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Abstract

In this thesis, we develop a tight-binding model based on linear combination of

atomic orbitals (LCAO) methods to describe the electronic structure of arrays of ac-

ceptors, where the underlying basis states are derived from an effective-mass-theory

solution for a single acceptor in the cubic model. Our model allows for arbitrarily

strong spin-orbit coupling in the valence band of the semiconductor. Based on that,

we compute the electronic structure of acceptor clusters in silicon by using three

different methods to take into account electron correlations: the full configuration

interaction (full CI calculation), the Heitler-London approximation (HL approxima-

tion), and the unrestricted Hartree-Fock method (UHF method). We have studied

pairs and dimerised linear chains of acceptors in silicon in the ‘independent-hole’

approximation, and investigated the conditions for the existence of topological edge

states in the chains. For the finite chain we find a complex interplay between elec-

trostatic effects and the dimerisation, with the long-range Coulomb attraction of the

hole to the acceptors splitting off states localised at the end acceptors from the rest

of the chain. A further pair of states then splits off from each band, to form a pair

localised on the next-to-end acceptors, for one sense of the bond alternation and

merges into the bulk bands for the other sense of the alternation. We confirm the

topologically non-trivial nature of these next-to-end localised states by calculating

the Zak phase. We argue that for the more physically accessible case of one hole per

acceptor these long-range electrostatic effects will be screened out; we show this by

treating a simple phenomenologically screened model in which electrostatic con-

tributions from beyond the nearest neighbours of acceptor each pair are removed.

Topological states are now found on the end acceptors of the chains. In some cases
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the termination of the chain required to produce topological states is not the one

expected on the basis of simple geometry (short versus long bonds); we argue this

is because of a non-monotonic relationship between the bond length and the ef-

fective Hamiltonian matrix elements between the acceptors. We also compute the

electronic structure of acceptor clusters in silicon by using three different methods

to take into account electron correlations: the full configuration interaction (full CI

calculation), the Heitler-London approximation (HL approximation), and the unre-

stricted Hartree-Fock method (UHF method). We show that both the HL approach

and the UHF method are good approximations to the ground state of the full CI

calculation for a pair of acceptors and for finite linear chains along [001], [110] and

[111]. The total energies for finite linear chains show the formation of a 4-fold de-

generate ground state (lying highest in energy), below which there are characteristic

low-lying 8-fold and 4-fold degeneracies, when there is a long (weak) bond at the

end of the chain. We present evidence that this is a manifold of topological edge

states. We identify a change in the angular momentum composition of the ground

state at a critical pattern of bond lengths, and show that it is related to a crossing in

the Fock matrix eigenvalues. We also test the symmetry of the self-consistent mean-

field UHF solution and compare it to the full CI; the symmetry is broken under

almost all the arrangements by the formation of a magnetic state in UHF, and we

find further broken symmetries for some particular arrangements related to cross-

ings between the Fock-matrix eigenvalues in the [001] direction. We also compute

the charge distributions across the acceptors obtained from the eigenvectors of the

Fock matrix; we find that, with weak bonds at the chain ends, two holes are local-

ized at either end of the chain while the others have a nearly uniform distribution

over the middle; this also implies the existence of the non-trivial edge states. We

also apply the UHF method to treat an infinite linear chain with periodic boundary

conditions, where the full CI calculation and the HL approximation cannot easily

be used. We find the band structures in the UHF approximation, and compute the

Zak phases for the occupied Fock-matrix eigenvalues; however, we find they do not

correctly predict the topological edge states formed in this interacting system. On
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the other hand, we find that direct study of the quantum numbers characterising the

edge states, introduced by Turner et al., provides a better insight into their topolog-

ical nature. Finally, the one-hole and the multi-hole models are applied to the 2D

system. We show the energy states for the finite arrangement as well as the band

structures for periodic cases. We also compare the full CI result with the UHF one

for the multi-hole model, where we find including large next-nearest interactions

will improve the accuracy of the results when we investigate the distribution of the

holes. Then we prove the existence of the topological edge states in the infinite hon-

eycomb lattice under the multi-hole model, which is also verified in the calculations

for the real doped silicon lattice.



Impact Statement

In the last few decades, studies of defects in semi-conducting systems have broad-

ened to include applications to quantum computation and quantum simulation as

well as their more traditional role in doping for classical electronics. Donors are es-

pecially well studied but in materials such as silicon having degenerate conduction

band minima they suffer from the disadvantage of inter-valley interferences causing

rapid oscillations in the wave functions and hence also in hopping or exchange inter-

actions, leading to extreme sensitivity to the precise dopant position. The spin-orbit

coupling in the acceptor provides an opportunity that it allows the formation of a

much wider variety of non-trivial topological states, and also provides another way

to manipulate the spin degree of freedom using electric fields. And an powerful

model which could make accurate predictions on the band structure of the acceptor

system is the first step to achieve the benefits above.

In this paper, we develop a tight-binding model based on linear combination

of atomic orbitals (LCAO) methods to describe the electronic structure of arrays

of acceptors, and then include the hole-hole interactions in three different ways to

investigate the multi-hole systems. Our results generalise the concept of topolog-

ical edge states to encompass the richness of bandedge degeneracy and spin-orbit

coupling expected in acceptor states in silicon. Our findings point to the complex

interplay between topological effects based on the dimerisation, the distance depen-

dence of the interactions, and the long-range electrostatics that is likely to determine

the nature and location of the edge states in the one-hole system. Our models and

results achieved make it possible to envisage novel spintronic devices based on the

manipulation of hole spins, as well as electrically controlled silicon quantum bits
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(qubits), which implies potential applications in quantum simulation and quantum

computation. Based on my study of acceptors, it should provide a rich platform

for the study of topological and quantum effects in the acceptors systems and other

relevant fields in the future.
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Chapter 1

Introduction

1.1 Individual dopants and quantum information

Quantum computing is the computation which performs calculations by using the

properties of quantum states. A computer based on this is called a ‘quantum com-

puter’. There, the bits in the classical computers will be replaced by the qubits

(quantum bits), which can take 0 or 1 quantum state. Comparing to a classical com-

puter, a quantum computer can perform a large amount of calculations at the same

time theoretically due to the superposition. But maintaining the states of qubits is

extremely difficult as the quantum decoherence could arise during the calculation,

so the outcome will be wrong. Although the results can be corrected by extra steps

[1], new errors will keep arising as the decoherence of the qubits could come from

many things such as interactions with the external environment and the lattice vi-

brations and it is almost impossible to get rid of all of them. So a threshold needs

to be drawn for the error rate to truncate the progress of corrections. Then one of

the main questions here is how to achieve a system with robust qubits so that the

decoherence can be avoid as much as possible and the error rate is low enough.

For decades, the formidable capacity of the quantum computer attracts thou-

sands of researchers dive into the investigation of it. In 1998, B. E. Kane proposed

a possible method to achieve a quantum computer by using donors in doped silicon

[2]. In that paper, he pointed out that information can be encoded onto the nuclear

spin of donors. As the nuclear spin is well isolated from the external environment,
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operations on the those qubits will have a lower error rate. The key of this pro-

posal is to take advantage of the hyperfine interaction, which can be controlled by

voltages applied to the device. There electron and nuclear spins are coupled by the

hyperfine interaction. As the electrons are sensitive to the external electric fields,

the hyperfine interaction and the electron-mediated nuclear spin interaction can be

controlled by voltages applied to metallic gates in a semiconductor device, which

will realize the required external manipulation of nuclear spin in the quantum com-

putations. So the logical operations can be realized with the help of external electric

fields, while measurements of spin can be done by using currents of spin-polarized

electrons. The realization of this computer will be a great challenge as the mate-

rial and the condition of the dopant needs to meet extraordinary requirements: the

materials must be free of spin and charge impurities so the dephasing fluctuations

can be avoided, while donors must be doped in an ordered array far beneath the sur-

face. It is also difficult to build a required gate as the gates with lateral dimensions

and separations around 100Å must be patterned on the surface and registered to the

donors beneath them. But as it is a possible plan to realize the quantum computer

with silicon (the dominant material in the microelectronics industry), it drives many

researchers to the investigations of donors (we will see many new progresses have

been achieved in the recent years in §1.4), and is also the motivation of this thesis.

1.2 Theory of donors

Although the band gap in a semiconductor is not as big as that in an insulator, the

number of carriers is still very small. To increase the number of carriers, we can

dope impurities with an additional electron or hole. The first kind of dopant is called

‘donor’, while the second one is called ‘acceptor’. The energy states of donors are

close to the conduction band in the semiconductor, so the electrons on these states

can be thermally excited to the conduction band.

The effective mass approximation is one of the popular approximations applied

to the semiconductor system to simplify the calculations[3]. There, the behavior

of electrons (or holes) will be approached by the behavior of free electrons (or
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free holes) with effective mass, while the effective mass of a particle is the mass

it seems to have when it interacts with an other particle or moves in a field. After

applied this approximation, it is possible to use equations and formulas applied to

the free particle to describe a electron (or a hole) in the semiconductor system. And

the calculations will be simplified as those equations and formulas (such as the

Schrodinger equation) for the free particle are simple.

For a single donor [4], the question will becomes solving the perturbed crystal

eigenvalue problem, which is

Hψ = [− h̄2

2m0
∇2 +V ]ψ = Eψ. (1.1)

Here V is the total crystal potential, ψ is the impurity-electron wave function. As

this is based on the assumption that the perfect crystal eigenvalue problem has been

solved, the total crystal potential V can be written as

V =V 0 +U, (1.2)

where V 0 is the perfect-crystal periodic potential, and U is the perturbation. Then,

following the discussion in Reference [4], one can achieve the form after applying

the effective mass approximation as shown below

E0
n (⃗k)Fn(⃗k)+∑⃗

k′
U(|⃗k− k⃗′|)Fn(⃗k

′
) = EFn(⃗k), (1.3)

where E0
n (⃗k) is the energy of the nth band as a function of the wave vector k⃗ in the

first Brillouin Zone in the perfect crystal eigenvalue problem, Fn(⃗k) are the parame-

ters achieved when we expand ψ in terms of the complete orthonormal set of Bloch

functions as

ψ (⃗r) = ∑
n

∑⃗
k

Fn(⃗k)ψ0
n⃗k
(⃗r), (1.4)

ψ0
n⃗k

are the Bloch functions. As the perturbation U is negative for donors, the
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Figure 1.1: The schematic diagram for the valance bands.

relevant band here is the lowest conduction band, which has six equivalent minima.

So, for example, the energy around the minimum along the +x direction, located at

k⃗1, can be written as

E0(⃗k)∼=
h̄2

2ml
(kx − k1)

2 +
h̄2

2mt
(k2

y + k2
z ). (1.5)

The corresponding trial function in the real basis (Fi(⃗r)) is a sum of 1s- and 2s-like

hydrogenic functions, which can be used easily in the further calculations. The ex-

change interaction of a pair of donors was studied with the Heitler-London treatment

of exchange several decades ago [5]. There after giving the Hamiltonian operator,

selected wavefunctions (most likely combinations of states for the system) will be

used to calculate the energy of the system. So the calculation will be simplified

dramatically. However, multi-conduction-band-minima found in donors will lead

to unavoidable interference between the conduction-band valleys of the host (the

multi-valley effects). This generates strong oscillation of spin-spin interactions in

the exchange splitting of two-donor two-electron states, which makes the position

of donors becomes important in determining the strength of the exchange coupling.

But unwanted interactions could lead to decoherence of the qubits in the system,

so extremely high precision will be required to take the places with no exchange-

interaction.

1.3 Alternative candidate: acceptors
Besides donors, there is an other kind of dopant called ‘acceptor’. The energy states

of acceptors are close to the valence band in the semiconductor, so these states can

accept electrons from the valence band as acceptors (Group III A elements) contain
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extra holes compared with the other atoms (like silicon). The valence band has a

single maximum at the Brillouin zone center (Γ point). But in some semiconduc-

tors (such as silicon and germanium), the valance bands at Γ point are degenerate

as shown in Figure 1.1. The upper main band consists of the heavy- and light-hole

bands, in which the effective masses are big and small, respectively. The bands

are splitted at Γ point by the energy of ESO, which is called ‘spin-orbit coupling’.

For the strong spin-orbit coupling case (a large ESO), the split-off band is far away

from the main band, and we can neglect the influence of it. For the weak spin-orbit

coupling case (small ESO) the split-off band is very close to the main band, and we

can treat them as if they are degenerate. This will lead to different Hamiltonians for

a single acceptor. For the strong spin-orbit coupling case (a large ESO), as the cou-

pling is very strong, the vector of spin-1
2 spin operators S⃗ and the vector of spin-1

angular momentum operators I⃗ are always on the same line. So we can define the

total intrinsic angular momentum of a valence-band electron J⃗ = I⃗+ S⃗ which corre-

sponding to spin-3
2 and only consider it in the calculations. For the weak spin-orbit

coupling case (a small ESO), as the coupling is weak enough to be neglected, the

vector of spin-1
2 spin operators S⃗ is no longer relative to the question here. So we

only need to deal with the vector of spin-1 angular momentum operators I⃗ in the

calculations. Another advantage of acceptors is that the spin (angular momentum)

states can also be manipulated with electric fields, so acceptors could play the sim-

ilar role as donors in the devices when we need to control the spins by the external

electric fields.

Acceptors have attracted renewed attention because of the absence of multi-

valley effects in the valence band, which will lead to monotonic exchange and hop-

ping interactions that are easier to control. However, owing to the spin-orbit cou-

pling of the valence band, the spin-orbit interactions need to be taken into account

from the outset.

Previously the electronic structures of a single acceptor in common semicon-

ductors have been studied both theoretically and experimentally. Baldereschi and

Lipari introduced the so-called ‘spherical model’ [6], based on the effective-mass
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theory and including the cubic contributions either through perturbation theory [7]

or in an exact form [8]. These calculations gave reasonably accurate predictions of

the acceptor ionisation and excitation energies. Recently, Durst, et. al., computed

the electronic structure and exchange interaction between two acceptors by adopting

the spherical model and the Heitler-London approximation [9]. They also investi-

gated the interaction between acceptor pairs in the extreme long-range limit, where

hopping of electrons is no longer relevant, again using the spherical model [10];

they argue that in this limit the interactions are dominated by electric quadrupole

moments.

1.4 Experimental progress

For the experiments, measurements of the optical transitions and spectra of accep-

tors in silicon have been performed [11]. The coherence time of the excited state

of acceptors in silicon has also been measured, showing promise for optically con-

trolled p−n devices [12]. The transport properties of boron in silicon, such as the

conductivity and magnetoresistance have also been studied previously [13]. The

Mott transition is a metal-insulator transition in condensed matter [14, 15]. The

electric potential will form a well around each atom that will attract carriers, and

the interactions between carriers will repel them away from each other. When these

interactions get large enough, they will force the system into a insulating state with

one carrier per acceptor or donor. The measurement can be done by testing the

conductivity of the material under different temperatures: when the conductivity no

longer depends on the temperature, it is on the metallic side of Mott transition. In a

previous work [16], they offered experimental evidence for the Mott transition from

randomly doped p-type bulk Si (Si:B). It suggests that the Mott transition occurs

at densities around 4.11 × 1018 cm−3, corresponding to average spacings around

6.24nm ≈ 2.45a0.

The electrical detection and high-fidelity coherent manipulation of a single

spin qubit for quantum computing are also proved possible [17]. Serial electron

transport through a donor-based triple quantum dot in silicon with nanoscale preci-
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sion is demonstrated by scanning tunnelling microscopy lithography in 2014 [18].

The method to electrically control electron spins in donor-based qubits in silicon

is achieved in 2017 [19]. A device which can determine inter-donor distances to

achieve controllable wavefunction overlap and perform high fidelity spin readout on

each qubit at the same time is achieved by scanning tunnelling microscopy lithogra-

phy in 2018 [20]. And a single qubit gate with coherent oscillations of the electron

spin on a P donor molecule in Si patterned by scanning tunneling microscope lithog-

raphy is demonstrated in 2021 [21].

A possible method to realize multi-qubit quantum circuits based on donors in

silicon is pointed out in 2019 [22]. The many-body Su–Schrieffer–Heeger (SSH)

model [23, 24, 25, 26, 27, 28] is the simplest one-dimensional model of strongly

correlated topological matter, which is hard to be simulated in the experiment due

to the challenge of precisely engineering long-range interactions between electrons.

But recently a linear array of ten quantum dots successfully realize both the triv-

ial and the topological phases of the many-body SSH model for precision-placed

atoms in silicon with strong Coulomb confinement [29]. There, they tuned the ra-

tio between intercell and intracell electron transport to observe signatures of the

topological phase and the trivial phase with different number of conductance peaks.

Recently, the readout and control of the spin-orbit state of two coupled ac-

ceptors in silicon was demonstrated experimentally, opening up another route to

quantum computing and quantum information in silicon [30, 31, 32, 33, 34]. Ac-

ceptor pairs in silicon have also been used for simulations of fermionic strongly-

correlated many-body systems [35]. A team from IBM recently proved that boron

in diborane can be used as a p-type dopant in silicon to build p-type nanowire de-

vices in combination with hydrogen lithography [36]. And, in collaboration with

researchers from UCL and Keysight Technologies, they made p–n junctions with

phosphorus (n-type dopant) and boron (p-type dopant) by using broadband electro-

static force microscopy, which were imaged with scanning microwave microscopy

(SMM) [37]. AlCl3 and BCl3 are also investigated as a molecular precursor for the

incorporation on Si(100) for atomically precise acceptor-based devices both experi-
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mentally and theoretically[38, 39]. And the controlled doping of P atoms in Si(001)

has been realized by using PH3 with the accuracy arround 1nm [40], which makes

a great progress towards fulfilling the requirement of the precision in Kane’s pro-

posal [2]. An alternative way to realized the controlled doping by using arsenic is

also achieved in 2020 [41]. Now the high precision of deterministic doping can be

achieved as the dopant will take the place of the silicon atom in two nearest cells.

Although the surface chemistry needed for deterministic implantation of more com-

plex structures has not yet been developed, it is timely to investigate the potential

structures that could be produced, and the potential role of the spin-orbit interaction

in their electronic properties.

1.5 Introduction to topological insulators and

topological invariants
As mentioned in §1.1, robust qubits are required for a quantum computation. One

of the way to achieve that is encoding the information onto some stable states which

are robust enough towards outside influence. One of the candidates is the topologi-

cal state, which is symmetry-protected and will be more stable than the trivial states.

The symmetry-protected topological order is a kind of order in zero-temperature

quantum-mechanical states of matter that have a symmetry and a finite energy gap.

There the symmetry protected properties of states can only be lost when the symme-

try is broken. The trivial states will have same topology as the vacuum, while the

non-trivial states have different topology. As what we will show in §3.2.2, changing

of the potential from the surrounding can introduce edge states into the system in

the trivial case, while non-trivial states will always localize at some particular place.

In general, topologically ordered states have special properties like they contain

non-trivial edge states, which become perfect conducting channel that can conduct

electricity without generating heat. Based on that, we have the topological insula-

tors. These insulators have non-trivial symmetry-protected topological order, so the

conductive surface state, which makes the electrons can only move along the ma-

terial surface, are protected by the particle number conservation and time-reversal
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symmetry. This kind of insulators can be characterized by the topological invari-

ants, so we can identify them by calculating a suitable topological invariant for the

system.

One of the topological invariants is the Zak phase. For a 1D system, the calcu-

lation of the Zak phase can be transformed to the integration of the Berry connection

over the first Brillouin zone. This quantity was defined in the previous paper [42, 43]

as

Z = i
∫

first BZ
dk⟨uk|∂kuk⟩ (1.6)

where uk is the eigenvector of the Bloch Hamiltonian at wavevector k. When the

Zak phase is 0 modulo 2π , we expect the system to be topologically trivial and the

corresponding finite chain to have no topological edge state, whereas when the Zak

phase is π modulo 2π , the system is topologically non-trivial and the corresponding

finite chain supports topological edge states. As it is the integration of the Berry

connection over the first Brillouin zone, the Zak phase is invariant (modulo 2π)

under gauge transformations of the form |uk⟩ → eiβk |uk⟩ [44].

Another invariant used in the thesis is the Z2 invariant based on the time-

reversal symmetry [45]. In two dimensional case we have the possibility to form

topological insulators, where robust edge states are rigorously protected by time-

reversal symmetry. In systems with inversion symmetry, the calculation of parity

can also be used as a diagnostic for the existence of this topological state: accord-

ing to a previous paper [45], the Z2 invariant ν (which takes the value 0 for trivial

states and 1 for non-trivial states) can be obtained from the parity of occupied bands

by using

(−1)ν = ∏
i

δi = ∏
i

N

∏
m=1

ξ2m (Γi) , (1.7)

where ξ2m (Γi) = ±1 is the parity of the time-reversed state pair 2m (or 2m− 1)

at time-reversal symmetric point i. When ν = 1, the system has odd parity and

there exist non-trivial topological edge states; When ν = 0, the system has even

parity and there only exist trivial topological states. To determine the value of ν in
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two dimensions, only the four distinct time-reversal-invariant points in momentum

space need to be taken into account: i ∈ {(0,0),(0,π),(π,0),(π,π)}.

For the interacting system, we can also achieve the evidence for the non-trivial

topological states by examining the symmetries of the edge states in the light of

the classification of the topological phases of one-dimensional interacting fermions

proposed by Reference [46]. In that paper, the time-reversal symmetry leads to

additional distinctions between different phases. All possible phases of fermions

can be classified into 8 categories by using three given parameters µ,ϕ ,κ . The

definitions for those parameters are shown below.

QAQB = eiµQBQA (1.8)

QAT = eiϕ T QA (1.9)

UA(UA)∗ =UB(UB)∗ = exp(iκ)1 (1.10)

Here Q is the fermion parity operator, QA and QB are local operators acting on the

ends of the segment which satisfy (QA)2 = (QB)2 = 1, T is the time-reversal oper-

ator, UA and UB are the unitary transformations acting on the ends of the segment

which satisfy

T |αβ ⟩= ∑
α ′

,β ′
UA

α ′αUB
β ′β |α

′
β

′
⟩ (1.11)

and [UA,UB] = 0, α and β enumerate the states associated with the two edges.

After calculating these parameters for the edge state, we can know whether the state

is topologically non-trivial or not by checking the table offered in Reference [46].

1.6 Outline of the structure for the rest of thesis

In this thesis, we construct a linear combination of atomic orbitals (LCAO) model

for deterministically placed acceptors in silicon, and develop three different multi-

hole models (including hole-hole Coulomb interactions) with one hole per acceptor

along low-index crystallographic directions (they are [001], [110] and [111] for
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one dimensional system) based on that: the full configuration interaction calcula-

tion (full CI, in §4.1.1), the Heitler-London approximation (HL approximation, in

§4.1.1) based on the full CI calculation but with a restricted basis, and the unre-

stricted Hartree-Fock method (UHF method, in §4.1.2) which represents the multi-

hole state by a Slater determinant of one-hole states.

We first compute the electronic structure of the single acceptor in silicon by

using the cubic model in Chapter 2; our results confirm the significant improvement

due to the inclusion of the cubic term. Based on these single-acceptor calculations,

we have selected an appropriate basis set of single-acceptor electronic states and

performed calculations on acceptor pairs and linear chains by using a linear com-

bination of atomic orbitals (LCAO) approach within an independent-hole model in

Chapter 3. Our results suggest an interesting interplay between electrostatic effects

and topological edge state in finite chains.

Then we introduce hole-hole Coulomb interactions into the system and begin

the calculations of the multi-hole cases in Chapter 4. Some limitations of the full CI

calculation and the HL approximation are discussed in §4.1.1. We study dimerised

chains with staggered bond lengths d1 and d2 and concentrate on a ’small-separation’

case with d1+d2 = 3a0 and a ’large-separation’ case with d1+d2 = 6a0 where a0 is

the effective Bohr radius; we show that both the HL approach and the UHF method

are accurate approximations to the ground state of the fully exact CI calculation

for these finite-length linear chains. We investigate the energy spectrum obtained

from full CI for a 4-acceptor chain and explain the ground state in terms of the

formation of edge states; we also relate an anti-crossing in the [001] direction for the

small-separation case to the behavior of the Fock matrix eigenvalues obtained from

the UHF method. We analyse the symmetries of the states produced by symmetry

breaking in the UHF solution, and present evidence for the existence of non-trivial

many-body edge states in the finite chain system. We point out that the UHF method

can be applied to a linear chain with periodic boundary conditions, and calculate

the band structure formed by the Fock matrix eigenvalues. We also analyse the

topological phases of the system based on two methods: first, a method focusing on
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the edge states of finite one-dimensional interacting Fermionic systems, and second,

the Zak phase [43] for an infinite non-interacting system.

After getting the valid models for both non-interacting case and interacting

case in one dimensional system, we apply those methods on two dimensional sys-

tem in Chapter 5. We calculate the energy states for the finite rectangle arrange-

ments as well as the band structures for periodic boundary condition cases under

both the one-hole model and the multi-hole model. For the one hole model, we

campare 2D systems with one dimensional systems, and find some states localized

at particular acceptors due to the nonequivalent potential. We also find the evidence

for the existence of the non-trivial topological edge states. For the multi-hole model,

we compared the full CI result with the UHF one, and investigate the distribution of

the holes there. Then we investigate the topological property of edge states in the

infinite honeycomb lattice by calculating the Z2 invariant mentioned in §1.5. We

also consider the acceptors in the real doped silicon lattice to predict the behavior

of acceptors in the experiment.



Chapter 2

The Single Acceptor Problem

2.1 Single-acceptor cubic model

Within effective mass theory [3], the Hamiltonian for an isolated acceptor contains

spherical and non-spherical (cubic) parts. Including all the terms, we can obtain a

cubic model. Here we should point out that the cubic symmetry is introduced by the

effective mass approximation, while the defect itself has terahedral (Td) symmetry.

This is unavoidable when effective mass theory is applied. In the effective mass

the Coulomb potential around the defect is different from the real case, so the this

model is invalid for very small separations. But we can still expect the results for

the other separations are accurate enough.

In this thesis, we take the general form of the cubic model (valid for arbitrary

spin-orbit coupling) as follows,

Ĥc =
p2

h̄2 − 2
r
− µ

3h̄2 (P
(2) • I(2))

+
2
3

∆(
1
2
− I⃗ • S⃗)+

δ
3h̄2 ([P

(2)× I(2)](4)4 +

√
70
5

[P(2)× I(2)](4)0 +[P(2)× I(2)](4)−4)

(2.1)

where p is the hole linear momentum operator, µ is the strength of the spherically

symmetric heavy-hole light-hole coupling, ∆ is the spin-orbit coupling, and δ is the

strength of the cubic term [7]. The tensor operators P(2) and I(2) are as defined

in previous studies of acceptors [6]: Pik = 3pi pk − δik p2 contains the hole (linear)
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momenta, while Iik =
3
2(IiIk+ IkIl)−δikI2 is built from the angular momentum oper-

ators Ii of a spin-1 object (corresponding to the intrinsic orbital angular momentum

of the p-orbitals comprising the valence band). I⃗ is the corresponding vector of

spin-1 angular momentum operators, while S⃗ is the vector of spin-1
2 spin operators

of the hole. In this model, we use the effective Rydberg R0 =
e4m0

2h̄2ε2
0 γ1

and the effec-

tive Bohr radius a0 =
h̄2ε2

0 γ1
e4m0

as units of energy and length, respectively [6], where

ε0 and m0 are the crystal dielectric constant and the free electron mass, respectively,

and γ1 is the parameter proposed by Luttinger for the description of the hole dis-

persion relation near the center of the Brillouin zone [3]. Here the factor ‘2’ above

r arises due to the definition of R0. [A×B](l)m denotes component m of the part of

the spherical tensor product A×B having rank l. For silicon, where the effective

Rydberg R0 = 24.8meV and a0 = 2.55nm, we have the strength of the spherical

term µ = 0.483, the valence band spin-orbit splitting ∆ = 1.774R0, and the cubic

term δ = 0.249. We note that the model is set up to describe electrons in the va-

lence band, so the ground state for holes will appear at the top of the spectrum (i.e.,

with the largest positive eigenvalue). For convenience, we describe the state by the

location of it in the figure shown in the thesis, for example, the highest state is the

ground state.

For the convenience of the following discussion, here we give the definitions of

the total angular momentum F⃗ : F⃗ = L⃗+ I⃗+ S⃗ = L⃗+ J⃗, where L⃗ is the orbital angular

momentum of the envelope function and J⃗ = I⃗ + S⃗ is the total intrinsic angular mo-

mentum of a valence-band electron. Then we have the corresponding total magnetic

angular momentum mF . In the spherical case where the cubic term is neglected, F⃗

is conserved. So eigenstates are characterised by quantum numbers F and mF . So

the spherical state for acceptors can be expanded as a linear combination of a group

of states with spherical symmetry labeled by L,J,F,mF . In the cubic model Equa-

tion 2.1, the cubic term couples states with ∆mF = 0,±4 where the cubic term is

not zero [7], so the eigenstates are now labeled by irreducible representations of the

cubic double group rather than by values of F . There are 6 fermionic representa-

tions, Γ±
6 ,Γ

±
7 ,Γ

±
8 ; states with these symmetries can be obtained by taking suitable
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linear combinations of states with spherical symmetry. Γ±
6 are double degenerate

states, Γ±
7 are six-fold degenerate states, Γ±

8 are four-fold degenerate states. For the

convenience of further calculations, we use an underlying basis of Gaussian orbitals

of spherical symmetry up to a maximum of L = 3 and F = 9
2 (which we label as

F9
2

states, corresponding to the usual notation in atomic physics). With the help of

this Gaussian basis, the further calculations in the following chapters are able to be

done easily as the formulas for the transition integrals and hole-hole interactions in

Reference [47] can be applied. We compute the matrix elements of the Hamiltonian

in this basis of spherically symmetric states. The spherically symmetric term is

⟨
L′,J′,F,mF

∣∣P(2) • I(2) |L,J,F,mF⟩= (−1)L+J′+F

F J′ L′

2 L J

(L′∥∥P(2) ∥L)

•
(
J′
∥∥ I(2) ∥J)

(2.2)

where the term with {} is the 6- j symbol, and the reduced matrix element

(J′∥ I(2) ∥J) can be obtained by the formula

(
J′
∥∥ I(2) ∥J) = (−1)J+ 7

2
√

(2J+1)(2J′+1)

1 J′ 1
2

J 1 2

(I′∥∥ I(2) ∥I) (2.3)

The cubic symmetry term is

⟨
L′,J′,F ′,m′

F
∣∣ [P(2)× I(2)](4)m |L,J,F,mF⟩= 3(−1)F ′−m′

F
√

(2F +1)(2F ′+1)

•

 F ′ 4 F

−m′
F m mF




J′ J 2

L′ L 2

F ′ F 4


•
(
L′∥∥P(2) ∥L)

(
J′
∥∥ I(2) ∥J)

(2.4)

where the term with () is the 3- j symbol, and the term with {} is the 9- j symbol.

Then we can transform these matrix elements into a set of basis functions belong-
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ing to the irreducible representations of the cubic double group by the projectors

connected the |L,J,F,mF⟩ basis and the cubic symmetry basis. It can be achieved

by the formula offered in the projection operator section in reference [48]. Diago-

nalizing the projectors and applying the eigenvectors corresponding to the non-zero

eigenvalue to the |L,J,F,mF⟩ basis, we will get the Hamiltonian under the cubic

symmetry basis. The eigenfunctions of the Hamiltonian (2.1) can be solved by ex-

panding the cubic states in terms of Gaussian functions [7]. The resulting cubic

states are then used as the basis for the following chapters. For the convenience of

the discussion in the next section, we take the Γ+
8 state as an example to show the

structure of the state.

Φ(Γ+
8 ) = f1(r)

∣∣∣∣L = 0,J =
3
2
,F =

3
2
,mF

⟩
+ f2(r)

∣∣∣∣L = 2,J =
3
2
,F =

3
2
,mF

⟩
+ f3(r)

∣∣∣∣L = 2,J =
1
2
,F =

3
2
,mF

⟩
+ f4(r)

∣∣∣∣L = 2,J =
3
2
,F =

5
2
,mF

⟩
+ f5(r)

∣∣∣∣L = 2,J =
1
2
,F =

5
2
,mF

⟩
+ f6(r)

∣∣∣∣L = 4,J =
3
2
,F =

5
2
,mF

⟩
+ f7(r)

∣∣∣∣L = 2,J =
3
2
,F =

7
2
,mF

⟩
+ f8(r)

∣∣∣∣L = 4,J =
3
2
,F =

7
2
,mF

⟩
+ f9(r)

∣∣∣∣L = 4,J =
1
2
,F =

7
2
,mF

⟩
(2.5)

where fi(r) is the radial part which can be expanded in terms of Gaussian functions

(shown in the next section), and |L,J,F,mF⟩ is the angular part.

2.2 Single acceptor result
The single-acceptor problem can be solved by expanding the wave function of the

eigenstates in terms of Gaussian functions [6, 7]. The radial parts of the states (such
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Table 2.1: The highest four single acceptor eigenenergies obtained from the Gaussian ex-
pansion for Si; the energy unit is the effective Rydberg R0.

Spherical state Spherical result Cubic state Cubic result
1S 3

2
1.356041 1Γ+

8 1.868314
2P3

2
0.456253 1Γ+

6 0.930278
2S 3

2
0.360829 1Γ−

8 0.717426
2P5

2
0.314359 2Γ+

8 0.538586
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Figure 2.1: The total probability density of the ground state wavefunctions with different
approximations for a single acceptor along z-axis ([001] direction) in Si under
the one-hole model. The black line is for the results by solving on the grid
under the spherical model. The red line is for the results from Gaussian expan-
sion under the spherical model. The blue line is for the results from Gaussian
expansion under the cubic model.
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Figure 2.2: The behavior of the eigenstates as a function of ∆ with µ = 0.483 and δ = 0.249
(the values in Si): (a) the energy spectra for the spherical case, (b) the energy
spectra for the cubic case. Note that some states of other symmetries are not
shown, and ∆ = 1.774R0 for silicon.
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as fi(r) in Equation 2.5) are expanded as

fi(r) = rl ∑
i

Aie−αir2
, (2.6)

where l is the orbital angular momentum of the envelope function and αi is a Gaus-

sian exponent. We use 21 Gaussian functions, with exponents αi =
5×105

2.42632i−1 for

both single acceptor case in this chapter and one-hole model in the next chapter.

Here we take the number 2.42632 to make the exponents drop in the same range

(α1 = 5×105, α21 = 0.01) as shown in the previous paper [6]. This group of expo-

nents has been tested by comparing with the experimental ionization energies [6, 7],

so it should provide reliable results here.

We will use the highest four states as a basis for further calculations of the

pair and the acceptor chain to include the influence from near excited states; the

states and their energies in the spherical and cubic cases are shown in Table 2.1.

The spherical results have been benchmarked against an exact solution of the radial

equation in my MSc project [49], which shows this method can provide very good

results. We note that the states in the cubic case are systematically more strongly

bound than those in the spherical case, and we expect they will have correspond-

ingly shorter decay lengths. This is supported by Figure 2.1, which shows the total

probability of the ground state wave functions with different approximations for a

single acceptor along z-axis; the more rapid decay in the cubic case is apparent.

Here we can also see that the results from Gaussian expansion under the spherical

model is very close to the results by solving on the grid under the same model,

which support that Gaussian expansion is a valid approximation towards solving on

the grid.

We also show the behavior of the eigenstates in the spherical and cubic cases

as the spin-orbit coupling ∆ changes, for fixed µ and δ (µ = 0.483, δ = 0.249), in

Figure 2.2. As ∆ → 0, F⃗ = L⃗+ I⃗ + S⃗ is not the only conserved quantity; instead,

S⃗ and L⃗+ I⃗ are separately conserved. So, the 1S 3
2

and 1S 1
2

states converge to the

1S1 state of the orbital-only model (where the suffix now refers to the value of

L⃗+ I⃗); similarly 2S 3
2

converges to the 2S1 state, 2P1
2

and 2P3
2

will converge to the
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2P1 state, and 2P5
2

will converge to the 2P2 state; the 1S1, 2S1, 2P1 and 2P2 states

were discussed for weak spin-orbit coupling in the previous paper [6]. Similarly,

in the cubic case without spin-orbit coupling, the symmetries reduce to Γ±
n ⊗Γ+

6

(where Γ±
n denotes the symmetry of the orbital part in the cubic potential, including

the envelope function and the orbital angular momentum of the atomic p states, and

Γ+
6 is the symmetry of a single spin-1/2). Compared with the results in the previous

paper [8], the cubic case behaves very similar towards the one with the central cell

correction. As the calculation with the central cell correction generally agree with

the experiment results, our results should also conform to experiments.

2.3 Summary
In this chapter, we followed the method in the previous paper [6], and achieved the

eigenvalues and eigenvectors by choosing a group of proper Gaussian exponents. In

the next chapter, we will use these results to do the calculation with more acceptors

in one dimensional within the independent-hole approximation.



Chapter 3

One-hole Model In One-dimensional

Systems

In this chapter we will investigate the acceptors in one-dimensional system under

the independent-hole model. In this thesis, we call it ‘one-hole model’ as it does

not include the hole-hole interactions. We will build a linear combination of atomic

orbitals (LCAO) model, by expanding the mutli-acceptor wavefuntion as a linear

combination of the single acceptor wavefunctions. The transitions between the next

nearest neighbours will be considered here. The linear acceptor chain will be stud-

ied including both the finite chain and the chain with a periodic boundary condition.

The energy states for the finite system and the band structure of the infinite system

will be calculated. And we will try to investigate the topological property of the

system mentioned in §1.5.

3.1 One-hole model

3.1.1 A pair of acceptors

For the case of a pair of acceptors, a calculation for a fully interacting two-hole

model has recently been reported in the Heitler-London limit [9], but it is challeng-

ing to extend this approach to systems with more than two acceptors. We therefore

introduce an independent-hole model to simplify the calculation, where we initially

assume that there is only one hole in the acceptor pair. The single-hole system can

be written as A−
2 , where A stands for the acceptor (compare the H+

2 molecule, which
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(a)

(b)

Figure 3.1: (a) Schematic of the 10-acceptor finite chain. (b) The unit cell of the infinite
chain; atoms b and c are in the same cell. The letters a, b, c, d and e label
the acceptors. We refer to d1 < d2 as the ‘short-long’ case, and d1 > d2 as the
‘long-short’ case.

contains a single electron). In this case, the Hamiltonian in scaled Rydberg units

(R0 =
e4m0

2h̄2ε2
0 γ1

) is

Ĥpair
s,c = ĤA

s,c −
2
rB

= ĤB
s,c −

2
rA

(3.1)

where HA and HB are the Hamiltonians of a single acceptor A and a single acceptor

B (which may be written either in the spherical approximation or including cubic

terms). Here the factors ‘2’ above rA and rB arise also due to the definition of R0.

Then we can easily obtain an expression for the off-diagonal matrix element (or

transition strength) in the basis of single-acceptor eigenstates

⟨ϕA|Ĥpair|ϕB⟩=
1
2
(EA +EB)⟨ϕA|ϕB⟩−⟨ϕA|

1
rA
|ϕB⟩−⟨ϕA|

1
rB
|ϕB⟩ (3.2)

⟨ϕ
′
A|Ĥpair|ϕA⟩= ⟨ϕ

′
A|HA −

2
rB
|ϕA⟩= EA⟨ϕ

′
A|ϕA⟩−⟨ϕ

′
A|

2
rB
|ϕA⟩ (3.3)

where EA and EB are the single acceptor eigenvalues, and ϕA, ϕB are the correspond-

ing single-acceptor eigenstates.

Using Equations 3.2 and 3.3, we can obtain the transition strength between

any single-acceptor states on any sites. The single-hole energies can then be found

by solving a generalised eigenvalue problem provided we can compute the overlap

⟨ϕA|ϕB⟩ and the potential term ⟨ϕA| 1
ri
|ϕB⟩. We follow the methods in the previous
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paper [47] to get the matrix elements between the Gaussian orbitals, then times the

relevant Gaussian coefficients of the single-acceptor states and sum them to get the

matrix elements under the Cartesian basis. Reference [47] gives the result for states

up to P orbitals, while the results for higher angular momenta can be obtained by

taking further derivatives along the different axis. Than with the help of spherical

harmonics, the Cartesian basis can be transformed to the |L,mL,J,mJ⟩ basis, which

can be transformed to the |L,J,F,mF⟩ basis by using relevant Clebsch–Gordan co-

efficients. The projectors connected the |L,J,F,mF⟩ basis and the cubic symmetry

basis can be achieved by the formula offered in the projection operator section in ref-

erence [48]. Diagonalizing the projectors and applying the eigenvectors correspond-

ing to the non-zero eigenvalue to the |L,J,F,mF⟩ basis, we will get the Hamiltonian

matrix and overlap matrix under the cubic symmetry basis.

This approach becomes exact as (i) the number of single-acceptor states used

and (ii) the number of Gaussian functions used to represent each one both tend to

infinity. Since we are interested in the states close to the ground state in silicon, we

use only the highest 4 single-acceptor states (1S 3
2
, 2S 3

2
, 2P3

2
, 2P5

2
for the spherical

case and 1Γ+
8 , 2Γ+

8 , 1Γ+
6 , 1Γ−

8 for the cubic case) in our basis, as the others are far

away from them in energy. For the spherical case the different total angular mo-

menta are mixed in the array but the projection mF , for which the quantisation axis

is chosen along the inter-acceptor axis, remains a good quantum number. For the

cubic case, with a general axis direction states of all symmetries are mixed; how-

ever time-reversal symmetry guarantees the states still appear in Kramers doublets,

which can be thought of as derived from the mF = ±1
2 and mF = ±3

2 pairs in the

spherical case.

3.1.2 Linear acceptor-chain and LCAO model

From the one-hole model in §3.1.1, we can develop a similar linear combination

of single-acceptor states to describe a finite linear chain of acceptors by similarly

adding the potential terms from neighbouring dopants (Vpotential) into the single-
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acceptor Hamiltonian.

Ĥchain
s,c = ĤA

s,c −
2
rB

+V̂potential = ĤB
s,c −

2
rA

+V̂potential (3.4)

Here we show the transition elements used in the finite chain calculation. The

subscript indicates the acceptor on which the state involved in the transition is cen-

tered. The labels of the acceptor are same as the ones in Figure 3.1 (a)

taa = EaSaa +Vb (3.5)

tab =
1
2

EaSab +
1
2

EbSab +
1
2

Va +
1
2

Vb +Vc (3.6)

tac =
1
2

EaSac +
1
2

EcSac +
1
2

Va +Vb +
1
2

Vc +Vd (3.7)

tbb = EbSbb +Va +Vc (3.8)

tbc =
1
2

EbSbc +
1
2

EcSbc +Va +
1
2

Vb +
1
2

Vc +Vd (3.9)

tbd =
1
2

EbSbd+
1
2

EdSbd +Va +
1
2

Vb +Vc +
1
2

Vd +Ve (3.10)

Here Ei is the single-acceptor energy of the state on atom i, Si j is the overlap matrix

between the states on atom i and atom j, Vi is the potential matrix of atom i. Here

taa, tab and tac are for the acceptor at the end of the chain, tbb, tbc and tbd are for the

acceptor in the middle of the chain. tbb, tbc and tbd are also used in the infinite chain

calculation.

However, the basis states on different acceptors are not orthogonal and hence

the overlap matrix S must be included in the construction of the LCAO model. This

requires that all the eigenvalues of the overlap matrix must be positive, in order

to obtain a well defined generalised eigenvalue problem. Approximations to the

overlap matrix, for example truncating it after a finite number of neighbours, may

destroy the positive-definiteness of S and make it impossible to solve the eigenvalue

problem. This is a problem particularly for small separations, as we will show in

§3.2.2. To minimise this problem, we include in the calculation the influence of the

next nearest neighbour by considering the matrix elements between each acceptor

and its next nearest neighbour in both the transition matrix and the overlap matrix.
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We will see that the influence from the third neighbours should be small under the

arrangement of the chain in the acceptor-pair calculation in §3.2.1.

For definiteness we focus on the 10-acceptor finite chain shown in Figure 3.1

(a), where we label the first five acceptors from one end by a, b, c, d, and e. We

assume that the separations appear periodically as shown in Figure 3.1 (a), so the

chain possesses a dimerisation that can be varied by changing the separations d1 or

d2. Under this arrangement, it is easier to investigate the topological behaviors.

We refer to the single-hole model including interactions with the next nearest

neighbours as the ‘long-range’ model. This is expected to be a good model for a

single hole bound to an array of acceptors and in this case the long-range Coulomb

interactions have an important effect on the physics (as shown in §3.2.2). However,

we may also wish to understand the behaviour of clusters which are at or close to

charge neutrality and hence contain many holes (for example, one hole per accep-

tor), but the motion of the holes is approximately independent of each other. In that

case we expect that the motion of the other holes will effectively screen out these

long-range interactions, so we adopt as our approximation to this charge-neutral

case a ‘short-range’ model where the effect of the Coulomb potential term (Vpotential)

in Equation (3.4) is removed. So the Coulomb potential from the surrounding ac-

ceptors is removed, while the part from the acceptors involved in the transition is

retained. Corresponding to the potential, we also take out the next nearest transi-

tions. So only the nearest transitions are considered in the ‘short-range’ model.

From the one-hole model in §3.1.1, we can also generate an LCAO model to

describe the linear infinite acceptor-chain in the similar way. The general form of

the Hamiltonian will has the same form as for the finite chain (Equation (3.4)). We

assume each unit cell contains two acceptors as shown in Figure 3.1 (b). The inter-

cell separation is taken as d1, and the intra-cell separation is d2. Since the system

is periodic its eigenstates are labelled by a Bloch wavevector k, which we define so

that the phase factor of the transition from left to right is eik, and that from right to

left is e−ik. We will consider the next nearest transitions here as well, so Equation

(3.8), Equation (3.9) and Equation (3.10) also can be used in the calculations.



3.2. One-hole model results 40

3.1.3 Zak phase calculation for a generalized eigenvalue

problem

An indication of whether a given state in the finite chain system has a topological

origin can be obtained by calculating the Zak phase for the corresponding infinite

chain. For a generalized eigenvalue problem, the formula for the Zak phase in §1.5

becomes

Z = i
∫

first BZ
dk⟨uk|S(k)|∂kuk⟩ (3.11)

where uk is the eigenvector of the Bloch Hamiltonian at wavevector k, S(k) is the

overlap matrix. As previously, when the Zak phase is 0 modulo 2π , we expect the

system to be topologically trivial and the corresponding finite chain to have no topo-

logical edge state, whereas when the Zak phase is ±π , the system is topologically

non-trivial and the corresponding finite chain supports topological edge states. And

Equation (3.11) is also invariant under gauge transformations.

3.2 One-hole model results

3.2.1 A pair of acceptors for the one-hole model

The behaviors of the eigenenergies for the spherical and cubic cases are shown as a

function of acceptor separation r in Figure 3.2. The states all converge to one of the

highest four states of a single acceptor as r → ∞, and can roughly be understood as

either bonding or anti-bonding combinations of the single-acceptor states; however,

for the cubic cases this is complicated by crossings of the states. The splittings

between the states set in at smaller values of r for the cubic case due to the stronger

localization of the states in the cubic case.

Another important thing needs to be pointed out here is the long range inter-

actions in the cubic case. The ground states in Figure 3.2 show that the eight-fold-

degenerate ground state has already formed at r = 5a0 corresponding to two groups

of four-fold-degenerate ground state for the single acceptor case. And the differ-

ence between the ground state energy here (around 2.27R0) and the single acceptor
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Figure 3.2: Eigenenergies in a pair of acceptors as a function of separation r for (a) the
spherical case, and for the cubic case in (b) the [001] direction, (c) the [110]
direction, (d) the [111] direction. In (a), the states with mF = ±3/2 (mF =
±1/2) are in red (black).

case (1.868314R0) is very close to the interaction between the localized hole and

the other acceptor core (hole-core Coulomb interaction, 0.4R0). Consider there are

two acceptors and each of them has a four-fold-degenerate ground state, the ground

state energy behaves like two single acceptor with hole-core Coulomb interactions

between them. So it is reasonable to believe that influence from the third neighbours

should also be small in the linear chain under the chosen arrangements in §3.2.2 (the

separations towards the third neighbour is at least 8a0 for the cubic case) as only the

hole-core Coulomb interaction between them can be identified there.

3.2.2 Finite linear acceptor-chain

As our LCAO model does not contain the influence of all the acceptors in the chain,

the overlap matrix S is not guaranteed to be positive definite. For example, the

behavior of the smallest eigenvalue of the overlap matrix for a 10-acceptor finite
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Figure 3.3: The smallest eigenvalue of the overlap matrix, truncated at next-nearest-
neighbours, for a 10-acceptor finite chain in the spherical model with mF =±1

2
as a function of separation d2 when d1 = 4a0. Note the appearance of unphysi-
cal negative eigenvalues when d2 ≤ 6a0.

Table 3.1: The symmetry for the ground state under the cubic model.

System Group Symmetry
Single Acceptor Oh Γ+

8
Pair/Chain([001] direction) D4h Γ±

6 ,Γ
±
7

Pair/Chain([110] direction) D2h Γ±
5

Pair/Chain([111] direction) D3d Γ±
4 ,Γ

±
5 ,Γ

±
6

chain in the spherical model (truncated at the next-nearest-neighbour) when mF =

±1
2 as a function of the acceptor separation d2 when d1 = 4a0 is shown in Figure 3.3.

It can be seen that, even with the influence of the next-nearest-neighbour included,

S ceases to be positive definite for separations d2 < 6a0. The next-next nearest term

and the following terms are small compared to the next-nearest-neighbour ones, so

adding them only improves the description of the system a little but significantly

increases the cost of the calculation. Therefore, we only include the next-nearest-

neighbour terms in our model, and restrict our calculations so we do not enter the

parameter regions where the corresponding S matrix is not positive definite. For the

spherical case we require that one of the separations is larger than 4a0 and the other

is no smaller than 6a0; for the cubic case (where the basis states are more localised)

we require that one of the separations is larger than 2a0 and the other is no smaller

than 4a0. From now on, we refer to the case d1 < d2 as the short-long arrangement,

to d1 = d2 as the uniform chain, and to d1 > d2 as the long-short arrangement.
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Figure 3.4: The highest few energy states as a function of d1 when d1 +d2 is held constant.
(a) the highest 40 energy states for the spherical case when d1 + d2 = 10a0,
(b) the highest 40 energy states for the spherical case in the short-range model
without long-range potential when d1 +d2 = 14a0, (c) the highest 32 states for
the cubic case in the [001] direction when d1 + d2 = 6a0, (d) the highest 32
energy states for the cubic case in the [110] direction when d1 + d2 = 7.5a0,
(e) the highest 32 energy states for the cubic case in the [111] direction when
d1+d2 = 7.5a0. The red curves are the states splitting from the main bands and
lying between them. For the spherical case shown in (a), the blue curves are
the states that split from the main bands and lie below them; the black curves
show states in the main bands for mF = ±1

2 , the green-curve states in are the
main bands for mF =±3

2 . The same colour-coding was also done for (b).
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First, we fix the sum d1 + d2 to a constant, choosing the values 10a0 for the

spherical model, 6a0 for the cubic model in the [001] direction, and 7.5a0 for the

cubic model in the [110] and [111] direction (This is because the overlap matrix

for the infinite chain is not positive definite in the [110] and [111] directions under

the condition d1 +d2 = 6a0 — see §3.2.3). The behavior of the highest few energy

states as a function of d1 under this condition is shown in Figure 3.4; we show

the highest 40 energy states for the spherical case, and the highest 32 states for

the cubic case. All these states are derived from the ground-state manifold in the

single acceptor case. It can be seen that the eigenstates are arranged in groups that

correspond to the bands in the infinite-chain model (see below). For the spherical

case in Figure 3.4(a), the bulk states with mF =±1/2 are shown in black and those

with mF = ±3/2 in green, while pairs of states shown in red split off from these

main bands. In each case a red nearly degenerate pair lies in the gap between main

bands on one side of the diagram, and converges into two different bands on the

other side. These states in red becomes each edge state on one side of the diagram.

There are also other states that always lie below the main bands (the blue curves).

We find that the blue states below the main band are localized at the end of the chain,

and the red states between the main bands are localized on the acceptors next to the

end of the chain. (The blue states are not shown for the cubic cases — we explain

the reason below.)

Now let us investigate the electrostatic origin of the edge states below the main

band. These states are introduced into our system because of the parabolic potential

arising from the long-range interactions between the charges. This potential rises

at the ends of the chain, reflecting the different environments of the acceptors in

the middle and at the ends of the chain, so when we add a hole to either of the

lowest two states among them, they will be localized at the ends. We can check

the influence of the parabolic potential by comparing the results for the short-range

model, where the long-range Coulomb interactions are absent. Without the long-

range potential and the next nearest transitions, the system is less localized than the

original one, so we can only have d1 +d2 = 14a0 while retaining a positive definite
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overlap matrix. The behavior of the highest 40 energy states as a function of d1

under this condition is shown in Figure 3.4 (b). We see that the blue states below

the main band disappear (This is also true for the short-range model in the cubic

case, not shown). Since these edge states arise purely from electrostatic effects they

are trivial (i.e. non-topological) states, and we do not show them in the graphs for

the cubic cases.

Comparing Figure 3.4(a) and (b), we also see that the behavior of the red edge

states associated with the mF =±1/2 (black) bands in the spherical model reverses:

for the long-range model (a) the states lie in the band gap for the short-long ar-

rangement but join the bands in the long-short case, while the reverse is true in

the short-range model (b). This is because the long-range electrostatic interactions

effectively pull the end acceptors away from the bulk bands, transforming a chain

ending with a long bond into one ending with a short bond and vice versa. This is

also reflected in the different numbers of (black) band states with mF =±1/2 in the

two cases.

We can also see that the behavior of the red edge states associated with the

mF =±3/2 (green) bands in the spherical model does not reverse between the long-

range and short-range cases, even though the number of states in each band changes

just as for mF =±1/2 as the electrostatic edge state is pushed back into the band. As

we show in §3.2.3, this is a consequence of an anomalous variation of the effective

transition amplitude with distance in the particular geometry considered; it is related

to an anomalous behaviour of the topological Zak phase that is discussed in §3.2.3.

The calculations for the cubic cases (Figure 3.4 (c) to (e)) are performed in

the long-range model, and the behaviour of the edge states (red) is similar to the

long-range spherical model. For the [001] and [111] directions, the mF =±3/2 and

mF = ±1/2 bands of the spherical model evolve into states which retain different

symmetries in the cubic environment; a red state can therefore cross all the states

in a band having a different symmetry from its own. In the [110] direction, on the

other hand, there is just one irreducible representation that is even under exchange

of the acceptors and one that is odd, so a given red state will anti-cross (with states
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Table 3.2: The Zak phase Z computed under a variety conditions for long-range model after
mod 2π in the spherical and cubic cases. ‘First’ means that the states correspond
to the first curve at the top of the pictures in Figure 3.6, ‘second’ means that the
states correspond to the second curve from the top of the pictures in Figure 3.6.

Arrangement Long-short Short-long
Spherical case with mF =±1

2 0 π
Spherical case with mF =±3

2 π 0
Cubic case in [001] direction (first) 0 π

Cubic case in [001] direction (second) 0 π
Cubic case in [110] direction (first) 0 π

Cubic case in [110] direction (second) 0 π
Cubic case in [111] direction (first) 0 π

Cubic case in [111] direction (second) 0 π

of the same symmetry) or cross (with states of the opposite symmetry) alternately

as it passes through a band; we nevertheless color the red state continuously as if

it crossed all the other states (the anti-crossings are hardly visible on the scale of

Figure 3.4(d)). The relevant symmetries are shown in Table 3.1.

3.2.3 Linear chain with periodic boundary conditions

For the infinite chain, exchanging the value of d1 and d2 makes no difference on the

system. So we only need to consider the short-long arrangement (d1 ≤ d2) when

d1 +d2 is held constant. The band structures under different arrangements for two

spherical cases (long-range and shrort-range) and the the cubic case in different

directions when d1 + d2 is fixed are shown in Figure 3.5; we show the highest 32

energy states for the spherical case, and the highest 28 states for the cubic case. We

also show the detail of the highest 4 energy bands (those at the top of the graphs

in Figure 3.5) in Figure 3.6. Each of them is double degenerated. Here k is the

momentum, a is the lattice constant, and the blue line is the Fermi energy. The non-

equivalent arrangement cases (left column in Figure 3.6, d1 ̸= d2) are insulators,

while the uniform chain cases (right column in Figure 3.6, d1 = d2) are metals. We

should point out that the spherical case and the cubic case along the [110] direction

are one-band metal, while the cubic cases along the [001] and [111] direction are

two-band metal. There are gaps between the bands of states when d1 ̸= d2, but these

gaps close when d1 = d2, where the periodicity of the model halves and the size of
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Figure 3.5: The band structure under different arrangements when d1 + d2 is fixed. (a)
the spherical case when d1 = 4a0 and d2 = 6a0, (b) the spherical case when
d1 = d2 = 5a0, (c) the cubic case when d1 = 2a0 and d2 = 4a0 in the [001]
direction, (d) the cubic case when d1 = d2 = 3a0 in the [001] direction, (e)
the cubic case when d1 = 2.5a0 and d2 = 5a0 in the [110] direction, (f) the
cubic case when d1 = d2 = 3.75a0 in the [110] direction, (g) the cubic case
when d1 = 2.5a0 and d2 = 5a0 in the [111] direction, (h) the cubic case when
d1 = d2 = 3.75a0 in the [111] direction. For the spherical model calculations,
the states with mF =±3/2 (mF =±1/2) is in red (black).



3.2. One-hole model results 48

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
2.05

2.10

2.15

2.20

2.25

2.30

2.35

 

 

 mF=±1/2
 mF=±3/2

E
 (R

0)

k·a/
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

2.00

2.05

2.10

2.15

2.20

2.25

2.30

 

 

 mF=±1/2
 mF=±3/2

E
 (R

0)

k·a/

(a) (b)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
3.1

3.2

3.3

3.4

3.5

3.6

3.7

 

 

E
 (R

0)

k·a/
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

3.0

3.1

3.2

3.3

3.4

 

 

E
 (R

0)

k·a/

(c) (d)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35

 

 

E
 (R

0)

k·a/
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

2.80

2.85

2.90

2.95

3.00

3.05

3.10

 

 

E
 (R

0)

k·a/

(e) (f)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35

 

 

E
 (R

0)

k·a/
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

2.80

2.85

2.90

2.95

3.00

3.05

3.10

 

 

E
 (R

0)

k·a/

(g) (h)

Figure 3.6: The band structure of the highest 4 energy states under different arrangements
when d1 + d2 is fixed: (a) the spherical case when d1 = 4a0 and d2 = 6a0, (b)
the spherical case when d1 = d2 = 5a0, (c) the cubic case when d1 = 2a0 and
d2 = 4a0 in the [001] direction, (d) the cubic case when d1 = d2 = 3a0 in the
[001] direction, (e) the cubic case when d1 = 2.5a0 and d2 = 5a0 in the [110]
direction, (f) the cubic case when d1 = d2 = 3.75a0 in the [110] direction, (g)
the cubic case when d1 = 2.5a0 and d2 = 5a0 in the [111] direction, (h) the
cubic case when d1 = d2 = 3.75a0 in the [111] direction. The blue line is the
Fermi energy. For the spherical model calculations, the states with mF =±3/2
(mF =±1/2) is in red (black).
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Figure 3.7: Schematic showing the definition of the transition strengths tbc1, tcb1, tbc2, and
tcb2; here atoms b and c are in the same unit cell.

the Brillouin zone doubles. The calculation could not be done under the condition

d1 + d2 = 6a0 for the cubic model in the [110] and [111] directions, because the

relevant overlap matrix is not positive definite; we use the condition d1+d2 = 7.5a0

instead.

We now investigate the topological properties of the band structure and their

connection to the properties of the finite chains. We calculate the Zak phase Z as de-

scribed in §3.1.3; the results are shown in Table 3.2. All the short-long arrangement

calculations are done under the same conditions as the band structures described

above, while the long-short arrangement calculations are done by exchanging the

values of d1 and d2. For the cubic case, ‘first’ means that the states correspond

to the first curve at the top of the pictures in Figure 3.6, ‘second’ means that the

states correspond to the second curve from the top of the pictures in Figure 3.6. The

results confirm that the states observed to split from the bands in the finite-chain cal-

culations are indeed non-trivial topological states. In general we expect these topo-

logical states to arise when the effective chain (after allowing for the split-off of any

electrostatically bound states) is terminated by a weak bond; Table 3.2 indeed shows

non-trivial Zak phases (Z = π mod 2π) for short-long chains; however, compared

with the other cases and SSH model results, the Zak phase for the spherical case

with mF =±3
2 is ‘abnormal’ (it has non-trivial edge states for long-short-chains).

Now we show that the existence of ‘abnormal’ values of Zak phase result from

the behavior of the effective transition strength between the same single-acceptor

level on different nearest-neighbour sites as a function of separation.

First, we develop a simple orthogonal 1-level-per-acceptor model in which the
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only parameters are the transition strengths between different sites, the most impor-

tant being between nearest neighbours. These are shown in Figure 3.7: we define

tbc1, tcb1 to be the intra-cell transition strengths, and tbc2, tcb2 to be the inter-cell

transition strengths. Normally, a longer bond length would correspond to a smaller

value of the transition strength and a shorter bond to a larger transition energy. But

in the ‘abnormal’ case, we find that the dependence is reversed by checking the

Hamiltonian elements, so the longer bond length has a stronger transition strength

for the particular level concerned. This makes the effective arrangement for the

system (defined in terms of strong and weak interactions) differ from the geomet-

rical arrangement; hence the system can switch from a ‘short-long’ arrangement

to a ‘long-short’ arrangement and vice versa. In other words, whether the chain is

abnormal or not depends on whether or not its effective arrangement is the same as

its geometrical arrangement.

In the real acceptor chain the states on different sites are in general not orthog-

onal so we must solve a generalized eigenvalue problem. This leads us to define an

effective transition matrix

Teff(k) = S−
1
2 (k)T (k)S−

1
2 (k). (3.12)

Under this definition, the eigenvector becomes

|ũk⟩= S
1
2 (k)|uk⟩ (3.13)

and the Zak phase can be written as

Z = i
∫

first BZ
dk⟨ũk|∂kũk⟩ (3.14)

As shown in a previous paper [44], the Zak phase remains invariant under the trans-

formation (3.13). Therefore we can say the effective transition strength matrices are

equivalent to the original transition matrices in the computation of the Zak phase.

We find that the effective transition strengths can behave differently from the
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original ones and in particular their dependences on the geometrical arrangement

can be opposite. Therefore, once again we need to use an effective arrangement to

describe the system, which we define so that the short effective bonds correspond

to the strong effective transition strengths, and the long effective bonds to the weak

effective transition strengths. With these two new definitions, we find the Zak phase

for a particular band is determined by the the effective atomic arrangement; once

again, the Zak phase is abnormal when this effective arrangement differs from the

actual geometry. An alternative way of phrasing this argument is in terms of the

Wannier functions for each band, whose centres of charge are closely related to the

Zak phase [43] and which are by construction decoupled from the other bands [50].

3.3 Summary
In this chapter, we achieved a LCAO model for one dimensional system within the

independent-hole approximation. We studied the energy states in the finite chain

arising from linear combinations of the 1Γ+
8 acceptor ground states and found a

complex interplay between the long-range Coulomb interaction and the topological

properties of the chain. The electrostatic attraction between the hole and the accep-

tors in the interior of the chain ‘splits off’ a state localised on the end acceptor, and

the transition between topological and non-topological states then takes place on

the acceptor next to those acceptors. The topological origin of the state localised

on the acceptors next to the end of the chain can be confirmed by computing the

Zak phase in the corresponding infinite system. The non-trivial states found there

will always localize at some particular place and cannot be removed by changing

the potential.



Chapter 4

Multi-hole Models In

One-dimensional Systems

In this chapter we will investigate the acceptors in one-dimensional system under

three multi-hole models: the full configuration interaction (full CI calculation), the

Heitler-London approximation (HL approximation), and the unrestricted Hartree-

Fock method (UHF method). We will always take one hole per acceptor, so it is

charge neutral. And only the nearest transitions will be considered here, which is

proved to be a valid approximation as discussed in §4.1.5. We will compare the

results from three methods and investigate the relation between them. The linear

acceptor chain will be studied including both the finite chain and the chain with a

periodic boundary condition. The energy states for the finite system and the band

structure of the infinite system will be calculated. We will also investigate the topo-

logical property of the edge states and the symmetry of the system.

4.1 Multi-hole models
According to the previous works, low temperature behaviors of matter (such as mag-

netism [51], low-dimensional electron transport [52], topological phases [53]) can

arise due to strongly interacting particles within crystals [54]. Some interesting

quantum phases (such as antiferromagnetism [55], superconductivity [56]) also can

be achieved in the low-temperature strongly interacting cases [57]. So the calcula-

tions of an acceptor array including hole-hole interactions may bring us some inter-
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esting states. In §3.1, we developed a one-hole model to describe a pair of acceptors

and a linear acceptor chain. Here, we use the same approach to describe the one-

hole part of the Hamiltonian, including cubic anisotropy, but only considering the

nearest transitions for the chain (see §4.1.5). We then combine this one-hole Hamil-

tonian with two-hole terms representing the inter-hole Coulomb repulsion, using

methods described in Reference [47]. Our units of energy and length are the effec-

tive Rydberg R0 =
e4m0

2h̄2ε2
0 γ1

and the effective Bohr radius a0 =
h̄2ε2

0 γ1
e4m0

, respectively[6].

We use parameters appropriate for silicon throughout; however, our methods are

easily transferable to other cubic semiconductors. With these silicon parameters,

R0 = 24.8meV and a0 = 2.55nm. In all cases we report our results for lines ori-

ented along the three highest-symmetry directions of the cubic host: [001], [110]

and [111].

4.1.1 Full configuration interaction calculation (full CI

calculation) and Heitler-London approximation (HL

approximation)

The configuration interaction calculation (full CI) retains a basis of Slater determi-

nants corresponding to all possible configurations of the holes distributed across

basis states on all acceptors, and the Hamiltonian is

HCI =
N

∑
i
(Hi ·

N

∏
j ̸=i

S j)−
N

∑
i< j

(
2
ri j

·
N

∏
l ̸=i, j

Sl), (4.1)

where Hi is the Hamiltonian matrix element for the one-hole model, Si is the overlap

matrix element for the one-hole model, 2
ri j

is the hole-hole interaction in effective

Rydberg units, N is the number of holes, and i, j,k labels the holes. The interaction

appears with a minus sign because the Hamiltonian is expressed for electron states.

Therefore, throughout this chapter, the most favourable states for occupation by

holes are those with the highest energy—we refer to the highest-energy state as the
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‘ground state’. The overlap matrix is also needed and can be written as

SCI =
N

∏
i

Si, (4.2)

where Si is the overlap matrix element for the one-hole model, and N is the number

of holes.

The full CI calculation is exact for a given choice of single-particle basis, but

scales very badly (super-exponentially) with the size of the system. Also, the to-

tal energy expression is not extensive so it cannot be implemented under periodic

boundary conditions. The first problem is ameliorated by restricting the set of con-

figurations to those with exactly one hole per acceptor when the system is on the

instulating side of the Mott transition [14, 15]; we call this the Heitler-London (HL)

approximation because it is in the same spirit as the Heitler-London treatment of

the H2 molecule, and has been used for acceptors pairs in Reference [9]. The many-

particle basis set now grows more slowly (although still exponentially), but the dif-

ficulty in treating the infinite system still remains.

4.1.2 Unrestricted Hartree-Fock method

To handle the infinite system we employ an unrestricted Hartree-Fock (UHF)

method, where the many-hole wave-function is optimised over single Slater deter-

minants constructed from a set of one-hole functions, without any restriction on

the spin components of each function. The optimisation of the one-hole functions

results in a self-consistent-field (SCF) approach, where each hole can be under-

stood to experience the average interaction of the others. The one-hole functions

are eigenfunctions of the Fock matrix F̂ , which is given by

F̂ = Ĥcore + Ĝ, (4.3)

where Ĥcore is the Hamiltonian for the one-hole model (including spin-orbit cou-

pling), and Ĝ is a matrix reflecting the self-consistent influence from other holes. If

we expand all quantities in terms of a set of single-hole basis functions |ϕµ⟩, G is
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given by

Gµν = ∑
λσ

Pλσ ((µν∥σλ )− (µλ∥σν)) , (4.4)

where µ,ν ,σ ,λ are labels running over all basis functions on all acceptors. Al-

though labels run over all basis functions on all acceptors generally, only a part of

the combinations of acceptors (µν and λσ are on the same acceptor or on the near-

est neighbours) will be considered in our calculations in this chapter and later as

discussed in §4.1.5.

(µν∥σλ ) =
∫

dx1dx2 ϕ∗
µ(x1)ϕ∗

σ (x2)
−2

|r1 − r2|
ϕν(x1)ϕλ (x2) (4.5)

(where x = (r,τ) is a composite coordinate for position r and intrinsic angular mo-

mentum τ , and (µν∥σλ ) is the notation used in Reference [58]) are matrix ele-

ments of the Coulomb interaction, and P is the one-hole density matrix which can

be constructed as

Pµν =
N

∑
i

Cµ
i C∗ν

i , (4.6)

where Ci is an eigenvector of the generalised eigenproblem

F ·Ci = εiS ·Ci, (4.7)

N is the number of holes (hence the number of occupied eigenvectors), and i goes

through all eigenvector labels. Once again, because our calculation is describing

holes, the single particle states are occupied according to the aufbau principle from

the highest eigenvalue downwards. The total energy can then be written as

Etot =
1
2 ∑

µν
Pνµ

(
Hcore

µν +Fµν

)
, (4.8)

The self-consistent calculation continues until the output density matrix (4.6) is sim-

ilar to the input one used in (4.4). Further details can be found in Reference [58];

however, in contrast to the conventional case, our system contains spin-orbit cou-

pling and therefore we cannot separate the single-particle functions into separate
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sets corresponding to each spin component. So it is necessary to include exchange

interactions between all pairs of single-hole states, not just those of the same spin.

Here we should point out that the UHF method is less useful for the calculation

of excited states. On one hand, the calculation of excited states requires optimising

over single Slater determinants for both the ground state and the excited state at the

same time, which is hard to be done. On the other hand, the single Slater deter-

minants does not describe the excited state properly. So it is better to use the HL

approximation to simplify the calculation of low-lying excitations.

4.1.3 Periodic boundary conditions

Although less accurate than the CI method, the UHF method does not have the

limitations mentioned in §4.1.1. It scales polynomially, rather than exponentially,

as the system size increases, and the total energy expression (4.8) is extensive. So

it is possible to apply it to a linear chain with periodic boundary conditions [59]. In

this case, the Fock matrix F̂k at a particular Bloch wavevector k will be

F̂k = ∑
X

eikX F̂X = ∑
X

eikX(Ĥcore
X + ĜX) = Ĥcore

k + Ĝk, (4.9)

where X labels lattice displacements of a single unit cell, F̂X , Ĥcore
X and ĜX are the

elements of F , H and G connecting different cells separated by X , and Ĥcore
k and

Ĝk are the matrices of Ĥcore and Ĝ in momentum space. The Fock matrix F̂k can be

diagonalised to find a set of eigenvectors Cki, and the corresponding contribution Pk

to the the one-particle density matrix is

Pµν
k =

N

∑
i

Cµ
kiC

∗ν
ki. (4.10)

The real-space form of Pµν can then be recovered by inverse Fourier transformation,

and re-inserted into the SCF procedure as previously.

4.1.4 Zak phase calculation for the multi-hole model

For the unrestricted Hartree-Fock calculation of a linear chain with the periodical

boundary condition, the multi-hole state is not able to be achieved directly from
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the Fock matrix. Instead, it require a complex determinant to calculate it from the

one-hole state. So we could no longer get Zak phase easily by using the method

in §3.1.3. Instead, this quantity can be obtained from the one-hole density matrix,

which is available during the SCF procedure of the UHF calculation. We follow a

recent paper[53], in calculating the Zak phase for in a general situation is using the

formula

Z = arg

[
tr

(
∏

k
SkPk

)]
, (4.11)

where Sk is the overlap matrix transformed into Fourier space, Pk is the single-

particle density matrix as defined above, and k is the wavevector going through

the first Brillouin zone. However, we have to remember that Coulomb interactions

can change the topological classification [60, 46] so we cannot necessarily expect

the Zak phase to predict correctly the presence or absence of topological edge states;

indeed, we show evidence in §4.2.5 that the Zak phases do not correspond to the

topological property of the edge states in the interacting system.

4.1.5 Spatial cut-offs

In practice, the sums in equations (4.4) and (4.9), as well as the corresponding sums

over acceptor cores in Ĥcore have to be truncated. For the results in the multi-hole

model we have performed this truncation after nearest neighbours; for exchange

and hopping terms which involve transferring a single hole from site to site, this is

justified by the relatively well localised acceptor wave-functions (this means that

the relevant matrix elements will decay exponentially with hopping distance). The

Coulomb terms (both the hole-hole interaction and the hole-core interaction) decay

much more slowly, like 1
R (where R is the separation between the charges), but will

cancel one another out provided the system is approximately charge neutral at all

points (fortunately, it is true in our calculations). We have checked that the key

findings of this chapter listed below are reproduced in an extended model which

includes all the next-nearest-neighbour hoping but only the largest next-nearest-

neighbour hole-hole interactions, for both the finite length chain and periodic bound-

ary case. These key findings include:
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Table 4.1: The eigenenergy of the 4-fold-degenerated ground state (Γ+
8 ) obtained from the

Gaussian expansion with 21 Gaussian parameters and 5 Gaussian parameters for
Si and the difference between them; the energy unit is the effective Rydberg R0,
and the difference is shown in the percentage of the original 21-parameter result.

21-parameter result 5-parameter result difference
1.868314R0 1.854034R0 0.7644%

• anti-crossings between the ground state and the nearest excited state in the

[001] direction of the finite chain in the full CI calculation in §4.2.2;

• 4-fold-degenerate state at the long-short end in the finite chain full CI calcu-

lation in §4.2.2;

• anti-crossings between filled states and empty states in the [001] direction of

the finite chain in the UHF method in §4.2.2;

• the large gap between filled states and empty states in both the finite chain

and the infinite chain in the UHF method in §4.2.2 and §4.2.4;

• the Zak phase value achieved in UHF method in the infinite chain in §4.2.4.

Since introducing the next nearest hole-hole interactions will more than double the

time of the calculations, it is a wise choice to only consider the nearest neighbours.

4.1.6 Single-particle basis

It remains to specify the basis for the single-particle states on each acceptor for the

multi-hole calculations. As in the previous one-hole calculations, we decompose

the spatial parts of the acceptor states into linear combinations of Gaussian orbitals.

However, as we are interested in the behavior of the low-lying states of the lin-

ear chain, we make several changes. First, we consider only the 4-fold-degenerate

ground state manifold (1Γ+
8 ) of an isolated acceptor, we expand the radial parts in

terms of Gaussian functions as shown in Equation 2.6. Second, because we only

need to describe the ground state, we use only five Gaussian functions, with expo-

nents αi = {100.0,25.0,6.25,1.5625,0.390625}, rather than 21 as in the one-hole

calculation; the single-acceptor ground-state energies in silicon computed with 5

and 21 Gaussians are compared in Table 4.1 and found to differ by less than 1%.
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Figure 4.1: The behavior of the doubly-degenerate ground state energies with different ap-
proximations in the [001] direction for a pair of acceptors in Si under the one-
hole model: (a) the ground state eigen energies, (b) the differences between
the ground state eigen energies with different approximations. The solid line
is the result of one-hole model with 21 Gaussians, the dash lines are for the
ground state (1Γ+

8 ) with 5 Gaussian parameters but including G-orbitals, the
dotted lines are for the ground state (1Γ+

8 ) with 5 Gaussian parameters exclud-
ing G-orbitals. In (b), energy differences with respect to energy E21 (the solid
line in (a)) are shown as percentages of the energy E21 (the solid line in (a)).

The reduction in the number of Gaussians saves time in the evaluation of matrix

elements for the subsequent calculations. Now it approximately takes 0.4% of the

time required by the 21-Gaussian basis.

Finally, we remove the admixture of G-orbital Gaussian components (l = 4) in

the ground-state manifold, to limit the size of the matrices involved in the calcula-

tion, and re-normalize the remaining parts of the wavefunction. As an example, we

compare the energy of the doubly-degenerate ground state for a single hole bound

to a pair of acceptors in the [001] direction with and without the G-orbitals in Fig-

ure 4.1. It can be seen that omitting the G-orbitals leads to errors in the energy of

1–2%. We also compare the ground state wave functions for both a single acceptor

and a pair of acceptors.The probability densities are shown in Figure 4.2. Here as

we take the total probability of 4 degenerate states in the single acceptor case, the

results will obey the cubic symmetry. So the probabilities along x-axis and y-axis

are same as the one along z-axis. It can be seen from Figure 4.2 (a) that two systems

will behave similarly but the the 5-Gaussian case is less localized in the small range

near to the acceptor core. And we can also learn the same thing by comparing (b)
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Figure 4.2: The probability density of the ground state wave functions with different ap-
proximations for a single acceptor and a pair of acceptors in the [001] direction
in Si under the one-hole model: (a) the total probability density of the sin-
gle acceptor case along z-axis, (b) a pair of acceptors case when d = 2a0 for
5-Gaussian basis in x-z plane, (c) a pair of acceptors case when d = 2a0 for
21-Gaussian basis in x-z plane. In (a), the solid line is the result of one-hole
model with 5 Gaussians, the dash lines are for the ground state with 21 Gaus-
sian parameters excluding G-orbitals.

and (c).

For convenience in the discussion of results in §4.2.2.1 and §4.2.2.2, we as-

sign labels to the states of the 4-fold-degenerate ground Γ+
8 manifold so that we can

distinguish them. The main contribution is from the S 3
2

state with total angular mo-

mentum F = 3
2 ; we therefore use the values of the angular momentum projections

mF = {3
2 ,

1
2 ,−

1
2 ,−

3
2} to label the different rows of the irreducible representation.

(The total angular momentum F⃗ = L⃗+ I⃗+ S⃗, where I⃗ is the intrinsic orbital angular

momentum of the p states in the valence band.)
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4.2 Multi-hole model results

4.2.1 A pair of acceptors

For a pair of acceptors, all the methods and approximation mentioned in §4.1 can

be applied. To show the long-range behavior clearly, we calculate the interaction

energy

Eint = ET −2Esingle = Etot −
2
R
−2Esingle, (4.12)

where Esingle is the single-acceptor energy, ET is the total energy including the core-

core interaction, Etot is the total energy for the holes only (directly obtained from the

Hamiltonian (4.1)), and 2
R is the core-core interaction term (appearing with a minus

sign to be consistent with our convention for the hole energy). We did not consider

the core-core interaction term in the one-hole model; we refer to Etot as the ‘total

energy’ for the rest of this thesis. The interaction energies Eint of the ground state

from three different models in three high-symmetry directions are shown in the left

column of Figure 4.3; they appear as the negatives of standard molecular binding-

energy curves. We also show the difference in the total energy Etot between the

full CI calculation and the other approaches (as a percentage of the full CI result)

in the right column. Both the HL approximation and the UHF method are good

approximations to full CI for all directions, but the differences are greatest at small

separations; the HL approach generally provides a better energy than UHF (since

they involve variational approximations to the true wave-function, both methods

give a lower bound on the true ground-state energy in the hole system). For the

[001] direction, the differences reach a maximum around 1.5a0 and can be ignored

when the separation d ≥ 4a0; for the [110] and [111] directions, they peak around

1.5a0 and could be ignored for d ≥ 5a0. By comparing the eigenvectors of the full

CI results and the UHF results, we also find the arrangement of the holes in the UHF

calculation is corresponding to one of the largest components of the ground state in

the full CI case.

For the convenience of further discussion in §4.2.2.1 and §4.2.2.2, Figure 4.4

shows the Fock matrix eigenvalues for pairs oriented along different directions. The
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Figure 4.3: The interaction energy Eint of the ground state and the difference of the total
energy Etot towards the full CI calculation in three typical directions for a pair
of acceptors: (a) the interaction energy Eint in the [001] direction, (b) the dif-
ference of the total energy Etot in the [001] direction, (c) the interaction energy
Eint in the [110] direction, (d) the difference of the total energy Etot in the [110]
direction, (e) the interaction energy Eint in the [111] direction, (f) the difference
of the total energy Etot in the [111] direction. For (a), (c), (e), the dashed line
is for the full CI calculation, the solid line is for the HL approximation, the
dotted line is for the UHF method. For (b), (d), (f), the solid line is for the HL
approximation, the dotted line is for the UHF method, all the differences are in
the percentage of the full CI result.
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Figure 4.4: The behavior of the Fock matrix eigenvalues in different directions for a pair of
acceptors: (a) the [001] direction, (b) the [110] direction, (c) the [111] direction.
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Figure 4.5: The difference between the ground state and the first excited state in the [001]
direction for the full CI calculation.
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Figure 4.6: The probability density for three different components in the ground state in
the [001] direction for the full CI calculation. The black line is corresponding
to mF =±(1

2 ,−
1
2) component, the red line is corresponding to mF =±(3

2 ,−
3
2)

component, the blue line is corresponding to mF =±(3
2 ,

1
2) component.

ground state appears at the top of the pictures as this is a calculation for acceptors.

Each line represents a pair of doubly-degenerate states within the error tolerance;

since there are two holes, only the doubly-degenerate ground state at the top of the

diagram will be filled. There is a large gap between the filled and empty states at

all separations; this is generated by the strong hole-hole repulsion within the self-

consistent field. We will see that this feature persists in the calculations on larger

systems. By investigating the eigenvector of the UHF results, we can find that the

Mott transition for different directions happens at different separations. It happens

between 1a0 and 1.5a0 for [001] and [111] direction, but happens between 2a0

and 3a0 for [110] direction. Here we distinguish the Mott transition by checking

the first symmetry-breaking point where the broken symmetry implies that holes

can be localised on particular acceptors (equivalent to the insulator side of the Mott

transition). We checked the diagonal matrix elements of the density matrices. When

the elements corresponding to the same spin on different acceptors not equivalent

to each other, the inversion symmetry is breaking. Compared with the result from

experiments (2.45a0) [16], it can be seen that the Mott transition happens for smaller

separations in some directions in 1D. The reason could be that the experimental

result 2.45a0 is based on a randomly doping in a 3D system. So the value is an

average separation involving all directions which are not equivalent to each other

due to the symmetry of the system(Td), and the average coordination number in the
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(a) 4-acceptor linear chain

(b) 6-acceptor linear chain

Figure 4.7: Schematics of the linear chains studied in this chapter. a, b, c, d, e, f are the
labels of acceptors; d1 < d2 is known as the ‘short-long arrangement’, d1 > d2
is known as the ‘long-short arrangement’.

3D experiments is higher than the coordination number in the 1D and 2D systems.

These mean that the predictions from the 1D and 2D system could move away from

the experimental result. As the prediction depends on the directions involved in the

calculations and the coordination number in 1D system is lowest, it is reasonable

that the Mott transition for a 1D calculation happens far away from the experimental

result in some directions. In §5.3.3, we will see that the Mott transition happens

at the separation closer to the experimental result (2.45a0) in the 2D honeycomb

lattice.

In the absence of cubic anisotropy, Durst et al. [10] argue that the long-range

interaction between two acceptors is dominated by quadrupolar effects, which they

find favour a doubly degenerate state with total angular momentum MF =±2 about

the core axis. This corresponds to partially aligned pairs of holes, with mF =±(3
2 ,

1
2)

on the two acceptors. However, with the inclusion of significant cubic anisotropy

appropriate for Si (δ > 0 and indeed δ ∼ µ as shown in §2.1), we find that the pair

ground state in the quantized direction (the [001] direction) only crosses over to

this form for very large separations d > 5a0 in the full CI calculation as shown in

Figure 4.6; for smaller separations in the full CI case, the multi-hole ground state

is non-degenerate as shown in Figure 4.5 and dominated by anti-ferromagnetically

coupled configurations such as mF = ±(3
2 ,−

3
2) (for d ≤ 2a0) and mF = ±(1

2 ,−
1
2)

for 2a0 < d ≤ 5a0. The same results are found in the HL cases.
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Figure 4.8: The behavior of the total energy of the ground state under different arrange-
ments in three typical directions for the small-separation case (d1 + d2 = 3a0)
of the 4-acceptor linear chain: (a) the [001] direction, (b) the [110] direction,
(c) the [111] direction. The dashed line is for the full CI calculation, the solid
line is for the HL approximation, the dotted line is for the UHF method.

4.2.2 Finite dimerised linear chains

We next consider chains of 4 and 6 acceptors, with one hole per acceptor and with

the separations (d1,d2) alternating to form a dimer chain as shown in Figure 4.7.

When d1 < d2, we will refer to a ‘short-long arrangement’ throughout the rest of

the chapter, while when d1 > d2 we will call it a ‘long-short arrangement’. We

investigate two different regimes, each defined by a fixed value of d1+d2: a ‘small-

separation’ case with d1 + d2 = 3a0 in §4.2.2.1, and a ‘large-separation’ case with

d1 +d2 = 6a0 in §4.2.2.2.

4.2.2.1 Small-separation case (d1 +d2 = 3a0)

The hole-hole repulsion term now strongly influences the distribution of the holes:

although the parabolic potential due to the negative acceptor cores found in the one-
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Figure 4.9: The behavior of the total energy of the highest 50 energy states of the full
CI result under different arrangements in three typical directions for the small-
separation case (d1+d2 = 3a0) of the 4-acceptor linear chain with the changing
point: (a) the [001] direction, (b) details of the long-short arrangement side in
the [001] direction, (c) the [110] direction, (d) the [111] direction. In Picture
(a), the dotted line is for the changing point.

hole system in §3.2.2 is still present, the holes are no longer concentrated in the

middle of the chain but are kept apart by their mutual Coulomb repulsion and have

a nearly uniform distribution along the chain. This nearly one-hole-per-acceptor

distribution implies the system is on the insulating side of the Mott transition, which

suggests that the one-hole-per-acceptor distribution should play a more important

role than the others in the ground state and low-lying excited states, so the HL

approximation can naturally be applied and may be expected to give good results.

For chains of 4 acceptors, the ground-state total energy was obtained from all

the methods mentioned in §4.1 along three high-symmetry directions, and is shown

in Figure 4.8. Both the HL and UHF methods are reasonable approximations to the

full CI result in all directions, with the HL approach offering a better agreement
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Figure 4.10: The behavior of the Fock matrix eigenvalues obtained from the UHF
method under different arrangements in three typical directions for the small-
separation case (d1 +d2 = 3a0) of the 4-acceptor linear chain with the chang-
ing point: (a) the [001] direction, (b) details of the highest 4 eigenvalues in
the [001] direction,(c) the [110] direction, (d) the [111] direction. For (a) and
(b), the dotted lines are for the changing points.

with the full CI calculation. The difference between the full CI and the HL results

reduces as the arrangement changes from short-long to long-short; the HL approxi-

mation should be more accurate when the average separation between each pair of

acceptors is larger. Here the average separation is defined as daverage =
L

n−1 , where

L is the length of the chain, n is the number of acceptors. For a 4-acceptor chain,

daverage =
2
3d1+

1
3d2, so the average separation grows as d1 increases. The result can

then be understood by noting that the accuracy of the HL method for a pair remains

roughly constant from d = 1a0 to d = 1.5a0 (see the right column of Figure 4.3) but

then improves from d = 1.5a0 to d = 2a0. The UHF approximation also becomes

more accurate for the larger system, but the significant discrepancies in the energy

of a pair with separations around 1.5a0 (Figure 4.3) are reflected in significant er-
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Figure 4.11: The behavior of the Fock matrix eigenvalues obtained from the UHF method
under different arrangements in three typical directions for the 6-acceptor lin-
ear chain when d1+d2 = 3a0: (a) the [001] direction, (b) details of the highest
6 eigenvalues in the [001] direction, (c) the [110] direction, (d) the [111] di-
rection.

rors in the middle of Figure 4.8, where d1 ≈ d2 ≈ 1.5a0. We also computed results

for chains of 6 acceptors, using the HL and UHF methods only; the behaviour of

the total energies was similar.

We analyse the full CI ground-state eigenvector by looking at the dominant

components (those with largest absolute values) in the basis of single-acceptor states

described in §4.1. We can separate the 4 degenerate states of an isolated acceptor

into two groups, those derived from mF = ±3
2 and those from mF = ±1

2 . We refer

to the ground state as ‘un-hybridized’ if the dominant components contain either

mF = ±3
2 or mF = ±1

2 single-acceptor states (but not both), while we refer to it as

‘hybridized’ if they contain both types of single-accpetor states.

In Figure 4.9, we show the behaviour of the 50 highest-energy (hence, most

favourable) states of the full CI calculation under different arrangements of the
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Figure 4.12: (a) The differences between the total energy ground state and the first excited
state in different systems under different models in the [001] direction when
d1+d2 = 3a0: the solid line is for the 4-acceptor full CI calculation, the dashed
line is for the 4-acceptor HL calculation, the dotted line is for the 6-acceptor
HL calculation, (b) The differences between the total energy ground state and
the first 15 excited states for the full CI calculation in the [001] direction
when d1 +d2 = 3a0, (c) The differences between the old and new total energy
ground state during the anti-crossing for the full CI calculation in the [001]
direction when d1 +d2 = 3a0.

bonds along three high-symmetry directions. For the [001] direction, the ground

state is non-degenerate on the left-hand (short-long) side of the picture, while it

joins three other states and forms a 4-fold-degenerate state on the right-hand side

(long-short arrangement side) which is followed in energy by a 8-fold-degenerate

state and another 4-fold-degenerate state as shown in Figure 4.9 (b). We observe

that among the dominant components, only the states on the acceptors at the end of

the chain change between these states; the dimensionality 16 of these highest man-

ifolds comes from the 4 levels on one end multiplied by 4 levels on the other end,

implying the existence of a manifold of edge states. The situation is similar for the
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Figure 4.13: The behavior of the total magnetic angular momentum for individual acceptor
obtained from the UHF method under different arrangements in three typical
directions for the small-separation case (d1+d2 = 3a0) of the 4-acceptor linear
chain: (a) the [001] direction, (b) the [110] direction, (c) the [111] direction.

other directions; we analyse the structure of this manifold in more detail in §4.2.5. It

also can be seen that the ground state crosses with the nearest exited states between

d1 = 1.4a0 and d1 = 1.5a0 in the [001] direction; the dominant components of the

ground state are unhybridized to the left of the dotted line but become hybridized to

the right of it. We will refer to the separation where the crossing (or anti-crossing)

between the states happens as the ‘crossing point’, and the separation where the

dominant component of the ground state changes as the ‘changing point’. We see

that within the resolution of the step size used (0.1a0), the crossing point and the

changing point are the same in the [001] direction.

For the UHF calculations we can understand the overall state most clearly in

terms of the behaviour of the Fock matrix eigenvalues, shown for different direc-

tions in Figure 4.10 (4-acceptor chain) and Figure 4.11 (6-acceptor chain). Here

the states are usually doubly degenerate (corresponding to Kramers degeneracy un-
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Figure 4.14: The total charge distribution among acceptors under different arrangements in
three typical directions for the 6-acceptor linear chain when d1+d2 = 3a0: (a)
the short-long arrangement in the [001] direction, (b) the uniform chain case
in the [001] direction, (c) the long-short arrangement in the [001] direction, (d)
the short-long arrangement in the [110] direction, (e) the uniform chain case
in the [110] direction, (f) the long-short arrangement in the [110] direction, (g)
the short-long arrangement in the [111] direction, (h) the uniform chain case
in the [111] direction, (i) the long-short arrangement in the [111] direction.
For (c), (f) and (i), the dotted lines are for the states localized at the acceptors
at the end of the chain, which are always the highest states among the states
involved to form the total energy ground state here. All the lines in (a), (c),
(d), (e), (f), (g), the dotted line in (b) and the solid lines in (i) are doubly-
degenerate.
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der time-reversal symmetry) but show splittings for certain acceptor arrangements

where the symmetry is lower (see §4.2.3). The four highest states in Figure 4.10,

and the six highest in Figure 4.11, will be occupied by holes. In all cases there is a

large gap between filled and empty states due to the effect of the strong hole-hole

repulsion. Compared with Figure 4.4 for a dimer, the two significant differences

are (i) the splitting of degenerate states, and (ii) the crossing between filled states in

the [001] direction in Figure 4.10 (b). In general we find that the self-consistency

cycle in the UHF method breaks the symmetry of the system, with different sets of

eigenvectors of the Fock matrix corresponding to the same total energy; we analyse

this symmetry breaking further in §4.2.3. The crossing occurs close to the changing

point identified in the CI calculation, so the change in the single-acceptor energy

levels in the dominant component of the CI ground state is related to a change in

the ordering of single-electron states in UHF. For the 6-acceptor chain, it can be

seen from Figure 4.11 that another crossing appears around d1 = 1.7a0, implying

another similar crossing between the total energy ground state and higher excited

states around that separation in the full CI and HL calculations.

The HL approach for the 4-acceptor chain (not shown) gives similar results to

the CI method, including a 4-fold-degenerate ground state when d1 > d2 and the

presence of a changing point where the composition of the ground state changes;

however, the changing point now appears between d1 = 1.3a0 and d1 = 1.4a0, while

the crossing point is still around d1 = 1.4a0. It once again suggests that the one-

hole-per-acceptor distribution is the most important distribution for the holes in the

ground state and low-lying excited states, and the system is on the insulating side of

the Mott transition. This supports that the HL method is a good approximation for

both the ground state and low-lying excited states, and preserves some of the main

features of the energy spectrum. For the 6-acceptor chain there is only one obvious

crossing between the ground state and the first excited states, as the degenerate

states appear for significantly smaller values of d1 than before. But we now see two

changing points for the eigenvectors: one is between d1 = 1.3a0 and d1 = 1.4a0, the

other is between d1 = 1.6a0 and d1 = 1.7a0.
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To understand in more detail the behavior of the energy gap, we show in Fig-

ure 4.12 (a) the difference between the total-energy ground state and first excited

state in the [001] direction as a function of d1. There are two regions of particular

interest; the first is the neighbourhood of the crossing/changing point where the gap

reduces and then increases again (d1 = 1.3a0 to d1 = 1.4a0). The minimum gap

for 4 acceptors is around 1.4a0 for both the CI case (solid line) and the HL case

(dashed line), but shifts to shorter separations for 6 acceptors (dotted line). To show

the details of the crossings among the first few states, a good choice is to show

the energy difference between the ground-state and excited states as the energies

shift dramatically from the short-long arrangement to the long-short arrangement

according to Figure 4.9 (a). In this way, the crossings between excited states are

shown as usual, while the crossing between the ground state and excited states will

be reflected by the value of the difference. Here for the convenience of the further

discussion, we refer to the ground state before the changing point as |ϕ0⟩, and the

ground state after the changing point as |ϕ ′
0⟩. In Figure 4.12 (b), we show the en-

ergy difference between the ground-state and first 15 excited states for the full CI

calculation, where we find a small gap between excited states around 1.4a0, which

appears to make the ‘crossings’ here into anti-crossings as |ϕ ′
0⟩ is found above this

gap before the changing point. It is also reasonable to believe the other ‘crossings’

between the ground state and the nearest excited state in the [001] direction in the

full CI calculation and HL approach are anti-crossings as they arise due to the same

reason. As there is a band of excited states with similar energies in Figure 4.12

(b), it is helpful to follow the energy difference between the ground state and the

excited state that crosses with it, rather than the minimum gap; in Figure 4.12 (c),

we show the energy difference between the previous and new ground states during

the anti-crossing. This suggests that the true anti-crossing is between d1 = 1.40a0

and d1 = 1.41a0, a slightly larger value than in the HL approach. The second region

of interest is the right-hand side (large d1), where the 4-fold-degenerate manifold

of ground states in the 6-acceptor system forms for smaller values of d1 than in the

4-acceptor system; alternatively, for a given d1 > d2, the degeneracy of the ground
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state becomes better as more acceptors are involved (the same is true for the fol-

lowing 8-fold-degenerate and 4-fold-degenerate manifolds). This is what would be

expected if the degeneracy arises from almost independent sets of localised edge

states at either end of the chain because the edge states become isolated from one

another more easily in the longer chain (see §4.2.5).

Figure 4.13 shows that the magnitude of the expectation value of the angular

momentum vector on each acceptor in the symmetry-broken UHF solution. At the

smallest values of d1 (the short-long case) the angular momentum is zero every-

where, whereas for large d1 (the long-short case) it is dominantly located at the

ends of the chain. To see if this is related to possible non-trivial edge states, we

show the hole distributions from each eigenvector of the Fock matrix for different

arrangements in the three high-symmetry directions in Figure 4.14. Here ‘short-

long’ refers to d1 = 1a0, d2 = 2a0, and ‘long-short’ to d1 = 2a0, d2 = 1a0. The

one-hole states do not localize at any particular acceptor under the short-long or

uniform arrangements; however, for the long-short case, two states localize at the

ends of the chain (the dotted lines in Figure 4.14 (c), (f) and (i)), while the others

have a nearly uniform distribution across the middle. The states localized at the

ends (the dotted lines in Figure 4.14 (c), (f) and (i)) are always the lowest (i.e. least

favourable) states occupied by holes, which may imply the existence of the non-

trivial edge states occurring in the long-short case (Since the the parabolic potential

is balanced by the hole-hole repulsion, the charge rearrangements we previously

identified in the non-interacting case in §3.2.2 no longer force the states localized

at the end of the chain to be the highest ones and intervene to shift the edge states

to the short-long limit.).

4.2.2.2 Large-separation case (d1 +d2 = 6a0)

For the large-separation case, we show the behaviour of the ground-state total en-

ergy obtained from all the methods mentioned in §4.1 for a 4-acceptor chain along

high-symmetry directions in Figure 4.15. The HL and UHF results are closer to the

full CI results than in the small separation case, consistent with the better agreement

found between the methods for larger separations in the case of pairs (Figure 4.3).
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Figure 4.15: The total energy of the ground state in three high-symmetry directions for the
large-separation case (d1 + d2 = 6a0) of the 4-acceptor linear chain: (a) the
[001] direction, (b) the [110] direction, (c) the [111] direction. The dashed
line is for the full CI calculation, the solid line is for the HL approximation,
the dotted line is for the UHF method.

The best agreement is around the uniform chain (d1 = d2 = 3a0); once again, the

HL approach offers a better approximation than UHF.

The highest 50 energy states from the full CI result are shown in Figure 4.16

and and the Fock matrix eigenvalues in Figure 4.17. In all three directions the

ground-state is non-degenerate on the short-long side (small d1), although this is

not clearly visible from Figure 4.16(a) for the [001] direction; as found for smaller

spacings in §4.2.2.1, the ground state joins three other states in each case and forms

a 4-fold-degenerate manifold on the right-hand side (large d1). This time there is

no change in the character of the ground state and no (anti-)crossing visible among

the states in Figure 4.16 or Figure 4.17; instead, the Fock eigenvalues show a group

of four occupied states strongly separated from the unoccupied ones by the self-

consistent potential. There are some small splittings visible among the eigenvalues



4.2. Multi-hole model results 77

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
9.3

9.4

9.5

9.6

9.7

9.8

9.9

10.0

10.1

10.2

 

 

E
to

t (
R

0)

d1 (a0)
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

9.3

9.4

9.5

9.6

9.7

9.8

9.9

10.0

10.1

10.2

 

 

E
to

t (
R

0)

d1 (a0)

(a) [001] (b) [110]

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
9.3

9.4

9.5

9.6

9.7

9.8

9.9

10.0

10.1

10.2

 

 

E
to

t (
R

0)

d1 (a0)

(c) [111]

Figure 4.16: The total energies of the highest 50 states of the full CI result in three high-
symmetry directions for the large-separation case (d1 + d2 = 6a0) of the 4-
acceptor linear chain: (a) the [001] direction, (b) the [110] direction, (c) the
[111] direction.

in Figure 4.17 at particular geometries; these are due to the loss of symmetry in the

UHF solution, as discussed in §4.2.2.1.

To compare the 4-fold-degenerate many-hole ground states obtained in the

long-short limit for the small- and large-separation cases, and to understand how

they relate to our previous results for non-interacting holes, we show in Figure 4.18

the energy difference between the ground state and 3 closest excited states as a func-

tion of Coulomb interaction strength for a 4-acceptor linear chain in the [001] di-

rection (interpolating between the non-interacting and fully-interacting cases). We

choose the 4-acceptor system because it provides a more straightforward compar-

ison to the one-hole edge states of the non-interacting system, as there will be

fewer other states complicating the picture. In both cases, there is a gap in the

non-interacting limit, because one-hole edge states move apart in the long-short
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Figure 4.17: The Fock matrix eigenvalues obtained from the UHF method in three high-
symmetry directions for the large-separation case (d1 + d2 = 6a0) of the 4-
acceptor linear chain: (a) the [001] direction, (b) the [110] direction, (c) the
[111] direction.
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Figure 4.18: The energy difference between the ground state and 3 closest excited states
as a function of Coulomb interaction strength (expressed as a percentage) in
the long-short limit of the 4-acceptor linear chain in the [001] direction: (a)
the small-separation case (d1 = 2a0,d2 = 1a0), (b) the large-separation case
(d1 = 4a0,d2 = 2a0).
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Table 4.2: The magnetic symmetry groups of the UHF ground states in different arrange-
ments for the three high-symmetry directions in Hermann-Mauguin notation.
Here the prime denotes operations that are only symmetries when accompanied
by time reversal; the symbols m and m′ are abbreviations for 1

m and 1
m′ respec-

tively. Here, ‘FM’ stands for ‘ferromagnetic’, ‘AFM’ stands for ‘antiferromag-
netic’

d1 [001] [110] [111]
Hamiltonian 4

m
2
m

2
m1′ 2

m
2
m

2
m1′ 3̄ 2

m1′

Small-separation case (d1 +d2 = 3a0):
1.0a0

4
m

2
m

2
m1′ 2

m
2
m

2
m1′ 3̄ 2

m1′

1.1a0
4
m′

2
m′

2
m′ (AFM) 2

m
2
m

2
m1′ 3̄ 2

m1′

1.2a0
4
m′

2
m′

2
m′ (AFM) 2′

m
2′
m

2
m′ (AFM) 3̄ 2

m1′

1.3a0
4
m′

2
m′

2
m′ (AFM) 2′

m
2′
m

2
m′ (AFM) 2

m′ (AFM)
1.4a0-1.5a0 4m′m′ 2′

m
2′
m

2
m′ (AFM) 2

m′ (AFM)
1.6a0-1.7a0

4
m′

2
m′

2
m′ (AFM) 2′

m
2′
m

2
m′ (AFM) 2

m′ (AFM)
1.8a0 4m′m′ 2

m
2′
m′

2′
m′ (FM) 2

m′ (AFM)
1.9a0-2.0a0

4
m

2′
m′

2′
m′ (FM) 2

m
2′
m′

2′
m′ (FM) 2′

m′ (FM)
Large-separation case (d1 +d2 = 6a0):

2.0a0-3.2a0
4
m

2′
m′

2′
m′ (FM) 2

m
2′
m′

2′
m′ (FM) 2′

m′ (FM)
3.4a0-3.6a0

4
m

2′
m′

2′
m′ (FM) 2′mm′ m′

3.8a0-4.0a0 4m′m′ 2′mm′ m′

limit to join two different bulk bands as shown in Figure 3.4; the 4-fold-degenerate

ground state forms once the interaction strength exceeds a critical value, which is

smaller in the large-separation case than in the small separation-case. This can be

understood because the energy scale set by the non-interacting part of the Hamil-

tonian is weaker in the large-separation case, so a smaller hole-hole interaction is

sufficient to overcome the parabolic confining potential.

4.2.3 Symmetry breaking in the UHF calculation

To investigate the symmetry breaking, we determined the symmetry of the one-

hole reduced density matrices, both in the full CI case and after the convergence of

the UHF calculation; the results for the UHF case are shown using the Hermann-

Mauguin notation for magnetic point groups in the upper part of Table 4.2 for the

small-separation case, and in the lower part for the large-separation case. For the full

CI case, the results agree with the symmetry for the core Hamiltonian shown in the

table. We observe that for small separations, the UHF solution always begins (for
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small d1) with the same symmetry as the CI calculation (and the core Hamiltonian).

This is a ‘grey’ magnetic group that contains the time-reversal operation 1′, meaning

that no magnetic moment has developed. The group then loses some symmetry ele-

ments as d1 increases, as magnetic moments develop; it would be more accurate to

describe these missing symmetry operations as ‘hidden’ rather than ‘lost’, because

they map different members of a manifold of degenerate self-consistent solutions to

the UHF equations, each individually having lower symmetry, onto one another. At

the points in the [001] direction where the symmetry is lowest (d1 = 1.4a0,1.5a0

and 1.8a0), the convergence of the SCF procedure is poorer than for other separa-

tions. The origins of those lowest symmetry points are actually different. For 1.4a0

to 1.5a0, the broken symmetry is due to the crossings between the occupied eigen-

values of the Fock matrix in Figure 4.10 (b). The origin of symmetry breaking is

more complicated for 1.8a0. The ground state begins to show good degeneracy from

d1 = 1.8a0 according to Figure 4.9 (a), while the symmetry in the [001] direction

case changes from 4
m′

2
m′

2
m′ (antiferromagnetic) at 1.7a0 to 4

m
2′
m′

2′
m′ (ferromagnetic)

at 1.9a0 in Table 4.2. For 1.8a0, the angular momentum is the mixture of those

two along the z-axis: the two acceptors at the end show the ferromagnetic behavior

while the two in the middle show the antiferromagnetic behavior. It is reasonable

to believe that the further reduction of symmetry at 1.8a0 is because of the chang-

ing of the degeneracy of the total energy states in full CI calculation. There the

arrangement of holes begins to change but still not reach the new symmetry as the

degeneracy is still not good enough at d1 = 1.8a0. Comparing to the behaviour

of the total magnetic angular momentum for each acceptor in the different chain

orientations in Figure 4.13, the breaking of symmetry is also reflected by non-zero

total magnetic angular momentum and splitting into two or (at the lowest-symmetry

arrangements in the [001] direction) four different inequivalent sets. The magnetiza-

tion pattern shows that non-zero magnetization becomes increasingly concentrated

at the ends of the chain as d1 increases, which is also true in the large-separation

case. The 6-acceptor system behaves similarly to the 4-acceptor system, so we do

not show the results here.
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Figure 4.19: The schematic of the linear chain with periodic boundary conditions. a, b, c, d
are the labels of acceptors, d1 < d2 is known as the ‘short-long arrangement’,
d1 > d2 is known as the ‘long-short arrangement’.

In the large-separation case, the symmetry is broken with respect to the un-

derlying Hamiltonian at all separations. As previously, the broken symmetries are

not really lost, but now map different solutions within the manifold of degenerate

states (all having non-zero magnetic moments) into one another. For values of d1

greater than some critical value, (which depends on the direction), the symmetry is

further reduced; comparing with Figure 4.16, we see this further reduction occurs

when the 4-fold-degenerate ground states in the full CI calculation show very small

energy differences between each other so they are hard to distinguish in the UHF

calculation. By checking each data point, the switching from antiferromagnetically

aligned case to ferromagnetically aligned case is found across the central (d2) bond

as it shortens. This is closely related to the changing of the symmetry: when the

inversion symmetry i is preserved but the combination (iT ) between i and the time

reversal symmetry T is lost, the system will show the ferromagnetic behavior; when

i is lost but iT is preserved, the system will show the antiferromagnetic behavior.

4.2.4 Linear chain with periodic boundary conditions

We now turn to periodic boundary conditions. A schematic of the system is shown in

Figure 4.19; (a,b,c,d) label four adjacent acceptors, with b,c in the same unit cell,

and d1, d2 are the separations. (We have swapped the separation labels relative to the

convention used in the one-hole system.) Approaches based on full diagonalization

(full CI calculation and the HL approach) are not extensive and hence not useful

with periodic boundary conditions as discussed in §4.1.1, but the UHF method is

still suitable. Since the behaviour of finite chains is found to be quite similar in

the small- and large-separation cases, we report results for infinite chains only for

smaller separations (d1 +d2 = 3a0).

Figure 4.20 shows the band structures of the Fock matrix eigenvalues. We only
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Figure 4.20: The band structures of the Fock matrix eigenvalues under different arrange-
ments in three typical directions when d1 + d2 = 3a0: (a) the short-long ar-
rangement in the [001] direction, (b) the uniform chain case in the [001] di-
rection, (c) the short-long arrangement in the [110] direction, (d) the uniform
chain case in the [110] direction, (e) the short-long arrangement in the [111]
direction, (f) the uniform chain case in the [111] direction.
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show the results for the ’short-long’ arrangement (d1 < d2) in each high-symmetry

direction, along with the uniform chains (d1 = d2), as the short-long arrangements

are equivalent to long-short under periodic boundary conditions. All the single-

hole states are doubly-degenerate, so the two states at the top of each picture will be

filled (two holes per cell). There is a large gap between the filled and empty bands

in the short-long dimerised arrangement; for uniform chains, the bands move closer

but this gap does not close, showing the existence of a cell-doubling perturbation

from the self-consistent field. This is related to the broken symmetries found in

the corresponding finite chain calculations: as shown in Table 4.2, we found the

inversion symmetry is broken (becomes hidden) for some uniform-chain cases. It

is reasonable that this also occurs under periodic boundary conditions (as shown

later), leading to an inequivalence of the two atoms in the cell even for a uniform

chain and implying that the band structure of the two-atom cell cannot be obtained

by simply folding the bands for the one-atom cell.

In Figure 4.21, we show the behavior of the total magnetic angular momentum

for individual acceptors obtained from the UHF method under different arrange-

ments in three typical directions for the small-separation case (d1+d2 = 3a0) of the

infinite chain. The labels for acceptors correspond to Figure 4.19. It can be seen

that there will be broken symmetries for the nearly uniform cases in all directions,

which agrees with the finite uniform cases in §4.2.3 and explains the existence of

the gap found in the infinite uniform chains in Figure 4.20. Here we can also find

that the symmetries are not broken near the short-long arrangement side and the

long-short arrangement side in the [110] and [111] directions while the symmetries

there are broken in the [001] direction. The particular form of the broken symme-

try near the short-long arrangement side and the long-short arrangement side in the

[001] direction is affected by the nonequivalent distribution of holes under those

arrangements in the [001] direction. We will see it later in §5.3.1 that this can be

fixed by including the most important next nearest transitions (all the hoping be-

tween the next nearest neighbours, and the direct hole-hole interactions between

the next nearest neighbours) in the calculations. The influence of the nonequiva-
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Figure 4.21: The behavior of the total magnetic angular momentum for individual accep-
tors obtained from the UHF method under different arrangements in three
typical directions for the small-separation case (d1 +d2 = 3a0) of the infinite
chain: (a) the [001] direction, (b) the [110] direction, (c) the [111] direction.

lent distribution of holes is also discussed in §5.3.1. Here we will only compare

the results from the case with nearest transitions only and the case with the most

important next nearest transitions. The behavior of the magnetic angular momen-

tum components with nearest transitions only and with the most important next

nearest transitions under different arrangements in the [001] direction for the small-

separation case (d1+d2 = 3a0) of the infinite chain is shown in Figure 4.22. We can

see the broken symmetries are still there, but the origins of them are different. In the

calculations with nearest transitions only, the x-components are non-zero near the

short-long arrangement side and the long-short arrangement side in Figure 4.22 (a)

and the systems are ferromagnetic as the non-zero values share the same sign; in the

calculation with the most important next nearest transitions, the z-components are

non-zero near the short-long arrangement side and the long-short arrangement side

in Figure 4.22 (f) and the systems are antiferromagnetic as the non-zero values have
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Figure 4.22: The behavior of the magnetic angular momentum components with nearest
transitions only and with the most important next nearest transitions under
different arrangements in the [001] direction for the small-separation case
(d1 + d2 = 3a0) of the infinite chain: (a) the x-component for the calculation
with nearest transitions only, (b) the x-component for the calculation with the
most important next nearest transitions, (c) the y-component for the calcula-
tion with nearest transitions only, (d) the y-component for the calculation with
the most important next nearest transitions, (e) the z-component for the calcu-
lation with nearest transitions only, (f) the z-component for the calculation
with the most important next nearest transitions.
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different signs. Considering including the most important next nearest transitions

nearly doubles the time of the calculations and still provides the same results for the

quantities listed in §4.1.5 which we are interested in, we only include the nearest

transitions in our other calculations for the infinite chain.

4.2.5 Structure of the edge states

In order to understand the nature of the edge states, we examine the many-hole

states from the full CI calculation and compare them to the UHF single-particle

states, for both small-separation and large-separation cases in the 4-acceptor finite

chain. Both methods show edge states localized at the acceptors at the end of the

chain in the long-short arrangement (d1 > d2); however, the signatures are different.

The CI method shows a manifold of almost degenerate states spanned by a basis of

the form

|ψm,n⟩= |ψA
m⟩⊗ |ψbulk⟩⊗ |ψB

n ⟩, (4.13)

where A labels the left end of the chain (acceptor a in Figure 4.7 (a)), B labels the

right end (acceptor d in Figure 4.7 (a)), and |ψbulk⟩ is a common state residing in

the interior of the chain (acceptors b and c in Figure 4.7 (a)). The indices m and n

label different states of the ends, and the pair (m,n) together label a member of the

almost degenerate manifold. The transformation from state |Ψm,n⟩ to |Ψm′,n′⟩ can

therefore be carried out by a unitary operator

Û = ÛA ⊗ 1̂bulk⊗ÛB

with

ÛA =|ψA
m′⟩⟨ψA

m|;

ÛB =|ψB
n′⟩⟨ψ

B
m|. (4.14)

For finite chains, the eigenstates are particular linear combinations of the |ψm,n⟩

which are almost (but not quite) degenerate; the splittings decay to zero as d1 is

increased, or as the chain becomes longer (see Figure 4.12). It is therefore impor-

tant to look at the whole space spanned by the |ψm,n⟩, especially when the splittings
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become very small. The UHF method instead picks out a single symmetry-broken

many-hole ground state in which one pair of occupied single-particle states is local-

ized at the chain ends (acceptors a and d in Figure 4.7 (a)) while the other pair is

spread over the interior (acceptors b and c in Figure 4.7 (a)). The single-hole edge

states can be written as linear combinations of particular one-hole kets |ϕ A⟩ and

|ϕ B⟩ localized at either end.

We can also examine the symmetries of the edge states |ψA
m⟩, |ψB

n ⟩ in the

light of the classification of the topological phases of one-dimensional interact-

ing fermions proposed by Reference [46]; in the long-short limit we find the

characteristic phases are (µ = 0,ϕ = 0,κ = π), hence the state is topologically

non-trivial with 4-fold degeneracy, while in the short-long arrangement they are

(µ = 0,ϕ = 0,κ = 0) (topologically trivial, non-degenerate). However, we find

some differences between the small- and large-separation cases. For the 4-acceptor

chain, when d1 +d2 = 3a0, |ψA
m⟩, |ψB

n ⟩ involve only mF =±1/2 states in the [001]

direction, while |ψbulk⟩ includes only mF = ±3/2 states. This is because in the

long-short arrangement case, the system can be considered as two single acceptors

at the chain ends and a closely-coupled pair of acceptors between them. In that

case, |ψbulk⟩ is dominated by the central pair, while |ψA
m⟩, |ψB

n ⟩ are dominated by

the single-acceptor ends. Since the doubly-degenerate occupied bands at the top of

Figure 4.20 (a) and (b) in the [001] direction are always formed predominantly from

linear combinations of the ±3/2 states on the two acceptors in the cell, and a single

acceptor perturbed by another acceptor always has a ground state of mF = ±1/2

symmetry as shown in the middle range case (2a0 < d ≤ 5a0) in §4.2.1 (the influ-

ence from another acceptor can be treated as a perturbation there as the ground state

and first excited state are degenerated according to Figure 4.5, and the separations

for the middle range case are not too far away from the value 2a0 used here), it is

reasonable that |ψbulk⟩ and |ψA
m⟩, |ψB

n ⟩ only involve mF = ±3/2 and ±1/2 states

respecively. When d1 +d2 = 6a0, although |ψbulk⟩ is similar, the {|ψA
m⟩, |ψB

n ⟩} in-

volve also the superpositions ±{|3/2⟩, |1/2⟩} in two of the four degenerate states.

In the large-separation case the degeneracy is more nearly exact, so the properties
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of individual eigenstates are not clearly defined and we should consider the space

spanned by all four degenerate states together. For the 6-acceptor system (which we

treat in the HL approximation), we always find the edge states composed purely of

mF =±1/2 states at the end of the chain (as for 4 acceptors).

We can also calculate the Zak phase for the occupied UHF states in the infi-

nite system by using (4.11) in §4.1.4. We find that Zak phase is 0 for all arrange-

ments in all directions, even although we find the edge states in the finite chains

have non-trivial symmetries; this is consistent with the preservation of a gap in the

single-particle UHF energy spectrum for all arrangements. The Zak phase is calcu-

lated by using the single-hole UHF eigenvectors, and its correspondence with the

topological properties of an interacting system is still unclear; it is not surprising

that it fails to describe the topological properties of the interacting system in the

same way, as was previously noted for the bosonic case [61]. In the absence of a

rigorously defined topological quantum number for an infinite system with interac-

tions, the direct study of the quantum numbers characterising the edge states of the

finite system, introduced by Turner et al.[46], provides a better insight into their

topological nature.

4.3 Summary

In this chapter, we constructed multi-hole models for one-dimensional multi-

acceptor chains based on three different methods: full configuration interaction, the

Heitler-London approximation, and the unrestricted Hartree-Fock method. The HL

approximation solves some of the problems with the full CI method, but the UHF

method is able to calculate infinite chains under periodic boundary conditions. We

found the full CI ground state is non-degenerate under the short-long arrangement

in all directions, but joins other three states to form a 4-fold-degenerate manifold un-

der the long-short arrangement for finite chains, which is followed in energy by an

8-fold-degenerate state and another 4-fold-degenerate state. By checking the domi-

nant components of these 16 states, we found that only the levels on the acceptors

at the end of the chain change between different members of the manifold, and the
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overall 16-fold degeneracy comes from the product of separate sets of 4 levels on

each end. The topological nature of these edge states is confirmed by the presence

of non-trivial phases in the classification of one-dimensional fermion edge states

by Turner et al. In the small-separation case where d1 +d2 = 3a0, an anti-crossing

occurs between the ground state and excited states in the [001] direction, resulting

in a switch from in unhybridized ground state dominated by mF = ±3/2 states to

a hybridized state where mF = ±1/2 states are also present. We found this tran-

sition is related to the crossing between the filled UHF single-particle states. The

UHF solution loses part of the symmetry of the Hamiltonian. We also found the

further broken symmetries related to the crossing between Fock matrix eigenstates

and changing of the degeneracy of the total energy states in full CI calculation in

the [001] direction. The loss of symmetry corresponds to the emergence of static

moments on each acceptor in the UHF approach. We also obtained the UHF band

structures of the Fock matrix eigenvalues. We found there is a large gap between

the filled and empty states in a dimerised chain, which does not fully close in the

uniform case, showing the existence of a period-doubling perturbation. Since a gap

is maintained throughout the transition from short-long to long-short arrangements,

the Zak phase is constant (and equal to zero), despite the observation of non-trivial

many-body edge states in the long-short case. Hence, this method does not cap-

ture the formation of topological edge states, while the previous method introduced

by Turner et al (which was designed for interacting systems) can well characterise

their topological properties. The nature of the bulk-edge correspondence in such

interacting systems requires further investigations.



Chapter 5

Two-dimensional Systems

In this chapter we will investigate the acceptors in two-dimensional system under

both one-hole model and multi-hole models. For the one-hole model, we will study

rectangular structures, ladders and zigzag structures; for the multi-hole model, we

will study 4-acceptor rectangles (by full CI and UHF), infinite ladders and honey-

comb lattice (by UHF only). In 2D systems, we have the possibility to form topo-

logical insulators, where counter-propagating edge states are rigorously protected

by time-reversal symmetry. So the condition for the forming of topological insula-

tors will be investigated.

5.1 Two-dimensional system
Now we are going to investigate two-dimensional ordered systems. Two dimensions

can show richer behaviours than one dimension as a new degree of freedom is intro-

duced into the system. So, besides the competition between acceptor-hole Coulomb

interactions and the hole-hole interactions in the multi-hole model, the new degree

of freedom also could introduce some new symmetry protected topological states.

We consider several different types of rectangular structure. First, we consider

finite rectangular systems under the one-hole model, where a one-dimensional line

of atoms is closed in two dimensions to form a rectangular loop, as a function of

the bond lengths between the acceptors. As the system is 2-dimensional, there are

several inequivalent ways of varying the bond lengths. We lower the symmetry in

three different ways, starting from the two arrangements shown in Figure 5.1. It
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Figure 5.1: Three different evolutions from two arrangements. The left column shows two
initial arrangements, the arrows pointing to the right column stands for three
possible evolutions, the texts above arrows give the fixed sum while the separa-
tions not mentioned there are fixed separately. There are always 12 acceptors
in the system.

can be seen that there are two kinds of arrangements in the left column: one of

them requires four different bond lengths, and the other requires two different bond

lengths. In order to illustrate the evolution of the electronic structure as a function

of a single parameter, as in the previous finite chain calculations, we fix the sum of

one of the pairs of separations in each case, as labeled in Figure 5.1.

Next we move on to consider structures that have some two-dimensional char-

acter but which are infinite in only one direction. The simplest such structure is a

ladder. It can be described as consisting of two acceptor chains close to each other,

so that an acceptor in one chain can interact with the neighbouring acceptor in the

other chain. In this case, we can not only do the calculation for ladders of finite

length, but also investigate the properties of an infinite ladder by carrying out the

calculation in momentum space. Once again we allow for the possibility of alternat-
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Figure 5.2: The arrangement for the ladder, the rectangle lattice and the zigzag structure:
(a) the finite ladder, (b) the infinite ladder, (c) the rectangle lattice, (d) the infi-
nite zigzag strucutre.

Figure 5.3: The arrangement for the honeycomb lattice: di and si are the separations where
d1 = s1 and d2

2 = s2
2+ s2

3. si will only be used in the non-equivalent case (where
d1 ̸= d2).
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Table 5.1: The localizing of the highest 16 states under the long-short arrangement:
{d1,d2} stands for the rectangle with two groups of separations when d1 +d2 =
7a0, {d3,d4} stands for the rectangle with four groups of separations when
d3 +d4 = 7a0, {d1,d3} stands for the rectangle with four groups of separations
when d1 +d3 = 7a0.

Evolution Localizing
{d1,d2} {b,c,e,f,h,i,k,l}
{d3,d4} {a,d,g,j}
{d1,d3} {e,f,k,l}

ing bond lengths along each chain, so a unit cell will contain four acceptors.

After doing those calculations, a fully two-dimensional rectangular lattice can

be generated by bringing more acceptor-ladders close to each other. There are now

two perpendicular lattice vectors. Alternatively, another arrangement could be ob-

tained from the ladder is the zigzag; as shown in Figure 5.2, it can be obtained

by removing a total of four acceptors from two adjacent cells in the infinite ladder,

leaving once again four acceptors per unit cell.

The final 2-dimensional arrangement we consider is the honeycomb lattice.

This is known to display interesting topological properties in other contexts [62, 63,

64]. Here we will first discuss the perfect honeycomb lattice, which has the same

separation between any two nearest neighbours, so there are two acceptors in one

cell and d1 = d2 = d as shown in Figure 5.3. Then we will investigate distortions

of the honeycomb structure that would be appropriate to implantation of acceptors

onto the (010) plane of a (cubic) silicon crystal, in the real doped silicon to see

whether the property found in the perfect honeycomb lattice still exist or not. There

d1 ̸= d2 so we will use si in Figure 5.3 to describe the system.

5.2 Two-dimensional non-interacting system results

5.2.1 Finite systems without hole-hole interactions

For the calculation without hole-hole interactions, we will follow the same model

which is introduced in Chapter 3. The separations towards the third neighbour is at

least 7a0 in the system studied here, so the cutoff of the acceptor potential will be

same (we will only consider the the next nearest influence due to the same reason
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Figure 5.4: The behaviors of the highest 48 states for the three different evolutions under
the one hole model: (a) the rectangle with two groups of separations when
d1 +d2 = 7a0, (b) the rectangle with four groups of separations when d1 = 3a0,
d2 = 4a0 and d3 + d4 = 7a0, (c) the rectangle with four groups of separations
when d1 +d3 = 7a0, d2 = 4a0 and d4 = 3a0. The red lines are for the 16 states
split away from the others.
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Figure 5.5: The behaviors of the highest 32 states for finite length ladder when d1 + d2 =
7a0 and d3 = 4a0.
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Figure 5.6: Eigenenergies in a pair of acceptors as a function of separation r for the cubic
case in the [001] direction and the single acceptor ground state. The black lines
are for the acceptor pair, the red line is for the single acceptor.

mentioned in §3.2.1).

5.2.1.1 Rectangles

For the convenience of calculation we put all the acceptors in the x-z plane with

two perpendicular sides being parallel to the x-axis and z-axis respectively. The

behaviors of the highest 48 states for the three different evolutions when the fixed

length equals to 7a0 are shown in Figure 5.4. Here we only show the highest 48

states because there are 4 degenerate ground states on each of the 12 acceptors,

and there will be a large gap between those states and others. We still name the

case where d1 < d2 the short-long arrangement (short bond nearest the corner of

the rectangle, the left hand side of Figure 5.4 (a)) and the case where d1 > d2 the

long-short arrangement (long bond nearest the corner of the rectangle, the right

hand side of Figure 5.4 (a)). In the same way, we can name d3 < d4 the short-

long arrangement (the right hand side of Figure 5.4 (b)) and d3 > d4 the long-short

arrangement (the left hand side of Figure 5.4 (b)) for Figure 5.4 (b), while d1 < d3

the short-long arrangement (the left hand side of Figure 5.4 (c)) and d1 > d3 the

long-short arrangement (the right hand side of Figure 5.4 (c)) for Figure 5.4 (c). It

can be seen that the highest 16 states (red states) will split away from the others at

the right-hand side of the pictures in all cases as well as the left-hand side of Figure

5.4 (a). Considering the arrangements for the left-hand side of Figure 5.4 (a) and the

right-hand side of Figure 5.4 (b) are same, there are only three distinct arrangements
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(three different arrangements at the right-hand side of the pictures). So from now we

will only consider three distinct arrangements. By investigating the eigenvectors of

the highest 16 states (red states), we find that those states will be localized at some

particular acceptors as shown in Table 5.1. By checking the electrostatic terms, it

can be found that this localization is the result of the nonequivalent potential as we

found for 1D arrays in §3.2.2. Those acceptors have more short-bonded neighbours

connected to them and a short-bonding will be accompanied with a large attractive

Coulomb potential, which will force the hole to localize at those acceptors in an

independent-hole model. So the nonequivalent potential here plays the same role

as the parabolic potential in one-dimensional case, and we can expect that these

localized states will also appear in a large loop. But in the multi-hole model, the

nonequivalent potential will be balanced by the hole-hole interactions as discussed

in §4.2.2.1, so this localization should disappear there.

5.2.1.2 Finite ladders

Here we consider the smallest system for a ladder strucutre, so there are 8 acceptors

in the system. We show the highest 32 states for the finite length ladder when

d1 +d2 = 7a0 and d3 = 4a0 in Figure 5.5. It needs to be pointed out that there is no

gap between those states and the others at the long short end (the right hand side of

Figure 5.5), instead, the gap is between the highest 16 states (red states) and the rest.

This occurs because the system will behave like two strongly-bonded pairs with

separation r = 3a0 and four single acceptors at the long short end (the right hand

side of Figure 5.5). According Figure 5.6, the ground state energy for the single

acceptor drops into the gap between the ground states and others in the acceptor

pair when r ≥ 3a0. This makes the eigenvalues of the ladder split into two parts

under the long-short arrangement: the energy level above the red line (the single

acceptor ground state) in Figure 5.6 forms the red lines in Figure 5.5, the rest (the

red line and the black line below it in Figure 5.6) form the bulk band (black lines in

Figure 5.5). By investigating the eigenvectors of the highest 16 states (red states),

we find that those states will be localized at acceptors {b,c,f,g} only for all the

cases. And again, this localization is due to the nonequivalent potential. Comparing
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Figure 5.7: The band structure of the highest 16 states for the infinite ladder under different
arrangements when d1+d2 and d3 are fixed separately. (a) the small separation
case when d1 = 3.5a0, d2 = 4.5a0, and d3 = 4.5a0, (b) the small separation case
when d1 = d2 = 4a0, and d3 = 4.5a0, (c) the large separation case when d1 =
4a0, d2 = 6a0, and d3 = 6a0, (d) the large separation case when d1 = d2 = 5a0,
and d3 = 6a0. The black lines stand for the bands, the red lines stand for the
Fermi energy.

to the results in §3.2.2, it is not surprising to find that those acceptors correspond

to the one next to the end of the chain in the one-dimensional case. So, again, the

nonequivalent potential here plays the same role as the parabolic potential in the

one-dimensional case. It means that these localized states are true edge states as

indicated in §3.2.2 and could also be expected to appear in a longer ladder. As the

edge states found in one-dimensional case are topological states, we can also expect

the edge states in the ladder to be topological. In the next section, the topological

origin of the edge states under the short-long arrangement (the left hand side of

Figure 5.5) will be proved.
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(a) (b)

(c) (d)

Figure 5.8: The band structure of the highest 16 states for the rectangle lattice under differ-
ent arrangements when d1 +d2 and d3 +d4 are fixed separately. (a) d1 = d3 =
3.5a0 and d2 = d4 = 5.5a0, (b) d1 = d2 = 4.5a0, d3 = 3.5a0 and d4 = 5.5a0, (c)
d1 = 3.5a0, d2 = 5.5a0 and d3 = d4 = 4.5a0, (d) d1 = d2 = d3 = d4 = 4.5a0.

Table 5.2: The Zak phase Z computed under a variety conditions under cubic one-hole
model after mod 2π in the 2D systems.

Arrangement Long-short Short-long
Infinite ladder (level 1 and 2) 0 π
Infinite ladder (level 3 and 4) 0 π

Zigzag structure (level 1 and 2) π 0
Zigzag structure (level 3 and 4) 0 0
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Figure 5.9: The band structure of the highest 16 bands for the zigzag structure under dif-
ferent arrangements when d1 + d2 and d3 are fixed separately. (a) d1 = 3.5a0,
d2 = 5.5a0, and d3 = 5a0, (b) d1 = d2 = 4.5a0, and d3 = 5a0, (c) d1 = 5.5a0,
d2 = 3.5a0, and d3 = 5a0.

5.2.2 Infinite systems without hole-hole interactions

Now we are going to investigate three infinite systems: the infinite ladder, the rect-

angular lattice and the zigzag strucutre. As mentioned in §5.2.1, all the acceptors

are in the x-z plane and two perpendicular sides are parallel to the x-axis and z-

axis separately. Here following previous chapters, we will call it ‘the short-long

arrangement’ when d1 < d2, and call it ‘the long-short arrangement’ when d1 > d2.

Here we should point out that the names of arrangements correspond to the structure

shown in Figure 5.2. As d1 is the inter-cell separation in the infinite ladder and be-

come intra-cell separation in the zigzag strucutre, the short-long arrangement in the

zigzag strucutre actually corresponds to the long-short arrangement in the infinite

ladder and vice versa.

The band structures for the infinite ladder, the rectangular lattice and the zigzag
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Figure 5.10: The cuts through of the highest 16 states for the rectangle lattice under
different arrangements when d1 + d2 and d3 + d4 are fixed separately. (a)
d1 = d3 = 3.5a0 and d2 = d4 = 5.5a0, while k2 = 0, (b) d1 = d3 = 3.5a0 and
d2 = d4 = 5.5a0, while k1 = 0, (c) d1 = d2 = 4.5a0, d3 = 3.5a0 and d4 = 5.5a0,
while k2 = 0, (d) d1 = d2 = 4.5a0, d3 = 3.5a0 and d4 = 5.5a0, while k1 = 0,
(e) d1 = 3.5a0, d2 = 5.5a0 and d3 = d4 = 4.5a0, while k2 = 0, (f) d1 = 3.5a0,
d2 = 5.5a0 and d3 = d4 = 4.5a0, while k1 = 0, (g) d1 = d2 = d3 = d4 = 4.5a0,
while k2 = 0, (h) d1 = d2 = d3 = d4 = 4.5a0, while k1 = 0.
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strucutre are shown in Figure 5.7, Figure 5.8 and Figure 5.9 respectively. We also

show cuts through the two-dimensional band structure for the rectangle lattice in

Figure 5.10 for the convenience of further discussion. Here it should be pointed out

that the short-long arrangement and the long-short arrangement along any direction

are same for the infinite ladder and the rectangle lattice, but these arrangements will

become different systems in the zigzag case. So we still only need to show one of

them in the figures for the infinite ladder and the rectangle lattice, while all pictures

are required for the zigzag strucutre. It can be seen that infinite ladder is insulating

under the short-long or long-short arrangement of the large separation case only,

while the other cases shown in Figure 5.7 are metallic. Comparing Figure 5.7 with

Figure 3.6, it can be seen that the result for the infinite ladder looks like two copies

of the results for the infinite chains. And as a ladder can be considered as two

interacting chains, the interactions between them will lead to the splitting between

two copies of the results for the infinite chains. Comparing Figure 5.7 with Figure

5.10, we can see that the cuts through of the rectangle lattice result will show the

strucutre of the relevant infinite ladder result. It can also be seen that Figure 5.8 (b)

is similar to Figure 5.8 (c), as each system can be achieved from another by rotating
π
2 in the x-z plane. It also can be seen that only the rectangular system in Figure 5.8

(a) is insulator while the others are metallic. From Figure 5.9, it can be seen that the

zigzag structures are always insulating. We can also find an anti-crossing between

the filled states and empty states under the long-short arrangement (d1 = 5.5a0,

d2 = 3.5a0, and d3 = 5a0). Comparing Figure 5.9 with the infinite chain cases in

Figure 3.6, the results for the zigzag structure looks like the results for the infinite

chain after slightly moving the bands close to each other. Considering the zigzag

structure is a 2D system which can be achieved by moving a cell away from the

cells next to it in the perpendicular direction of the one dimensional chain in Figure

3.1 (b), the difference in the band structure can be explained. Although the zigzag

structure is a 2D system, it works like a one dimensional system, where the 2D

transition between acceptor-b and acceptor-c in Figure 5.2 (d) can be treated as a

1D transition with a effective separation de f f . The effective separation de f f is larger
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Figure 5.11: The arrangement for the 4-acceptor rectangle.

than d2. So the long-short arrangement of the zigzag structure is closer to a uniform

chain than the uniform arrangement of the zigzag structure.

We also calculate the Zak phase value for the infinite ladder and the zigzag

strucutre with the Equation 4.11 as these systems are infinite only along one direc-

tion. The Zak phase values are shown in Table 5.2. Comparing with Table 3.2, it

can be seen that the Zak phase values for the infinite ladder agree with the results of

one-dimensional chain; they are all going to be nontrivial topological edge states un-

der the short-long arrangements for all filled levels (highest 2 levels for the infinite

chain and highest 4 levels for the infinite ladder). Considering the parabolic poten-

tial in the finite chain as well as the nonequivalent potential in the finite ladder will

force the states to be localised on the acceptors at the end of the relevant systems

under the one hole model, here the states localised on the acceptors next to the end

of the ladder under the short-long arrangement in the finite ladder are topological

edge states, which agrees with what we found in the finite chain in §3.2.2. For the

zigzag structure, nontrivial states can only be achieved by the first two level (level 1

and 2) under the long-short arrangement. Remembering the long-short arrangement

in the zigzag structure are actually corresponding to the short-long arrangement in

the infinite ladder and results for the infinite ladder agree with results for the infinite

chain, results for the zigzag structure also agree with results for the infinite chain.

5.3 Two-dimensional interacting system results

5.3.1 Finite system with hole-hole interactions

We now introduce interactions between the holes. We expect these will screen out

some of the differences in electrostatic potential that dominated the independent-

hole calculations, as well as potentially introducing new physics arising from cor-
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Figure 5.12: The total energy of the ground state for the 4-acceptor rectangle under differ-
ent multi-hole models: (a) small separation (d1 +d2 = 3a0) calculations with
nearest transitions only, (b) small separation (d1+d2 = 3a0) calculations with
all possible transitions, (c) large separation (d1 +d2 = 6a0) calculations with
all possible transitions. The blue line is for the full CI calculation, the red line
is for the UHF method.
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Figure 5.13: The behavior of the Fock matrix eigenvalues obtained from the UHF method
under different arrangements for the small separation case (d1 + d2 = 3a0)
of the 4-acceptor rectangle: (a) calculations with nearest transitions only, (b)
calculations including next-nearest transitions.
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Figure 5.14: The distributions of holes under the UHF model for the small separation uni-
form chain case (d1 = d2 = 1.5a0) of the 4-acceptor rectangle: (a) calculations
with nearest transitions only, (b) calculations including next-nearest transi-
tions.
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Figure 5.15: The behavior of the magnetic angular momentum obtained from the UHF
method with all possible transitions for the small separation case (d1 + d2 =
3a0) of the 4-acceptor rectangle: (a) the total magnetic angular momentum for
individual acceptor, (b) the magnetic angular momentum along x-axis, (c) the
magnetic angular momentum along z-axis.
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Table 5.3: The largest fractional differences of the total energy between the full CI calcu-
lation and the UHF method in 4-acceptor chains and rectangles for the small
separation cases (d1 +d2 = 3a0).

Systems Largest fractional difference
4-acceptor chain in [001] direction 2.51%
4-acceptor chain in [110] direction 2.67%
4-acceptor chain in [111] direction 2.70%

4-acceptor rectangle with nearest transitions only 3.63%
4-acceptor rectangle with all possible transitions 2.91%

relations. We use two of the same methods as in Chapter 4: the full CI method

(which includes all hole-hole correlations but scales exponentially with the size of

the system) and the UHF method (which treats the interactions between the holes in

mean-field theory). As it is pointed out in §4.1, the full CI method can provide the

most accurate result, while the UHF method is easier to deal with.

As the calculations under the multi-hole model could be very expensive for a

large system with many acceptors, we will discuss only a small finite 2D system

here, the 4-acceptor rectangle as shown in Figure 5.11. Here we consider two case:

the case with all the acceptor-hole and hole-hole interactions, and the case with

only the nearest-neighbour transitions and hole-hole interactions. The total energy

of the ground state under different multi-hole models is shown in Figure 5.12. It

can be seen that the large separation case (d1 +d2 = 6a0) is more accurate than the

small separation case (d1+d2 = 3a0) as the difference between the full CI and UHF

results is smaller in the large separation case. The largest fractional difference of the

total energy between two methods for the small separation cases are shown in Table

5.3. Comparing with the result of the one-dimensional chain, it can be seen that

the rectangle case with all possible transitions shows the similar value of the largest

fractional differences towards the the one-dimensional case while the case only with

the nearest influence has a slightly larger fractional difference. So the UHF method

is still a valid approximation towards the full CI calculation for the cases with all

possible transitions, especially for the large separation one (d1 + d2 = 6a0). By

comparing the eigenvectors of the full CI results and the UHF results, we also find

that the arrangement of holes in the UHF calculation is corresponding to one of



5.3. Two-dimensional interacting system results 106

the largest components of the ground state in the full CI case. The other largest

components are obtained by applying the inversion or time-reversal operations to

that component, which help to protect the inversion symmetry and the time reversal

symmetry in the full CI case.

The behavior of the Fock matrix eigenvalues obtained from the UHF method

under different arrangements for the small separation case (d1+d2 = 3a0) is shown

in Figure 5.13. It can be seen that the Fock matrix eigenvalues behave in the sim-

ilar way, so the next-nearest transitions will not dramatically change the behavior

of the Fock matrix eigenvalues. The distributions of holes under the UHF model

for the small separation uniform chain case are shown in Figure 5.14. The distri-

bution with only the nearest transitions corresponds to the breaking of symmetry

by a charge density wave, while including next nearest transitions provides a better

prediction for the distribution of holes as the one-hole-per-acceptor arrangement is

expected on the insulator side of the Mott transition due to the geometry symmetry

of the system. The eigenvectors of the full CI calculation show that the dominant

components of the ground state for the case with only the nearest transitions are

also localized at a pair of particular acceptors. This will influence the symmetry

of the ground state, so the next-nearest influence should be included in the calcula-

tions based on the symmetry of the ground state (such as the calculation of parity

as the required inversion symmetry could be lost). For the calculations where the

symmetry will not play an important role, considering the next nearest transitions

will nearly double the time of the calculation, only taking the nearest transitions into

account could be an option. But including the next nearest transitions is still the first

choice to fix the nonequivalent distribution of holes. Here we should point out that

this nonequivalent distribution of holes is not going to happen in every calculations

without next-nearest transitions. So for the arrangements without the nonequivalent

distribution of holes, the calculation only with the nearest transition can still provide

an accurate prediction. According to our experience, the nonequivalent distribution

of holes is more likely to happen in the system involving very small separations. We

believe this is relative to the competition between hole-hole interactions and hole-
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core Coulomb potentials. For the cases involving very small separations, removing

the next-nearest transitions has larger influence on the hole-hole interactions than

potentials, which makes it possible for holes to be localised on particular acceptors.

The behavior of the magnetic angular momentum obtained from the UHF

method with all possible transitions for the small separation case (d1 + d2 = 3a0)

is shown in Figure 5.15. The splitting of lines in Figure 5.15 (a) implies the sym-

metry breaking exists in the system according to the discussion in §4.2.3. It also

can be seen that the total magnetic angular momentum for each individual acceptor

is non-zero for all the tested arrangement. The angular momentum along x-axis

and z-axis are also not zero for those arrangement. They will show the inverse

behavior as switching the value of d1 and d2 is equivalent to rotating the system

for π
2 in the x-z plane. The lines in Figure 5.15 (b) and (c) also support that the

symmetry will breaks in different way along x-direction and z-direction. It will be

anti-ferromagnetic when the magnetic angular momentum component is along that

direction, and ferromagnetic when the magnetic angular momentum component is

perpendicular to that direction.

5.3.2 Infinite ladder with hole-hole interactions

Now we introduce hole-hole interactions into the infinite ladder system introduced

in §5.2.2. We still call it ‘the short-long arrangement’ when d1 < d2; and call it ‘the

long-short arrangement’ when d1 > d2. Here we take d1 +d2 = 3a0 and d3 = 1.5a0

as an example, because the finite system is calculated under the similar separations.

For the convenience of calculations, only the nearest transitions are included, as our

main target is to investigate the uniform ladder and there is no nonequivalent distri-

bution of holes in the uniform ladder without next-nearest transitions. According to

§5.3.1, although this may change the charge distribution and the eigenvectors for the

other arrangements, the energy will not change dramatically for those cases. So the

following discussions for the uniform ladder are based on the accurate perdition of

the system, while the energy behaviors for the other arrangements are also reliable.

The band structures of the Fock matrix eigenvalues under different arrange-

ments when d1 +d2 = 3a0 and d3 = 1.5a0 are shown in Figure 5.16. Here the sys-



5.3. Two-dimensional interacting system results 108

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-10
-8
-6
-4
-2
0
2
4
6
8

10
12

 

 

E
ig

en
va

lu
e 

(R
0)

k·a/
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-10

-8

-6

-4

-2

0

2

4

 

 

E
ig

en
va

lu
e 

(R
0)

k·a/

(a) (b)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

 

 

E
ig

en
va

lu
e 

(R
0)

k·a/
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.0

1.65

1.70

1.75

1.80

1.85

1.90

 

 

E
ig

en
va

lu
e 

(R
0)

k·a/

(c) (d)

Figure 5.16: The band structures of the Fock matrix eigenvalues under different arrange-
ments for the infinite ladder when d1 + d2 = 3a0 and d3 = 1.5a0: (a) the
short-long arrangement, (b) the uniform ladder, (c) the detail of the highest
4 eigenvalues in the short-long arrangement, (d) the detail of the high energy
eigenvalues in the uniform ladder. The dash line is the Fermi energy.
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Figure 5.17: The band structures of the Fock matrix eigenvalues for the high energy states
of the infinite ladder without hole-hole interactions when d1 = d2 = d3 =
1.5a0.
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Figure 5.18: The band structures of the Fock matrix eigenvalues in the small cell case (2
acceptors/cell) with and without interacting between holes for the high energy
states when d1 = d2 = d3 = 1.5a0: (a) the band structure with interactions
between holes, the dash line is the Fermi energy, (b) the original band structure
without interactions between holes, (c) the details of the band structure for
highest 2 states with interactions between holes, (d) the zone folding version
of band structure for the small cell without interactions between holes.

tems for the short-long arrangement and the long-short arrangement are same, so we

will only show the short-long arrangement case. All the systems are insulating here

as the filled states (the topest band) are above the Fermi energy in Figure 5.16. Re-

member there will be 4 holes in total as it has 1 hole per acceptor, it can be found that

there are two anti-crossing points between the filled states and empty states in the

uniform ladder. The further calculations show that the anti-crossing will disappear

once d3 reaches 1.9a0. Remember the anti-crossing in the one dimensional chain

along [001] direction in §4.2.2.1 leads to some interesting behaviors (like symmetry

breaking in §4.2.3), it is necessary to investigate the origin of the anti-crossing here.

The band structures of the Fock matrix eigenvalues without hole-hole interac-
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Table 5.4: The parity of 4 typical symmetry points and the relevant Z2 invariant ν for dif-
ferent separation d.

d δ11 δ12 δ21 δ22 ν System Parity
2.3a0 1 1 1 -1 1 Odd
2.35a0 1 1 1 -1 1 Odd

tions for the high energy states when d1 = d2 = d3 = 1.5a0 are shown in Figure

5.17. The calculation is done by only removing the hole-hole interactions, so any

differences between Figure 5.16 (d) and Figure 5.17 correspond to the effect of the

hole-hole interactions. Comparing with Figure 5.16 (d), it can be seen that the anti-

crossing in Figure 5.16 (d) and the crossing in Figure 5.17 show up at the similar

places. As we found earlier in the one dimensional system, it will open a gap be-

tween the filled states and empty states among the eigenvalues of Fock matrix when

the UHF method is used. So the anti-crossing in Figure 5.16 (d) is coming from

the crossing in Figure 5.17 when a gap is opened by the hole-hole interactions. To

give a clear picture of how the crossing (and the anti-crossing as well) is generated,

we show the band structures of the Fock matrix eigenvalues in the small cell (2 ac-

ceptors/cell) with and without interactions between holes for the high energy states

when d1 = d2 = d3 = 1.5a0 in Figure 5.18. We also show the zone folding version

of band structure for the small cell case without interaction between holes, where

we replaced the cell constant asmall by a in the previous large cell case. We can find

that there is no anti-crossing in Figure 5.18 (a), and the large cell case with interac-

tions has a larger value for the total energy than the corresponding small cell case.

By taking a small cell, we allow the symmetry breaking in limited ways without

changing the physical structure of the system. The large cell is equivalent to two

small cells, and therefore allows broken symmetries that double the periodicity of

the system. These cannot occur in the small cell, and one of them makes the system

reach a more stable ground state in our calculation.

5.3.3 Honeycomb lattice with hole-hole interactions

As introduced in §5.1, the 2D honeycomb lattice offers interesting topological prop-

erties in other contexts [62, 63, 64]. So the topological states are likely to be
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(b) d = 2.3a0

Figure 5.19: The band structure of the highest 4 Fock matrix eigenvalues for the honey-
comb lattice when d = 2.2a0 and d = 2.3a0: (a) d = 2.2a0, (b) d = 2.3a0. The
dot line is the Fermi energy.

achieved in this kind of structure. Previously, calculations for the honeycomb lat-

tice under the spherical one-hole model (without the cubic symmetry term in Equa-

tion 2.1 and hole-hole interactions) were done by S. Bhattacharyya under a summer

project [65]. There he found nontrivial topological edge states for the perfect honey-

comb lattice when d1 = d2 = 6a0. He also investigated the existence of the nontrivial

topological edge states by varying the angles with d1 = d2 = 6a0. It was found that

these states will be hold until the angle ̸ 12 between d1 and d2 decreases to 0.54π .

The detail can be found in S. Bhattacharyya’s unpublished report [65].

After proving the nontrivial topological origin of the edge states in the honey-

comb lattice under the spherical one-hole model, the next step is to investigate the



5.3. Two-dimensional interacting system results 112

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

 

M
ag

ne
tic

 A
ng

ul
ar

 M
om

en
tu

m
A

lo
ng

 z
-a

xi
s

d (a0)

Figure 5.20: The magnetic angular momentum along z-axis on different acceptors in the
unit cell for the honeycomb lattice: two lines are for two different acceptors
in the cell.

(a) (b)

(c)

Figure 5.21: (a) The parity of the ground states, yellow balls are for metals, green balls are
for topological insulators, red balls are for the insulators with broken symme-
try (anti-ferromagnetic), gray balls are for trivial insulators. (b) The parity of
the ground states for the topological insulators only (green balls in (a)). (c)
The band gap between the lowest filled state and the highest empty state, the
colour of the balls stands for the value of gap, white balls are for the metals
(closed gap), and the darker colour stands for the larger gap.
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Figure 5.22: The parity of the ground states for different layers, yellow circles are for the
metals, green circles are for the topological insulators, red circles are for the
insulators with the broken symmetry (anti-ferromagnetic), gray circles are for
the trivial insulators. (a) d1 = s1 = 13a, (b) d1 = s1 = 17a, (c) s3 = 6a.

honeycomb lattice under the cubic multi-hole model (with the cubic symmetry term

in Equation 2.1 and hole-hole interactions). For the multi-hole model, the UHF ap-

proximation is the easiest one to be done as we are only interested in the ground

state. Here the most important next nearest transitions (all the hopping between

the next nearest neighbours, and the direct hole-hole interactions between the next

nearest neighbours) are included in the following calculations to achieve a better

prediction for the distribution of holes (a better prediction for the symmetry as well)

as the further calculations are based on the inversion symmetry as well as the time

reversal symmetry. Firstly, we consider the case where the two acceptors in the cell

in Figure 5.3 are set along the the z-axis. To investigate the topological property

of the ground state, we need to calculate the parity of the filled states (highest 2

states as there are 2 acceptors/cell) and get the value of Z2 invariant ν by following
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Equation 1.7 in §1.5 which is based on the time-reversal symmetry. Since the insu-

lating behavior is also required to form a topological insulator, an open gap without

band overlapping between filled states and empty states is also required. The band

structure of the highest 4 Fock matrix eigenvalues when d = 2.2a0 and d = 2.3a0

is shown in Figure 5.19. We find band overlapping between filled and empty states

when d < 2.3a0, so the system shows the metallic behavior for those separations

and will become an insulator when d ≥ 2.3a0. Here we should point out that some

states of level 3 and 4 around Γ point (the part of the dash line above the Fermi

energy) in Figure 5.19 (a) have higher energies than part of bands 1 and 2, resulting

in a metallic system. So we need to allow the holes to fill those states so that the

right band structures can be achieved, which leads to the partial-filled UHF model

used here. It is worth pointing out that this is the first example studied in this thesis

that is predicted to be metallic within the UHF model.

By calculating the magnetic angular momentum along the z-axis (which is

the only non-zero component and shown in Figure 5.20), it is found that the bro-

ken symmetry shows up when d = 2.4a0 and the system will be anti-ferromagnetic

when d ≥ 2.4a0. The symmetry breaking not only means the parity calculation can-

not be done due to the loss of the inversion symmetry but also leads to the loss of

the time reversal symmetry. So we cannot calculate the Z2 invariant ν using Equa-

tion 1.7. Therefore, we only need to test the parity from d = 2.3a0 to d = 2.35a0.

The parity of 4 typical symmetry points and the relevant Z2 invariant ν for different

separation d are shown in Table 5.4. The odd parity can be achieved for all the

separations in this range, so the honeycomb lattice contains non-trivial topological

states from d = 2.3a0 to d = 2.35a0 when the two acceptors in the cell are set along

the the z-axis. We should point out that although we find the topological insulator

occurs here, it does not mean the topological insulator cannot be achieved outside

this zone. As explained in §4.2.3, the symmetry breaking is a result of the UHF ap-

proximation, which makes the calculation of the Z2 invariant cannot be done. So it

still possible to be topological when d ≥ 2.4a0. This requires further investigations

under other improved methods. The multiconfiguration self consistent field theory
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may be helpful [58]. There a linear combination of the broken symmetry states can

be used as the approximation of the full CI ground state, which could still contain

the symmetry required for the calculation of the Z2 invariant. Also, considering

that the broken symmetry is introduced by the UHF method, the general slave-rotor

method mentioned in Reference [66] also offers an option to solve the problem here

as it may not lead to the broken symmetry.

In (010) plane for the real doped silicon, the silicon atoms will be organized

in a square structure which is rotated from z-axis by 45◦ towards x-axis. To predict

the behavior of the honeycomb structure in the the real doped silicon with a cubic

unit cell, a better choice is to set the cell in Figure 5.3 along [101] direction in the

x-z plane according to the structure of the silicon lattice. It means the lattice will be

rotated by 45◦ towards x-axis while the basic structure remains the same. So it is

not surprising to see that it shows similar behavior that we have shown above. By

doing the calculations for this rotated system, it can be found that we will have a

topological insulator from d = 2.2a0 to d = 2.3a0. It is not surprising to see the

range for the topological insulator changes as we have seen many small differences

in the energy behaviors between the [001] direction and the [110] direction under

both the one hole model in Chapter 3 and the multi-hole model in Chapter 4.

Now we can try to achieve a topological insulator in the real doped silicon by

locating all the acceptors on silicon lattice sites and choosing a proper separation

according to our calculations above. Since electrically active acceptors are substitu-

tional impurities at a silicon site, d1 and d2 will be different in this case. The system

is not a perfect honeycomb lattice as calculated above, instead it is an almost-perfect

honeycomb lattice with a slight distortion in the angles and a small difference be-

tween d1 and d2. As we know the topological edge states are maintained when the

angles are changed slightly under the spherical one-hole model [65], it is reason-

able to believe that this almost-perfect honeycomb lattice could also show topolog-

ical properties. We chose s1 = d1 = 15a, s2 = 13a, s3 = 8a (see Figure 5.3) as our

target arrangement, where a =
√

2
2 as is the nearest-neighbour spacing along [101]

and as = 5.43Å is the silicon lattice constant. This is the arrangement that most
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closely approaches the perfect honeycomb lattice and also falls in the region of the

stable topological insulator achieved above (from d = 2.2a0 to d = 2.3a0). As the

distorted honeycomb lattice still has inversion symmetry, the previous test can still

be applied. It is proved to contain the topological edge state under this arrangement

by following the same steps in the earlier test.

Considering the precision of doping attainable in the real experiment described

in §1.4, we also test misplaced arrangements close to the target one, giving 124 other

possible arrangements which are achieved by adding either 1a or 2a to or taking ei-

ther 1a or 2a from s1, s2 or s3 and any possible combinations of them. The parity

of the resulting ground states and the band gap between the lowest filled state and

the highest empty state are shown in Figure 5.21. For the convenience of following

discussions, pictures are shown in the coordinate system labeled by d1, d2 and the

angle between the two nearest-neighbour bonds with separation d2 (̸ 22). In Figure

5.21 (a), yellow balls are for metals, green balls are for topological insulators, red

balls are for the insulators with broken symmetry (anti-ferromagnetic), gray balls

are for trivial insulators. In Figure 5.21 (b), only the green balls (topological insu-

lators) are shown for the convenience to see the inner part. In Figure 5.21 (c), the

colour of the balls stands for the value of gap, white balls are for the metals (closed

gap), and the darker colour stands for the larger gap. It is found that the system is

predicted to be a topological insulator in 44 cases among 125 in total, including 23

cases among 27 most likely misplaced arrangements (achieved by adding 1a to or

taking 1a from s1, s2 or s3 and any possible combinations of them). We should also

point out that the systems where we add 1a to or taking 1a from one of s1, s2 or

s3 are all topological insulators. Considering there will only be a limited number

of acceptors move away from the target arrangement in the experiment and those

system with broken symmetry could still contain topological state, the topological

property should be achieved in the real doped silicon under this target arrangement.

In Figure 5.21 (a), some systems have regions of trivial states (gray balls)

which do not appear in the previous perfect honeycomb lattice. This is due to

distortions in the honeycomb structure (large changes in the angles and the large



5.3. Two-dimensional interacting system results 117

difference between d1 and d2). The parities of the ground states for different layers

(two with constant d1, one with constant s3) are shown in Figure 5.22. It can be seen

that the trivial states appear when d2 is large in the d1 = s1 = 13a layer, while they

appear when both d2 and ̸ 22 are large in the d1 = s1 = 17a layer. For the small d1

case (when d1 = s1 = 13a), the intracell interactions are strong. When d2 is so large

that the intercell interactions are too small to influence the transition of holes, the

system will break up into many acceptor-pairs and there will be trivial states. For

the large d1 case (when d1 = s1 = 17a), the system is sensitive towards the changing

in the angles. According to Figure 5.22 (c), the systems will transfer from metals

to topological insulators when the angles are not far away from the equivalent case

(120◦), while they will transfer from metals to trivial insulators when the angles are

large enough. The similar behavior is found in the spherical model as mentioned

at the beginning of this section [65]. It also can be found that in some places triv-

ial insulators directly adjoin topological insulators. This is because the separations

used in those calculations are not continuous, with the finite step length being the

nearest-neighbour spacing along [101] (a = 0.15a0 = 3.84Å). Considering the gaps

between the lowest filled state and the highest empty state shown in Figure 5.21

(c) are very small for the topological insulators (green balls), the system could pass

through a metallic region between the green ball and the gray ball even though they

are next to each other. Fortunately, there is a good example when s2 = 13a and

s3 = 6a (̸ 22 = 130.45◦ in Figure 5.22 (c)). The system shows metallic behaviours

(yellow circle) when d1 = 13a and becomes a topological insulator (green circle)

when d1 = 14a. After that, before reaching the trivial zone (gray circle) at d1 = 17a,

the system shows metallic behaviours (yellow circle) again when d1 = 16a. It sug-

gests that trivial insulators indeed do not directly adjoin topological insulators. The

system will be metallic between them, which is not shown due to the discrete sepa-

rations used here.
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5.4 Summary

In this chapter, we showed the energy states for the finite rectangle arrangements

as well as the band structures for periodic boundary condition cases under both the

one-hole model and the multi-hole model.

For the one hole model, we find the 2D systems will behave like the cor-

responding one dimensional systems. Compared with the one-dimensional finite

chain in §3.2.2, there will be some states localized at particular acceptors due to the

nonequivalent potential. And the non-trivial topological edge states found in the

infinite ladders and zigzag structures agree with the results for the infinite chains in

§3.2.3.

For the multi-hole model, we compared the full CI result with the UHF one,

and found the nonequivalent distribution of holes in the cases only with the nearest

transitions, which can be fixed by including next-nearest transitions. This nonequiv-

alent distribution of holes is not going to happen in every calculation without next-

nearest transitions. So for the arrangements without the nonequivalent distribution

of holes, the calculation only with the nearest transitions can still provide an ac-

curate prediction. According to our experience, the nonequivalent distribution of

holes is more likely to happen in the system involving very small separations.

In the infinite chain case, we found anti-crossings between the filled states and

empty states, which come from the crossings in the non-interacting case. There we

find different choices of the unit cell could lead to different results as the symmetries

are different. A large unit cell can achieve a more stable total energy state under the

broken symmetry which cannot be realized by a small unit cell.

Then we demonstrated the existence of the topological edge states in the infi-

nite honeycomb lattice by calculating the Z2 invariant. To predict the behavior in the

real doped silicon lattice, we chose a proper separation according to both the silicon

lattice structure and our previous calculations for the continuous case, and found

that the system will be a topological insulator under that arrangement. Considering

the precision of doping in the real experiment, we also test misplaced arrangements

close to the target one (124 in all) to verify that the topological property is highly
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likely to show up in a real experiment. We predicted that the system will be a topo-

logical insulator in 44 cases among 125 in total, including 23 cases among 27 most

likely misplaced arrangements. We also pointed out that the systems where we add

1a to or taking 1a from one of s1, s2 or s3 are all topological insulators. Considering

only a limited number of acceptors could move away from the target arrangement

in the experiment and those system with broken symmetry could still contain topo-

logical state, the topological property should be achieved in the real doped silicon

under this target arrangement. Then we investigated the origin of the trivial states

under some arrangements, which is due to distortions in the honeycomb structure

(large changes in the angles and the large difference between d1 and d2).

To detect the topological edge states in the experiment, spin-polarized photoe-

mission and circular dichroism photoemission may be helpful [67, 68, 69]. As they

can distinguish the states with different spins, the time reversal symmetry of the Z2

invariant can be tested.

Here we should point out that the topological state found here is different from

the one predicted in the Graphene [70, 66]. Although the spin-orbit coupling was

found in both systems, the physical origin of the term is very different. In 2005, C.

Kane and E. Mele developed a model (KM model) to study the effects of spin orbit

interactions on the low energy electronic structure of a single plane of graphene

[70]. The spin-orbit term in the KM model in k-space can be written as

Ĥso(⃗k) =2λ ∑
σσ ′

σ z
σσ ′ (â†

k⃗σ
â⃗kσ ′ − b̂†

k⃗σ
b̂⃗kσ ′ )[2cos(

3
2

kza)sin(

√
3

2
kxa)− sin(

√
3kxa)]

≡ψ̂†
k⃗
γ (⃗k)σ zτzψ̂⃗k (5.1)

where ψ̂⃗k = (â⃗k,↑, b̂⃗k,↑, â⃗k,↓, b̂⃗k,↓), â†, â, b̂†, b̂ are creation and annihilation operators

for different acceptors in the cell, γ (⃗k) = 2λ [2cos(3
2kza)sin(

√
3

2 kxa)− sin(
√

3kxa)],

and λ is the spin-orbit coupling. It is odd under sublattice reversal, odd under spin

reversal and odd under reversal of k⃗ since γ(−⃗k) = −γ (⃗k). If we write down a

tight-binding model to describe the hopping interactions between acceptors, it must

include the difference between spin-±1
2 states and spin-±3

2 states. So we have the
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δ -dependent part of the interaction

Ĥbondik = δ ∑
m,m′

Qbond
m,m′ (â†

i,mb̂k,m′ + b̂†
i,mâk,m′ ) (5.2)

where Qbond = (Jbond)2− 5
4 is the quadrupole operator along the bond direction, and

δ is the hoping difference between spin-±1
2 states and spin-±3

2 states. So this is odd

under sublattice reversal as above, but becomes even under spin reversal and even

under reversal of k⃗. These are the opposite symmetries to the graphene case.



Chapter 6

Conclusions

We have developed an LCAO model to describe the properties of acceptor ar-

rays in tetrahedrally bonded semiconductors by using the cubic model, within the

independent-hole approximation. We have used it to predict the high-energy states

of acceptor dimers (the states close to the ground state) and linear acceptor chains in

silicon. In particular we have studied the highest few energy states in the finite chain,

arising from linear combinations of the 1Γ+
8 acceptor ground states. For the case

of a single hole in the chain we find a complex interplay between the long-range

Coulomb interaction and the topological properties of the chain; the electrostatic

attraction between the hole and the acceptors in the interior of the chain ‘splits

off’ a state localised on the end acceptor, and the transition between topological

and non-topological states then takes place in the remainder of the chain. This has

the consequence that a single hole has twofold-degenerate topological bound states

derived from the highest energy band in the ‘short-long’ arrangement (where the

chain ends in a short, rather than a long, bond) that merge into the bulk bands in

the ‘long-short’ arrangement; these bound states are mainly localised on the next-to-

end acceptors, and their topological origin can be confirmed by computing the Zak

phase in the corresponding infinite chain model.

In an array with many holes the long-range interactions are likely to be

screened out by the motion of other holes. We approximate this effect by intro-

ducing a ‘short-range model’ in which phenomenological screening removes the

effect of acceptors beyond the nearest neighbour of each pair. In this case the elec-
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trostatic splitting off of the states localised on the end acceptors disappears, and the

topological states of the highest band appear for the ‘long-short’ arrangement in-

stead (where the chain ends in a long bond). The situation in the next-highest band

is more complex and we trace this to a non-monotonic dependence of the effective

hopping matrix element between these states on the acceptor spacing.

We note that even with the inclusion of screening, we would not expect our

model to be accurate at large spacings (where the Coulomb interactions are ex-

pected to dominate over the inter-acceptor tunneling). For dimerised geometries

we would expect the behavior to cross over from a band insulator (at small spac-

ings) to an antiferromagnetic spin model (at large spacings); a similar transition is

found in models of donor arrays [53]. The system would, however, remain insu-

lating throughout. For the equally spaced case (d1 = d2) we would expect a true

metal-insulator transition to occur in the real system which, being driven by in-

teractions, is not captured in our independent-hole model. Experimental evidence

from randomly doped p-type bulk Si (Si:B) suggests this occurs at densities around

4.11× 1018 cm−3 as shown in the previous paper[16], corresponding to spacings

around 6.24nm ≈ 2.45a0; this is within the range of the typical separations (2a0

to 5a0) considered in our calculations. Hence, even when we are working on the

insulating side of the transition, our system is relatively close to the phase boundary

and we might expect our results to remain qualitatively correct except when d1 = d2

(where we fail to predict the correct insulating behavior). The cases with d1 ̸= d2,

showing the topological behavior, should be qualitatively correct.

We also constructed multi-hole models for neutral, one-dimensional multi-

acceptor chains based on three different methods: full configuration interaction, the

Heitler-London approximation , and the unrestricted Hartree-Fock method. The HL

approximation solves some of the problems with the CI method, but only the UHF

method is able to cope with infinite chains under periodic boundary conditions.

From reference calculations on a pair of acceptors, we found that both the HL

approach and the UHF method give good approximations to the ground state of

the full CI calculation, with the HL approach offering a better result in the regimes
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studied (which are on the insulating side of the Mott transition). The UHF method

is less useful for the calculation of excited states, so we use the HL approximation

to simplify the calculation of high-lying excitations when interactions are strong.

The converged UHF state has a large gap between the filled and empty states, due

to the self-consistent potential generated by the hole-hole interactions.

Comparing with the 3D measurements reported in Reference [13] (2.45a0),

we find the Mott transition happens for smaller separations in some directions in

1D (between 1a0 and 1.5a0 for the [001] and [111] directions, between 2a0 and 3a0

for [110] the direction). In the 2D honeycomb lattice (discussed later), the Mott

transition occurs at separations close to the experimental result of 2.45a0 (between

2.2a0 and 2.3a0 when the cell is along the [001] direction, between 2.35a0 and

2.4a0 when the cell is along the [101] direction). The reason could be that the

experimental result 2.45a0 is based on random doping in a 3D system. So, this value

is an average separation involving all directions which are not equivalent to each

other due to the symmetry of the system (Td), and the average coordination number

in the 3D experiments is also higher than the coordination number in the 1D and 2D

systems. These mean that the predictions from our 1D and 2D calculations could

differ from the experimental result. As the prediction depends on the directions

involved in the calculations and the coordination number in 1D system is the lowest,

it is reasonable that our predicted Mott transition in a 1D calculation happens far

away from the experimental result in some directions.

For finite chains, the CI ground state is non-degenerate in the short-long ar-

rangement in all directions, but joins three other states to form a 4-fold-degenerate

manifold in the long-short arrangement, which is followed in energy by an 8-fold-

degenerate state and another 4-fold-degenerate state. By checking the dominant

components of these 16 states, we found that only the levels on the acceptors at

the end of the chain change between different members of the manifold; the overall

16-fold degeneracy comes from the product of separate sets of 4 levels on each end

acceptor. The topological nature of these edge states is confirmed by the presence

of non-trivial phases in the classification of one-dimensional fermion edge states
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by Turner et al. In the small-separation case where d1 +d2 = 3a0, an anti-crossing

occurs between the ground state and the next excited states in the [001] direction,

resulting in a switch from in unhybridized ground state dominated by mF = ±3/2

states to a hybridized state where mF =±1/2 states are also present; this transition

is related to the crossing between the filled UHF single-particle states. The UHF

solution loses part of the symmetry of the underlying Hamiltonian; for particular

arrangements, we found the further broken symmetries related to the crossing of

Fock matrix eigenstates and changing of the degeneracy of the total energy states in

full CI calculation in the [001] direction. The loss of symmetry corresponds to the

emergence of static moments on each acceptor in the UHF approach.

We obtained the UHF band structures of the Fock matrix eigenvalues for infi-

nite 1D systems. We found there is a large gap between the filled and empty states

in a dimerised chain, which does not fully close in the uniform chain, showing the

existence of a period-doubling perturbation. Since a gap is maintained throughout

the transition from short-long to long-short arrangements, the Zak phase is constant

(and equal to zero), despite the observation of non-trivial many-body edge states

in the long-short case. Hence, this method does not capture the formation of edge

states, while the previous method introduced by Turner et al can well characterise

their topological properties. The nature of the bulk-edge correspondence in such

interacting systems requires further investigation.

For 2D system, we showed the energy states for finite rectangular arrangements

as well as the band structures for periodic boundary condition cases under both the

one-hole model and the multi-hole model. For the one-hole model, we find the 2D

systems will behave like the corresponding one-dimensional systems. Compared

with the one-dimensional finite chain in §3.2.2, there will be some states localized

at particular acceptors due to the nonequivalent electrostatic potential at different

sites. Furthermore, the non-trivial topological edge states found for the infinite

ladders and zigzag structures agree with the results for the infinite 1D chains in

§3.2.3.

For the multi-hole model, we compared the full CI result with the UHF one,
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and found an inequivalent distribution of holes (equivalent to the formation of a

charge density wave) in some cases if we included only nearest-neighbour transi-

tions; we showed this was an artefact which could be fixed by including next-nearest

transitions. However, this inequivalent distribution of holes does not happen in all

calculations without next-nearest transitions; we argued that, for the arrangements

where the inequivalent distribution of holes does not occur, the calculation with

nearest-neighbour transitions only can still provide accurate predictions. In our ex-

perience, the inequivalent distribution of holes is more likely to happen in systems

with very small separations. In the infinite-chain case, we found anti-crossings

between the filled states and empty states which derive from the crossings in the

non-interacting case. We also find different choices of the unit cell can lead to dif-

ferent results as the allowed symmetries are different: a large unit cell can achieve

a more stable state by exploiting broken symmetry which cannot be realized within

a small unit cell.

Next, we demonstrated the existence of topological edge states in the infinite

honeycomb lattice by calculating the Z2 invariant. To predict the behavior in the

real doped silicon lattice, we chose a set of acceptor separations consistent with

both the silicon lattice structure and our previous calculations for the continuous

case; we found that the system will indeed behave as a topological insulator under

that arrangement. Considering the precision of doping likely to be attainable in a

real experiment, we also test misplaced arrangements close to the target one (124

in all) to verify that the topological property is highly likely to show up in a real

experiment. We predicted that the system will be a topological insulator in 44 cases

among 125 in total, including 23 cases among the 27 most likely misplaced arrange-

ments. We also pointed out that the systems where we add 1a to or take 1a from

any one of the three integers s1, s2 or s3 defining the structure are all topological

insulators. Considering only a limited number of acceptors might be expected to

move away from the target arrangement in the experiment, and also that even those

systems where we find broken symmetries could still contain topological states, it

seems promising that topological properties could be achieved in real doped silicon
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structures under this target arrangement. Finally, we investigated the origin of the

trivial states under some arrangements, which arise due to distortions in the hon-

eycomb structure (large changes in the angles and large differences between the

nearest-neighbour bond lengths d1 and d2).

To detect the topological edge states in an experiment, spin-polarized photoe-

mission and circular dichroism photoemission may be helpful [67, 68, 69]. As these

experiments can distinguish electron states with different spins, the time reversal

symmetry of the Z2 invariant could be explicitly tested. We also pointed out that the

topological states found here are different from those predicted in graphene, as the

spin-orbit coupling term has a different physical origin.

For further investigation, we have four suggestions based on our work in this

thesis. First, as discussed in §5.3.3, further investigations for the honeycomb lattice

under improved methods are still important. The broken symmetry is introduced

into the system by the UHF method, which means the Z2 invariant cannot be calcu-

lated under some arrangements. A method without symmetry breaking will solve

this problem and could find a wider region of stability for the topological insulator.

As suggested earlier, multiconfiguration self-consistent field theory may be helpful

[58]. There a linear combination of the broken-symmetry states can be used as an

approximation to the full CI ground state, which could still contain the symmetry

required for the calculation of the Z2 invariant. Considering that the broken sym-

metry is introduced by the UHF method, the general slave-rotor method mentioned

in Reference [66] also offers an option to solve the problem that may not lead to

broken symmetry.

Second, we can apply the current one-hole model and multi-hole model to 3D

systems. As the models developed in this thesis appeared to provide reliable results

on both 1D and 2D systems, we could expect that they are also valid in three di-

mensional cases. Where the Mott transition happens in the 3D system should agree

more closely with the experimental measurements (at separations 2.45a0). Just as

topological edge states were found in both 1D and 2D cases, they should also ex-

ist in the 3D system under some particular arrangements. Based on the experience
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of previous investigations into Graphene [71, 72], double-layer system could be a

starting point. Although double-layer deterministic doping is still a challenge in

experiments, a theoretical treatment should be possible. Other interesting 3D ar-

rangements in Reference [73] are also predicted to contain topological states which

form not on the surfaces but along the edges; these arrangements are also trying out

in acceptor systems.

Another suggestion is try to combine the acceptor system with donors to

investigate the behavior of p–n junctions. As discussed in §1.4, some experi-

ments have been done about on p–n junctions, and considering the reliable re-

sults achieved by the current models for the individual donor and acceptor systems

[3, 4, 5, 6, 7, 8, 9, 10, 65, 74, 75], it is reasonable to expect a good description

of p-n junctions where some interesting behavior could arise from the interactions

between acceptors and donors.

Also, some corrections for the basic model could be interesting and worth in-

cluding in further investigations. It is found that the symmetry of the acceptor sys-

tem plays an important role in some materials such as GaAs [76], where the fact

that the true symmetry of the acceptor site is lower that the symmetry of effective

mass theory results in a substantial change to the charge distribution. As a result, a

central-cell correction is required to reflect the possible effects of tetrahedral sym-

metry in the core of the acceptors, and applying such a central-cell correction to the

current models could offer the opportunity to assess the importance of these effects

and to achieve more reliable results.

Last but not least, the current models could be applied to other 2D acceptor

systems. In this thesis, we only investigated a few two-dimensional systems. So we

can continue to work on other arrangements of acceptors (for example, nanoribbons

with armchair edges or zigzag edges [77, 78, 79]) to search for further interesting

behaviors.



Appendix A

Modeling details for single-acceptor

calculation

The calculations for a single acceptor are done by coding in Mathematica. We start

from a list of spherical states which will be included in the calculation (up to a

maximum of L = 3 and F = 9
2 in our case). Then we can code Equations 2.1 to

2.4 with the help of the appendix in Reference [6]. The 3- j symbol and the 6- j

symbol can be realized by using ‘ThreeJSymbol’ and ‘SixJSymbol’ commands in

Mathmatica, while the 9- j symbol can be written in terms of 6- j symbols as follows:
j1 j2 j3

j4 j5 j6

j7 j8 j9

= ∑
x
(−1)2x(2x+1)

 j1 j4 j7

j8 j9 x


 j2 j5 j8

j4 x j6


 j3 j6 j9

x j1 j2

 ,

(A.1)

where x takes values from Max{| j1 − j9|, | j4 − j8|, | j2 − j6|} to Min{| j1 + j9|,

| j4 + j8|, | j2 + j6|}.

We then calculate the matrix elements in the basis of these functions; next,

we will transform these matrix elements into a set of basis functions belonging

to the irreducible representations of the cubic double group, by using projectors

connecting the |L,J,F,mF⟩ basis to the cubic symmetry basis. According to the

formulae given in Reference [48], the projection operator onto states of irreducible
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representation α can be written as

P(α) =
sα
g ∑

a
χα∗(Ga)T (Ga), (A.2)

where T (Ga) are the transformations induced by the elements Ga of a group G,

χα(Ga) are the corresponding characters of representation α , g is the order of the

group G, sα is the dimensionality of the irreducible representation α (the size of the

basis for corresponding symmetry α). In our case, the group G is the cubic group

Oh , so g = 48, T (Ga) are rotation matrices and inversion transformations, and α

runs over Γ±
6 ,Γ

±
7 ,Γ

±
8 . As shown in Reference [48], rotation matrices are given in a

basis of states of total angular momentum F by

D(F)

m′
F mF

(α,β ,γ) =e−i(αm
′
F+γmF )

 2F

F −m
′
F

− 1
2
 2F

F −mF

 1
2

×∑
x

F +mF

x

 F −mF

F +m
′
F − x


× (−1)F+m

′
F−x(cos

β
2
)2x−mF−m

′
F (sin

β
2
)2F−2x+mF+m

′
F , (A.3)

where α,β ,γ are Euler angles (whose definitions can be found in a figure on page

520 in Reference [48]), x takes values from Max{0,mF +m
′
F} to Min{F +mF ,F +

m
′
F}. The influence of the inversion operation can be included by multiplying the

relevant rotation matrices by ±1, depending on the spatial parity: we take +1 for

{Γ+
6 ,Γ

+
7 ,Γ

+
8 } and −1 for {Γ−

6 ,Γ
−
7 ,Γ

−
8 }. The characters χα(Ga) and the bases for

different symmetries can be found in the table for Oh group in Reference [80]. The

components of the cubic symmetry states can be decided by checking the relevant

projectors which connect that cubic symmetry state with the spherical states in our

list. If elements in a projector all equal to zero, it means there is no component

of that spherical state in the given the cubic symmetry state. Diagonalizing the

projectors and applying the eigenvectors corresponding to the non-zero eigenvalues

to the |L,J,F,mF⟩ basis, we will obtain the Hamiltonian function F(x) in the cubic
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symmetry basis, where x is the radial parts of the states.

After obtaining the Hamiltonian function, we expand the basis in terms of

Gaussian functions. The radial parts of the states (such as fi(r) in Equation 2.5)

are expanded by Equation 2.6, so the elements in each Hamiltonian matrix block

can be written as

Hi j =
∫ ∞

0
rl

′
e−αir2

F(rle−α jr2
)dr, (A.4)

where l
′
, αi and l, α j are the orbital angular momentum and Gaussian exponent for

the initial state and finial state respectively. This integral can be analytically solved

by the ‘Integrate’ command in Mathematica. We use 21 Gaussian functions, with

exponents given by αi =
5×105

2.42632i−1 , so each Hamiltonian matrix block is a 21× 21

matrix. Here we choose the ratio 2.42632 to make the exponents fall in the same

range (α1 = 5×105, α21 = 0.01) as in the previous paper [6]. Then we gather the

Hamiltonian matrix blocks in the Gaussian basis according to the components of

the cubic symmetry states by Mathematica ‘Join’ command, and get the energies

and eigenvectors by diagonalizing the Hamiltonian with the help of ‘Eigensystem’

command.



Appendix B

Modeling details for the tight-binding

model

This part of calculations is done by coding in FORTRAN. First, let us begin with a

pair of acceptors.

We separate the Hamiltonian into two parts as shown in Equation 3.2 and 3.3.

Using Equations 3.2 and 3.3, we can obtain the transition strength between any two

single-acceptor states on any sites.

The single-hole energies can then be found by solving a generalised eigen-

value problem provided we can compute the overlap ⟨ϕA|ϕB⟩ and the potential term

⟨ϕA| 1
ri
|ϕB⟩. We follow the methods in the previous paper [47] to get the matrix

elements between the Gaussian orbitals, then multiply by the relevant Gaussian co-

efficients of the single-acceptor states and sum them according to Equation 2.6 to

get the matrix elements in the Cartesian basis. Reference [47] gives the result for

states up to P orbitals, while the results for higher angular momenta can be obtained

by taking further derivatives along the different axis. In FORTRAN, these further

derivatives can be found by building a recursive function which is a pure program-

ming problem that we will not discuss here.

Then, with the help of spherical harmonics, the Cartesian basis can be

transformed to the |L,mL,J,mJ⟩ basis, which can in turn be transformed to the

|L,J,F,mF⟩ basis by using relevant Clebsch-Gordan coefficients. The transform

matrix for the first step can be found in most of textbooks about quantum mechan-
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ics or Wikipedia online, while the Clebsch-Gordan coefficients can be obtained by

using the ‘ClebschGordan’ command in Mathematica. The projectors connecting

the |L,J,F,mF⟩ basis and the cubic symmetry basis can be obtained from the for-

mula given in the projection operator section in reference [48]. Diagonalizing the

projectors and applying the eigenvectors corresponding to the non-zero eigenvalue

to the |L,J,F,mF⟩ basis, we will get the Hamiltonian matrix and overlap matrix

under the cubic symmetry basis. The steps above can be written as

H|L,mL,J,mJ⟩ =U†
spherical harmonicsHCartesianUspherical harmonics, (B.1)

H|L,J,F,mF ⟩ =U†
Clebsch–GordanH|L,mL,J,mJ⟩UClebsch–Gordan, (B.2)

Hcubic =U†
cubicH|L,J,F,mF ⟩Ucubic, (B.3)

where Ui is the relevant transform matrix. Finally, the eigenvalues and correspond-

ing eigenvectors can be achieved by performing a generalized diagonalization. In

FORTRAN, this can be realized by using the ‘hegvd’ subroutine in the ‘lapack95’

package.

For a larger system with more than two acceptors, most of the steps are the

same. The differences are only which hopping interactions will be allowed in the

model and which potential terms will be considered. After deciding these questions,

formulae like Equations 3.5 to 3.10 will be obtained and the further steps will be

the same as indicated above.

For an infinite system, we need to transform the Hamiltonian matrix to the

momentum basis with the help of Fourier transformation

Hk =
∫

first BZ
eikxHdx. (B.4)

We take small discrete steps for momentum k in the calculation so that the integral

in Equation B.4 becomes summations

Hk = ∑
x

eikxH. (B.5)
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In our calculations, we take the value of the integrand at the left-hand side of each

interval for the whole range, and include each interval in the summation only if its

left-hand edge is in the first Brillouin zone.



Appendix C

Modelling details for full

configuration interaction calculation

and Heitler-London approximation

This part of the calculations is done by coding in FORTRAN. First, we need a

list for all possible configurations of the holes; the size of this list depends on the

number of acceptors. After listing all possible configurations, we need to decide

which configuration will be included in the calculation. For a full CI calculation,

all configurations are required; for HL cases, those configurations where more than

one hole is localized at any one acceptor will be removed.

Next, we calculate the hole-hole integrals. These integrals can be achieved by

the same method mentioned in Appendix B as the relevant formulas are offered in

the previous paper [47]. We only need to remember applying the transformation

matrices in Equations B.1 to B.3 to the basis for both holes separately.

After removing the unwanted configurations to get the list of states considered

in the calculation, the Hamiltonian and the corresponding overlap matrix are formed

within this basis by using Equations 4.1 and 4.2. A simple example of how to obtain

the Hamiltonian for a hydrogen molecule including all possible configurations has

been given in Section 2.3.1 of Reference [58]. This is equivalent to a two-acceptor,

two-hole system as similar formulae used there apply for holes as well as for elec-

trons. The Hamiltonian for a system with more than two holes can be achieved by
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following the same logic.

Now we have the Hamiltonian and the corresponding overlap matrix under the

multi-hole basis. The eigenvalues and corresponding eigenvectors can be obtained

by performing a generalized diagonalization. In FORTRAN, this can be realized by

using ‘hegvd’ subroutine from the ‘lapack95’ package. The eigenvalues are then

the total energies of each multi-hole state (including the ground state and excited

states), and eigenvectors are many-hole states expressed in the chosen multi-hole

basis.



Appendix D

Modelling details for unrestricted

Hartree-Fock method

This part of the calculations is done by coding in FORTRAN. First, let us consider

the case of a finite system.

As discussed in §4.1.2, we need to make an initial guess for the arrangement

of holes based on our experience and the one-hole model results. This will be a

one-hole density matrix expressed in the one-hole basis. In our calculations, we

take two kinds of initial guess: the zero guess and the anti-ferromagnetic guess.

For the zero guess, all the elements in the density matrix equal to zero, so the Ĝ-

matrix representing the hole-hole interactions is also zero. This is equivalent to

taking the result from the one-hole model as the initial guess, and it is used in most

cases. The anti-ferromagnetic guess is a density matrix with an anti-ferromagnetic

configuration; in our calculations, we form this anti-ferromagnetic configuration in

the density matrix by placing holes in the mF = ±3
2 states. For example, the anti-

ferromagnetic guess for a two-acceptor cell in our honeycomb lattice calculations
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is

Pk =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



, (D.1)

(where the ordering of the states is mF = {+3
2 ,+

1
2 ,−

1
2 ,−

3
2} for each acceptor).

This guess is introduced in cases with large inter-acceptor separations where we

expect the symmetry will break in an anti-ferromagnetic way; it is used in those

cases simply to ensure the initial state achieves the right symmetry.

Next, we calculate the hole-hole integrals. These integrals can be obtained by

the same method mentioned in Appendix B as the relevant formulas are given in the

previous paper [47]. We only need to remember applying the transform matrices in

Equation B.1 to B.3 on the basis for both holes separately.

Then using Equation 4.4, one can achieve the interacting matrix Ĝ which re-

flects the hole-hole interactions within the one hole basis. The derivation of Equa-

tion 4.4 can be found in Chapter 3 of Reference [58]. There the authors considered

a two-spin system without spin-orbit coupling and achieved the following formula

for each spin:

Gα
µν =

acceptor

∑
λσ

(
Pλσ

T (µν∥σλ )−Pλσ
α (µλ∥σν)

)
, (D.2)

Gβ
µν =

acceptor

∑
λσ

(
Pλσ

T (µν∥σλ )−Pλσ
β (µλ∥σν)

)
, (D.3)

where µ,ν ,σ ,λ are labels running over all acceptors only, Gi
µν is the interacting

matrix element for spin i, Pλσ
i is the single-particle density matrix element for spin
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i, and Pλσ
T is the single-particle density matrix element for the sum of the different

spins. In our case, there are four different spins and the spin-orbit coupling also

needs to be considered. To achieve a general formula, we allow µ,ν ,σ ,λ to run

over all basis functions on all acceptors, so

acceptor

∑
λσ

Pλσ
T (µν∥σλ ) = ∑

λσ
Pλσ (µν∥σλ ) , (D.4)

where Pλσ is the density matrix defined in Equation 4.6. Considering the interac-

tions between different spins, ∑acceptor
λσ Pλσ

i (µλ∥σν) in Equation D.2 and D.3 will

be replaced by ∑λσ Pλσ (µλ∥σν). Then the general form for the interaction matrix

Ĝ becomes Equation 4.4.

After obtaining the matrix Ĝ, one can easily get the Fock matrix F̂ by using

Equation 4.3. The Fock matrix F̂ is still expressed in the non-orthogonal one-hole

basis, so the corresponding overlap matrix is the same one used in the one-hole

model. The eigenvalues and corresponding eigenvectors can be achieved by per-

forming a generalized diagonalization. In FORTRAN, this can be realized by using

‘hegvd’ subroutine in the ‘lapack95’ package. The eigenvalues and eigenvectors

then correspond to the single-hole states, so the total energy of the ground state can

be obtained by using Equation 4.8 and the total density matrix is the sum of density

matrices for each filled single-hole state.

According to self-consistent-field theory, the output total one-hole density ma-

trix and the input guess should be equivalent if the input guess correctly reflects

the configuration of the ground state. Hence, we need to set a threshold to check

whether this is true or not. If the difference between the input and output density

matrices is larger than the threshold, the output density matrix will be used as a new

input guess for the next loop; if the difference is smaller than the threshold, we say

the system has converged and the relevant generalized eigenvalues and eigenvectors

of the Fock matrix will truly reflect the properties of the system which we are cal-

culating. In our calculations, we set a threshold for the average difference of each

element in the total density matrix so that the difference will not be influenced by
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the size of the matrix. The value for the threshold is 1×10−6 for most cases; how-

ever, for some arrangements, the convergence is extremely slow as the initial guess

is far away from the real distribution of holes. In these cases we take a larger value

for the threshold (up to 5×10−5) after confirming the total density matrix will not

be dramatically changed in those cases.

For an infinite system, we can combine the steps mentioned above with Fourier

transformation according to Reference [59]. We take small discrete steps for mo-

mentum k in the calculation so that the integrals in Fourier transformation become

summations. In our calculations, we take the value of the integrand at the left-hand

side of each interval for the whole range, and include each interval in the summa-

tion only if its left-hand edge is in the first Brillouin zone. First, we make an initial

guess for the density matrix in momentum space. Then it is transformed into the

real space by

P = ∑
k

e−ikxPk. (D.5)

to calculate the Ĝ matrix, after applying a truncation to the Coulomb interactions

as described in §4.1.5. Later, we take a part of the Ĝ matrix which shares the same

surroundings as the unit cell in the infinite system and transform that part back to

momentum space by

Gk = ∑
x

eikxG. (D.6)

to get Ĝk. The Fock matrix in momentum space then can be obtained by using

Equation 4.9. The eigenvalues and corresponding eigenvectors can be achieved by

performing a generalized diagonalization, as before. The total density matrix is the

sum of density matrices for each filled single hole state in momentum space, and

the check for the convergence is also done in momentum space. For a 2D system,

we need to take two components of the momentum vector along different directions,

so ±ikx in Equation D.5 and D.6 becomes ±(ik1x1 + ik2x2).



Appendix E

Modelling details for topological

invariants

This part of calculations is done by coding in FORTRAN.

The calculation of the Zak phase is very simple. The integral in Equation 3.11

is discretized to become a summation, taking small steps in momentum k to move

through the Brillouin zone. In our calculations, we take the value of the integrand

at the left hand side of the interval, and include the interval in the summation only

if the left-hand edge of it is within the first Brillouin zone. Then we can code the

integrand according to Equation 3.11 or 4.11, using the eigenvectors obtained in the

tight-binding calculations or UHF calculations to calculate the Zak phase; this is a

pure programming problem which we will not discuss here.

For the computation of the Z2 invariant based on the time-reversal sym-

metry, we take the eigenvectors for the filled states achieved in UHF cal-

culations at four distinct time-reversal-invariant points in the Brillouin zone

({(0,0),(0,π),(π,0),(π,π)}) and check their parities separately. In our calcula-

tions, we check the parity by applying the inversion transformation on the eigenvec-

tors. If the outcome equals to the input, the eigenvector has even parity (δ = 1); if

the outcome equals to the input times −1, the eigenvector has odd parity (δ =−1).

The filled states are pairwise degenerate states for a system with time reversal sym-

metry (by Kramers’ theorem) so they share the same parity. We only consider one

of them, as the parity of the time-reversed state pair is required in Equation 1.7.
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Using Equation 1.7, the value of ν can be obtained.

To obtain the classification of the multi-hole topological phases, we check the

the degeneracy and symmetry of the ground states under different arrangements in

the full CI calculations to decide whether they are topologically non-trivial or not.

The degeneracy can be read directly from the energy eigenvalues. In our case, it is 1

in the short-long limit, and becomes 4 in the long-short limit. According to the table

offered in Reference [46], a non-degenerate state can only have (µ = 0,ϕ = 0,κ =

0) and a 4-fold degenerate state can only have µ = 0, so the further calculation is

not necessary for the short-long limit and we know µ = 0 for the long-short limit.

Then we check the symmetry of the system to decide the values of (ϕ ,κ). As the

eigenvectors in the full CI calculation are expressed in the multi-hole basis, we need

to calculate the reduced (one-hole) density matrices which will represent the state

in the one-hole basis. The relevant discussion is given in Section 4.4 of Reference

[58] and we will not repeat it here. After obtaining the reduced density matrix, we

can apply to it the transformation matrices corresponding to different symmetries

to check the symmetry of the system. As shown in §4.2.3, the system contains

full symmetries (including inversion symmetry and time-reversal symmetry) in the

long-short limit. According to the definitions of the three parameters (Equation

1.8 to 1.10) in §1.5, µ and ϕ correspond to inversion symmetry and time-reversal

symmetry separately. As the system respects both those symmetries, we only need

to check the details of the original eigenvectors. As ϕ = π only if time-reversal

changes the parity of the fermion number at either end when µ = 0 and this is not

true in our case, we deduce that ϕ = 0 for the long-short limit. Considering the

ground state has 4-fold degeneracy, the system can therefore only have (µ = 0,ϕ =

0,κ = π) according to the table offered in Reference [46].
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vain Barraud, Romain Laviéville, Michelle Y. Simmons, and Sven Rogge.

Readout and control of the spin-orbit states of two coupled acceptor atoms

in a silicon transistor. Science Advances, 4(12):eaat9199, 2018.
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