taken to be large and negative, can be
written at NLL accuracy as

Σ(αs, αsL) = exp
[
−Lg1(αsL) + g2(αsL) +O(αnsLn−1)

]
(B.2)

The g1-function contains the LL terms and reads

gβobs=0
1 = 2Ci

[ 1
2πb0λ̄

(
2λ̄+ ln(1− 2λ̄)

)]
, (B.3a)

gβobs 6=0
1 = 2Ci

[
1

2πb0λ̄βobs

(
(1 + βobs − 2λ̄) ln

(
1− 2λ̄

1 + βobs

)
− (1− 2λ̄) ln(1− 2λ̄)

)]
,

(B.3b)

with

b0 = 11CA − 4nfTR
12π , λ̄ = −b0αsL = −b0λ , (B.4)

and Ci = CA(CF ) for Higgs (Z) production.
The NLL corrections in eq. (B.2) are resummed in the g2-function. This function

contains contributions from (i) soft-collinear emissions r2, (ii) hard-collinear emissions T ,
(iii) the PDF evolution L, and (iv) a factor Fβobs that accounts for the way the observable
depends on multiple emissions. It takes the general form

g2 = −2Cir2(λ̄)− 2CiBiT
(
λ̄
)

+ lnL+ lnFβobs , (B.5)

with Ci the same as above, Bi = Bq = −3/4 for quarks and Bg = (−11CA + 4nfTR)/12CA
for gluons. The NLL contribution from soft-collinear emissions reads

rβobs=0
2 = 1

2πb20

[
K

2π

(
ln(1−2λ̄) + 2λ̄

1−2λ̄

)
− b1
b0

(
1
2 ln2(1−2λ̄) + ln(1−2λ̄) + 2λ̄

1−2λ̄

)]
,

(B.6a)

rβobs 6=0
2 = 1

2πb20βobs

[
K

2π

(
(1 + βobs) ln

(
1− 2λ̄

1 + βobs

)
− ln(1− 2λ̄)

)

+ b1
b0

(
1
2 ln2(1− 2λ̄)− 1

2(1 + βobs) ln2
(

1− 2λ̄
1 + βobs

)
+ ln(1− 2λ̄)

− (1 + βobs) ln
(

1− 2λ̄
1 + βobs

))]
, (B.6b)

with

b1 = 17C2
A − 10CAnfTR − 6CFnfTR

24π2 , K =
(

67
18 −

π2

6

)
CA −

10
9 nfTR , (B.7)

while the corresponding term for hard-collinear emissions is given by

T = − 1
πb0

ln
(

1− 2λ̄
1 + βobs

)
. (B.8)
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The contribution arising from the PDFs evolution in processes with two coloured legs in
the initial state (`1,2) is given by

lnL = ln

f`1
(
x1, Q

2e2L/(1+βobs)
)

f`1(x1, Q2)

+ ln

f`2
(
x2, Q

2e2L/(1+βobs)
)

f`2(x2, Q2)

 , (B.9)

and f`i(xi, µ2) the PDF for flavour `i evaluated for a light cone momentum fraction xi
at the factorisation scale µ. In conjunction with our PDF mapping from appendix A.2,
eq. (B.9) depends on the logarithm of the observable only through the value of λ. The last
term of eq. (B.5) depends on the type of observable. For an additive observable we have

lnFSβobs = −γER′(λ̄)− ln Γ
(
1 +R′(λ̄)

)
, (B.10)

with R′(λ̄) defined as ∂L
(
−Lg1(λ̄)

)
, i.e.

R′βobs=0(λ̄) = 4Ci
πb0

λ̄

1− 2λ̄
, (B.11a)

R′βobs 6=0(λ̄) = 2Ci
πb0βobs

[
ln
(

1− 2λ̄
1 + βobs

)
− ln(1− 2λ̄)

]
. (B.11b)

For observables involving a maximum among jets, i.e. the Mj,βobs of eq. (4.3c), we have

lnFMβobs = 0 . (B.12)

The transverse momentum of the colour singlet also belongs to the class of global observ-
ables with βobs = 0. In this case, the observable-dependent correction reads

lnFptXβobs
= −γER′(λ̄)− ln Γ

(
1 +R′(λ̄)/2

)
+ ln Γ

(
1−R′(λ̄)/2

)
, (B.13)

which has pole at R′(λ̄) = 2.
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