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Abstract
We develop a general framework for construction and analysis of discrete extension
operators with application to unfitted finite element approximation of partial differen-
tial equations. In unfitted methods so called cut elements intersected by the boundary
occur and these elements must in general by stabilized in some way. Discrete exten-
sion operators provides such a stabilization by modification of the finite element space
close to the boundary. More, precisely the finite element space is extended from the
stable interior elements over the boundary in a stable way which also guarantees
optimal approximation properties. Our framework is applicable to all standard nodal
based finite elements of various order and regularity. We develop an abstract theory
for elliptic problems and associated parabolic time dependent partial differential equa-
tions and derive a priori error estimates. We finally apply this to some examples of
partial differential equations of different order including the interface problems, the
biharmonic operator and the sixth order triharmonic operator.

Mathematics Subject Classification 65N30 · 65N85

1 Introduction

Immersed and unfitted finite element methods attract significant and increasing inter-
est motivated by excellent ability to handle complex and changing geometries with
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minimal requirements of mesh generation capacity including the ability to use tensor
product elements on complex geometries. Examples of suchmethods include the finite
cell method [16, 17, 34] and isogeometric methods with trimmed elements [13, 14,
27, 31, 32].

The elements in these methods may have complex shape and become very small
since they may be cut by the boundary or interfaces and therefore some form of stabi-
lization is in general required to ensure stability of the method and resulting systems
of algebraic equations. Building on ideas around unfitted finite element methods using
Nitsche’s method and boundary stabilization terms from the papers [3, 5, 8, 9, 22–25,
33], the framework of cut finite element methods was proposed in [6]. The main idea
was to use computational meshes and finite element spaces that were independent
of the geometry of the physical problem. Both the partial differential equation and
the geometry were then defined through the finite element variational form. In par-
ticular, Nitsche’s method was used to impose boundary and interface conditions and
certain stabilization terms, so called, ghost penalty terms ensured stability even in the
presence of unfavourable mesh interface intersections. Typically such ghost penalty
terms acted on jumps of functions over element edges or penalized the difference
between polynomial projections or extensions in the interface zone. This provides
a convenient solution for standard C0, low order elements, but in other situations it
may be less attractive. For instance, when the element order becomes high, elements
with higher regularity are used, or systems of equations with several different differ-
ential operators are considered the design and evaluation of the ghost penalty terms
becomes non-trivial and costly. For such situations we propose a different approach
in this work. While still assuming that the mesh is independent of the geometry we let
the approximation space be geometry dependent. To build in stability we use discrete
extensions from the interior of the domain to interface elements, that are at risk of
leading to unstable linear systems in the pde-discretization. We then prove that similar
stability as for the ghost penalty can be obtained with optimal approximation prop-
erties and without the introduction of any numerical parameters. Similar ideas have
been exploited in agglomeration approaches for C0 approximation spaces [1, 2, 28]
and in discontinuous Galerkin methods [7, 29]. In this work we propose a complete
framework for discrete extensions for finite element spaces that allow the treatment
of nodal based elements of all orders and all regularities, with a rigorous analysis of
stability and approximation properties.

The proposed CutFEM with discrete extension is particularly appealing for high
order elliptic problems, where suddenly elements that are accurate and easy to con-
struct, such as the Bogner–Fox–Schmit (BFS) element [11, 18] that is C1, or similar
spaceswith higher regularity, become interesting. Typically themain drawback of such
spaces that are based on tensorization is that they can not fit the physical boundary. This
problem is solved in the CutFEM framework and the use of discrete extension reduces
the need of stabilization terms. We refer to [11] for details on previous work com-
bining CutFEM and the BFS-element. See [19] for related developments for second
and fourth order problems and [26] for the thin plate equation. The discrete exten-
sion is more intrusive than the penalty approach, since the approximation space is
modified, however once implemented it gives a flexible and robust tool for CutFEM
discretization methods. For a discussion of the use of discrete extensions to allows for
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fully explicit timestepping for the wave equation discretized using CutFEM we refer
to [12].
Outline In Sect. 2 we introduce the framework for extended finite element spaces and
prove some fundamental stability and approximation results. In Sect. 3 we discuss an
abstract framework for cut finite element methods using discrete extension spaces and
Nitsche’s method. Optimal a priori error estimates are derived using the properties
of the extended space. The extension to parabolic problems is also briefly covered.
In Sect. 4 we show that some important problem classes, such as fictitious domain
problems or interface problems subject to elliptic operators of second and fourth order
fit naturally in the framework. Finally, in Sect. 5 some numerical illustrations are
presented.

2 Extended finite element spaces

In this sectionwe develop an abstract theory for construction of extension operators for
application to various types of unfitted discretizations of partial differential equations.
We consider a conforming setting where the finite element space Vh is a subspace
of Hl , typically used to discretize an elliptic operator of order 2l. The extension is
constructed as the composition of an average operator that maps a discontinuous space
Wh onto Vh and an extension in Wh from interior elements to elements intersecting
the boundary. Since Wh is discontinuous we can easily extend from one element to
another by canonical extension of polynomials.

2.1 The discrete extension operator

The Mesh and Finite Element Space

• Let Ω be a domain in R
d with boundary ∂Ω and let ˜Ω be a polygonal domain

such that Ω ⊂ ˜Ω .
• Let ˜Th be a quasiunform mesh on ˜Ω with mesh parameter h ∈ (0, h0] and define
the active mesh Th = {T ∈ ˜Th : T ∩ Ω �= ∅}. Let Ωh = ∪T∈Th T be the domain
covered by Th .

• Let ˜Vh be a finite element space on ˜Th and let Vh = ˜Vh |Th be the active finite
element space.

Definition of the Extension Operator

• Define the following partition of Th ,

Th = Th,B ∪ Th,I (1)

where Th,I is the set of elements in the interior of Ω and Th,B are the elements
that intersect the boundary,

Th,I = {T ∈ Th : T ⊂ Ω}, Th,B = Th \ Th,I (2)
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Let Ωh,I = ∪T∈Th,I T and note that

Ωh,I ⊂ Ω ⊂ Ωh (3)

• Let
Wh = Pk(Th) =

⊕

T∈Th
Pk(T ) (4)

and let Vh be a subspace of Wh ∩ Hl(Ωh).
• Define the spaces

Wh,I = Wh |Th,I , Vh,I = Vh |Th,I (5)

and let
(·)I : Wh � w 	→ (w)I = w|Th,I ∈ Wh,I (6)

denote the restriction of w ∈ Wh to Th,I .
• Define the extension operator

Eh : Vh,I � v 	→ AhFhv ∈ V E
h,I ⊂ Vh (7)

where V E
h,I = EhVh,I is the image of Vh,I under the action of Eh , Ah : Wh → Vh

is a linear average operator, and Fh : Wh,I → Wh is a linear extension operator
and we define its image as the subspace WE

h ⊂ Wh ,

WE
h = {wh ∈ Wh : wh = FhwI , wi ∈ Wh,I } (8)

We refer to Fh as an extension operator since it takes a function defined on the
interior domain Ωh,I and extends it to the larger domain Ωh , and to Ah as average
operator since it maps the space of discontinuous functions Wh into the smaller
space Vh of at least continuous functions. We specify the properties and provide
specific constructions of these operators below.

Norms For l ∈ Rwe let Hl(ω) denote the standard Sobolev space of order l with norm
‖ · ‖Hl (ω) and semi norm | · |Hl (ω). For l = 0 we use the notation H0(ω) = L2(ω) and
‖ · ‖L2(ω) = ‖ · ‖ω. For l ∈ N we define the following broken Sobolev norm on Wh ,

‖v‖2Hl (Th) =
l

∑

j=0

‖∇ jv‖2Th (9)

where ∇ jv = ⊗ j
k=0∇v is the tensor of all j :th order partial derivatives of v, and

‖v‖2Th = ∑

T∈Th ‖v‖2T . For l = 0 we let ‖v‖2
H0(Th) = ‖v‖2Th . We note that we can

replace Th by Th,I and Fh by Fh,I and get the corresponding discrete Sobolev norms
on Wh,I .

Assumptions
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CutFEM based on extended finite element spaces 335

A1 The space Wh (and its subspaces Vh and WE
h ) satisfies the inverse inequality

‖w‖Hm (Th) � h−m‖w‖Th (10)

Here and below � means less or equal up to a constant that is independent of the
mesh parameter and the intersection of the domain and the mesh.

A2 The spaces Vh and WE
h satisfies the following approximation properties. For v ∈

Hs(Ωh), with 0 ≤ s ≤ k + 1 there is v� ∈ Vh such that

‖v − v�‖Hm (Ωh) � hs−m |v|Hs (Ωh) (11)

and w� ∈ WE
h such that

‖v − w�‖Hm (Ωh) � hs−m |v|Hs (Ωh) (12)

A3 The operator Ah : Wh → Vh is linear, bounded

‖Ahv‖Th � ‖v‖Th (13)

and
Ahv = v v ∈ Vh (14)

A4 The operator Fh : Wh,I → Wh is linear, bounded

‖∇ j Fhw‖Th � ‖∇ jw‖Th,I , 0 ≤ j ≤ l (15)

and
Fh(w)I = w, w ∈ WE

h (16)

2.2 Properties of the extension operator

In this section we will show that any extension operator constructed using an exten-
sion operator Fh and and averaging operator Ah satisfying the assumptionsA1-A4, has
properties making it suitable for approximation using CutFEM. We first show a sta-
bility estimate which typically is needed to establish coercivity of Nitsche’s method
and then we show that the extended finite element space V E

h has an optimal order
approximation property.

Lemma 1 (Stability) The extension operator Eh : Vh,I → V E
h , where V E

h ⊂ Vh ⊂
Hl(Ωh), satisfies the stability estimate

‖∇ j Ehv‖Ωh � ‖∇ jv‖Ωh,I , 0 ≤ j ≤ l (17)

Proof Adding and subtracting the identity operator, using the triangle inequality, and
the inverse estimate (10) in A1, we obtain for an arbitrary w ∈ Wh ,

‖∇ j Ahw‖Th ≤ ‖∇ j (Ah − I )w‖Th + ‖∇ jw‖Th
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� h− j‖(Ah − I )w‖Th + ‖∇ jw‖Th
� h− j‖(Ah − I )(w − v′)‖Th + ‖∇ jw‖Th
� h− j‖w − v′‖Th + ‖∇ jw‖Th (18)

where we used (14) in A3, (Ah − I )v = 0 for all v ∈ Vh , to insert an arbitrary v′ ∈ Vh ,
and finally the L2 boundedness (13) in A3 of Ah . Setting w = Fh(v)I and v′ = v we
get

‖∇ j Ah Fh(v)I‖Th � h− j‖Fh(v)I − v‖Th + ‖∇ j Fh(v)I‖Th
� h− j‖Fh(v)I − w�‖Th + h− j‖w� − v‖Th + ‖∇ j Fh(v)I‖Th
� h− j‖Fh(v − w�)I‖Th + h− j‖w� − v‖Th + ‖∇ jv‖Th,I

� h− j‖w� − v‖Th + ‖∇ jv‖Th
� ‖∇ jv‖Th + ‖∇ jv‖Th (19)

Here we added and subtracted w� ∈ WE
h and used the properties of Fh from A4. First

the identity property (16) and then the boundedness (15) . Finally the approximation
property (12) in A2 is applied to w� − v where we recall that v ∈ H j (Ωh) and we use
the trivial bound ‖∇ jv‖Th,I ≤ ‖∇ jv‖Th .
Lemma 2 (Approximation Property) For each v ∈ Hs(Ωh), 0 ≤ s ≤ k + 1, there is
vE
� ∈ V E

h such that

‖v − vE
� ‖Hm (Ωh) � hs−m |v|Hk+1(Ω), 0 ≤ m ≤ l (20)

where the hidden constant is independent of v ∈ Hs(Ωh), the intersection of ∂Ω with
the elements, and the mesh size h.

Proof We shall show that vE
� = Ahw�, with w� as in (12), satisfies (20). To that end,

adding and subtracting w� ∈ Wh ∈ WE
h ⊂ Hl(Ωh), and using the triangle inequality

we show that

‖v − Ah(v�)I‖Hm (Ωh) ≤ ‖v − w�‖Hm (Th)
︸ ︷︷ ︸

I

+‖w� − Ahw�‖Hm (Th)
︸ ︷︷ ︸

I I

(21)

Term I Using the approximation property (11) for Vh we directly have

‖v − w�‖Hm (Ωh) � hs−m |v|Hs (Ωh) (22)

Term IIUsing the inverse inequality (10) to pass to the L2-norm, adding and subtracting
v� ∈ Vh , which satisfies (11), and using the triangle inequality we obtain

‖w� − Ah(w�)‖Hm (Th)
� h−m‖w� − Ah(v�)‖Th
� h−m‖v� − w� − Ah(v� − w�)I‖Th
� h−m‖v� − w�‖Th + h−m‖Ah(v� − w�)I‖Th
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� h−m‖v� − w�‖Th
� h−m‖v� − v‖Th + h−m‖v − w�‖Th
� hs−m |v|Hs (Ωh) (23)

where we used the L2 stability (13) of Ah followed by the obvious fact that
‖(w)I‖Th,I ≤ ‖w‖Th,I , then we added and subtracted v, and finally used the approxi-
mation properties (11) and (12) for Vh and WE

h .

2.3 Construction of Ah

In order to define a general average operator for nodal finite elements we recall the
following definitions.

• For each element T let Vh(T ) be the element finite element space. Let {ϕ∗
T ,x }x∈XT

be a basis for the dual space V ∗
h (T ) and let the corresponding Lagrange basis

{ϕT ,x }XT in Vh(T ) be defined by ϕ∗
x (ϕy) = δxy for x, y ∈ XT .

• Assume that the degrees of freedom are nodal degrees of the form ϕ∗
T ,x (v) =

Dαx v(ξx ), where Dαx is a partial differential operator with multi index αx and
ξx ∈ R

d is the physical node. Observe that there can be several functionals ϕ∗
T ,x ,

associated to the element/node pair (T , ξx ), corresponding to different derivatives
Dαx v(ξx ). We refer to the pair x = (αx , ξx ) as a generalized node.

• Let Th(x) be the set of elements T ∈ Th such that ξx ∈ T and define the global
basis function ϕx at node x by (ϕx )|T = ϕT ,x for all T ∈ Th(x). Let Xh be the set
of all global nodes andXh,I the set of global nodes x ∈ Xh that are associated with
an interior element in the sense that Th(x)∩Th,I �= ∅. The functions {ϕx | x ∈ Xh}
form a basis for Vh and {ϕx |Ωh,I | x ∈ Xh} form a basis for Vh,I For properly
constructed spaces we have Vh ⊂ Hl(Ωh), and the global degrees of freedom
satisfy

ϕ∗
x (v) = ϕ∗

T ,x (v), ∀T ∈ Th(x) (24)

Definition Let the nodal averaging operator Ah : Wh → Vh be defined by

Ah : Wh � w 	→
∑

x∈Xh

〈ϕ∗
x (w)〉xϕx ∈ Vh (25)

where the average of the discontinuous function w ∈ Wh at a node x ∈ Xh is defined
by

〈ϕ∗
x (w)〉x =

∑

T∈Th(x)
κT ,xϕ

∗
T ,x (wT ) (26)

with weights κT ,x satisfying

κT ,x ≥ 0,
∑

T∈Th(x)
κT ,x = 1 (27)
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Lemma 3 The average operator Ah defined by (25) satisfies assumption A3. As a
consequence

‖∇ j Ahv‖Th � h− j inf
v′∈Vh

‖v − v′‖Th + ‖∇ jv‖Th , 0 ≤ j ≤ m (28)

Proof First we note that Ah is linear, since the average 〈·〉x is linear and ϕ∗
x,T are

linear functionals, and that Ah is the identity on Vh by construction. Next we note
that the bound (28) was shown in Lemma 1 [inequalities (18)] under the boundedness
assumption (13). To verify the boundedness (13) we note that we have an equivalence
of the form

‖v‖2T ∼
∑

x∈Xh,T

hd−|αx ||ϕ∗
x (v)|2 (29)

where |αx | is the order of the differential operator Dαx . This equivalence follows
by mapping to the reference element, application of equivalence of norms in finite
dimension and then mapping back to the physical element. We then have

‖Ahv‖2Th =
∑

T∈Th
‖Ahv‖2T (30)

and for each element contributionweuse the equivalence (29) followedby theCauchy–
Schwarz inequality

‖Ahv‖2T �
∑

x∈Xh,T

hd−|αx |
∣

∣

∣

∑

T∈Th(x)
κT ,xϕ

∗
T ,x (vT )

∣

∣

∣

2

�
∑

x∈Xh,T

hd−|αx |
(

∑

T∈Th(x)
κ2
T ,x

)(
∑

T∈Th(x)
|ϕ∗

T ,x (vT )|2
)

�
∑

x∈Xh,T

hd−|αx |
(

∑

T∈Th(x)
|ϕ∗

T ,x (vT )|2
)

�
∑

x∈Xh,T

∑

T∈Th(x)

(

hd−|αx ||ϕ∗
T ,x (vT )|2

)

�
∑

x∈Xh,T

∑

T∈Th(x)

∑

x∈Xh,T

(

hd−|αx ||ϕ∗
T ,x (vT )|2

)

�
∑

x∈Xh,T

∑

T∈Th(x)
‖v‖2T

� ‖v‖2Th(T ) (31)

where we used shape regularity to conclude that there is a uniform bound on the
number of elements sharing a node x .
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2.4 Construction of Fh

Definition Let Sh : Th,B → Th,I be a mapping that to each T ∈ Th,B associates an
element T ∈ Th,I and assume that there is a constant such that for all h ∈ (0, h0] and
T ∈ Th,B ,

diam(T ∪ Sh(T )) � h (32)

where the hidden constant depends only on the shape regularity of the mesh and the
geometry of the interface. In fact we will show that for a Lipshitz domain there is such
a mapping for h0 small enough, see Lemma 4 below. We extend Sh from Th,B to Th
by letting Sh(T ) = T for T ∈ Th,I .

For v ∈ Pk(T ) we let ve ∈ Pk(R
d) denote the canonical extension such that

ve|T = v. We define the discrete extension operator Fh : Wh,I → Wh by

(Fhv)|T = (v|Sh(T ))
e|T (33)

Macro Element Partition Defining for each T ∈ Th the extended element T E , as the
union of all elements T ′ that are mapped to T by Sh ,

T E = ∪T ′∈S−1
h (T )

T ′ (34)

and the resulting partition of Ωh ,

T E
h = {T E | T ∈ Th} (35)

into macro elements T E of diameter diam(T E ) � h. We also note that with this
notation

WE
h = Fh(Wh,I ) =

⊕

T E∈T E
h

Pk(T
E ) (36)

i.e. the extension ofWh,I is precisely the space of discontinuous piecewise polynomials
on the macro element partition T E

h .
For the next lemma we recall, see Theorem 1.2.2.2 in [21], that the Lipschitz

property of the boundary is equivalent to the following uniform cone property of
the domain. Let Coneθ,δ(x) denote the open cone with vertex x , opening angle θ ∈
(0, π/2), and height δ > 0. The open domain Ω ⊂ R

d satisfies the uniform cone
property if for each x ∈ ∂Ω there is an open cone

Coneθ0,δ0(x) ⊂ Ω (37)

with cone parameters θ0 and δ0 that are independent of x .

Lemma 4 Assume that Ω ⊂ R
d is an open domain that satisfies the uniform cone

property. Then for h0 small enough there is a mapping Sh : Th → Th,I that satisfies
(32).
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Proof Take an element T ∈ Th,B and let x ∈ T ∩ ∂Ω . By the uniform cone property
there is a cone Coneθ0,δ0(x) ⊂ Ω with opening angle θ0 ∈ (0, π/2) and height δ0 > 0.
For δ ∈ (0, δ0) there is an open ball Br ⊂ Coneθ0,δ(x) ⊂ Coneθ0,δ0(x) with radius
r ∼ δ since the opening angle θ0 ∈ (0, π/2) is fixed. Now taking cδ = h for a
sufficiently small constant it follows from quasi uniformity that there is an element
˜T ⊂ Br . This follows since if we consider the elements Th(Br ) that intersect the ball
Br , then by shape regularity each such element is contained in a ball Br ′ with r ′ ∼ h
and then the union of the balls B ′

r contains Br . For r ′ < r/2 one of the balls Br ′
must be contained in Br . Thus for all h ∈ (0, h0] with h0 small enough, dependent on
the quasiuniformity constants and the cone parameters θ0 and δ0, there is an element
˜T ⊂ Ω in a ball centred at x with radius proportional to h, which concludes the proof.

Lemma 5 (Fh and WE
h satisfy assumptions A4 and A2). The operator Fh defined by

(33) satisfies (15) and W E
h satisfies the approximation property (12).

Proof First note that in view of (32), T E
h = {S−1

h (T ) : T ∈ Th,I } is a partition of Ωh

into generalized elements all with diameter equivalent to h, more precisely, for each
element T E ∈ T E

h there is a ball BT E ,δ with diameter δ ∼ h such that T E ⊂ BT E ,δ .
Then to verify that the stability (15) holds, we fix T E ∈ T E

h such that for T ∈ Th,I

T E = S−1
h (T ). Note that due to shape regularity there is a ball Br (x)with radius r ∼ h

and center x such that Br (x) ⊂ T . Using the canonical extension ve ∈ Pk(R
d) such

that ve|T = v we have the inverse estimate ‖∇ jve‖BT E ,δ
� ‖∇ jv‖Br (x). It follows

that

‖∇ j Fhw‖2Th �
∑

T E∈T E
h

‖∇ j Fhw‖2T E �
∑

T E∈T E
h

‖∇ jw‖2BT E ,δ

�
∑

T E∈T E
h

‖∇ jw‖2BT E ,δ
�

∑

T∈Th,I

‖∇ jw‖2Br (x)

≤
∑

T∈Th,I

‖∇ jw‖2T (38)

Here we used the fact that the balls BT E ,δ have finite overlap, thanks to the shape
regularity assumption.

To verify (12) we recall that T E ⊂ BT E ,δ and directly employ the Bramble-Hilbert
lemma, see [4, Lemma 4.3.8], to conclude that there is wT E ∈ Pk(BT E ,δ) such that

‖v − wT E ‖Hm (T E ) ≤ ‖v − wT E ‖Hm (BT E ,δ
) � δs−m‖v‖Hs (BT E ,δ

) (39)

Finally, summing over all the extended elements in T E
h and using the fact that δ ∼ h

and the finite overlap of the BT E ,δ , the approximation property (12) for WE
h follows.

Remark 1 In practice, we can define the set of elements that have a large intersection
with the domain as follows,

Th,large = {T ∈ Th : |T ∩ Ω| ≥ chd} (40)
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CutFEM based on extended finite element spaces 341

for some positive constant c. Then for small enough c we have Th,I ⊂ Th,large and we
can define the mapping Sh : Th \Th,large → Th,large. This approach has the advantage
that fewer elements are mapped resulting in a simpler map Fh .

2.5 Interpolation

Here we will show that under the assumption A2, (11) and using the operator Ah and
the space WE

h constructed in the previous section we may construct an interpolation
operator πE : L2(Ω) 	→ V E

h with optimal approximation properties. The basic idea
is to extend the function outside of the domain, interpolate the function in Vh , restrict
to the interior elements and then extend using the discrete extension operator.

• There is a universal extension operator E : Hs(Ω) → Hs(Rd) such that

‖Ev‖Hs (Rd ) � ‖v‖Hs (Ω) (41)

see [36].
• Let πh : H1(Ωh) → Vh be an interpolation operator of average type, see [15] or
[35], that satisfies the standard element wise estimate

‖v − πhv‖Hm (T ) � hs−m‖v‖H2(Th(T )), 0 ≤ m ≤ s ≤ k + 1 (42)

with Th(T ) ⊂ Th the neighboring elements of T . Composing πh with the continu-
ous extension operator E we obtain an interpolation operator πh ◦ E : H1(Ω) →
Vh and using the stability (41) of the continuous extension operator we have

‖Ev − πh Ev‖Th � hs−m‖v‖H2(Ωh)

� h2−m‖v‖H2(Ω), 0 ≤ m ≤ s ≤ k + 1 (43)

For simplicity we use the notation Ev = v and πhv = πh Ev when appropriate.
• We define the interpolation operator π E

h : H1(Ω) → V E
h by

π E
h u = Eh(πh Eu)I (44)

Lemma 6 (Interpolation Error Estimate) There is a constant such that

‖v − π E
h v‖Hm (Ωh) � hk+1−m‖v‖Hk+1(Ω), 0 ≤ m ≤ l + 1 (45)

Proof Follows directly from the following facts,πh is the identity onVh ,πh is bounded,
the approximation property in Lemma 2, and the stability (41) of the continuous
extension operator.
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2.6 Equivalence with the nodal norm

We end the analysis of the extension operator with a result on the equivalence between
the L2 norm and the nodal norm for extended functions. We shall consider the most
common choice of weights that leave the function, to be extended, unchanged on the
interior elements that together form Ωh,I . More precisely taking the weights in the
average operator such that

κT ,x = 0, T ∈ Th(x) \ Th,I (46)

Then the extension operator is the identity on Ωh , in the sense that

(Ehv)|Ωh,I = v|Ωh,I , v ∈ Vh,I (47)

This fact follows directly from the fact that we are not using any information from
elements in Th \ Th,I in the average (26) at node x ∈ χh,I , the set of global nodes
associated with an interior element, and that the functions v ∈ Vh,I by construction
satisfy

ϕ∗
T ,x (v) = ϕ∗

T ′,x (v), T , T ′ ∈ Th(x) ∩ Th,I (48)

see (24), and thus the choice of the non zeroweights on the interior elements is arbitrary
since they sum to one and are non negative, see (27).

Lemma 7 If the weights in the average operator Ah defined in (25). Then the extension
operator is the identity operator on Ωh,I , see (47), and the following equivalences
between the L2 norms on Ω and Ωh, and the nodal norm hold

‖v‖2Ωh
∼ ‖v‖2Ωh,I

∼
∑

x∈Xh

hd−|αx ||ϕ∗
x (v)|2 v ∈ V E

h (49)

Proof We proved (47) above. For v ∈ V E
h there is w ∈ Vh,I such that v = Ehw and

using the stability (17) of the extension operator Eh and the property (47) we have

‖v‖Ωh = ‖Ehw‖Ωh � ‖w‖Ωh,I = ‖(Ehw)|Ωh,I ‖Ωh,I = ‖v‖Ωh,I (50)

and since ‖v‖Ω ≤ ‖v‖Ωh , the first equivalence holds. To prove the second we use the
equivalence (29) with the nodal norm on the interior elements

‖v‖2Ωh,I
∼

∑

T∈Th,I

∑

x∈Xh,T

hd−|αx ||ϕ∗
T ,x (v)|2

=
∑

x∈Xh,I

∑

T∈Th,I (x)

hd−|αx ||ϕ∗
T ,x (v)|2 ∼

∑

x∈Xh,I

hd−|αx ||ϕ∗
x (v)|2 (51)

where at last we used the continuity (24) to pass from local to global degrees of
freedom and the fact that each node is only associated to a uniformly bounded number
of elements since the mesh is quasiuniform. Thus the proof is complete.
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Remark 2 The equivalence (49) is key to deriving optimal order estimates of the
condition number of the stiffness and mass matrices that appear in finite element
formulations based on the extended space V E

h . We refer to [20] for a general approach
to deriving estimates of the condition number.

2.7 Some examples

Continuous Piecewise Polynomials Let Th be the active mesh covering the domain Ω

consisting of simplexes or cubes and consider standardC0 Lagrange elements of order
p. For an element T ∈ Th the local finite element space is Pk(T ) on simplexes and
tensor product polynomials Qk(T ) on cubes. LetXT be the set of nodes associatedwith
the element T , and let {v(x)}x∈XT be the set of degrees of freedomwith corresponding
dual basis {ϕ∗

x }x∈XT where ϕ∗
x (v) = v(x). The Lagrange basis is defined by

ϕx (y) = δxy, x, y ∈ XT (52)

Hermite Splines Here we consider the family of tensor product spaces of C (k−1)/2

continuous Hermite splines of order k, where k is an odd number.

• Let Pk(I ) be the space of polynomials of odd order k on the reference interval
I = [0, 1]. The dimension of Pk[0, 1] is k + 1, which is even for odd k, and the
set of Hermite degrees of freedom, is

{

v(l)(ξ) : l = 0, 1, . . . , (k + 1)/2, ξ ∈ {0, 1}} (53)

where v(l) denote the derivative of order l of the function v. Here we have (k+1)/2
degrees of freedom associated with each node ξ ∈ {0, 1} and therefore we need
the generalized nodes

XI = {x = (l, ξ) : l = 0, 1, . . . , (k + 1)/2, ξ ∈ {0, 1}} (54)

The dual basis is
{ϕx }x∈XI (55)

where for x = (l, ξ) we have ϕ∗
(l,ξ)(v) = v(l)(ξ). Finally, the Lagrange basis

{ϕx }x∈XI is defined by the equations ϕ∗
x (ϕy) = δxy , x, y ∈ XI , which means that

for (l, ξ), (˜l,˜ξ) ∈ XI ,

ϕ
(˜l)
(l,ξ)(

˜ξ) =
{

1 l =˜l and ξ = ˜ξ

0 otherwise
(56)

• Let ˜Th , h ∈ (0, h0], be a family of partitions of Rd into cubes with side h. Let ˜Vh
be the space consisting of tensor products of odd order Hermite splines on ˜Th .

• Let Th = {T ∈ ˜Th : T ∩ Ω �= ∅} be the active mesh. Let Vh be the restriction of
˜Vh to Th .
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Nonconforming Elements Our framework applies to nodal nonconforming piecewise
polynomial elements, for instance, the Morley elements and the Crouzeix–Raviart
elements. It is however important to note that the error analysis of these elements rely
on the orthogonality properties of the discontinuities at the faces, which in general does
not hold for faces that are cut since then only part of the integral is present in the form.
Using a discontinuous Galerkin formulation on all faces that intersect the boundary we
obtain a stable method with optimal order convergence. Let us consider the Crouzeix–
Raviart elements for simplicity. The nodes XT associated with the simplex T is the
midpoints of the faces and the degrees of freedom are the function values in the
midpoints. Then the average of the jump in the finite element functions are zero for all
faces residing in the interior ofΩ , while for faces that cuts the boundary this is not the
case. Therefore on all faces intersecting the boundary we add the standard symmetric
interior penalty terms leading to a method with optimal order convergence.

3 Abstract framework for CutFEM using extended FE spaces and
Nitsche’s method

In this section we apply our framework to an abstract Nitsche method which can be
used to analyse several relevant situations including boundary and interface problems
of different order.

Consider approximating an abstract boundary value problem: find u ∈ Vbc ⊂ V
such that

aΩ(u, v) = l(v) ∀v ∈ Vbc,0 (57)

where the boundary conditions are strongly enforced inVbc andVbc,0 is the correspond-
ing space with homogeneous boundary conditions. We assume that aΩ is continuous
and coercive, and that l is continuous. Then it follows from the Lax–Milgram lemma
that there is a unique solution to (57).

Next consider an abstract Nitsche type approximation of (57) with weak enforce-
ment of the boundary conditions : find uh ∈ V E

h such that

ah(uh, v) = lh(v) ∀v ∈ V E
h (58)

The form ah is defined by

ah(v,w) = aΩ(v,w) − a∂Ω(v,w) − a∂Ω(w, v) + βb(v,w) (59)

and lh is defined by
lh(v) = l(v) − a∂Ω(v, u) + βb(v, u) (60)

The rationale for the Nitsche formulation is to extend the bilinear form a to ah in such
a way that the solution to (57) also is a solution to (58). In particular we require

aΩ(u, v) − a∂Ω(u, v) = l(v) ∀v ∈ V E
h (61)
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However, since the test space in (58) no longer satisfies boundary conditions this may
require some additional regularity of u so that the form a∂Ω(v,w) is well defined
for v = u, we formally denote the space of functions with the required additional
regularity by ˜V and note that ˜V ⊂ V . Observe that we do not require the problem
(58) to be well posed in the sense that the form ah is coercive on the continuous level
but it should be well defined.

We assume that the following properties hold.

B1 There is a seminorm ||| · |||Ω on ˜V + V E
h such that the form aΩ is continuous

aΩ(v,w) � |||v|||Ω |||w|||Ω v,w ∈ ˜V + V E
h (62)

and coercive
|||v|||2Ω � aΩ(v, v) v ∈ V E

h (63)

B2 The form b induces a seminorm ‖·‖b on ˜V +V E
h , and there is a seminorm ||| · |||∂Ω

on ˜V + V E
h such that

|a∂Ω(v,w)| � |||v|||∂Ω‖w‖b v,w ∈ ˜V + V E
h (64)

B3 The seminorm ||| · |||∂Ω satisfies the inverse estimate

|||v|||∂Ω � |||v|||Ω v ∈ V E
h (65)

and as a consequence of (64) it follows that

|a∂Ω(v,w)| � |||v|||Ω‖w‖b v,w ∈ V E
h (66)

B4 The energy norm defined by

|||v|||2h = |||v|||2Ω + |||v|||2∂Ω + ‖v‖2b (67)

is a norm on ˜V + V E
h and the functional lh is continuous on V E

h

|lh(v)| � |||v|||h v ∈ V E
h (68)

B5 The method (58) is consistent in the sense that for u ∈ ˜V , solution to (57) satisfies
(58),

ah(u, v) = lh(v) ∀v ∈ ˜V + V E
h (69)

Remark 3 Note that the coercivity (63) typically holds for a larger space than V E
h , but

since the coercivity for the Nitsche method, which we establish in (71) below, only
holds on V E

h it is enough to assume coercivity of aΩ on V E
h .

Remark 4 The norms ||| · |||h , ||| · |||∂Ω , and ‖ ·‖b are in general mesh dependent norms,
andwewill specify them precisely in the forthcoming examples. In fact in assumptions
B1–B5 the index h is only used to indicate the discrete space and the discrete forms.
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Remark 5 The key property for cut finite element methods is the inverse inequality
(65) in B3, which in general does not hold without some modification of the method
or finite element space. For instance, adding some type of stabilization such as least
squares control over the jumps in derivatives across faces or, as in this paper, using
an extended finite element space. The underlying reason is that we need to apply an
inverse trace inequality that typically require control of the polynomial function on
full elements, which is in general not available on cut elements. The union of all the
active full elements is Ωh , see the definitions in Sect. 2.1, and to pass from Ωh to Ω

we employ the stability property (17) of the extended space V E
h .

3.1 Properties of the abstract method

Starting from the assumptions B1–B5 we derive the key properties of the abstract
Nitsche method.

Lemma 8 If B1–B3 hold, then the form ah is continuous

ah(v,w) � |||v|||h |||w|||h v,w ∈ ˜V + V E
h (70)

and for β large enough coercive

|||v|||2h � ah(v, v) v ∈ V E
h (71)

Proof Continuity follows directly from B1–B2,

ah(v,w) = aΩ(v,w) − a∂Ω(v,w) − a∂Ω(w, v) + βb(v,w)

≤ |||v|||h |||w|||Ω + |||v|||∂Ω‖w‖b + |||w|||∂Ω‖v‖b + β‖v‖b‖w‖b
≤ max(1, β)(|||v|||2h + |||v|||2∂Ω + ‖v‖2b)1/2(|||w|||2Ω + |||w|||2∂Ω + ‖w‖2b)1/2
� |||v|||h |||w|||h (72)

Coercivity follows using B1–B3 and in particular (66),

|||v|||2h = ah(v, v)

= |||v|||2Ω − 2a∂Ω(v, v) + β‖v‖2b
≥ |||v|||2Ω − 2C |||v|||Ω‖v‖b + β‖v‖2b
≥ |||v|||2Ω − δC2|||v|||2Ω + δ−1‖v‖b + β‖v‖2b
≥ (1 − C2δ)|||v|||2Ω + (β − δ−1)‖v‖2b (73)

Taking δ small enough, and β large enough we obtain

|||v|||2Ω + ‖v‖2b � ah(v, v) v ∈ V E
h (74)

Finally using (65) the coercivity follows.
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Theorem 1 If B1–B5 hold there exists a unique solution to (58) and the following best
approximation estimate holds

|||u − uh |||h � |||u − v|||h ∀v ∈ V E
h (75)

Proof Since ah is coercive and continuous on V E
h and according to B4 the functional

lh is continuous on V E
h it follows from the Lax–Milgram lemma that there is a unique

solution uh ∈ V E
h to (58).

To prove the error estimate (75) we add and subtract v ∈ V E
h , and using the triangle

inequality we then have

|||u − uh |||h ≤ |||u − v|||h + |||v − uh |||h (76)

for the second term we use the fact that v − uh ∈ V E
h and apply the coercivity, then

we add and subtract the exact solution u, employ the consistency, and finally use the
continuity to conclude that

|||v − uh |||2h � ah(v − uh, v − uh)

= ah(v − u, v − uh) + ah(u − uh, v − uh)

= ah(v − u, v − uh) + ah(u, v − uh) − lh(v − uh)
︸ ︷︷ ︸

=0

= ah(v − u, v − uh)

� |||v − u|||h |||h |||v − uh |||h (77)

Thus we have

|||v − uh |||h � |||v − u|||h (78)

which combined with (76) completes the proof of (75).

Assuming that we have a family of finite element spaces, with mesh parameter
h ∈ (0, h0], which satisfies the approximation property

inf
w∈V E

h

|||v − w|||h � hk−l‖u‖Hk (Ω) (79)

where k is the approximation order of the finite element space, we obtain the following
error estimate for an elliptic operator of order 2l,

|||u − uh |||h � hk−l‖u‖Hk (Ω) (80)

Error estimates in weaker norms can be obtained if an additional regularity assump-
tion holds. We assume that the following elliptic shift estimate is satisfied by the
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solution u ∈ Vbc,0 to (57),

|u|H2l−s (Ω) � ‖ f ‖H−s (Ω), 0 ≤ s ≤ l (81)

where 2l is the order of the operator.

Theorem 2 Assuming that assumptions B1–B5, the approximation property (79) with
k = 2l, and the elliptic shift estimate (81) hold. Then

‖u − uh‖Hs (Ω) � hl−s |||u − v|||h ∀v ∈ Vh,E , 0 ≤ s ≤ l (82)

Proof We will argue by duality and therefore let φ ∈ Vbc,0 solve the dual problem

aΩ(v, φ) = lψ(v) ∀v ∈ Vbc,0 (83)

where lψ ∈ V ∗
bc,0 takes the form

lψ(v) = 〈ψ, v〉s (84)

where 〈·, ·〉s : H−s(Ω) × Hs(Ω) → R is the duality pairing.
By symmetry of ah and consistency (69) in assumption B5 it follows that φ satisfies

the adjoint consistency

ah(v, φ) = lψ(v) ∀v ∈ ˜V + V E
h (85)

Setting v = u − uh in (85) we get

〈u − uh, ψ〉s = ah(u − uh, φ)

= ah(u − uh, φ − w)

� |||u − uh |||h |||φ − φh |||h
� |||u − uh |||hhl−s |φ|H2l−s (Ω)

� hl−s |||u − uh |||h‖ψ‖H−s (Ω) (86)

where we used the consistency (69) to subtract w ∈ V E
h , the continuity (70) of ah , the

approximation property (79), and the elliptic regularity (81). We therefore arrive at

‖u − uh‖Hs (Ω) = sup
ψ∈H−s (Ω)

〈u − uh, ψ〉s
‖ψ‖H−s (Ω)

� hl−s |||u − uh |||h (87)

which completes the proof.
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3.2 Time dependent problems

The power of the abstract framework established above is that once stability and
optimal accuracy has been established for the Ritz-projection associated to the (time
constant coefficient) ellipticmodel problem (57)we can immediately extend the results
to cut finite element methods for the associated time dependent problems. To illustrate
this we will consider the abstract parabolic problem subject to the elliptic operator
a of (57). An identical argument can be developed for the second order hyperbolic
problem, for details on this we refer to [12]. In this reference it is also shown that the
discrete extensionmakes it possible to lump themassmatrix for explicit time-stepping.
For simplicity we consider only semi-discretization in space, however the arguments
extend in a straightforward way to the fully discrete case using any state of the art
time discretization for parabolic problems [37].

First we introduce the Ritz projection, Rh : ˜V 	→ V E
h , where we recall that ˜V is V

with some more smoothness to guarantee that ah is defined on ˜V , defined by

ah(Rhv,w) = ah(v,w) ∀w ∈ V E
h (88)

Differentiating (88) in time we see that ∂ i Rhv = Rh∂tv, since Rh is independent of
time. Assuming that assumptions B1–B5 hold, it follows from Theorems 1 and 2 that
for i ∈ {0, 1},

‖∂ it (v − Rhv)‖Ω + hl |||∂ it (v − Rhvh)|||h � hl |||∂ it (v − w)|||h ∀w ∈ V E
h (89)

Let I = (0, T ) be a time interval and Q := Ω × I the space time domain and
consider the problem, find u ∈ V bc

Q := L2(0, T ; Vbc) H1(0, T ; V ∗
bc,0), such that

u(·, 0) = u0 ∈ ˜Vbc and

(∂t u, v)Q + aQ(u, v) = lQ(v) ∀v ∈ V 0
Q (90)

where V 0
Q := L2(0, T ; Vbc,0),

(u, v)Q =
∫ T

0
(u, v)Ω, aQ(u, v) =

∫ T

0
aQ(u, v)Ω (91)

and

lQ =
∫ T

0
l(v) (92)

with l a given linear functional that may depend on time. For all lQ ∈ V ′
Q the problem

(90) admits a unique solution [30, Theorem 4.1 and Remark 4.3].
We propose the following CutFEM discretization of the problem (90). Find uh :

[0, T ] → V E
h such that for all t ∈ (0, T ) there holds

(∂t uh, v)Ω + ah(uh, v) = lh(v) ∀v ∈ V E
h (93)
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The Eq. (93) can now be discretized in time, for instance by replacing ∂t with any
suitable finite difference method such as backward differentiation or Crank–Nicolson
and evaluate uh at a suitable point in time in ah . For the backward Euler method the
linear system associated to one time step takes the well-known form: find un+1

h ∈ V E
h

such that

τ−1(un+1
h , v

)

Ω
+ ah

(

un+1
h , v

) = ln+1
h (v) + τ−1(unh, v

)

Ω
∀v ∈ V E

h (94)

We see that this linear system is stable independently of the the mesh/interface inter-
section thanks to the stability of the extended space, see Lemma 1.

Remark 6 Note that contrary to ghost penalty based CutFEM approaches the scheme
(93) is uniformly stable without any additional stabilization of the mass matrices.

The following error estimate holds for the semi-discretized problem (93).

Theorem 3 Let uh be the solution of (93) and u the solution of (90) then there holds

sup
t∈(0,T )

‖u(t) − uh(t)‖Ω � ‖u(0) − uh(0)‖Ω +
∫ T

0
hl inf

vh∈V E
h

|||∂tv − vh |||h (95)

and

∫ T

0
|||u − uh |||2h � ‖u(0) − uh(0)‖2Ω +

∫ T

0
inf

vh∈V E
h

|||v − vh |||2h

+
(

∫ T

0
hl inf

vh∈V E
h

|||∂tv − vh |||h
)2

(96)

Proof The proof uses standard arguments for the parabolic problem together with the
CutFEM toolbox for elliptic problems developed above. First we decompose the error
as

u − uh = u − Rhu
︸ ︷︷ ︸

eR

+ Rhu − uh
︸ ︷︷ ︸

eh

(97)

Since the estimate for eR is immediate using (89) we only need to prove the bounds
for the discrete error eh . Using the formulation (93) and the coercivity of the form ah ,
for β sufficiently large, (71), there exists a constant α > 0 such that for s ∈ (0, T )

‖eh(s)‖2Ω + α

∫ s

0
|||eh |||2h ≤ ‖eh(0)‖2Ω +

∫ s

0
(∂t eh, eh)Ω +

∫ s

0
ah(eh, eh) (98)

For the right hand side we see that using (90) the following Galerkin orthogonality
holds

∫ s

0
(∂t (u − uh), eh)Ω +

∫ s

0
ah(u − uh, eh) = 0 (99)
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and by the definition of the Ritz projection ah(Rhu − u, eh) = 0, this implies

‖eh(s)‖2Ω +
∫ s

0
ah(eh, eh) = ‖eh(0)‖2Ω −

∫ s

0
(∂t eR, eh)Ω (100)

Taking the sup over s ∈ (0, T ) we then obtain

sup
s∈(0,T )

‖eh(s)‖2Ω ≤ ‖eh(0)‖2Ω + sup
s∈(0,T )

‖eh(s)‖Ω

∫ T

0
‖∂t eR‖Ω (101)

and therefore

sup
s∈(0,T )

‖eh(s)‖2Ω � ‖eh(0)‖2Ω +
(

∫ T

0
‖∂t eR‖Ω

)2
(102)

Applying (89) with i = 1 we see that

sup
s∈(0,T )

‖eh(s)‖Ω ≤ C
∫ T

0
hl inf

w∈V E
h

|||∂t (v − w)|||h (103)

To show the triple norm bound (96) we use the coercivity of ah and (100) to get

∫ T

0
|||eh |||2h ≤

∫ T

0
ah(eh, eh)

≤ ‖eh(0)‖2Ω + sup
s∈(0,T )

‖eh(s)‖2Ω +
(∫ T

0
‖∂t eR‖Ω

)2

(104)

Here the right hand side can be directly estimated using (102) and (89).

4 Applications

To show the flexibility of the above framework for extended finite element space
we will now consider applications to different partial differential equations including
second order boundary and interface problems, and a fourth order problem. For each
problem we provide the concrete norms and verify the assumptions. In principle the
arguments of the abstract framework can be applied to elliptic operators of any order
2l, l = 1, 2, 3.... However, for the sake of conciseness we only discuss the cases up
to l = 3. See Sect. 5.4 for the case l = 3.

4.1 Second order boundary value problems

The Model Problem Consider the second order boundary value problem

− Δu = f in Ω, u = g on ∂Ω (105)
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For smooth boundary there is a unique solution to this problem andwe have the elliptic
regularity

‖u‖Hs+2(Ω) � ‖ f ‖Hs (Ω) + ‖g‖Hs+3/2(∂Ω) (106)

The Finite Element Method The standard Nitsche method takes the form

ah(uh, v) = lh(v) (107)

where

ah(v,w) = (∇v,∇w)Ω − (∇nv,w)∂Ω − (∇nw, v)∂Ω + βh−1(v,w)∂Ω

lh(v) = ( f , v)Ω − (g,∇nv)∂Ω + βh−1(g, v)∂Ω (108)

Setting

aΩ(v,w) = (∇v,∇w)Ω

a∂Ω(v,w) = (∇nv,w)∂Ω

b(v,w) = h−1(v,w)∂Ω (109)

and

|||v|||2Ω = ‖∇v‖2Ω
|||v|||2∂Ω = h‖∇nv‖2∂Ω

‖v‖2b = h−1‖v‖2∂Ω (110)

we translate the problem (107) into the abstract framework and it remains to verify
assumptions B1-B5. Here B1 and B2 follows directly from the Cauchy–Schwarz
inequality. In B3 the key estimate (65) takes the form

h‖∇nv‖2∂Ω � ‖∇v‖2Ω v ∈ V E
h (111)

Using the inverse inequality, see [28],

h‖w‖2T∩∂Ω � ‖w‖2T w ∈ Pk(T ) (112)

applied to w = ∇v we get

h‖∇nv‖2∂Ω � h‖∇v‖2∂Ω � ‖∇v‖2Th(∂Ω) � ‖∇v‖2Ωh
� ‖∇v‖2Ω (113)

Here we finally used the stability (17) of the discrete extension operator. To verify B4
we use the Cauchy–Schwarz inequality,
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lh(v) = ( f , v)Ω − (g,∇nv)∂Ω + βh−1(g, v)∂Ω

≤ ‖ f ‖Ω‖v‖Ω + h−1/2‖g‖∂Ωh1/2‖∇nv‖∂Ω

+ βh−1/2‖g‖∂Ωh−1/2‖v‖∂Ω

≤ max(1, β)(‖ f ‖2Ω + h−1‖g‖2∂Ω)1/2

× (‖v‖2Ω + h‖∇nv‖2∂Ω + h−1‖v‖2∂Ω)1/2

� (‖ f ‖2Ω + h−1‖g‖2∂Ω)1/2|||v|||h
�h−1/2 |||v|||h (114)

which for fixed h proves the desired continuity. Note that we only use the continuity
of lh to conclude that there is a unique solution to the discrete problem by applica-
tion of the Lax–Milgram lemma, and therefore we apply the stability for fixed mesh
parameters. Finally, the consistency B5 follows directly from an application of Green’s
formula.

Error Estimate To turn the abstract error estimate (75) into a quantitative bound we
use the interpolation theory for V E

h to show that

|||u − uh |||h � |||u − πhu|||h � hk−1‖u‖Hk (Ω) (115)

which for instance holds C0 Lagrange elements of order k.

4.2 Second order interface problems

The Model Problem Let Ω ⊂ R
d be a polygonal domain. Let Ω1 ⊂ Ω \ Uδ(∂Ω),

where Uδ(∂Ω) = {x ∈ R
d | dist(x, ∂Ω) < δ}, be a subset with smooth boundary

∂Ω1, which also forms the interface Γ , and let Ω2 = Ω \ Ω1. Consider the interface
problem

−∇ · Ai∇ui = fi in Ωi

[ui ] = 0 on Γ

[n · Ai∇ui ] = 0 on Γ

u = 0 on ∂Ω (116)

where Ai are constant positive definite matrices. Testing with v ∈ H1
0 (Ω) and inte-

grating by parts and using the interface condition we obtain the weak form
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2
∑

i=1

( fi , v)Ωi =
2

∑

i=1

−(∇ · Ai∇ui , v)Ωi

=
2

∑

i=1

(Ai∇ui ,∇v)Ωi − ([n · Ai∇ui ], v)Γ

=
2

∑

i=1

(Ai∇ui ,∇v)Ωi (117)

and we note that the form on the right hand side is coercive and continuous on H1
0 (Ω)

and we can conclude using Lax–Milgram that there is an exact solution in H1
0 (Ω).

The Finite ElementMethodLet V E
hi
be finite element spaces onΩi that extends overΓ .

For simplicity we assume that the homogeneous boundary conditions on the external
boundary ∂Ω are strongly enforced in V E

h,2 using a matching mesh at ∂Ω . The finite

element method takes the form: find uh = (uh,1, uh,2) ∈ V E
h,1 ⊕V E

h,2 = V E
h , such that

ah(uh, v) = lh(v) v ∈ V E
h (118)

where the forms are

ah(v,w) =
2

∑

i=1

(Ai∇v,∇w)Ωi − (ni · Ai∇vi , wi − 〈w〉)∂Ωi

− (ni · Ai∇wi , vi − 〈v〉)∂Ωi

+ βh−1‖ni‖Ai (vi − 〈v〉, w − 〈wi 〉)∂Ωi

lh(v) =
2

∑

i=1

( fi , vi )Ω (119)

with ‖ni‖2Ai
= ni · Ai · ni and 〈·〉 is an convex combination average at the interface Γ

defined by

〈·〉 : V E
h � (v1, v2) 	→

2
∑

i=1

κivi ∈
2

∑

i=1

(V E
h,i )|Γ (120)

with κi > 0 and κ1 + κ2 = 1.

The Abstract SettingThemethod is transferred into the abstract framework byworking
in the finite element space V E

h = V E
h,1 ⊕ V E

h,2 and defining the forms
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aΩ(v,w) =
2

∑

i=1

(Ai∇v,∇w)Ωi (121)

a∂Ω(v,w) =
2

∑

i=1

(ni · Ai∇vi , wi − 〈w〉)∂Ωi (122)

b(v,w) =
2

∑

i=1

βi h
−1‖ni‖Ai (vi − 〈v〉, w − 〈wi 〉)∂Ωi (123)

and norms

|||v|||2Ω =
2

∑

i=1

(Ai∇vi ,∇vi )Ωi (124)

|||v|||2∂Ω =
2

∑

i=1

h‖ni‖−1
Ai

‖ni · Ai∇vi‖2∂Ωi
(125)

‖v‖2b =
2

∑

i=1

βi h
−1‖ni‖Ai ‖vi − 〈v〉‖2∂Ωi

(126)

Next we verify the assumptions.

Remark 7 Our formulation of the finite element method is equivalent to standard
Nitsche formulations for the interface problem but it has a simpler structure only
involving the average of the solution at the interface avoiding introduction of the aver-
age of the flux and jump which are quantities with signs depending on the order of
the subdomains. This also connects in a natural way to hybridised methods simply by
replacing the average 〈v〉 by a trace variable. Note that we get two subdomain Nitsche
formulations where the Dirichlet data is precisely the average 〈uh〉 which leads to a
simple decoupled structure. To verify that the method is indeed equivalent to a stan-
dard Nitsche formulation we observe that v1−〈v〉 = (1−κ1)v1−κ2v2 = κ2(v1−v2)

and similarly v2 − 〈v〉 = κ1(v2 − v1), which gives the identity

2
∑

i=1

(ni · Ai∇vi , wi − 〈w〉)∂Ωi

= κ∗
1 (n1 · A1∇v1, w1 − w2)∂Ωi + κ∗

2 (n2 · A2∇v2, w2 − w1)∂Ωi

= κ∗
1 (n1 · A1∇v1, w1 − w2)∂Ωi + κ∗

2 (n1 · A2∇v2, w1 − w2)∂Ωi

= 〈n · A∇v〉∗, [w])Γ (127)
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where κ∗
i = 1 − κi are the dual weights and we defined the average of the flux

〈n · A∇v〉∗ = κ∗
1n1 · A1∇v1 + κ∗

2n1 · A2∇v2 (128)

and the jump

[v] = v1 − v2 (129)

In a similar way we have

b(v,w) =
2

∑

i=1

βi h
−1‖ni‖Ai (vi − 〈v〉, w − 〈wi 〉)∂Ωi

=
(

2
∑

i=1

βi h
−1‖ni‖Ai (κ

∗
i )2

)

([v], [w])∂Ωi (130)

Thus our formulation is indeed equivalent to a standard Nitsche formulation.

Verification of Assumptions B1 follows directly from the fact that matrices A1 and
A2 are constant and positive definite. For B2 we note that using the Cauchy–Schwarz
inequality we directly obtain the estimate

a∂Ω(v,w) =
2

∑

i=1

(ni · Ai∇vi , wi − 〈w〉)∂Ωi

≤
2

∑

i=1

h1/2‖ni‖−1/2
Ai

‖ni · Ai∇vi‖∂Ωi h
−1/2‖ni‖1/2Ai

‖wi − 〈w〉‖∂Ωi

≤
(

2
∑

i=1

h‖ni‖−1
Ai

‖ni · Ai∇vi‖2∂Ωi

)1/2

×
(

2
∑

i=1

h−1‖ni‖Ai ‖wi − 〈w〉‖2∂Ωi

)1/2

≤ |||v|||∂Ω‖w‖b (131)

ForB3weproceedwith standard estimates, use the fact that‖ni‖Ai = ‖ni‖2Ai
, followed

by an inverse inequality to pass from the boundary to the set of elements intersecting
the boundary

|||v|||2∂Ω =
2

∑

i=1

h‖ni‖−1
Ai

‖ni · Ai∇vi‖2∂Ωi

≤
2

∑

i=1

h‖ni‖−1
Ai

‖ni‖2Ai ,∂Ωi
‖∇vi‖2Ai ,∂Ωi
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≤
2

∑

i=1

h‖∇vi‖2Ai ,∂Ωi
≤

2
∑

i=1

‖∇vi‖2Ai ,ThΩh,i

≤
2

∑

i=1

‖∇vi‖2Ai ,Ωh,i
≤

2
∑

i=1

‖∇vi‖2Ai ,Ωi
(132)

where we finally used the stability of the extended finite element space V E
h to pass

from Ωh,i to Ωi . For B4 we need the Poincaré inequality

2
∑

i=1

‖vi‖2Ωi
� |||v|||2h (133)

To prove the Poincaré inequality we let φ ∈ H1(Ω) be the solution to (116) with
fi = vi . We then have

2
∑

i=1

‖vi‖2Ωi
=

2
∑

i=1

(vi ,−∇ · Ai∇φ)Ωi

=
2

∑

i=1

(∇vi , Ai∇φ)Ωi − (vi − 〈v〉, ni · Ai∇φ)Γ

= aΩ(v, φ) − a∂Ω(φ, v)

� |||v|||Ω |||φ|||Ω + |||φ|||∂Ω‖v‖b
� |||v|||h(|||φ|||2Ω + |||φ|||2∂Ω)1/2 (134)

We close the argument by using a trace inequality

|||φ|||∂Ω �
2

∑

i=1

‖φ‖H2(Ωi )
(135)

followed by elliptic regularity

2
∑

i=1

‖φi‖2H2(Ωi )
�

2
∑

i=1

‖vi‖2Ωi
(136)

to conclude that (133) holds. Finally, B5 follows by inserting the exact solution into
(118) and using integration by parts.
Error Estimate Finally, using the interpolation theory for V E

h combined with the
abstract error estimate (75) we get

|||u − uh |||h � |||u − πhu|||h � hk‖u‖Hk (Ω) (137)

which for instance holds for C0 Lagrange elements of order k.
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4.3 Fourth order boundary value problem

The Model Problem Let Ω ⊂ R
d be a domain with smooth boundary ∂Ω . Consider

the biharmonic problem

Δ2u = f in Ω

u = ∇nu = 0 on ∂Ω (138)

Testing with v ∈ H2(Ω) and integrating by parts we obtain the weak form

( f , v)Ω = (Δ2u, v)Ω = −(∇Δu,∇v)∂Ω + (∇nΔu, v)∂Ω

= (Δu,Δv)∂Ω − (Δu,∇nv)∂Ω + (∇nΔu, v)∂Ω (139)

With V = {v ∈ H2(Ω) : v = ∇nv = 0 on ∂Ω} we get the weak statement: find
u ∈ V such that

a(u, v) = l(v) ∀v ∈ V (140)

where
a(u, v) = (Δu,Δv)Ω, l(v) = ( f , v)Ω (141)

We also note that for v ∈ V we have

‖v‖H2(Ω) � ‖Δv‖Ω (142)

To prove (142) we first use partial integration

(Δv,Δv)Ω = −(∇v,∇Δv)Ω + (∇nv,Δv)∂Ω
︸ ︷︷ ︸

=0

= −(∇v, (∇2v) · ∇)Ω

= (∇2v,∇2v)Ω − (∇v, (∇2v) · n)∂Ω
︸ ︷︷ ︸

=0

= (∇2v,∇2v)Ω (143)

since for v ∈ V we have that the full gradient ∇v = 0 on ∂Ω . This fact follows
by observing that the boundary ∂Ω is the zero levelset of u and that the gradient is
orthogonal to the levelsets of u. Therefore the tangential part of the gradient at the
boundary is zero. Then using a duality argument, similar to the verification of (133),
we can show that we have the Poincaré inequality

‖v‖Ω � ‖Δv‖Ω (144)

and finally we have

‖∇v‖2Ω = (∇v,∇v)Ω = −(v,Δv)Ω ≤ 1

2
‖v‖2Ω + 1

2
‖Δv‖2Ω (145)

This completes the verification of (142).
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We finally conclude using Lax–Milgram that there is an exact solution u ∈ V to
(140).
The Finite Element Method

The finite element method takes the form: find uh ∈ V E
h ⊂ H2(Ω), such that

ah(uh, v) = lh(v) v ∈ V E
h (146)

where the forms are

ah(v,w) = (Δv,Δw)Ω + (Δv,∇nw)∂Ω − (∇nΔv,w)∂Ω

+ (Δw,∇nv)∂Ω − (∇nΔw, v)∂Ω

+ β(h−1((∇nv,∇nw)∂Ω + γ (v,w)∂Ω) (147)

lh(v) = ( f , v)∂Ω (148)

with β and γ positive parameters.
The Abstract Setting Let V E

h ⊂ H2(Ω) be an extended finite element space and define

aΩ(v,w) = (Δv,Δw)Ω (149)

a∂Ω(v,w) = (Δv,∇nw)∂Ω − (∇nΔv,w)∂Ω (150)

b(v,w) = h−1(∇nv,∇nw)∂Ω + γ h−3(v,w)∂Ω (151)

and norms

|||v|||2Ω = ‖Δv‖2Ω (152)

|||v|||2∂Ω = h‖Δv‖2∂Ω + h3‖∇nΔv‖2∂Ω (153)

‖v‖2b = h−1‖∇nv‖2∂Ω + γ h−3‖v‖2∂Ω (154)

Next we verify the assumptions.
Verification ofAssumptionsB1 is trivial. B2 follows directly from theCauchy–Schwarz
inequality

a∂Ω(v,w) = (Δv,∇nw)∂Ω − (∇nΔv,w)∂Ω

≤ ‖Δv‖∂Ω‖∇nw‖∂Ω + ‖∇nΔv‖∂Ω‖w‖∂Ω

≤ (h‖Δv‖2∂Ω + h3‖∇nΔv‖2∂Ω)1/2

× (h−1‖∇nw‖2∂Ω + h−3‖w‖2∂Ω)1/2

≤ |||v|||∂Ω‖w‖b (155)
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B3. Using an inverse estimate to pass from ∂Ω to Th(∂Ω), and an inverse inequality
to remove ∇n in the second term, and finally the stability (41) of the extended finite
element space we get

|||v|||2∂Ω = h‖Δv‖2∂Ω + h3‖∇nΔv‖2∂Ω

� ‖Δv‖2Th(∂Ω) + h2‖∇nΔv‖2Th(∂Ω)

� ‖Δv‖2Th(∂Ω) + ‖Δv‖2Th(∂Ω)

� ‖Δv‖2Ωh

� ‖Δv‖2Ω
= |||v|||2Ω (156)

B4. Follows fromaPoincaré inequalitywhichwemay derive using a duality argument.
B5. Follows by inserting the exact solution into the method (146) and using partial
integration twice.
Error EstimateAgain using the interpolation theory for V E

h combinedwith the abstract
error estimate (75) we get

|||u − uh |||h � |||u − πhu|||h � hk−2‖u‖Hk (Ω) (157)

which holds forC1 elements of order k such as tensor product hermite splines of order
k = 3 or the Argyris element of order k = 5 on triangles in two dimensions.

5 Numerical examples

In the numerical examples below,weuse the following implementationof the extension
operator. The mapping Sh is constructed by associating with each element T ∈ Th,B

the element in Th,I which minimizes the distance between the element centroids. For
each x ∈ Xh \ Xh,I the weights in the nodal average 〈·〉x , see (26), is taken to be 1
on precisely one element Tx ∈ Th(x) and zero on all elements in Th(x) \ Tx , where
we recall that Th(x) is the set of elements which has x as a vertex. Note that this
choice of weights corresponds to simply defining the nodal value in x ∈ Xh \ Xh,I

by ((Fhv)|Tx )|x , where Fh is defined in (33). This particular implementation has the
advantage that it introduces relatively few non zero elements in the stiffness matrix.

From a practical point of view, the implementation is done on the matrix level as
follows. If the original system, without the extension, is denoted

Su = f (158)

we introduce an extension matrix E such that

u = E ũ (159)
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where ũ contains only those nodal values that are extended. We then solve for ũ from

S̃ ũ = f̃ (160)

where
S̃ := ETSE, f̃ := ETf (161)

and use (159) to recover u. While forming S̃ could be done on a local level before
assembly, it is more straightforward (and computationally efficient) to do it on the
system level.

In the examples below, the meshsize is defined by h = 1/
√
NNO, where NNO

denotes the number of corner nodes for the geometrical elements in the active mesh.

5.1 Higher order approximation of a Poisson boundary value problem

On the disc Ω = {r : r < 0.5}, r = √

x2 + y2, we consider a problem with
manufactured solution

u = cos (πr) (162)

corresponding to the right hand side

f = (π(sin(πr) + πr cos(πr))/r (163)

With this right hand side and u = 0 on ∂Ω , we solve (105) using triangular quadratic
elements with linearly cut elements and boundary value correction [10]. The Nitsche
parameter was set to β = 102.

In Fig. 1 we show the solution on a mesh in a sequence of halving the meshsize, and
in Fig. 2 we show the observed convergence in L2(Ω) and in H1(Ω). The expected
convergence of O(h3) is attained in L2 and O(h2) in H1.

5.2 The biharmonic problem

In this example we consider higher regularity tensor product Hermite splines to con-
struct conforming approximations of the biharmonic and the triharmonic problem.
Nitsche’s method was used in the context of embedded boundaries and C1-splines
in [26], but without treating the potential stability issues on the cut boundary. Start-
ing with the biharmonic problem we use C1 tensor product Hermite splines as our
conforming finite element space. We approximate the boundary by cubic C1 splines
and the cut geometry, which is used for quadrature, is then given by isoparametrically
mapped cubic triangles; more details can be found in [11].

The domain is here given by the disc

Ω = {r : r < r0}, where r =
√

(x − 1/2)2 + (y − 1/2)2, r0 = 1/2
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Fig. 1 Elevation of the computed Poisson solution on a particular mesh
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Fig. 2 Convergence for the Poisson problem. Dotted line has inclination 2:1, dashed line has inclination
3:1

We use the manufactured solution u = 103(r20 − r2)2/64 corresponding to the right
hand side f = 103. The boundary conditions are u = 0 and ∇nu = 0 on ∂Ω and we
chose β = 100, γ = 1 in (146).

In Fig. 3 we show the solution on a mesh in a sequence of halving the meshsize, and
in Fig. 4 we show the observed convergence in L2(Ω) and in H1(Ω). The expected
convergence of O(h4) is attained in L2, O(h3) in H1, and O(h2) in H2.
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Fig. 3 Elevation of the computed biharmonic solution on a particular mesh

Fig. 4 Convergence for the
biharmonic problem. Dashed
lines have inclination 2:1, 3:1,
and 4:1 from top
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5.3 A Poisson interface problem

Here we use continuous piecewise linear elements for an interface problem of the
type (116), but with boundary data given by the exact solution. The domain inside the
interface is

Ω1 = {r : r < r0}, where r =
√

(x − 1/2)2 + (y − 1/2)2, r0 = 1/4. (164)

and the outer domain is Ω2 = (0, 1)× (0, 1) \ Ω̄1. We choose A1 = 5I and A2 = 2I ,
where I is the identity matrix. We use a fabricated solution

u =
{−(r2/2 − r20/2 + r20/5) if r > r0

−r2/5 if r < r0 (165)
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Fig. 5 Elevation of the computed interface solution on a particular mesh
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Fig. 6 Convergence for the interface problem. Dashed line has inclination 1:1 and dotted line has inclination
2:1

corresponding to a right hand side f = 4. The Nitsche parameter was set to β = 10
and the averaging weights in (120) were set following [22].

In Fig. 5 we show the solution on a mesh in a sequence of halving the meshsize, and
in Fig. 6 we show the observed convergence in L2(Ω) and in H1(Ω). The expected
convergence of O(h2) is attained in L2 and O(h) in H1.
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Fig. 7 Mesh used for the C2

approximation. The boundary of
the domain is dotted

Fig. 8 Elevation of computed solutions for the Poisson, biharmonic, and triharmonic problems
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Fig. 9 Energy convergence for the the Poisson, biharmonic, and triharmonic problems. Dashed lines have
inclination 4:1, 5:1, and 6:1 from top
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Fig. 10 Condition numbers obtained for linear and quadratic approximations of Poisson’s equation
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5.4 Higher order PDE

We can easily extend the method to the triharmonic problem

− Δmu = f in Ω (166)

Consider the case m = 3, then we get

−( f , v)Ω = (Δ3u, v)Ω

= (∇nΔ
2u, v)∂Ω − (∇Δ2u,∇v)Ω

= (∇nΔ
2u, v)∂Ω − (Δ2u,∇nv)∂Ω + (Δ2u,Δv)Ω

= (∇nΔ
2u, v)∂Ω − (Δ2u,∇nv)∂Ω

+ (∇nΔu,Δv)∂Ω − (∇Δu,∇Δv)Ω (167)

and we note that the strong conditions manufactured by the partial integration in this
case are

u = ∇nu = Δu = 0 on ∂Ω (168)

The above partial integration formula can then directly be used to construct a Nitsche
formulation that requires Vh ⊂ H3(Ω), which means that the finite element space
must be C2. The Hermite splines are only available for odd polynomial order p with
reqularity C p−2 and therefore we use p = 5, which are C3, for the triharmonic
problem.

We consider a problem with constructed solution u = cx3y3(x − 1)3(y − 1)3 with
c = 104. We then construct the corresponding right-hand side for Poisson’s problem,
the biharmonic problem, and the triharmonic problem. We solve the problem on the
domain (0, 1) × (0, 1) on a mesh covering a slightly larger domain (−0.21, 1.1) ×
(−0.31, 1.1). In all cases we set β = 103. In Fig. 7 we show a mesh with the domain
boundary indicated. In Fig. 8 we show elevations of the computed solutions on the
same mesh, and in Fig. 9 we show the energy convergence (convergence in aΩ(u, u))
for the three different problems.

5.5 Conditioning

Finally, we show the conditioning of the matrix S̃ in the case of piecewise linear and
quadratic elements for the Poisson problem defined in Sect. 5.1. In Fig. 10we show the
condition numbers on the consecutive meshes used in Sect. 5.1. The dotted and dashed
lines indicate O(h−2) as expected. The size of the condition numbers are consistent
with meshed methods.
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