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Abstract

We develop a general framework for construction and analysis of discrete extension
operators with application to unfitted finite element approximation of partial differen-
tial equations. In unfitted methods so called cut elements intersected by the boundary
occur and these elements must in general by stabilized in some way. Discrete exten-
sion operators provides such a stabilization by modification of the finite element space
close to the boundary. More, precisely the finite element space is extended from the
stable interior elements over the boundary in a stable way which also guarantees
optimal approximation properties. Our framework is applicable to all standard nodal
based finite elements of various order and regularity. We develop an abstract theory
for elliptic problems and associated parabolic time dependent partial differential equa-
tions and derive a priori error estimates. We finally apply this to some examples of
partial differential equations of different order including the interface problems, the
biharmonic operator and the sixth order triharmonic operator.

Mathematics Subject Classification 65N30 - 65N85

1 Introduction

Immersed and unfitted finite element methods attract significant and increasing inter-
est motivated by excellent ability to handle complex and changing geometries with
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minimal requirements of mesh generation capacity including the ability to use tensor
product elements on complex geometries. Examples of such methods include the finite
cell method [16, 17, 34] and isogeometric methods with trimmed elements [13, 14,
27,31, 32].

The elements in these methods may have complex shape and become very small
since they may be cut by the boundary or interfaces and therefore some form of stabi-
lization is in general required to ensure stability of the method and resulting systems
of algebraic equations. Building on ideas around unfitted finite element methods using
Nitsche’s method and boundary stabilization terms from the papers [3, 5, 8, 9, 22-25,
33], the framework of cut finite element methods was proposed in [6]. The main idea
was to use computational meshes and finite element spaces that were independent
of the geometry of the physical problem. Both the partial differential equation and
the geometry were then defined through the finite element variational form. In par-
ticular, Nitsche’s method was used to impose boundary and interface conditions and
certain stabilization terms, so called, ghost penalty terms ensured stability even in the
presence of unfavourable mesh interface intersections. Typically such ghost penalty
terms acted on jumps of functions over element edges or penalized the difference
between polynomial projections or extensions in the interface zone. This provides
a convenient solution for standard C, low order elements, but in other situations it
may be less attractive. For instance, when the element order becomes high, elements
with higher regularity are used, or systems of equations with several different differ-
ential operators are considered the design and evaluation of the ghost penalty terms
becomes non-trivial and costly. For such situations we propose a different approach
in this work. While still assuming that the mesh is independent of the geometry we let
the approximation space be geometry dependent. To build in stability we use discrete
extensions from the interior of the domain to interface elements, that are at risk of
leading to unstable linear systems in the pde-discretization. We then prove that similar
stability as for the ghost penalty can be obtained with optimal approximation prop-
erties and without the introduction of any numerical parameters. Similar ideas have
been exploited in agglomeration approaches for C° approximation spaces [1, 2, 28]
and in discontinuous Galerkin methods [7, 29]. In this work we propose a complete
framework for discrete extensions for finite element spaces that allow the treatment
of nodal based elements of all orders and all regularities, with a rigorous analysis of
stability and approximation properties.

The proposed CutFEM with discrete extension is particularly appealing for high
order elliptic problems, where suddenly elements that are accurate and easy to con-
struct, such as the Bogner—Fox—Schmit (BFS) element [11, 18] that is C ! or similar
spaces with higher regularity, become interesting. Typically the main drawback of such
spaces that are based on tensorization is that they can not fit the physical boundary. This
problem is solved in the CutFEM framework and the use of discrete extension reduces
the need of stabilization terms. We refer to [11] for details on previous work com-
bining CutFEM and the BFS-element. See [19] for related developments for second
and fourth order problems and [26] for the thin plate equation. The discrete exten-
sion is more intrusive than the penalty approach, since the approximation space is
modified, however once implemented it gives a flexible and robust tool for CutFEM
discretization methods. For a discussion of the use of discrete extensions to allows for
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fully explicit timestepping for the wave equation discretized using CutFEM we refer
to [12].

Outline In Sect. 2 we introduce the framework for extended finite element spaces and
prove some fundamental stability and approximation results. In Sect. 3 we discuss an
abstract framework for cut finite element methods using discrete extension spaces and
Nitsche’s method. Optimal a priori error estimates are derived using the properties
of the extended space. The extension to parabolic problems is also briefly covered.
In Sect. 4 we show that some important problem classes, such as fictitious domain
problems or interface problems subject to elliptic operators of second and fourth order
fit naturally in the framework. Finally, in Sect. 5 some numerical illustrations are
presented.

2 Extended finite element spaces

In this section we develop an abstract theory for construction of extension operators for
application to various types of unfitted discretizations of partial differential equations.
We consider a conforming setting where the finite element space V), is a subspace
of H', typically used to discretize an elliptic operator of order 2/. The extension is
constructed as the composition of an average operator that maps a discontinuous space
W}, onto Vj, and an extension in W), from interior elements to elements intersecting
the boundary. Since W}, is discontinuous we can easily extend from one element to
another by canonical extension of polynomials.

2.1 The discrete extension operator

The Mesh and Finite Element Space

e Let £2 be a domain in R with boundary 952 and let 2 be a polygonal domain
such that £2 C Q.

e Let 7 be a quasiunform mesh on 2 with mesh parameter i € (0, ho] and define
the active mesh 7, = {T € 7j, : T N 2 # ¥}. Let £2j, = Ure7, T be the domain
covered by 7. B _

o Let \7;, be a finite element space on 7j, and let V;, = Vil7, be the active finite
element space.

Definition of the Extension Operator

e Define the following partition of 7},
Th =Tng Y Tn e))

where 7}, ; is the set of elements in the interior of £2 and 7j, p are the elements
that intersect the boundary,

Thi={TeTh:TCQ) Tig=Ti\Twi )
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Let £2p.1 = Ureg, , T and note that

2,1 C 2 C 82 3)
o Let
Wi = Pi(Ty) = €D Pu(T) )
TeTy

and let V), be a subspace of W, N H (2.
e Define the spaces
Wit =Wilzg, .  Vir = Vilz, 5

and let
Or:Wrswe (w)y =wlg,, € Wi (6)

denote the restriction of w € Wy, to 7, ;.
e Define the extension operator

Ep:Vigidvi> AyFpoe VE, C v, (7)

where VhE, = E, V) 1 is the image of Vj, 1 under the action of Ep, A, : W), — V),
is a linear average operator, and Fj, : Wy ; — Wj is a linear extension operator
and we define its image as the subspace Wf C Wy,

WE = {w, € W wy, = Fpwy, w; € Wy p) (8)

We refer to Fj, as an extension operator since it takes a function defined on the
interior domain £2, 7 and extends it to the larger domain £2, and to Ay, as average
operator since it maps the space of discontinuous functions W}, into the smaller
space V), of at least continuous functions. We specify the properties and provide
specific constructions of these operators below.

Norms Forl € R we let H' () denote the standard Sobolev space of order / with norm
Il - Il o7 (o) @nd semi norm | - | (). For I = 0 we use the notation H%w) = L*(w) and

I 1l22(w) = Il - llo- Forl € N we define the following broken Sobolev norm on Wp,,
l .
i3z, = Y IV/0l%, ©)
j=0

where V/y = ®£:0Vv is the tensor of all j:th order partial derivatives of v, and

||v||2Th =Y rez, V7. For I = 0 we let ||v||§10(m = ||v||%1. We note that we can
replace 7, by 7.1 and Fj, by F, ; and get the corresponding discrete Sobolev norms

on Wy ;.

Assumptions
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Al The space W), (and its subspaces V}, and WhE ) satisfies the inverse inequality

lwllgmz) S " llwllg, (10)

Here and below < means less or equal up to a constant that is independent of the
mesh parameter and the intersection of the domain and the mesh.

A2 The spaces V), and Wf satisfies the following approximation properties. For v €
H5(82y), with 0 < s < k + 1 there is v, € V}, such that

v = vellamc2,) S h " vlEs @ (11)
and w, € Wf such that

lv — wallam e, S B " vlEs 2, (12)

A3 The operator Ay, : W), — V}, is linear, bounded

IAnvllz, < vl (13)

and
Apv=v veYV (14)

A4 The operator Fy, : Wy, ;1 — Wy is linear, bounded
IV Fywlg, S IV wlg,,,  0<j<I (15)

and
Fyw) =w, weWf (16)

2.2 Properties of the extension operator

In this section we will show that any extension operator constructed using an exten-
sion operator Fj, and and averaging operator A, satisfying the assumptions A1-A4, has
properties making it suitable for approximation using CutFEM. We first show a sta-
bility estimate which typically is needed to establish coercivity of Nitsche’s method
and then we show that the extended finite element space VhE has an optimal order
approximation property.

Lemma 1 (Stability) The extension operator Ej, : Vj, | — VhE, where VhE CVy C
H!(2), satisfies the stability estimate

IV/Epvllg, SIVIvlg,,, 0<j<I (17)

Proof Adding and subtracting the identity operator, using the triangle inequality, and
the inverse estimate (10) in A1, we obtain for an arbitrary w € Wy,

IV/ Apwllz, < IV/(Ap — Dwllg, + IV wllg,
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336 E. Burman et al.

Sh AL = Dwlg, + IV wlg,

Sh AR = D(w = V)7, + IV wllg,

Shw =g, + IViwlg, (18)
where we used (14) in A3, (A, — I)v = O for all v € V},, to insert an arbitrary v’ € V},

and finally the L? boundedness (13) in A3 of Aj,. Setting w = Fj(v); and v/ = v we
get

IV/ AnFr )il S B IIFa@)r = vllg, + IV Fn) 7,
ShF ) — willg, +h 7w, — vz, + IV Fr)rllg;
ShNE @ — worllg, +h 7w, — vllg, + IV 0ll7,,
Shwe —vllg, + IVIvlg,
S IVl + IV7vllg, (19)

Here we added and subtracted w, € WhE and used the properties of Fj, from A4. First
the identity property (16) and then the boundedness (15) . Finally the approximation
property (12) in A2 is applied to w, — v where we recall that v € H/ (£2,) and we use
the trivial bound ||V/vl| 7, , < [V/v| 7.

Lemma 2 (Approximation Property) For each v € H*(§2;), 0 < s < k + 1, there is
vE e VhE such that

v — vElam2y S B " lgri@), 0<m<l (20)

where the hidden constant is independent of v € H®(§2y,), the intersection of 052 with
the elements, and the mesh size h.

Proof We shall show that vf = Ajw,, with w, as in (12), satisfies (20). To that end,
adding and subtracting w, € W), € Wf C H'(£2},), and using the triangle inequality
we show that

lv—An@)illam, < v — wellgm ) + llwe — Apwsll gm (1) 21

1 11

Term I Using the approximation property (11) for Vj, we directly have
v —wallam(@y S B " [vls 2 (22)
Term II Using the inverse inequality (10) to pass to the L?-norm, adding and subtracting

v, € Vj,, which satisfies (11), and using the triangle inequality we obtain

lwe — An(w)llgm Ty
ShMwe — Ap(uallT,
Sh™ v, — we — Ap(ve — w1l
< v, — w*”ﬂ +hMAp(ve — w*)l”'ﬁ,
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5 him”U* - w*”Th
Sh"ve —vllg, + 7" v — w7,
S AT s 2y (23)

where we used the L2 stability (13) of Aj, followed by the obvious fact that
Ilw)rllz,, < llwllg,,, then we added and subtracted v, and finally used the approxi-

mation properties (11) and (12) for V}, and W}F .

2.3 Construction of A,

In order to define a general average operator for nodal finite elements we recall the
following definitions.

e Foreach element T let V},(T') be the element finite element space. Let {(p; IxeXr
be a basis for the dual space V;(T) and let the corresponding Lagrange basis
{or x}a, in V;,(T) be defined by ¢} (¢,) = 8y, forx, y € A7.

e Assume that the degrees of freedom are nodal degrees of the form <pT L) =
D% (&), where D% is a partial differential operator with multi index o, and
£, € R? is the physical node. Observe that there can be several functionals ‘/’T‘ e
associated to the element/node pair (7', &), corresponding to different derivatives
D% v(&,). We refer to the pair x = («y, &;) as a generalized node.

e Let 7;,(x) be the set of elements T € 7j, such that £, € T and define the global
basis function ¢y at node x by (¢x)|7 = @7 x forall T € 7 (x). Let X}, be the set
of all global nodes and A},  the set of global nodes x € A}, that are associated with
an interior element in the sense that 7, (x) N7y, 1 # ¥. The functions {gy | x € &j}
form a basis for V, and {¢«|g,, |x € &)} form a basis for Vj, ; For properly
constructed spaces we have Vj, ¢ H'(£2), and the global degrees of freedom
satisfy

oy (v) =97 (v), VT € T (x) (24)

Definition Let the nodal averaging operator Aj, : W, — Vj, be defined by

A Wiswi Y (@rw))px € Vi (25)

xed,

where the average of the discontinuous function w € W), at anode x € &), is defined
by

@)y = Y k7@ (wr) (26)
TeTy(x)

with weights «r , satisfying

kre =0, Y kra=1 27)
TeT)(x)
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Lemma 3 The average operator Ay defined by (25) satisfies assumption A3. As a
consequence

IV Aol SHT inf o =l + IV7vllg, 0<j<m (28)
VeV

Proof First we note that Ay, is linear, since the average (-), is linear and (p;"’T are
linear functionals, and that Aj is the identity on Vj by construction. Next we note
that the bound (28) was shown in Lemma 1 [inequalities (18)] under the boundedness
assumption (13). To verify the boundedness (13) we note that we have an equivalence
of the form

iz ~ > rlellgr))? (29)

xeXy T

where |a,| is the order of the differential operator D% . This equivalence follows
by mapping to the reference element, application of equivalence of norms in finite
dimension and then mapping back to the physical element. We then have

lApvlIZ = Y IlAwvlI7 (30)
TeT),

and for each element contribution we use the equivalence (29) followed by the Cauchy—
Schwarz inequality

2
lanl} s > A S kg )|

xeXp T TeT),(x)
S O Y k) (X eraenP)
xeXy r TeT,(x) TeT,(x)
D DIl (I D7 NI

xXeXy T TeT,(x)

S Y Y (R e nP)

xeXy,r TeTy(x)

Y X X (M heren?)

xeXyr TeTy(x) xeXy, T

S v

x€Xp. 1 TeTy(x)

S vl o 31

where we used shape regularity to conclude that there is a uniform bound on the
number of elements sharing a node x.
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2.4 Construction of Fy,

Definition Let Sy, : Ty p — 7,1 be a mapping that to each T € 7j, p associates an
element 7' € 7j, ; and assume that there is a constant such that for all 2 € (0, ho] and
T € Ty, 3,

diam(T U S,(T)) < h (32)

where the hidden constant depends only on the shape regularity of the mesh and the
geometry of the interface. In fact we will show that for a Lipshitz domain there is such
a mapping for iy small enough, see Lemma 4 below. We extend Sj, from 7, p to 7,
by letting Sy(T) =T for T € Tp ;.

For v € Py(T) we let v° € Pr(RY) denote the canonical extension such that
v¢|7 = v. We define the discrete extension operator Fy, : Wy, ; — W}, by

(Fpv)lr = ls,m)°Ir (33)

Macro Element Partition Defining for each T € 7), the extended element TE, as the
union of all elements 7’ that are mapped to T by Sy,
TE = U

T'eSs, (1) T’ (34)

and the resulting partition of £2;,
T ={T"|T € T)) (35)

into macro elements TF of diameter diam(7 %) < h. We also note that with this
notation
Wi =FWi)= @ Pu(Th) (36)
TE e'Z;lE

i.e. the extension of W}, ; is precisely the space of discontinuous piecewise polynomials
on the macro element partition ’Z}lE .

For the next lemma we recall, see Theorem 1.2.2.2 in [21], that the Lipschitz
property of the boundary is equivalent to the following uniform cone property of
the domain. Let Conep s(x) denote the open cone with vertex x, opening angle 6 €
(0, 7/2), and height § > 0. The open domain £2 C R satisfies the uniform cone
property if for each x € 952 there is an open cone

Coneg, 5,(x) C 2 (37)

with cone parameters 6y and §¢ that are independent of x.

Lemma 4 Assume that 2 C R? is an open domain that satisfies the uniform cone
property. Then for hy small enough there is a mapping Sy : T, — Ty 1 that satisfies
(32).
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340 E. Burman et al.

Proof Take an element T € 7;, p and let x € T N 352. By the uniform cone property
there is a cone Coney, 5, (x) C £2 with opening angle 8y € (0, 7 /2) and height 8¢9 > 0.
For § € (0, 8¢) there is an open ball B, C Coneg, s(x) C Coneg, s,(x) with radius
r ~ § since the opening angle 6y € (0, 7/2) is fixed. Now taking ¢6 = h for a
sufficiently small constant it follows from quasi uniformity that there is an element
TcC B,. This follows since if we consider the elements 73, (B, ) that intersect the ball
B,, then by shape regularity each such element is contained in a ball B,» with r’ ~ h
and then the union of the balls B, contains B,. For r’ < r/2 one of the balls B,
must be contained in B,-. Thus for all & € (0, hg] with #g small enough, dependent on
the quasiuniformity constants and the cone parameters 6y and &g, there is an element
T C £ inaball centred at x with radius proportional to &, which concludes the proof.

Lemma5 (Fj and WhE satisfy assumptions A4 and A2). The operator Fy, defined by
(33) satisfies (15) and Wf satisfies the approximation property (12).

Proof First note that in view of (32), Q;IE = {S;1 (T) : T € Ty 1} is a partition of £2;,
into generalized elements all with diameter equivalent to 4, more precisely, for each
element 7% € T,F there is a ball Byx s with diameter § ~ h such that T¥ C Brk ;.
Then to verify that the stability (15) holds, we fix TZ e ’Z;IE such that for T € 7j, ;
TE = S, (T). Note that due to shape regularity there is a ball B, (x) withradiusr ~ h
and center x such that B,(x) C T. Using the canonical extension v¢ € Py (R?) such

that v¢|7 = v we have the inverse estimate ||V/ VB, S V70|l B, x)- It follows
that ’

j 2 j 2 j 2
IV Ewlz, < Y IVRwIze s Yo IVwlG,

TEeTE TEeTE
< Jwl2 < Twl?
S D IVwlh, S X0 IVwiG g
TEeTE TeTh,
j 2
< > IViwliz (38)
TeTh,

Here we used the fact that the balls By £ 5 have finite overlap, thanks to the shape
regularity assumption.

To verify (12) we recall that T£ ¢ By 5 and directly employ the Bramble-Hilbert
lemma, see [4, Lemma 4.3.8], to conclude that there is wyEe € Pr(BrE 5) such that

v —wrellgmrey < v —wrellameg ) S 5S_m||v|IHx(3TE,8) (39)

Finally, summing over all the extended elements in ’Z;IE and using the fact that § ~ h
and the finite overlap of the By 4, the approximation property (12) for Wf follows.

Remark 1 In practice, we can define the set of elements that have a large intersection
with the domain as follows,

Thtarge = (T € T+ [T N 2| > ch?} (40)
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for some positive constant c¢. Then for small enough ¢ we have 7;, 1 C 7}, jarge and we
can define the mapping S;, : 74 \ s 1arge = 7Th,iarge- This approach has the advantage
that fewer elements are mapped resulting in a simpler map Fj,.

2.5 Interpolation

Here we will show that under the assumption A2, (11) and using the operator A, and
the space Wf constructed in the previous section we may construct an interpolation
operator g : L?(2) VhE with optimal approximation properties. The basic idea
is to extend the function outside of the domain, interpolate the function in V},, restrict
to the interior elements and then extend using the discrete extension operator.

e There is a universal extension operator E : H($2) — H* (R9) such that
||EU||HS(Rd) S vllas@) (41)

see [36].
o Letmy, : HY(§2,) — V), bean interpolation operator of average type, see [15] or
[35], that satisfies the standard element wise estimate

||U—7ThU||H’"(T)f,hs_m”UHHZ(ﬂ(T)), O<m=<s=<k+1 (42)

with 7;,(T) C 7, the neighboring elements of 7. Composing 7, with the continu-
ous extension operator E we obtain an interpolation operator 7, o E : H'(£2) —
V), and using the stability (41) of the continuous extension operator we have

Ev—mpEvlg, S hs_m”U”HZ(Qh)
SH ™ulgrg), O<m<s<k+1  (@3)

For simplicity we use the notation Ev = v and 7, v = m;, Ev when appropriate.
e We define the interpolation operator 7 : H!(£2) — V£ by

wEu = Ep(myEu); (44)

Lemma 6 (Interpolation Error Estimate) There is a constant such that

v = wfvlami,) ST vl @), 0<m<I+1 (45)

Proof Follows directly from the following facts, 7y, is the identity on V},, 7y, is bounded,
the approximation property in Lemma 2, and the stability (41) of the continuous
extension operator.
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2.6 Equivalence with the nodal norm

We end the analysis of the extension operator with a result on the equivalence between
the L norm and the nodal norm for extended functions. We shall consider the most
common choice of weights that leave the function, to be extended, unchanged on the
interior elements that together form £2;, ;. More precisely taking the weights in the
average operator such that

krx =0, T €Tp(x)\Tn1 (46)
Then the extension operator is the identity on £2;, in the sense that
(Env)le,, =vl2,,» vE Vs 47)

This fact follows directly from the fact that we are not using any information from
elements in 75, \ 75,7 in the average (26) at node x € xy 7, the set of global nodes
associated with an interior element, and that the functions v € Vj, ; by construction
satisfy

G W) =k (), T.T' € T(x)NT, (48)

see (24), and thus the choice of the non zero weights on the interior elements is arbitrary
since they sum to one and are non negative, see (27).

Lemma 7 Ifthe weights in the average operator Aj, defined in (25). Then the extension
operator is the identity operator on $2y. 1, see (47), and the following equivalences
between the L? norms on 2 and 25, and the nodal norm hold

Wlig, ~ Ivlg,, ~ Y k™ lpiw?  veVf (49)

XEX;,

Proof We proved (47) above. For v € VhE there is w € Vj ; such that v = Epw and
using the stability (17) of the extension operator Ej, and the property (47) we have

Ivlle, = lErwlle, S lwle,, = IEvw)l2, 2., = vl (50)

and since |[v]lo < ||v|lg,, the first equivalence holds. To prove the second we use the
equivalence (29) with the nodal norm on the interior elements

g, ~ Y. > h g @)

TE'Z;,,I xXeXy T

= Z Z hd_‘ax‘|§0;i’x(v)|2w Z hd—|(xx||(p)>ck(v)|2 (51)

xeXpy, 1 T€Ty,1(x) xeXy
where at last we used the continuity (24) to pass from local to global degrees of

freedom and the fact that each node is only associated to a uniformly bounded number
of elements since the mesh is quasiuniform. Thus the proof is complete.
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CutFEM based on extended finite element spaces 343

Remark2 The equivalence (49) is key to deriving optimal order estimates of the
condition number of the stiffness and mass matrices that appear in finite element
formulations based on the extended space VhE. We refer to [20] for a general approach
to deriving estimates of the condition number.

2.7 Some examples

Continuous Piecewise Polynomials Let Ty, be the active mesh covering the domain £2
consisting of simplexes or cubes and consider standard C” Lagrange elements of order
p. For an element T € 7}, the local finite element space is Px(7) on simplexes and
tensor product polynomials O (7") on cubes. Let A7 be the set of nodes associated with
the element 7', and let {v(x)}cx, be the set of degrees of freedom with corresponding
dual basis {¢}}ex;, Where ¢} (v) = v(x). The Lagrange basis is defined by

e(y) =6xy, x,y€dr (52)

Hermite Splines Here we consider the family of tensor product spaces of C*=1/2
continuous Hermite splines of order k, where k is an odd number.

e Let Py(I) be the space of polynomials of odd order k on the reference interval
I = [0, 1]. The dimension of P[0, 1] is kK + 1, which is even for odd k, and the
set of Hermite degrees of freedom, is

(v0@) :1=0,1,....(+1/2, & € {0, 1}} (53)

where v!) denote the derivative of order [ of the function v. Here we have (k+1)/2
degrees of freedom associated with each node & € {0, 1} and therefore we need
the generalized nodes

Xr={x=0%& :1=0,1,....(k+1)/2,& € {0, 1}} (54)

The dual basis is
{oxtrex; (55)

where for x = (I, &) we have <p?‘l E)(v) = v(l)(é). Finally, the Lagrange basis
{@x}rex, is defined by the equations ¢} (¢y) = 8xy, X, y € A7, which means that
for (1, &), (1, &) € &7,

O ~ |1 1=Tandg =%
= 56
Yae ©) 0 otherwise (56)

o Let ’]N}l, h € (0, ho], be a family of partitions of R into cubes with side A. Lgt Vh
be the space consisting of tensor products of odd order Hermite splines on 7.

o Let T ={T € 7, : T N 2 # 0} be the active mesh. Let V}, be the restriction of
Vi, to 7p,.
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Nonconforming Elements Our framework applies to nodal nonconforming piecewise
polynomial elements, for instance, the Morley elements and the Crouzeix—Raviart
elements. It is however important to note that the error analysis of these elements rely
on the orthogonality properties of the discontinuities at the faces, which in general does
not hold for faces that are cut since then only part of the integral is present in the form.
Using a discontinuous Galerkin formulation on all faces that intersect the boundary we
obtain a stable method with optimal order convergence. Let us consider the Crouzeix—
Raviart elements for simplicity. The nodes X7 associated with the simplex T is the
midpoints of the faces and the degrees of freedom are the function values in the
midpoints. Then the average of the jump in the finite element functions are zero for all
faces residing in the interior of £2, while for faces that cuts the boundary this is not the
case. Therefore on all faces intersecting the boundary we add the standard symmetric
interior penalty terms leading to a method with optimal order convergence.

3 Abstract framework for CutFEM using extended FE spaces and
Nitsche’s method

In this section we apply our framework to an abstract Nitsche method which can be
used to analyse several relevant situations including boundary and interface problems
of different order.

Consider approximating an abstract boundary value problem: find u € V. C V
such that

ao(u,v) =1(v) Yv € Vpeo 57

where the boundary conditions are strongly enforced in V. and V) o is the correspond-
ing space with homogeneous boundary conditions. We assume that ag, is continuous
and coercive, and that / is continuous. Then it follows from the Lax—Milgram lemma
that there is a unique solution to (57).

Next consider an abstract Nitsche type approximation of (57) with weak enforce-
ment of the boundary conditions : find uj, € VhE such that

ap(up,v) =) YveVE (58)
The form ay, is defined by
ap(v, w) = ag, w) — a3, w) —ae(w, v) + bV, w) (59)
and /;, is defined by
In(v) =1(v) —aze (v, u) + Bb(v, u) (60)

The rationale for the Nitsche formulation is to extend the bilinear form a to ay, in such
a way that the solution to (57) also is a solution to (58). In particular we require

ag(u,v) —age(,v) =1(v) VYveVE (61)
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However, since the test space in (58) no longer satisfies boundary conditions this may
require some additional regularity of u so that the form ayp (v, w) is well defined
for v = u, we formally denote the space of functions with the required additional
regularity by V and note that V C V. Observe that we do not require the problem
(58) to be well posed in the sense that the form a;, is coercive on the continuous level
but it should be well defined.

We assume that the following properties hold.

B1 There is a seminorm ||| - |||2 on V+ VhE such that the form ag, is continuous
T E
ag,w) S Ivlligllwlle  v,weV+V, (62)

and coercive

2 E
il Sag,v) vevV, (63)
B2 The form b induces a seminorm || - || on V+ VhE, and there is a seminorm ||| - ||| 32
onV + VhE such that
lase (0, w)l < Nlvlllagllwly, v, we V4V (64)
B3 The seminorm ||| - |||55 satisfies the inverse estimate
E
lvlllae S llivllle veV, (65)

and as a consequence of (64) it follows that
lage @, w)| S llvllgllwly v, w eV (66)
B4 The energy norm defined by
vl = olliE + NvlllFe + vl (67)
is a norm on V + VhE and the functional [j is continuous on VhE
)| Sl veVE (68)
B5 The method (58) is consistent in the sense that for u € V, solution to (57) satisfies
(58), ~
ap(u,v) =) YveV+VE (69)
Remark 3 Note that the coercivity (63) typically holds for a larger space than VhE , but

since the coercivity for the Nitsche method, which we establish in (71) below, only
holds on VhE it is enough to assume coercivity of ap on VhE .

Remark 4 The norms ||| - |||5, ||| - |las2, and || - ||, are in general mesh dependent norms,
and we will specify them precisely in the forthcoming examples. In fact in assumptions
B1-B5 the index 4 is only used to indicate the discrete space and the discrete forms.
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Remark 5 The key property for cut finite element methods is the inverse inequality
(65) in B3, which in general does not hold without some modification of the method
or finite element space. For instance, adding some type of stabilization such as least
squares control over the jumps in derivatives across faces or, as in this paper, using
an extended finite element space. The underlying reason is that we need to apply an
inverse trace inequality that typically require control of the polynomial function on
full elements, which is in general not available on cut elements. The union of all the
active full elements is £2j, see the definitions in Sect. 2.1, and to pass from £2), to £2
we employ the stability property (17) of the extended space VhE .

3.1 Properties of the abstract method

Starting from the assumptions B1-B5 we derive the key properties of the abstract
Nitsche method.

Lemma 8 If BI-B3 hold, then the form ay, is continuous
an(.w) S lllallwlly v.we V4 VE (70)
and for B large enough coercive
ol S anw.v)  veV) (71)
Proof Continuity follows directly from B1-B2,

ap(v, w) = ag, w) —aze (v, w) —aye(w, v) + Bb(v, w)
< vl lllwllle + Mvlllaelwlls + Nlwllag vl + Bllvisllwlls

< max(L, B)(lIvllIZ + Nvll3g + IIDY2(lwlll% + w3 + w2
S lllalllwlll (72)
Coercivity follows using B1-B3 and in particular (66),
lvllZ = an(v, v)
= lllvllI% = 2as2 (v, v) + Bllv2
> [[[vlll% — 2CIlvlll2 vl + Bllvliz
> [llvllly = 8C3IvlIlG + 8 vl + Bllvliz
> (1—C9)Ivlllg + B =Dl (73)
Taking § small enough, and S large enough we obtain
Nollg + Ivll7 S an(v,v)  ve VE (74)

Finally using (65) the coercivity follows.
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Theorem 1 If BI-B5 hold there exists a unique solution to (58) and the following best
approximation estimate holds

= wpllln S = ollly Vv eV (75)

Proof Since ay, is coercive and continuous on VhE and according to B4 the functional
Iy, is continuous on VhE it follows from the Lax—Milgram lemma that there is a unique
solution u, € V/F to (58).

To prove the error estimate (75) we add and subtract v € VhE , and using the triangle
inequality we then have

Mo = unllln < Ml = vl + Il — unllln (76)
for the second term we use the fact that v — uy, € VhE and apply the coercivity, then

we add and subtract the exact solution u, employ the consistency, and finally use the
continuity to conclude that

2
Mo —unllly; S an(v —up, v —up)
=ap(v—u,v—up)+ap(u—up,v—up)

ap(v —u, v —up) +apw,v—up) —Ip(v—up)

=0
=ap,(v—u,v—up)
S v = ulllalllnlllv — wnllln (77)
Thus we have
v —unllln S Mo — ullln (78)

which combined with (76) completes the proof of (75).

Assuming that we have a family of finite element spaces, with mesh parameter
h € (0, hol, which satisfies the approximation property

inf [llv—wllln < A Nl o (79)
wthE

where k is the approximation order of the finite element space, we obtain the following
error estimate for an elliptic operator of order 2/,

e — unllln < h"*’llullykm) (80)

Error estimates in weaker norms can be obtained if an additional regularity assump-
tion holds. We assume that the following elliptic shift estimate is satisfied by the
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solution u € Vo to (57),

lul sy S 1 fla-s@), 0=<s<=<I (81)
where 2! is the order of the operator.

Theorem 2 Assuming that assumptions BI-B5, the approximation property (79) with
k = 21, and the elliptic shift estimate (81) hold. Then

lu — upllgseey SH 5w —vllly  Yve Vg, 0<s<I (82)

Proof We will argue by duality and therefore let ¢ € V. o solve the dual problem
ag,¢) =1ly() Vv e Vico (83)

where [, € Vb*,:’0 takes the form

Ly () = (¥, v)g (84)

where (-, -)s : H7%(£2) x H*(§£2) — R is the duality pairing.
By symmetry of a;, and consistency (69) in assumption B5 it follows that ¢ satisfies
the adjoint consistency

an(v, ¢) =ly(v) YveV4VE (85)
Setting v = u — uy, in (85) we get

(u—up, ¥)s = ap(u —up, )
=ap(u —up, ¢ —w)
< Ml = unlllallle — allln
S Nl = wnlllnh' = 18] -+ )
S e = w2 (86)

where we used the consistency (69) to subtract w € VhE , the continuity (70) of aj, the
approximation property (79), and the elliptic regularity (81). We therefore arrive at

(u —up, ¥)

lu —upllgsy = sup  ~———= <A |llu —upllln (87)
ver—s2) Wlla-@)

which completes the proof.
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3.2 Time dependent problems

The power of the abstract framework established above is that once stability and
optimal accuracy has been established for the Ritz-projection associated to the (time
constant coefficient) elliptic model problem (57) we can immediately extend the results
to cut finite element methods for the associated time dependent problems. To illustrate
this we will consider the abstract parabolic problem subject to the elliptic operator
a of (57). An identical argument can be developed for the second order hyperbolic
problem, for details on this we refer to [12]. In this reference it is also shown that the
discrete extension makes it possible to lump the mass matrix for explicit time-stepping.
For simplicity we consider only semi-discretization in space, however the arguments
extend in a straightforward way to the fully discrete case using any state of the art
time discretization for parabolic problems [37].

First we introduce the Ritz projection, Ry, : Vi VhE, where we recall that V is V
with some more smoothness to guarantee that aj, is defined on V, defined by

an(Rpv, w) = ap(v,w) Yw e Vf (88)

Differentiating (88) in time we see that 3" Ryv = Ry,0,v, since Ry, is independent of
time. Assuming that assumptions B1-B5 hold, it follows from Theorems 1 and 2 that
fori € {0, 1},
19/ (v = Ruw) |2 + 21119} (v — Ruw)llln S A1 0 —w)llln Yw € V;F (89)
Let I = (0, T) be a time interval and Q := §2 x [ the space time domain and
consider the prgblem, find u € Véc = LZ(O, T: Vpe) HYO, T: V;ao), such that
u(-,0) =up € Vpe and

@, v)g +agu,v) =lp) VYve V) (90)

where Vg = L%*(0, T; Vbe,0)s

T T
(u,v)0 =/ (u,v)2, ag(u,v) =/ ap(u,v)e o
0 0
and
T
lg = / l(v) (92)
0
with [ a given linear functional that may depend on time. For all /g € V/Q the problem
(90) admits a unique solution [30, Theorem 4.1 and Remark 4.3].

We propose the following CutFEM discretization of the problem (90). Find u), :
[0, T]1 — VF such that for all # € (0, T) there holds

Bun, v)@ +ap(up, v) =(v)  YveVE (93)
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The Eq. (93) can now be discretized in time, for instance by replacing 9; with any
suitable finite difference method such as backward differentiation or Crank—Nicolson
and evaluate u, at a suitable point in time in a;,. For the backward Euler method the
linear system associated to one time step takes the well-known form: find uZ‘H € VhE
such that

T gt ) Fan(wp ) =0T o) o (g ), YveVE (94

We see that this linear system is stable independently of the the mesh/interface inter-
section thanks to the stability of the extended space, see Lemma 1.

Remark 6 Note that contrary to ghost penalty based CutFEM approaches the scheme
(93) is uniformly stable without any additional stabilization of the mass matrices.

The following error estimate holds for the semi-discretized problem (93).

Theorem 3 Let uy, be the solution of (93) and u the solution of (90) then there holds

T
sup u(®) —up(Dlle < u0) —up(0)lle +f At inf (130 = oallln (95)
0

te(0,7) v EV)
and
T 2 2 r 2
/ |||u—uh|||h5||u(0)—uh<0>||g+/ inf l[v — valll2
0 0 wveVE
T 2
+ / B (1300 — villle (96)
0 thVhE

Proof The proof uses standard arguments for the parabolic problem together with the
CutFEM toolbox for elliptic problems developed above. First we decompose the error
as

u—up=u— Ryu—+ Ryu — uy, )
~——— —————
€R ep

Since the estimate for eg is immediate using (89) we only need to prove the bounds
for the discrete error ej,. Using the formulation (93) and the coercivity of the form aj,,
for B sufficiently large, (71), there exists a constant o > 0 such that for s € (0, T)

s N S
||eh<s>||?q+a/0 |||eh|||%s||eh<0)||?q+/O (a,eh,eh)mfo an(en, en)  (98)

For the right hand side we see that using (90) the following Galerkin orthogonality
holds

/0‘ (0 (u —up), ep)g +/0 ap(u —up,ep) =0 99)
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and by the definition of the Ritz projection aj, (Ryu — u, ey) = 0, this implies

llen()1I% + /0 an(en, en) = llen ()% — /0 (drer, en) (100)

Taking the sup over s € (0, T') we then obtain

T
sup len()15 < llen(0)llg + sup IIeh(S)IIrz/ lrerll2 (101
5€(0,7T) 5€(0,T) 0

and therefore

r 2
sup llen I, < lex O + ([ larenla) (102)
s€(0,T) 0

Applying (89) with i = 1 we see that

T
sup ||eh(5)||.Q§C/ A inf 119, (v — w)llln (103)
5€(0,T) 0 weVE

To show the triple norm bound (96) we use the coercivity of a;, and (100) to get

T 5 T
f |||eh|||hs/ ar(en, e)
0 0
2

T
< llen(O)lly + sup ||eh<s>||é+(f0 ||a,eR||9> (104)

s€(0,7)

Here the right hand side can be directly estimated using (102) and (89).

4 Applications

To show the flexibility of the above framework for extended finite element space
we will now consider applications to different partial differential equations including
second order boundary and interface problems, and a fourth order problem. For each
problem we provide the concrete norms and verify the assumptions. In principle the
arguments of the abstract framework can be applied to elliptic operators of any order
21,1 = 1,2, 3.... However, for the sake of conciseness we only discuss the cases up
to [ = 3. See Sect. 5.4 for the case [ = 3.

4.1 Second order boundary value problems

The Model Problem Consider the second order boundary value problem

—Au=f in £, u=g on 9582 (105)
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For smooth boundary there is a unique solution to this problem and we have the elliptic
regularity
lull sy S N las2) + gl gst3200) (106)

The Finite Element Method The standard Nitsche method takes the form
ap(up, v) =1l (v) (107)
where

an(v, w) = (Vu, V) g — (Vav, w)ae — (Vaw, v)ag + Bh~ (v, w)se

() = (f.v)e — (8 Vav)an + Bh~ (g, v)ie (108)
Setting
ap(v,w) = (Vv, Vw)p
aye(, w) = (Vyu, w)se
bv, w) =h"" (v, w)e (109)
and

2 2
Nvllle = IVullg

2 BVl
|||U|||3_Q— [ nU”aQ

ol =2~ vll3e (110)
we translate the problem (107) into the abstract framework and it remains to verify
assumptions B1-B5. Here B1 and B2 follows directly from the Cauchy—Schwarz
inequality. In B3 the key estimate (65) takes the form

hIVavlie S IVl veVy (111)
Using the inverse inequality, see [28],

hlwliFrpe S lwlF — w € Pe(T) (112)
applied to w = Vv we get

hIVavlie S hIVUIGe S IVUIZ oo S IVVIG, SIVlE  (113)

Here we finally used the stability (17) of the discrete extension operator. To verify B4
we use the Cauchy—Schwarz inequality,
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() = (f.v)e — (8 Vav)an + Bh~ (g, v)ie
<l flellvlie +h~"2lglaeh IVavlae
+ B ligllagh ™ A lvllse
<max(L, B)(II £ 1% +h " lglF )/
x (Il + ~lIVavlfg + A Hvli5e)?

SAFIE +R " gllZ) vl
Sp-i2 vl (114)

~.

which for fixed % proves the desired continuity. Note that we only use the continuity
of I; to conclude that there is a unique solution to the discrete problem by applica-
tion of the Lax—Milgram lemma, and therefore we apply the stability for fixed mesh
parameters. Finally, the consistency B5 follows directly from an application of Green’s
formula.

Error Estimate To turn the abstract error estimate (75) into a quantitative bound we
use the interpolation theory for VhE to show that

k—1
N —unllln S Mo — mpullln S 25 Nl g o) (115)

which for instance holds C® Lagrange elements of order .

4.2 Second order interface problems

The Model Problem Let 2 C R? be a polygonal domain. Let £2; C 2 \ Us(3£2),
where Us(082) = {x € R4 | dist(x, 0§2) < &}, be a subset with smooth boundary
0521, which also forms the interface I, and let §2, = §2 \ §2;. Consider the interface
problem

—V-A;Vu; = f; in £

[uil]=0 on I

[n-A;Vu;1]=0 on I
u=0 on 982 (116)

where A; are constant positive definite matrices. Testing with v € H(} (£2) and inte-
grating by parts and using the interface condition we obtain the weak form
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2 2

Y (finvda =Y —(V-AiVu;, v)g,
i=1 i=1
2

=Y (AiVu;, Vo), — ([n - A Vu;l, v)r
i=1

2
= (4;Vu;, Vv)g, (117)

i=1

and we note that the form on the right hand side is coercive and continuous on H (£2)
and we can conclude using Lax—Milgram that there is an exact solution in H (.Q)

The Finite Element Method Let VE be finite element spaces on §2; that extends over I".
For simplicity we assume that the homogeneous boundary conditions on the external
boundary 952 are strongly enforced in Vh’2 using a matching mesh at 9£2. The finite

element method takes the form: find up, = (up 1, upn2) € VhE1 ® VhE2 = VE, such that

ap(up,v) =) veVE (118)

where the forms are
an(v,w) =Y (A Vv, V), — (n; - Ai Vv, w; — (w)ag,
i=1
—(n; - AiVw;, v; — (V)sg,
+ B Hin |l a;, (vi — (v), w — (wi)ag,

2
() =Y (fi.v)e (119)

with ||n; ||E‘i =n; - A; -n; and (-) is an convex combination average at the interface I”
defined by
2 2
() VE s v Y kv € Y (VEIr (120)
with x; > O and k] +kp = 1.

The Abstract Setting The method is transferred into the abstract framework by working
in the finite element space VhE = VhE | @ VhE2 and defining the forms
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2
ag(v.w) =) (A;iVv, Vg, (121)
i=1
2
aso(v,w) =Y (i AV, wi — (w))ye, (122)
i=1
2
b(v, w) =Y Bk~ nilla; (vi — (v}, w — (wi))ag, (123)
i=1
and norms
2
vl =Y (AiVui, Vuy)g, (124)
i=1
2
lvlllFe =Y Alinillg ni - AiVuillg, (125)
i=1
2
iz =Y Bk lnilla; lvi = ()13, (126)
i=1

Next we verify the assumptions.

Remark 7 Our formulation of the finite element method is equivalent to standard
Nitsche formulations for the interface problem but it has a simpler structure only
involving the average of the solution at the interface avoiding introduction of the aver-
age of the flux and jump which are quantities with signs depending on the order of
the subdomains. This also connects in a natural way to hybridised methods simply by
replacing the average (v) by a trace variable. Note that we get two subdomain Nitsche
formulations where the Dirichlet data is precisely the average (u;) which leads to a
simple decoupled structure. To verify that the method is indeed equivalent to a stan-
dard Nitsche formulation we observe that vy — (v) = (1 —k1)v] —kav2 = k3 (V] —V2)
and similarly v, — (v) = k1(v2 — v1), which gives the identity

2
Z(ni AV, wi — (w))age
i=1
=i (n1 - A1V, wi —w2)ae, + &5 (n2 - A2Vua, wa — wi)se;
=i (n1 - A1V, wi —w2)ae, + &5 (n1 - A2Vuy, wi — w2)sg;
= (n-AVuv)y, [whr (127)
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where k" = 1 — k; are the dual weights and we defined the average of the flux
(n- AVv), =«fny - AiVuy +k3n1 - A2Vuy (128)
and the jump
[v]=vi — v (129)

In a similar way we have

2
b(v, w) =Y Bih™Inilla; (i — (v}, w — (wi))ag,
i=1

2
(Z Bih™ lnill a, (@)2) (vl [wag, (130)
i=1

Thus our formulation is indeed equivalent to a standard Nitsche formulation.

Verification of Assumptions B1 follows directly from the fact that matrices A; and
A» are constant and positive definite. For B2 we note that using the Cauchy—Schwarz
inequality we directly obtain the estimate

2
ase (v, w) =Y (ni - A Vi, wi — (w))ag,
i=1
2
—1/2 — 1/2
< Y Pl Pl - AV lag, kRl w = (),

i=1

2
< (Zhunin;} In; -Ainl-n%g,.)

i=1

) 1/2
x (Z h= g a; lwi — <w>||§g,.)
i=1

= lllvllfag lwlls (131)

1/2

For B3 we proceed with standard estimates, use the fact that ||n; || 4, = [|n; || % _, followed
by an inverse inequality to pass from the boundary to the set of elements intersecting
the boundary

2
2 —1 2
vlllFe =Y Alinill; ni - A Vvillg,
i=1

2
—1 2 2
<Y hlnilig nill%, 00, 1 V005, 00,
i=1
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2 2
2 2
< D hIVilh a0, < Y IVUIR 70,
i=1

i=1

2 2
<D Vil 0, < DIVl g (132)
i=1 i=1

where we finally used the stability of the extended finite element space VhE to pass
from £2;, ; to £2;. For B4 we need the Poincaré inequality

2
> lillg, S vl (133)
i=1

To prove the Poincaré inequality we let ¢ € H 1(£2) be the solution to (116) with
fi = v;. We then have

2

2
D o lvills, =) (i, =V - AV,
i=1

i=1

2
=Y (Vv AiV$)g, — (vi — (v).ni - A;V)r

i=1
=dagp (U, ¢) - 089((/5’ U)
<lvllzlidlle + lellaa vl
Sl gy + lellF o) (134)

We close the argument by using a trace inequality

2
lplloe < D 16lu2e, (135)

i=1
followed by elliptic regularity
2
D il g, S D lvillg, (136)
i=1 i=l1
to conclude that (133) holds. Finally, B5 follows by inserting the exact solution into
(118) and using integration by parts.
Error Estimate Finally, using the interpolation theory for VhE combined with the
abstract error estimate (75) we get
= wnllln S e = mpullln < BEllull e (137)

which for instance holds for C? Lagrange elements of order k.
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4.3 Fourth order boundary value problem

The Model Problem Let 2 C R? be a domain with smooth boundary 8£2. Consider
the biharmonic problem
Au=f in Q
u=Vyu=0 on 082 (138)

Testing with v € H?(£2) and integrating by parts we obtain the weak form

(f, Ve = (A%u,v)g = —(VAu, Vu)yg + (V,Au, v)se
= (Au, Av)yo — (Au, Vyv)soe + (V,Au, v)se (139)

With V = {v € H?*(£2) : v =V,v = 0on 082} we get the weak statement: find
u € V such that
a(u,v) =I1v) VYveV (140)

where
a(u,v) = (Au, Av)g, l(v) =(f,v)e (141)

We also note that for v € V we have
Vlla2 @) S 14Avla (142)
To prove (142) we first use partial integration

(Av, Av)g = —(Vv, VAV) g + (Vau, Av)se = —(Vv, (V20) - V)go
~——
=0
= (V20, V20)o — (Vu, (V20) - n)pe = (VZu, V20)g (143)
=0

since for v € V we have that the full gradient Vv = 0 on 9S2. This fact follows
by observing that the boundary 952 is the zero levelset of u and that the gradient is
orthogonal to the levelsets of u. Therefore the tangential part of the gradient at the
boundary is zero. Then using a duality argument, similar to the verification of (133),
we can show that we have the Poincaré inequality

Ivlle S lAvle (144)

and finally we have
2 1 2 1 2
Vulg = (Vv, Vu)e = —(v, Av)e < E”UH_Q + EllAvllg (145)
This completes the verification of (142).
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We finally conclude using Lax—Milgram that there is an exact solution u € V to
(140).
The Finite Element Method

The finite element method takes the form: find uj, € VhE C H?(£2), such that

an(up,v) =lhw) veVE (146)
where the forms are

ap(v, w) = (Av, Aw)e + (Av, Vyw)se — (Vadv, w)ye
+ (Aw, Vpv)ae — (Valw, v)se
+ B (Vav, Vaw)ye + ¥ (v, w)se) (147)
lh(v) = (f,v)e (148)

with B and y positive parameters.
The Abstract Setting Let VhE C H?(£2) be an extended finite element space and define

ag (v, w) = (Av, Aw)p (149)
aye (v, w) = (Av, Vyw)se — (V,Av, w)e (150)
b(v, w) = h™ Vv, Vaw)ae + yh > (v, w)se (151)
and norms
Ivllle, = llAv]g, (152)
lvll3o = hlAvi3g + IV, Avli3g (153)
ol = A= IVall3g + vh 2 vll3g (154)

Next we verify the assumptions.
Verification of Assumptions B1 is trivial. B2 follows directly from the Cauchy—Schwarz
inequality

aye (v, w) = (Av, Vyw)se — (Vi Av, w)e
< [[AvlhIVawllae + Vi Avlhe llwllse
< (h]|Avl5q + 1P| VaAv|5o)'
x (WM IVawllfo + R w32
< llvlllas llwll (155)
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B3. Using an inverse estimate to pass from 952 to 7,(9£2), and an inverse inequality
to remove V,, in the second term, and finally the stability (41) of the extended finite
element space we get

I3 = hllAvlig + 2P VaAvli§g
S AT ooy + B2 1VRAVIE 50
SNAvIE 50y + 14015 50
< Av)b,
< lAv|g
= [l (156)

B4. Follows from a Poincaré inequality which we may derive using a duality argument.
BS5. Follows by inserting the exact solution into the method (146) and using partial
integration twice.

Error Estimate Again using the interpolation theory for VhE combined with the abstract
error estimate (75) we get

M —unllln < M= mullln < B2 ull geg) (157)

which holds for C! elements of order k such as tensor product hermite splines of order
k = 3 or the Argyris element of order k = 5 on triangles in two dimensions.

5 Numerical examples

In the numerical examples below, we use the following implementation of the extension
operator. The mapping S, is constructed by associating with each element T € 7 p
the element in 7j, ; which minimizes the distance between the element centroids. For
each x € A \ A}, ; the weights in the nodal average (-)x, see (26), is taken to be 1
on precisely one element T, € 7;,(x) and zero on all elements in 75 (x) \ Ty, where
we recall that 7, (x) is the set of elements which has x as a vertex. Note that this
choice of weights corresponds to simply defining the nodal value in x € X \ Xj s
by ((Fuv)|r,)|x, where Fy, is defined in (33). This particular implementation has the
advantage that it introduces relatively few non zero elements in the stiffness matrix.

From a practical point of view, the implementation is done on the matrix level as
follows. If the original system, without the extension, is denoted

Su=f (158)
we introduce an extension matrix E such that
u=Eu (159)
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where 0 contains only those nodal values that are extended. We then solve for u from
Sa=f (160)

where ~ ~
S:=ETSE, f:=E'f (161)

and use (159) to recover u. While forming S could be done on a local level before
assembly, it is more straightforward (and computationally efficient) to do it on the
system level.

In the examples below, the meshsize is defined by 7 = 1/+/NNO, where NNO
denotes the number of corner nodes for the geometrical elements in the active mesh.

5.1 Higher order approximation of a Poisson boundary value problem

On the disc 2 = {r : r < 0.5}, r = /x2+ y2, we consider a problem with
manufactured solution
u = cos (r) (162)

corresponding to the right hand side
f = (mw(sin(mwr) 4+ r cos(mr))/r (163)

With this right hand side and u = 0 on 952, we solve (105) using triangular quadratic
elements with linearly cut elements and boundary value correction [10]. The Nitsche
parameter was set to g = 10°.

In Fig. 1 we show the solution on a mesh in a sequence of halving the meshsize, and
in Fig. 2 we show the observed convergence in L2(.Q) and in H! (£2). The expected
convergence of 0(h3) is attained in L? and O(hz) in H'.

5.2 The biharmonic problem

In this example we consider higher regularity tensor product Hermite splines to con-
struct conforming approximations of the biharmonic and the triharmonic problem.
Nitsche’s method was used in the context of embedded boundaries and C'-splines
in [26], but without treating the potential stability issues on the cut boundary. Start-
ing with the biharmonic problem we use C! tensor product Hermite splines as our
conforming finite element space. We approximate the boundary by cubic C! splines
and the cut geometry, which is used for quadrature, is then given by isoparametrically
mapped cubic triangles; more details can be found in [11].
The domain is here given by the disc

2 ={r:r<rg}, where r=\/(x—1/2)2+(y—1/2)2,r0=1/2
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Fig. 2 Convergence for the Poisson problem. Dotted line has inclination 2:1, dashed line has inclination
3:1

We use the manufactured solution u = 10° (r(% — r2)2 /64 corresponding to the right
hand side f = 10°. The boundary conditions are # = 0 and V,u = 0 on 352 and we
chose B = 100, y = 1 in (146).

In Fig. 3 we show the solution on a mesh in a sequence of halving the meshsize, and
in Fig. 4 we show the observed convergence in L2(£2) and in H'(£2). The expected
convergence of O (h*) is attained in L2, O(h®) in H!, and O (h?) in H?.
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5.3 A Poisson interface problem

Here we use continuous piecewise linear elements for an interface problem of the
type (116), but with boundary data given by the exact solution. The domain inside the
interface is

21 =1{r: r <rg}, where r= \/(x —1/224+ @ —1/2)2%,rg=1/4. (164)

and the outer domain is £2> = (0, 1) x (0, 1)\ £21. We choose A| = 57 and A, = 21,
where [ is the identity matrix. We use a fabricated solution

—(r2/2 =132 +715/5) if r>r0
u =

—r2/5 if r <710 (165)
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Fig.6 Convergence for the interface problem. Dashed line has inclination 1:1 and dotted line has inclination
2:1

corresponding to a right hand side f = 4. The Nitsche parameter was set to § = 10
and the averaging weights in (120) were set following [22].

In Fig. 5 we show the solution on a mesh in a sequence of halving the meshsize, and
in Fig. 6 we show the observed convergence in L2(£2) and in H'(£2). The expected
convergence of O (h?) is attained in L2 and O (h) in H'.
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Fig.7 Mesh used for the c?
approximation. The boundary of
the domain is dotted

Fig. 8 Elevation of computed solutions for the Poisson, biharmonic, and triharmonic problems
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Fig.9 Energy convergence for the the Poisson, biharmonic, and triharmonic problems. Dashed lines have
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Fig. 10 Condition numbers obtained for linear and quadratic approximations of Poisson’s equation
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5.4 Higher order PDE

We can easily extend the method to the triharmonic problem
—A"u=f in £ (166)
Consider the case m = 3, then we get

—(f.ve = (Au,v)e
= (V, A%u, v)y0 — (VA%u, Vo)o
= (Vad?u, V)i — (A%u, Vav)sg + (A%, Av)g
= (VaA?u, v)s0 — (AU, Vyv)se
+ (VaAu, Av)ygo — (VAu, VAo (167)

and we note that the strong conditions manufactured by the partial integration in this
case are
u=Vyu=Au=0 on 052 (168)

The above partial integration formula can then directly be used to construct a Nitsche
formulation that requires V;, C H3(£2), which means that the finite element space
must be C2. The Hermite splines are only available for odd polynomial order p with
reqularity C P=2 and therefore we use p = 5, which are C 3 for the triharmonic
problem.

We consider a problem with constructed solution # = cx3y3(x — 1)3(y — 1) with
¢ = 10*. We then construct the corresponding right-hand side for Poisson’s problem,
the biharmonic problem, and the triharmonic problem. We solve the problem on the
domain (0, 1) x (0, 1) on a mesh covering a slightly larger domain (—0.21, 1.1) x
(—0.31, 1.1). In all cases we set # = 10°. In Fig. 7 we show a mesh with the domain
boundary indicated. In Fig. 8 we show elevations of the computed solutions on the
same mesh, and in Fig. 9 we show the energy convergence (convergence in agp (u, u))
for the three different problems.

5.5 Conditioning

Finally, we show the conditioning of the matrix S in the case of piecewise linear and
quadratic elements for the Poisson problem defined in Sect. 5.1. In Fig. 10 we show the
condition numbers on the consecutive meshes used in Sect. 5.1. The dotted and dashed
lines indicate O (h~2) as expected. The size of the condition numbers are consistent
with meshed methods.
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