
Received: 17 July 2022 - Revised: 4 August 2022 - Accepted: 9 August 2022 - IET Cyber‐Systems and Robotics
DOI: 10.1049/csy2.12062

OR I G INAL RE SEARCH

Efficient learning of robust quadruped bounding using
pretrained neural networks

Zhicheng Wang1 | Anqiao Li1 | Yixiao Zheng1 | Anhuan Xie2 | Zhibin Li3 |
Jun Wu1,4 | Qiuguo Zhu1,4

1Institute of Cyber‐Systems and Control, Zhejiang University, Zhejiang, China
2Intelligent Robot Research Center, Zhejiang Lab, Zhejiang, China
3Department of Computer Science, University College London, London, UK
4State Key Laboratory of Industrial Control Technology, Zhejiang University, Zhejiang, China

Correspondence

Qiuguo Zhu, Institute of Cyber‐Systems and
Control, Zhejiang University, Zhejiang, 310027,
China.
Email: qgzhu@zju.edu.cn

Funding information

Key Research Project of Zhejiang Lab, Grant/Award
Number: 2021NB0AL03; Key R&D Program of
China, Grant/Award Number: 2020YFB1313300

Abstract
Bounding is one of the important gaits in quadrupedal locomotion for negotiating
obstacles. The authors proposed an effective approach that can learn robust bounding
gaits more efficiently despite its large variation in dynamic body movements. The au-
thors first pretrained the neural network (NN) based on data from a robot operated by
conventional model‐based controllers, and then further optimised the pretrained NN
via deep reinforcement learning (DRL). In particular, the authors designed a reward
function considering contact points and phases to enforce the gait symmetry and
periodicity, which improved the bounding performance. The NN‐based feedback
controller was learned in the simulation and directly deployed on the real quadruped
robot Jueying Mini successfully. A variety of environments are presented both indoors
and outdoors with the authors’ approach. The authors’ approach shows efficient
computing and good locomotion results by the Jueying Mini quadrupedal robot
bounding over uneven terrain.

KEYWORD S
legged locomotion, reinforcement learning, robot learning

1 | INTRODUCTION

Legged robots attracted more attention in recent years for
their versatile motion capabilities. The motion planning and
control of a legged robot has been well researched. Methods
based on reduce‐order models are proven to be feasible for
generating adaptive gaits for real robots using prior knowledge
and fine‐tuning. In search of higher generalising performance
and agility, learning‐based approaches, such as the deep rein-
forcement learning (DRL), have gained new trends in legged
locomotion control to solve these problems because they allow
learning multiple input and multiple output feedback control

policies that can run in real‐time, particularly dealing with very
high dimensional sensory inputs.

Constrained by the capability of computing devices and
legged robots, DRL has not been applied to motion control for
quadruped robots until recent years. Iscen et al. [1] achieved
multiple gaits, including running and bounding, with the help
of a predefined trajectory generator. The work of Ref. [2, 3]
first implemented DRL‐trained walking, trotting, and galloping
on a real Minitaur robot and verified the feasibility of the end‐
to‐end route. Subsequently, Ha et al. [4] utilised an on‐robot
DRL method with minimal human interference by construct-
ing a physical reset mechanism quite similar to that of a

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2022 The Authors. IET Cyber‐Systems and Robotics published by John Wiley & Sons Ltd on behalf of Zhejiang University Press.

IET Cyber‐Syst. Robot. 2022;1–8. wileyonlinelibrary.com/journal/csy2 - 1

 26316315, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12062 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1049/csy2.12062
https://orcid.org/0000-0002-2657-7591
https://orcid.org/0000-0002-4965-5126
mailto:qgzhu@zju.edu.cn
https://orcid.org/0000-0002-2657-7591
https://orcid.org/0000-0002-4965-5126
https://ietresearch.onlinelibrary.wiley.com/journal/26316315

computer simulation and achieved trotting and walking on
unstructured terrain. The work in Ref. [5–7] presents learning
separate skills such as trotting and fall recovery using an end‐
to‐end DRL framework.

When facing discrete terrain, Tsounis et al. [8] introduced
DeepGait, a gait planner with a metachronal gait. With the help
of a Timed Convolutional Network and privilege imitation, the
robot conquered a series of challenging terrains using trotting
[9]. To imitate real quadruped animals to the greatest extent,
Peng et al. [10–12] collected locomotion data from real dogs
and achieved trotting and spinning in robots by domain
adaptation. On the basis of learning single motion, to generate
multiple locomotion skills within one framework, the multi‐
expert learning architecture was proposed to fuse multiple
neural networks (NNs) into a synthesised one [13].

Based on DRL, researchers have to face the reward hacking
problem, an insecure situation in which agents obtain a reward
in an unexpected way. One of its reasons is that the optimi-
sation randomly falls into a local optimum other than the ex-
pected optimum [14]. The most common way to cope is to add
specialised reward and tune manually [5], which partially neu-
tralises the advantage of learning‐based methods. Introducing
predefined reference motion and imitation [12] can be another
solution, which seeks a subtle balance between agility and
constraints.

Most papers take trotting as a demonstration task. In
addition to trot and gallop, bounding is also an important form
of legged locomotion. It can be used to cross different ob-
stacles and as a transition model between trotting and galloping
[15]. However, bounding is harder to train by end‐to‐end DRL
than trotting and galloping for several reasons. In bounding
gait, the centre of mass (CoM) and pitch angle of the robot
change more violently, which usually causes termination.
Galloping and trotting outweigh bounding in stability,
respectively, under high and low speed condition. As a form of
reward hacking, bounding can be easily overrode to prevent
falling [1]. Hence, quadruped bounding is rarely learned and
shown in details in related studies but serves as a proof of
other features, such as behaviour generalising [1].

Our work studied an effective solution to train an end‐to‐
end reference‐free NN controller by DRL that can perform
symmetric bounding gait and can be successfully transferred to
a the real robot. The main contributions are as follows:

1. We propose a pre‐fitting method to initialise the weights of
a warm‐start policy trained with data collected from model‐
based policy, which prevents reward hacking and behaviour
overriding.

2. We proposed an effective reward function based on contact
phases that well regulate a periodic gait and resolve large
variance and subsequent divergence in training because of
large fluctuations in the body movements during bounding
gaits.

The organisation of this paper is as follows: In Section 2,
we introduce the overall structure of our pre‐fitting method
and DRL workflow. In Section 3, we introduced the platform

on that we deployed the algorithms. In Section 4, we validate
the feasibility of policy trained with our method on a physical
robot and compare the results with those of conventional
controllers. Finally, in Section 5, the conclusion, along with
inspiration for future work, is stated.

2 | METHOD

2.1 | Main workflow of DRL

The main workflow is shown in Figure 1. The scratch NN is
trained on a dataset gathered from a low‐cost model‐based
policy with supervised learning. Then, we initialise the policy in
the main DRL loop with the parameters of pre‐fitted NN. The
conventional policy and pre‐fitting algorithms are introduced
in Section 2.3.

In the main training loop in simulation, the state vector is
retrieved from the simulation environment. It is a 34‐
dimensional vector comprising 1‐dimensional body height, 3‐
dimensional body orientation, 3‐dimensional body linear ve-
locity expressed in body frame, 3‐dimensional body angular
velocity expressed in body frame, 12‐dimensional joint position
and 12‐dimensional joint velocity. The clock signal is excluded,
so the controller is not time‐based.

The state vector is then sent to the deep neural network
(DNN) as a frame of input, and the DNN instantly generates a
corresponding frame of action, consisting of a 12‐dimensional
output vector, which represents the expected joint positions. A
stable proportional‐derivative (PD) controller was used to
convert the expected joint position into a 12‐dimensional ex-
pected joint torque vector. In addition to the basic PD torque,
calculated with the joint position and velocity, an array of
feedforward torques was added to the torque vectors to sta-
bilise the robot system and help the joints move to the ex-
pected position more accurately.

The feedforward torques are expected torques calculated
with the expected states of the joints with floating‐base inverse
dynamics compensation, where the acceleration is calculated
with the difference in velocity. The torque vector is sent to the
robot in the simulation environment as commands. The work
loop then repeats itself. When training the NNs, input and
output data vectors along with the reward values are stored in
tuples for calculating the NNs' weight offsets.

After the simulation training procedure, the NN, which can
perform well, is ready to be applied on an actual robot. The same
structure, except for the training part, is deployed on the actual
robot for offline running. Because of the difference between
simulation and real robot systems, the real robot will be bound
after the bridging technique mentioned in Section 2.5.

2.2 | Reinforcement learning

The motion state of the robot at a specific time is constrained
by the previous state; therefore, the locomotion control is a
Markov decision process, which is suitable for reinforcement

2 - WANG ET AL.

 26316315, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12062 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

learning (RL). The action performed by the robot using policy
influences the probability distribution of the state transition,
and the result of the transition leads to a corresponding reward
value, which implies how successful the state is. Hence, opti-
mising the performance of the controller is equivalent to
maximising the discounted reward function.

π∗ðθÞ ¼ argmax
θ

EτðπðθÞÞ

"
X∞

t¼0
γtrt

#

ð1Þ

where γ is the discount factor, which implies that the impor-
tance of the reward value drops as time passes. In addition, θ
refers to the parameters in the policy; in our work, θ represents
the weights in the DNN. To train the DNN controller more
efficiently, we chose Proximal Policy Optimisation algorithm
[16, 17], which is based on Actor–Critic structure [18], in our
training process.

2.3 | PF‐DRL (pre‐fit DRL)

There are two multi‐layer perceptrons (MLPs) deployed in the
Proximal Policy Optimization algorithm, named the actor and
critic. The structures of the NNs are shown in Figure 1. With
the random initialised weights, the most common hacking is in‐
place hind‐leg trembling. Instead of wasting effort tuning
reward coefficients, we deployed the pre‐fitting method, which
is efficient and often used in deep learning to solve this
problem [19], and prevents introducing reference to final
implementation on actual robots.

As for the pre‐fitting data, we turned to model‐based
control for help. We recorded data corresponding to state
space and action space, when the robot constrained under
conventional model‐based policies. The model‐based policy
used for data gathering was proposed by Raibert [20]. It adopts
a reduce‐order model and divides the locomotion task into
three sub‐tasks, which are velocity tracking, attitude control and

orientation control. Velocity target tracking is realised by
selecting foothold position according to neutral point theory
and switches between phases according to a finite state machine.

After the data were collected, we constructed the NN
model with the same structure as the actor net of the RL
model. We divided the recorded data into a training set and
validation set. The input data of the NN comprise 34 values
recorded at the same time, and the label of each input includes
the 12 target positions by the conventional controller after
0.01 s, which is the control frequency in the RL simulation. We
trained the NN with different optimisers and learning rates in
turn to minimise the mean squared error loss (Table 1). By
using this hybrid training strategy, we can take advantage of
high convergence speed of Adam and good generalisation
performance of stochastic gradient descent optimiser. Using
single optimiser with a decaying learning rate can lead to
similar results, but extra tuning will be needed.

When the trained network converged, we transferred its
weights into the actor net of the RL model as the initialisation
and started the training process directly.

2.4 | Design of reward function

For RL processes, the reward function is a vital factor in
training. The RL algorithms will automatically find the trajec-
tory that maximises the total reward value. A proper reward
function can improve the learning efficiency substantially. In
our work, the reward function comprises positive terms related
to the main purpose of the movement such as the planar ve-
locity of the whole robot, negative terms (also called cost
terms) to regulate the locomotion, and negative terms to
restrict the energy cost and improve the safety of the robot
(Table 2). Where vIx refers to the speed of the robot base on
axis x under frame I, qi and τi refer to the position and torque
of joint i, respectively, ϕ refers to the pitch angle of robot
torso, τi is the 12‐dimensional torque vector at time t, ω is the
frequency of desired gait, and δi is phase offsets of each leg. In

F I GURE 1 Control architecture and workflow of training and deployment, including two parts: pre‐fitting and deep reinforcement learning (DRL). After
training, the model is deployed on the real robot directly. PD, proportional‐derivative

WANG ET AL. - 3

 26316315, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12062 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

the case of bounding, δforelegs = 0, δh indlegs¼ π
2ω. S(t) and

G(i, t) are special functions that can be described as Equa-
tions (2) and (3).

SðtÞ ¼ sin ωtþ
1
3
sin 3ωtþ

1
5
sin 5ωt ð2Þ

Gði; tÞ ¼
�
þ1 When foot i touches ground
−1 When foot i does not touch ground

ð3Þ

Meanwhile, to train the robot to perform the desired gait,
we designed a special gait signal to instruct the robot to take
steps at a specific frequency. The gait signal is periodic and
zero‐symmetric, and it uses a signed term to convert the foot
contact state to a reward value. If the foot touches the ground
at an undesired time, the negative gait signal will lead to a
negative reward and increase the cost (see Figure 2). In our
work, we use a third‐order superposition of trigonometric
functions. This form of signal has a larger root mean square
value and is still differentiable, which can avoid the risk of
non‐convergence when using simple rectangle signals.

2.5 | Bridging the sim‐to‐real gap

There are multiple gaps between the simulation environment
and physical robots. We identify the main factors as the mea-
surement errors when the systems are modelled.

1. To overcome uncertainty in the robot model, we added
stochastic noise to both the environment and robot pa-
rameters. The terrain in the simulation was also randomised.
The noise coefficients are shown in Table 3.

2. Randomise the initial head direction every episode. The yaw
angle is sampled from a uniform distribution U(−π, π).
This is to prevent over‐fitting to the head direction and
terrain conditions.

3. To achieve high‐frequency control in real time on the robot,
we transform the weights of NN in CSV format and
compute forward network by C++.

4. We lower the joint proportional gain to achieve better sim‐
to‐real transfer, which proves that a lower proportional gain
on a real robot can make the joints behave like a torque
controller and thus lead to agile performance.

3 | PLATFORM OVERVIEW

3.1 | Robot platform

Our work is deployed on the quadrupedal robot Jueying Mini
(see Figure 3). Jueying Mini is a 12‐DOF quadruped robot that
focuses on agility. With a weight of 22 kg and joints actuated by
brushless electric motors, Jueying Mini can perform various
movements. Its technical specifications are listed in Table 4.

3.2 | Modelling

To simulate the robot, we simplified it into a joint‐link system
comprising rigid links and revolute joints. The coordinates of

TABLE 1 Training sequence

Optimiser Learning rate Training times

SGD 1�10−2 500

Adam 1�10−3 500

Adam 1�10−4 500

Abbreviation: SGD, stochastic gradient descent optimiser.

F I GURE 2 Illustration of contact states and reward. G(i, t) represents
current contact state of the robot, and S(t) indicates whether that foot should
touch the ground. The plot shows example signals of forelimbs when
bounding with a period of 0.3 s and an illustration of an ideal case of the robot
in motion in order to achieve the maximum reward in theGait Reward term

TABLE 3 Noise coefficients

Noise Standard deviation Unit

Link mass �5 %

Link inertia �10 %

Link CoM �7.5 cm

Ground friction �0.1

Ground restitution 0.15

Abbreviation: CoM, centre of mass.

TABLE 2 Reward terms

Reward Formula Coefficient value

Body velocity kð
�
�vIx
�
�2þ

�
�
�vIy
�
�
�
2
Þ k=160.0

Joint torque k ⋅ tanh(ct)∑τi k=−0.002, c=0.04

Joint velocity k ⋅ tanhðctÞ
P

_qi k=−0.0003, c=0.02

Gait k
P3

i¼0SðtþδiÞGði; tÞ k=−50.0

Position uniformity
� �
�qLF−qRF

�
�þ
�
�qLH−qRH

�
�
�

k=−0.01

Torque uniformity kðjτLF−τRF jþjτLH−τRH jÞ k=−0.001

Smoothness k‖τ(t)−τ(t−dt)‖ k=−1�10−6

Pitch limitation k(|ϕ|) when |ϕ|>0.3 k=20.0

4 - WANG ET AL.

 26316315, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12062 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

each link are located on its parent joint. The directions of all
coordinates are the same when the robot is in the initial po-
sition. A simplified model of the robot and its coordinates are
shown in Figure 3.

3.3 | Simulation environment

We adopted RaiSim [21] as the dynamic simulation environ-
ment. Because of its unique method of calculating contact
forces, RaiSim is much faster than other dynamic simulation
software. The simplified model of Jueying Mini was depl-
oyed in the RaiSim environment with the corresponding
controllers.

4 | RESULTS

4.1 | Training and testing in simulation

We applied the deep pre‐fitting methods on the actor
network under PyTorch [22], and the training loss is shown

in Figure 4. With the introduced pre‐fitting method the mean
squared error loss was reduced from 104 to 4�10−3 on
the training set after 1500 iterations, and the network
began to perform a preliminary bounding motion but with
frequent falling as a warm‐start policy. On this basis, our
next step is to continue training in a DRL fashion to refine
the policy, which can then achieve continuous and cyclic
bounding.

The pre‐fitted actor network, or so‐called policy network,
was then put into simulation and optimised by DRL
methods. We created 160 parallel RaiSim simulation envi-
ronments that share the same policy network and train it to
synchronously speed up the data collection. The reward
curves using different methods are shown in Figure 5.
Instead of bounding, the policy without pre‐fitting is stuck in
place and thus receives low and stable rewards compared to
the other methods. The pre‐fitted policy using a square gait
signal performs bounding after training, but training takes
longer and its reward is less stable while training. Combining
both pre‐fitting and smooth gait signals, the policy learns to
bound in fewer iterations.

4.2 | Real robot implementation

After the two training steps above, the robot performed the
desired gait on a flat terrain in simulation. The joint position,

F I GURE 3 Jueying Mini robot and its kinematic configuration

TABLE 4 Technical specification of Jueying Mini

Property name Value Unit

Body size 0.7�0.4�0.5 m

Leg length (thigh+shank) 0.22+0.25

Hip roll joint position −22.0–22.0 deg

Hip pitch joint position −158.0–28.0

Knee joint position 38.0–163.0

Hip roll joint velocity −15.0–15.0 rad/s

Hip pitch joint velocity −18.0–18.0

Knee joint velocity −20.0–20.0

Hip roll joint torque 10.0 (peak 23.0) Nm

Hip pitch joint torque 10.0 (peak 26.0)

Knee joint torque 17.0 (peak 41.5)

F I GURE 4 Training losses in the pre‐fitting stage

F I GURE 5 Rewards over episodes with and without pre‐fitting

WANG ET AL. - 5

 26316315, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12062 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

velocity, and torque are shown in Figure 6. Here, we take the
left hind leg of Jueying Mini as an example. In the chart, it is
apparent that every data plot has a frequency of 3 Hz. The step
frequency is consistent with the pre‐fitting dataset.

When the policy network was optimised and able to
perform a continuous and agile bounding gait in simulation,
it was ready to be transferred to real robots. The policy MLP
was deployed on a physical Jueying Mini robot and reached a
peak speed of 0.75 m/s on flat indoor ground, with an
average speed of 0.32 m/s, as shown in Figure 7. The gait
performed in the real world was consistent with the simulated
gait. The corresponding data are shown in Figure 8. Mean-
while, the controller showed sufficient robustness and ability
to recover balance. The robot with the trained policy network
was able to bound through unstructured terrain, such as grass
fields, and step over small obstacles about 4 cm in height
(Figures 9b and 10d). See more details in the accompanying
Video S1.

With the same policy, the physical robot can also bound on
unseen complex discrete terrain. In the experiment, we put
aluminium profiles of different shapes on the ground. The
robot could bound through successfully (Figures 9c and 10b).
In other words, when the contact point of the foot landed on
an aluminium profile and negatively influenced the pose of the
robot, the robot would adjust its pose to avoid slipping. This

F I GURE 6 Smooth joint position and torque during bounding and
grey shades are the estimated contact states

F I GURE 7 Position and forward velocity of the robot torso

F I GURE 8 Experimental data of joint positions and torques during bounding, showing the symmetry between left and right legs

F I GURE 9 Quadruped bounding in simulation and in the indoor and outdoor environments. (a) The comparison between simulation and real world
implementation; red dots highlight the contact points with the ground. (b,c) Traversal over a rough grass field and plastic floor with sparse obstacles

6 - WANG ET AL.

 26316315, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12062 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

means that the policy we trained with RL is robust and has
strong generalisation ability.

In contrast, the model‐based controller used for data
generation failed to pass terrain with a 4 cm metal profile.
When the robot tries to lift its rear legs while fore legs step
over an obstacle, the robot crashes its head onto the ground
and then loses balance. This makes sense because if the robot
makes contact with parts other than feet, the unexpected
contact force may severely violate the decision of the model‐
based controller. We attribute this failure to the pitch angle
fluctuation of model‐based policy. Figure 11 plots pitch angles
of both policies moving forward on solid flat ground. Model‐
based policy has a higher positive peak pitch value than
the trained policy, which means the robot's head would be
much lower upon reaching the peak pitch. We come to the
conclusion that trained policy improves traversability on
complex terrains and reduces risk of unexpected contacts by
performing a safer gait with fewer fluctuations.

Despite pitch angles, the trained NN performs more
smoothly when bounding in terms of body height. With
trained policy, the height of the CoM changes in the range
[0.25 m, 0.38 m] with a standard deviation of 0.02, whereas it

fluctuates in [0.19 m, 0.41 m] with a standard deviation of
0.04 using the model‐based controller used for pre‐fit data
generation. The comparison plot is shown in Figure 12.

5 | CONCLUSIONS

This paper presented a control method based on DRL for the
Jueying Mini robot, which can achieve a bounding gait both in
simulation and on the real physical robot by a direct deploy-
ment of a learned NN policy. The proposed method can train a
robust control policy that can be bound blindly on different
indoor and outdoor terrains.

With the proposed pre‐fitting method, we can transfer the
conventional controller to an NN first, as a means of warm‐
start, and then further improve the control policy via RL
training. By changing the coefficients of each reward, we were
able to adjust the gait frequency more easily than using a
conventional control method.

Future work will consider extensions of aiding PF‐DRL
with environmental perception. In this study, we did not use

F I GURE 1 0 Jueying Mini robot bounding in various testing scenarios using the same PF‐DRL trained policy. (a) Smooth transitions between regions with
different properties (friction, stiffness). (b) Restoring balance after stepping on slippery objects twice. (c) Traversing soft outdoor ground. (d) Robust traversal on
uneven grass field with shallow pits PF‐DRL, pre‐fit DRL

F I GURE 1 1 Pitch angle of the robot torso
F I GURE 1 2 Height of centre of mass (CoM) from the robot state
estimation

WANG ET AL. - 7

 26316315, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12062 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

camera or LiDAR systems, but they could provide more pre-
cise localisation of the robot and provide navigation for
bounding and traversal in different environments.

ACKNOWLEDGEMENT
First, we wish to give our thanks to Chao Li, Xueyin Zhang,
Feng Li, Xiaobo Mo, Zhen Chu and Chengxiao Li from
DeepRobotics. As the logistics staff for Jueying Mini, they kept
the hardware in good condition with their effort even after
serious damage, and thus created the possibility for experi-
ments on real robots. Second, we would like to express our
gratitude to Yue Wu and Yan Xia, who helped with debugging
and tuning learning algorithms. Their experience on software
framework and learning systems prevented us from plenty of
potential time‐consuming design breaches. This work was
supported by the National Key R&D Program of China (Grant
No. 2020YFB1313300) and Key Research Project of Zhejiang
Lab (Grant No. 2021NB0AL03).

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

ORCID
Zhicheng Wang https://orcid.org/0000-0002-2657-7591
Qiuguo Zhu https://orcid.org/0000-0002-4965-5126

REFERENCES
1. Iscen, A., et al.: Policies modulating trajectory generators. In: Proceedings

of the 2nd Conference on Robot Learning, Proceedings of machine
learning research, Vol. 87, pp. 916–926. (2018)

2. Haarnoja, T., et al.: Learning to walk via deep reinforcement learning
(2018) arXiv preprint arXiv:181211103

3. Tan, J., et al.: Sim‐to‐real: learning agile locomotion for quadruped ro-
bots. In: Proceedings of robotics: science and systems (RSS), Pittsburgh,
Pennsylvania, pp. 1–13 (2018)

4. Ha, S., et al.: Learning to walk in the real world with minimal human
effort. In: Proceedings of the 2020 conference on robot learning. Pro-
ceedings of machine learning research, Vol. 155, pp. 1110–1120. (2021)

5. Hutter, M., et al.: Anymal‐a highly mobile and dynamic quadrupedal
robot. In: 2016 IEEE/RSJ International conference on Intelligent robots
and systems (IROS), pp. 38–44. IEEE (2016)

6. Hwangbo, J., et al.: Learning agile and dynamic motor skills for legged
robots. Science Robotics 4(26), eaau5872 (2019). https://doi.org/10.
1126/scirobotics.aau5872

7. Lee, J., Hwangbo, J., Hutter, M.: Robust recovery controller for a
quadrupedal robot using deep reinforcement learning (2019). arXiv pre-
print arXiv:190107517

8. Tsounis, V., et al.: DeepGait: planning and control of quadrupedal gaits
using deep reinforcement learning. IEEE Rob. Autom. Lett. 5(2),
3699–3706 (2020). https://doi.org/10.1109/lra.2020.2979660

9. Lee, J., et al.: Learning quadrupedal locomotion over challenging terrain.
Science Robotics 5(47), eabc5986 (2020). https://doi.org/10.1126/
scirobotics.abc5986

10. Peng, X.B., Berseth, G., van de Panne, M.: Terrain‐adaptive locomotion
skills using deep reinforcement learning. ACM Trans. Graph. 35(4), 1–12
(2016). https://doi.org/10.1145/2897824.2925881

11. Peng, X.B., van de Panne, M.: Learning locomotion skills using DeepRL:
does the choice of action space matter. In: Proceedings of the ACM
SIGGRAPH/eurographics symposium on computer animation, SCA ’17,
pp. 1–13. Association for Computing Machinery, New York (2017)

12. Peng, X.B., et al.: Learning agile robotic locomotion skills by imitating
animals. In: Proceedings of robotics: science and systems (RSS), Corvalis,
Oregon, USA, pp. 1–8 (2020)

13. Yang, C., et al.: Multi‐expert learning of adaptive legged locomotion.
Science Robotics 5(49), eabb2174 (2020). https://doi.org/10.1126/
scirobotics.abb2174

14. Amodei, D., et al.: Concrete problems in AI safety (2016). arXiv preprint
arXiv:160606565

15. Haynes, G.C., Rizzi, A.: Gaits and gait transitions for legged robots. In:
2006 IEEE international conference on robotics and automation
(ICRA), pp. 1117–1122 (2006)

16. Schulman, J., et al.: Trust region policy optimization. In: Proceedings of the
32nd international conference on machine learning. Proceedings of ma-
chine learning research, Vol. 37, pp. 1889–1897 (2015)

17. Schulman, J., et al.: Proximal policy optimization algorithms (2017). arXiv
preprint arXiv:170706347

18. Konda, V., Tsitsiklis, J.: Actor‐critic algorithms. In: Advances in neural
information processing systems 12 (NIPS 1999), vol. 12, pp. 1008–1014
(1999)

19. Bengio, Y.: Learning deep architectures for AI. Found Trends Mach.
Learn. 2(1), 1–127 (2009). https://doi.org/10.1561/2200000006

20. Raibert, M., Tello, E.: Legged robots that balance. IEEE Expert 1(4), 89
(1986). https://doi.org/10.1109/mex.1986.4307016

21. Hwangbo, J., Lee, J., Hutter, M.: Per‐contact iteration method for solving
contact dynamics. IEEE Rob. Autom. Lett. 3(2), 895–902 (2018).
https://doi.org/10.1109/lra.2018.2792536

22. Paszke, A., et al.: PyTorch: an imperative style, high‐performance deep
learning library. In: Advances in neural information processing systems
32, pp. 8024–8035. Curran Associates, Inc., Red Hook (2019)

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

How to cite this article: Wang, Z., et al.: Efficient
learning of robust quadruped bounding using pretrained
neural networks. IET Cyber‐Syst. Robot. 1–8 (2022).
https://doi.org/10.1049/csy2.12062

8 - WANG ET AL.

 26316315, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/csy2.12062 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-2657-7591
https://orcid.org/0000-0002-2657-7591
https://orcid.org/0000-0002-4965-5126
https://orcid.org/0000-0002-4965-5126
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1109/lra.2020.2979660
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1145/2897824.2925881
https://doi.org/10.1126/scirobotics.abb2174
https://doi.org/10.1126/scirobotics.abb2174
https://doi.org/10.1561/2200000006
https://doi.org/10.1109/mex.1986.4307016
https://doi.org/10.1109/lra.2018.2792536
https://doi.org/10.1049/csy2.12062
https://orcid.org/0000-0002-2657-7591
https://orcid.org/0000-0002-4965-5126

	Efficient learning of robust quadruped bounding using pretrained neural networks
	1 | INTRODUCTION
	2 | METHOD
	2.1 | Main workflow of DRL
	2.2 | Reinforcement learning
	2.3 | PF‐DRL (pre‐fit DRL)
	2.4 | Design of reward function
	2.5 | Bridging the sim‐to‐real gap

	3 | PLATFORM OVERVIEW
	3.1 | Robot platform
	3.2 | Modelling
	3.3 | Simulation environment

	4 | RESULTS
	4.1 | Training and testing in simulation
	4.2 | Real robot implementation

	5 | CONCLUSIONS
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

