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Abstract: Working memory refers to the capability of the nervous system to selectively retain short-
term memories in an active state. The long-standing viewpoint is that neurons play an indispensable
role and working memory is encoded by synaptic plasticity. Furthermore, some recent studies have
shown that calcium signaling assists the memory processes and the working memory might be
affected by the astrocyte density. Over the last few decades, growing evidence has also revealed
that astrocytes exhibit diverse coverage of synapses which are considered to participate in neuronal
activities. However, very little effort has yet been made to attempt to shed light on the potential
correlations between these observations. Hence, in this article, we leverage a computational neuron—
astrocyte model to study the short-term memory performance subject to various astrocytic coverage
and we demonstrate that the short-term memory is susceptible to this factor. Our model may also
provide plausible hypotheses for the various sizes of calcium events as they are reckoned to be
correlated with the astrocytic coverage.

Keywords: neuron; astrocyte; network; short-term memory; spatial frequency; computational biology
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1. Introduction

Over the past few decades, the dynamics of neuronal networks have been widely
studied [1-7] and increasing effort has been devoted to understanding the roles played
by a type of glial cells, astrocytes [8-13]. Traditionally, astrocytes have been reckoned as
auxiliary cells to neurons and it has now become evident that astrocytes can not only sup-
port the structure of the nervous system, but also modulate synaptic transmission [14-18].
Neuron-astrocyte coupling plays an indispensable role in the functioning of neuronal
networks via bidirectional communication under the notion “tripartite synapse’ [19-23]. It
is found that astrocytes can sense the synaptic activities by the uptake of neurotransmitters
released from the synaptic cleft and provide feedback to pre- and post-synaptic neurons
via gliotransmitter release caused by the temporary elevation of intracellular calcium con-
centration which normally lasts seconds to minutes [24-28]. All these findings in molecular
biology pave the way for a better understanding of the information processing in neuron—
astrocyte circuits and the formation of cognitive functions. Very recently, mathematical
and computational approaches have been used to investigate the contribution of astrocytes
to the organisation of spatial and temporal synchronization in neural networks [29-32],
formation of short-term memory [33-38] and generation of integrated information in neu-
ronal ensembles [39-42], which takes a step further to the understanding of the intelligence
arising from the nervous system.
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Nowadays, a widely accepted fact is that astrocytes play an active role in various types
of memory and the memory improvement may be related to the change in the astrocyte
density [43-47]. Working memory is the ability of an entity to retain limited information in
a readily accessible form and provides an interface between memory and cognition [48-50].
Some biological evidence has already raised the possibility that astrocytes could be highly
involved in working memory [51-54] and it has been well known that the astrocytic
coverage of synapses is a highly dynamic process that alters throughout lifetime [55-57].
Therefore, it is natural to hypothesize that there exists a potential correlation between the
working memory and the astrocytic coverage (or astrocyte density) but very little effort
has been made so far. In this work, the astrocytic coverage is equivalent to the astrocyte
density and it will become clear when we introduce our model. Furthermore, some studies
have also revealed that the attenuation of calcium events correlates with the reduction of
astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in mice and
that the size of the calcium events within astrocytes follows the power law [58-61]. Hence,
this line of research may also help explain the cause of various sizes of calcium events.

Lately, an in silico neuron-astrocyte network model has been employed to manifest
that astrocytes indeed assist the formation of short-term memory and mediate analogous
memory [34-38]. It provides a quantitative score to measure the recall accuracy as a result
of the short-term memory. In this work, we leverage this computational model and study
the impact of varying astrocytic coverage areas of synapses on the short-term memory
performance. Unlike in the original article [35], here, we focus on the performance of the
single-item task so as to ensure that the real pattern remains unchanged throughout the
experiment. We also introduced a low-pass filter to the input image in order to alter the
spatial frequencies. In particular, it is of great interest to learn how the change in the number
of spatial frequency components will impact the short-term memory and how the relation
is affected by the astrocytic coverage. The input image is also subject to different levels of
the salt-and-pepper noise to make our evaluation more comprehensive. We demonstrate
that the short-term memory performance is significantly affected by the astrocytic coverage.
Additionally, we also underlie some other observations that may interest biologists.

2. Models and Methods

Our work employed the neuron-astrocyte network developed in [35] and an illus-
trative diagram for the architecture is shown in Figure 1. From left to right are the input
image, neuronal network and astrocytic network, respectively. The neuronal network is
of dimension W x W and the astrocytic network is of dimension M x M. All neurons are
excitatory and each astrocyte from the astrocytic network regulates an I x [ neuronal square
from the neuronal network. The connections in the neuronal network will be defined
later and the astrocytes in the astrocytic layer are connected to their nearest neighbours
vertically and horizontally. The input digital image is converted into electric current and
is applied to the neuronal network in that one image pixel corresponds to exactly one
neuron. The values used for the parameters introduced in Sections 2.1-2.3 are listed in [35],
unless otherwise specified. The novel methodology used to study the impact of astrocytic
coverage on short-term memory is introduced in Sections 2.4-2.6.
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Figure 1. An illustrative diagram for the neuron-astrocyte network.

2.1. Neuronal Network

Considering we simulated a relatively large network, we used the Izhikevich model
to characterize the dynamics of neurons as it demonstrates computational efficiency while
maintaining the biological plausibility of the canonical Hodgkin-Huxley model [62]:

(i) N o o
‘ﬂgt — 0.04V I 45700 — i) 4 140+ 18] + 1)
1

dt;(t”” 2V )

where V denotes the membrane potential of a particular neuron and U represents the
membrane recovery variable, with post-spike resetting: if V(%/) > 30 mV, then

v = ¢
uld) = gl 44 @)

The superscript (i, j) denotes the positional index of the neuron. I;,, represents the
applied input current converted from the digital image and I, represents the net current
receiving from all presynaptic neurons which takes the form (generalized from [63,64]):

(67) _ 5 85 (Esgn = VD)
Syn - Z _Vk

pre
ko 14exp (W)

®)

where the summation is over all presynaptic neurons. The synaptic weight is dictated
by g(l’] ) 11 +v() where 7 reflects the baseline weight and v(?/) describes the impact of

syn —
astrocyytic calcium events which will be defined later. Es;, denotes the reversal potential for
excitatory synapses and V;’f,e denotes the membrane potential of the neuron k. For clarity,
we need to point out that the short-term synaptic plasticity is not considered in our model.
By convention, weusea = 0.1,b = 0.2,c = —65,d = 2.

In this work, we fixed the number of out-connections per neuron as N,;; in that
each presynaptic neuron interacts with Ny, postsynaptic neurons. The connections are
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established according to an exponential distribution with R being the distance between
each pair of neurons:

1
F(R) = {Aexp(—R/)\) R>0 @

0 R <0

2.2. Action Potential-Induced Elevation of Glutamate and 1P;

For each presynaptic neuron, the amount of glutamate, a type of neurotransmitter
released into the synaptic cleft is dictated by the spiking events of the neuron [65]:

(el
dt

=~ G + kg, @V — 30) (5)

where © denotes the Heaviside function.

IP; is a ligand and is produced in response to the external stimuli such as neurotrans-
mitters [66]. It regulates many pathways including the release of Ca** from Endoplasmic
Reticulum (ER) into cytoplasm [67] which will be described in due course. The dynamics
of the intracellular concentration of the molecule I P; within each astrocyte is described by

arp{™  1pg — rp{™"

(mn) (mn) . p(mn)
dt TIp, T Ipic, g diffip, ©)

lu

Here, IP; denotes the steady state of the intracellular IP; concentration and Jpyc;
encapsulates the IP; produced by phospholipase Cé which takes the form

U4(C11 + (1 - lX)k4)
Ca +k4

@)

JpLc; =

where Ca denotes the Ca®" concentration in the astrocytic cytoplasm. We use dif fp, to
represent the diffusion of IP3 via gap junctions between adjacent astrocytes and is given by

dif fipy = dip, (AIP3) ®)

where AIP; denotes the discrete Laplace operator reflecting the diffusion as a result of Ca®*
exchange with neighbouring astrocytes. The production of IP; stimulated by glutamate via
metabotropic glutamate receptors (mGluRs) and phospholipase Cp is characterized by

Alu fo <t < fp+tgy
Iglu:{ § § )

0 otherwise

where t, denotes the duration that persists since time t9, when the total level of glutamate
associated with a particular astrocyte reaches the threshold Fy:

— Y (G — Gyy) > Fur (10)
i,j)€Ng

2.3. Astrocytic Network

Although voltage-gated calcium channels (VGCC) have been shown to be able to
elevate intracellular calcium concentration and many authors included them in their mod-
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els [68-71], here, we use the Ullah model [72] to simplify the description of the calcium
dynamics within astrocytes where only the impact of glutamate is considered:

dCalmm) ,
= = ek T+ T+ T = T+ dif £
, (m,n) (11)
dh(m 71) 4 IP3 ‘|‘ d] (1 _ h(m'”)) _ Cg(m/”)h(m'”)
dt 2\ %2 Ip(m/")
The explicit forms of the individual terms are summarized as below:
B 3,3.3¢/¢c1—(1+1/cq)Ca
Jer = o GRS a3 (Ca + ds)?
_ v3Ca?
Jieak = €102(co/c1 — (1 +1/c1)Ca) (12)
= 01 P2
" k3 + IP2
Jout = k1Ca
dif fca = dca(ACa)

Here, Ca denotes the Ca?" concentration within cytoplasm and / denotes the fraction
of opened IP; receptors (IP3Rs) on the ER. We assume that the astrocytes are spatially
homogeneous. ER is a continuous membrane system that stores a reservoir of Ca** within
astrocytes. The released IP; then binds to IP3Rs on the ER and opens the channel allowing
for the flow of Ca?* from the ER into the cytoplasm, which is characterized by Jgg. In this
model, we assume the co-existence of the ER and the cytoplasm in individual astrocytes
and the homogeneous distribution of ER in the interior of astrocytes. [yump denotes the
ATP-dependent pump that recovers Ca?>* from the cytoplasm back to the ER. J;,,x denotes
the leakage of Ca?* from the ER to the cytosol due to the concentration gradient. J;;, and
Jout denote the Ca®* exchange with the extracellular space. dif fc, represents the diffusion
of Ca?* via gap junctions.

Finally, the calcium-dependent gliotransmitter-induced modulation of synaptic weight
by the associated astrocyte via the N-methyl-D-asparate receptors (NMDARs) is defined as

v =v"0(Ca — Cay,) (13)

where v* denotes the weight of the synapse as a result of the astrocytic modulation of
synaptic transmission if the Ca>* concentration is beyond the threshold required for glio-
transmitter release, Cay,,, and the fraction of spiking neurons associated with that astrocyte
during the time interval Ty, is above Fystro. The duration of feedback is denoted by Tstro
and we use Tstr0 = 250 ms.

2.4. Variation of Astrocytic Coverage

In order to study the working memory performance of the network under various
astrocytic coverage areas, we need to vary the size of the astrocytic layer M. However, to
ensure that each astrocyte modulates an identical size of neuronal square and there is no
leftover neuron, the following equation must be satisfied:

W-1
— =M (14)
I=p
where p is the size of the overlapping edge. In this work, we fixed p = 1. Since the
input image is of dimension 79 x 79, if W = 79, the equation is satisfied for | = 2,3,4,7.
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To analyze the effect of | = 5, 6,9, the image is adjusted by adding a periphery of stripe
of width 1 outside of the edge, the intensity of which is chosen to be the same as the
background. Now W = 81 and the equation is satisfied. Similarly, the equation is satisfied
for I = 8 by choosing W = 78 (edge removal on one side). In this way, the size of the image
is by and large maintained and the digital patterns are least damaged.

2.5. Variation of Spatial Frequencies

In this work, we utilized low-pass filter to alter the spatial frequencies of the input
image.

The 2D discrete forward Fourier transform converts the image from the spatial domain
into the frequency domain with:

—1W-1

Z foy —i2n(kx 4y (15)

x=0 y=0

The inverse transform converts from the frequency domain back to the spatial domain

with:
—1W-1

flx,y) = WZZZFkZIZ”kX W) (16)

where f(x,y) denotes the intensity at pixel (x,y) whilst F(k, ) consists of the spectrum and
the phase angle at frequency (k, ). In general, one is more concerned with the spectrum
as compared to the angle so the angle is not within the scope of our discussion. Figure 2
displays what digit zero looks like in the spatial domain (left) and spectral domain (right),
respectively. By convention, F(0,0) is placed at the center of the spectral domain and is
also the largest component of the image. Moreover, we display the frequency domain on
the logarithmic scale so as to make the other frequency components more visible. The
frequency increases as we move farther away from the center in the spectral domain.

Figure 2. Spatial domain and spectral domain of digit 0.

A low-pass filter applies a threshold fj to the spectral domain and sets all the compo-
nents above fj to zero. In this work, the filter will be applied to the input current at each
time step. By slowly increasing the threshold, we hope to figure out the sensitivity of the
short-term memory performance to the change in spatial frequencies.

2.6. Simulation Protocols

Most of the parameter values and protocols used in this work are identical to those
in [35]. Since the size of our parameters is huge, we do not list the values used in this article.
One can refer to [35] or https://github.com/zonglunli7515/Impact-of-astrocytic-coverage-
of-synapses-and-spatial-frequencies-on-the-working-memory (accessed on 7 September
2022) for more details. Here, we only made a few adjustments in order to study the impact
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of spatial frequencies in a more effective way. Therefore, unless otherwise specified, one
can assume we herein use the same protocol as in [35].

The dynamics of the astrocytic network is simulated using the Runge-Kutta fourth-
order method and the remaining part using the forward Euler method with time-step
At = 0.1 ms. The input current I,y is converted from a digital image (0-9) with the same
size of the neuronal network by scaling the pixel intensity, which will be used in the learning
and the testing stage. The pixel intensity is scaled in the range [0, Ay, ] for learning and
[O, Atest] for testing in order to prevent over-excitation of neurons. In this work, we employ
the binary encoding that converts intensity over 127 to Agiy, (Atest) and to 0 otherwise. The
input is also subject to salt-and-pepper noise which will also alter the frequency domain
in addition to the low-pass filter. Different from a low-pass filter which will cut off the
frequency components above a threshold, increasing the salt-and-pepper noise tends to
include more frequency components (high frequency components in particular) as the noise
will break the image down into pieces. We are interested in investigating the effect of both
on the short-term memory performance. In this work, we do not introduce it in the learning
stage to keep the real pattern intact and alter the noise level in the testing stage. Here, our
work is only focused on the single-item implementation. This is to ensure that the real
spatial pattern is fixed during the experiment. Unless otherwise specified, in the learning
stage, the input current I,y is applied to the network at t; = 0.1 s for f;,, = 200 ms and
in the testing stage, I,y is applied to the network at t = 2 s for t;ss = 150 ms. The
simulation terminates at f, = 2.3 s. We alter ¢, and ¢, when investigating the impact of the
time interval between training and testing. In addition, note that changing the frequency
domain will result in complex values in the spatial domain when conducting the inverse
transform. To this end, we take the absolute values and re-scale them with Ag,, (Atest)-
Our simulation time is shorter as compared to the one used in [35] but the time interval
between the learning and the testing stage is already long enough for the activation of
calcium release within astrocytes.

2.7. Performance Measure

To measure the performance of our model, i.e., to what extent the model is able to
memorize the real pattern, we came up with a correlation measure C;, that compares the
recalled pattern (during testing) with the real pattern:

t+w

My(t) =1 [( Y 1[Vi(k) > 30]) > thr
k=t

CD() = 1 L Myt
(i,j)eP
1 ) (17)

CB(t> W2 | | (i/%ép(l - Ml](t))

() = %(CD(t) +CB(1))
Cp= max C(¥)

Here t is the start time of the testing stage and we use w = 250 ms. P represents the set
of pixels belonging to the real pattern. CD represents the true positive rate in our context,
namely, how many pixels that belong to the real pattern have been recalled. Similarly, CB
represents the true negative rate. Therefore, C can accurately reflect the overall performance
of the neuron-astrocyte network. We select C), that maximizes C(t) over the whole-number
thresholds, thr = 1,2, ...,30.
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3. Results

In this chapter, we mainly show how short-term memory performance is affected by
astrocytic coverage under various spatial frequencies and salt-and-pepper noise levels.

Figures 3 and 4 display the model’s performance scores C,, for digit zero (a symmetric
digit) and two (an asymmetric digit) under various conditions, respectively. Each square
represents one single simulation using the protocol described in the last chapter. In each
sub-figure, the vertical axis denotes various levels of the salt-and-pepper noise at the testing
stage. The horizontal axis denotes the moving threshold fj (increased by 2 units) of the
low-pass filter from fy = 4 to fo = 58. Namely, more frequencies will be included as we
move farther away from the origin. The plot starting from fy = 4 is to ensure the visual
contrast for the performance over fy = 4 and we explain in more detail why there exists a
sharp rise in performance from 4 later. The filter threshold terminates at fy = 58 because
it will already incorporate all frequency components with respect to the largest picture
(W = 81) in this study.

On the one hand, for all sizes (I = 2,3,4,5,6,7,8,9) of the astrocytic coverage and noise
level during the testing stage, the performance plunges when moving the filter threshold
from 5 to 4, which corresponds to (5 x 2)/79 ~ 1/8 — (4 x 2)/79 =~ 1/10 of the distance
from the center to the edge in the spectral domain. On the other hand, the trace width of
the digit in the image we use is about 8-10 pixels. By trace width we mean the interval
between the boundaries of the digit. This makes it a wavelength of 16-20 (so a frequency of
1/16-1/20, namely 1/8-1/10 of the distance from the center to the edge in the frequency
domain). This correspondence demonstrates that our short-term memory model does
manage to detect the dominant frequency pattern of the input image. The performance
of the other integer threshold (1,2,3) is not shown in Figures 3 and 4 because we would
like to have a contrasting color scale for higher thresholds. As expected, the performance
decreases sharply from fy = 4 to fo = 0 which is demonstrated in Figure 5. Here, the
threshold is increased by 1 unit.

From Figures 3 and 4, we note that our model is mostly noise-tolerant up to the
noise level equal to 0.1. This manifests that our network is able to precisely recall very
analogous patterns but has some trouble recalling the exact patterns for less analogous
inputs. Another notable feature is that there exists a shift in performance pattern under
different filter thresholds as the astrocytic coverage size is increased from ! =2tol =9,
which stands as the central observation of our research, and next, weusel =4 and [ = 8 to
explain it at greater length.

From Figures 3 and 4, we observe that for | = 4, the performance color transitions
from light red to dark and back to light at a relatively high noise level. Take for example
noise level equal to 0.2 (Figure 6), a low filter threshold, fy = 10 smooths the picture and
prevents over-firing of neurons. A high filter threshold, fy = 58, ensures that most of the
digital pixels are firing, although at the cost of slight over-firing. However, a middle one,
fo = 40 corrupts the picture to a certain degree and yields a relatively low performance.
For I = 8, the performance color transitions from light red to dark and there exists a
slight recovery before going dark again at high noise levels. At the noise level equal to
0.2 (Figure 7), the firing patterns of fo = 10 and fy = 40 are very similar to those in [ = 4,
despite the alteration in the astrocytic coverage. However, for fy = 58, | = 8 significantly
favors the over-firing which results in many misclassifications, and fy = 50 is somewhere
in the middle.
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Figure 3. Performance score C,, for digit zero with various astrocytic coverage areas. In each sub-
figure, the vertical axis denotes various levels of the salt-and-pepper noise at the testing stage. The
horizontal axis denotes the threshold fj (increased by 2 units) of the low-pass filter.
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Figure 4. Performance score Cp, for digit two with various astrocytic coverage areas. In each sub-
figure, the vertical axis denotes various levels of the salt-and-pepper noise at the testing stage. The
horizontal axis denotes the threshold fj (increased by 2 units) of the low-pass filter.
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(a) Input current, fo = 10 (b) Firing pattern, fo = 10 (c) Calcium pattern, fo = 10

(d) Input current, fo = 40 (e) Firing pattern, fo = 40 (f) Calcium pattern, fy = 40

(g) Input current, fo = 58 (h) Firing pattern, fo = 58 (i) Calcium pattern, fy = 58

Figure 6. Snapshots for I = 4. The left panel displays the input current after being transformed by
the low-pass filter at testing. The middle panel displays the firing pattern of neurons at t = 2.1 s.

The right panel displays the calcium pattern of astrocytes at ¢ = 2 s. In each sub-figure, the x- and
y-axis denote the positional indices of the image. The colorbar describes the level of the input current,
neuronal firing and astrocytic calcium concentration. The level has been scaled in the range 0-255 for
visualization. The model exhibits very similar calcium patterns irrespective of the filter thresholds.
From the first and the second column, we observe that fy = 10 smooths the picture and prevents
over-firing of neurons; fy = 58 ensures that most of the digital pixels are firing; fy = 40 corrupts the
picture to a certain degree. Therefore, the performance of fy = 40 is less desirable.
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Figure 7. Snapshots for I = 8. The left panel displays the input current after being transformed by
the low-pass filter at testing. The middle panel displays the firing pattern of neurons at t = 2.1s.
The right panel displays the calcium pattern of astrocytes at ¢ = 2 s. In each sub-figure, the x- and
y-axis denote the positional indices of the image. The colorbar describes the level of the input current,
neuronal firing and astrocytic calcium concentration. The level has been scaled in the range 0-255 for
visualization. The model exhibits very similar calcium patterns irrespective of the filter thresholds.
From the first and the second column, we observe that fo = 10 smooths the picture and prevents
over-firing of neurons; fy = 40 corrupts the picture to a certain degree; fy = 58 results in over-firing;
fo = 50 is somewhere in the middle. Therefore, the performances of fy = 40 and f; = 58 are
less desirable.

In order to better summarize the results shown in Figure 3, we use box plots to exhibit
our statistical analysis. Figure 8a displays the overall short-term memory performance
subject to low salt-and-pepper noises by grouping the noise level from 0 to 0.1. Similarly,
the performance subject to high salt-and-pepper noises is shown in Figure 8b by grouping
the noise level from 0.12 to 0.2. We note that at the low noise level, the overall performance
starts to decrease at | = 6 and there does not exist a significant change in performance
when it comes to the high noise, although | = 4 and I = 5 have a higher median. Figure 9a
displays the overall short-term memory performance subject to low filter thresholds by
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grouping the threshold from 4 to 22 and Figure 9b displays the performance subject to
high filter thresholds by grouping the threshold from 24 to 58. In both of them, we have
witnessed a slight decrease in performance from ! = 6. The cutting points of ‘low” and ‘high’
in the above cases are chosen based on the patterns shown in Figures 3 and 4. However, if
we investigate the performance subject to individual filter thresholds, it could look very
different from what is shown in Figure 9. For instance, in Figure 10, at fy = 46 the best
median is achieved at | = 7 whilst at fy = 18 there is a decrease in performance after [ = 6
which is similar to the overall result (Figure 9a). This may raise the possibility that different
sizes of astrocytic coverage might optimize the performance at different spatial frequencies.
However, we need to point out that the number of data at individual thresholds is limited
and therefore, the difference may not be as considerable as shown in the figures.

oL ] - _ _ _
T 11 o« T T T T T T
098 A ose | ‘ I !
096 | 1 084 -
| ! T
094l | | | | | i 092
g | | ! | | | 3
§ 092 | | L | | | 1 g oo
g | e ; ! | | | g
5 0ol L * + L | | I Soest
¢ | | ! ¢ | I
| | 0.86 | | |
088" 1 | ‘ [ \ ‘ } ‘ | ‘ |
| | 084 | | } | | | | .
085 |- | ! | | | ‘ | ‘ |
| €L 0.82 | | } | | | I Lo
|
084 €L | | | !
+ M 08 | 1 L i € + L +
2 3 4 5 6 7 8 9 2 3 4 5 6 7 9
Astrocytic coverage Astrocytic coverage
(a) Low noise (b) High noise

Figure 8. Short-term memory performance subject to low and high salt-and-pepper noises. The
horizontal axis denotes the size of astrocytic coverage and the vertical axis denotes the performance
score Cp. At the low noise level, the performance starts to decrease from [ = 6; at the high noise level,
there does not exist a significant change in performance, although the medians are slightly different.
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Figure 9. Short-term memory performance subject to low-pass filter with low and high thresh-
olds. The horizontal axis denotes the size of astrocytic coverage and the vertical axis denotes the
performance score Cp. Both figures demonstrate a decline in performance from [ = 6.
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Figure 10. Short-term memory performance subject to two individual filter thresholds. The horizontal
axis denotes the size of astrocytic coverage and the vertical axis denotes the performance score Cp,. At
individual thresholds, fy = 18 is similar to the overall performance of the low thresholds; the highest
median of fy = 46 is achieved at! = 7.

We also observe that for a large astrocytic coverage, | = 8 for instance, a shorter
time interval between training and testing tends to outperform a longer one when most
of the frequency components have been included (Figure 11 right-end). Conversely, the
performance barely changes with respect to a small astrocytic coverage such as | = 4
(Figure 12). For high filter thresholds, a longer time interval will result in more activated
astrocytes as a result of calcium diffusion. However, a smaller astrocytic coverage has
relatively little impact on the firing patterns of neurons at the testing stage because each
astrocyte controls fewer neurons. Conversely, a bigger coverage will result in the over-firing
of neurons in that more neurons that should not be activated have been activated, which
decreases the performance. The above analysis is supported by the calcium patterns of
astrocytes with different astrocytic coverage sizes and time intervals between training and
testing shown in Figure 13. For relatively low filter thresholds, the firing pattern remains
largely unchanged because of smoothing, as demonstrated previously.

0.08 |

test noise
test noise
o

filter threshold filter threshold

(@) ta =2s,t, =2.3s (b) t, = 1.5s,t, = 1.8s

Figure 11. The performance score C,, with different starting time t, with [ = 8. In each sub-figure, the
vertical axis denotes various levels of the salt-and-pepper noise at the testing stage. The horizontal
axis denotes the threshold fj (increased by 2 units) of the low-pass filter. The right-end of (a) is darker
than (b) and the remaining regions are nearly the same.
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Figure 12. The performance score C,, with different starting time t, with [ = 4. In each sub-figure, the
vertical axis denotes various levels of the salt-and-pepper noise at the testing stage. The horizontal
axis denotes the threshold fj (increased by 2 units) of the low-pass filter. The performance is barely
affected by the time interval.

250 250
10 10

200 200
20 20
30 30

150 150
40 40

100 100
50 50
60 60

50 50
70 70

0 0

10 20 30 40 50 60 70 10 20 30 40 50 60 70

(@)1 =8,tp =2s (b)1=8,t, =15s

10

20

30

40

60

70

[ 0
10 20 30 40 50 60 70 10 20 30 40 50 60 70

(c)i=4,tp=2s (d)1=4,t=15s

Figure 13. Calcium patterns of astrocytes with different astrocytic coverage areas and time intervals
between training and testing. Here, we use fy = 58 and noise level equal to 0.2 as an example.

4. Discussions
In light of the results shown in Figures 3, 4, 9 and 10, there are two hypotheses that
may sound plausible:

1.  Astrocytes may adjust their coverage areas in response to the change in spatial fre-
quencies in order to optimize the short-term memory.
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2. Different astrocytes may have different coverage areas in order to process different
frequency components in order to optimize the short-term memory.

To the best of our knowledge, these open questions have not been given enough
consideration yet and therefore, our work aims to raise the awareness of these plausible
relations so that interested researchers may test and verify them in laboratory. Hypothesis 1
and 2 are not identical but they are somehow similar and could co-exist. As shown in
Figures 9 and 10, although the majority of I = 4 outperforms | = 7, at some specific
thresholds (fy = 46 for instance) I = 7 gives a slightly better performance. This may
raise an open question for experimentalists to validate whether astrocytes adjust their
coverage areas in response to the changing spatial frequencies (hypothesis 1), or whether
different astrocytes have different coverage areas (hypothesis 2), so as to assist the short-
term memory. More precisely, it may be plausible to hypothesize that individual astrocytes
are free to select from a wide range of coverage areas in order to optimally process the
spatial information containing diverse frequency components; or at a particular time point,
individual astrocytic modules, in which all astrocytes have identical coverage, process
some particular frequency components and hierarchically summarize the information to
achieve the optimal short-term memory. In all, one is interpreted from a dynamic viewpoint
and the other one from a static viewpoint, but they do not contradict with each other. The
former one may also help to explain the findings that the astrocytic coverage of synapses
is highly dynamic. Additionally, over the last decade, emerging evidence has shown
that astrocytes actively participate in the brain energy mechanisms and potentially assist
the energy-efficient coding of neuronal circuits [73-75]. It is reasonable to reckon that a
compactly connected astrocytic network tends to consume more energy, therefore it seems
plausible that a sparse layout could become more favorable so long as the precision is not
considerably compromised. The results may provide a new perspective for those who
study the roles played by astrocytes in the cerebral energy-efficiency.

In regards to the small noise level, on the whole, a small astrocytic coverage tends to
outperform a big one irrespective of the filter threshold. This may indirectly support the
experimental result that the increasing density of astrocytes enhances short-term memory
performances [47]. The comparison of I = 2,] = 3 and | = 4 also raises the potential to
study whether over-crowded astrocytes will have negative effect on short-term memory
for biologists.

As for the relatively high noise level, it appears that the performance score remains
relatively low in a threshold interval and the more noisy the image is, the wider the interval
is. We suppose the phenomenon is due to the fact that a higher salt-and-pepper noise
distorts the original image more massively and the image decomposes into more frequency
components (including many high frequencies). A relatively high filter threshold retains
these frequencies (as a result of noise) which leads to a decrease in performance.

Finally, the sensitivity to the filter threshold also validates the necessity of introducing
convolutional layers in spiking neural networks [76-78] for pattern recognition tasks
because the idea of introducing filters is to extract the local patterns such as curves and
straight lines.

One open question is whether the pattern displayed in Figure 3 will scale up with the
size of the input image. Namely, when the size of the input is scaled up or down, whether
the same pattern will be observed when the astrocytic coverage alters with the same ratio.
This may shed light on the correspondence between the size of the input image and the
astrocytic coverage.

To summarize, in this work, we leveraged a computational neuron—astrocyte model
for short-term memory that has been recently developed to study the impact of astrocytic
coverage and spatial frequencies on short-term memory. We demonstrated a shift in the
performance of the short-term memory under different filter thresholds as the astrocytic
coverage size is altered. We also raised two hypotheses about the potential relationship
between astrocytic coverage, spatial frequencies and short-term memory. These hypotheti-
cal results emerged from several experimental facts which show that the rearrangement
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of the structural interactions between synaptic elements and perisynaptic astrocytic pro-
cesses alters the efficacy of neurotransmitter transport and gliotransmitter release, thereby
inducing changes in the synaptic gain and long-term potentiation induction [79,80]. How-
ever, the role of astrocytic morphological plasticity in memory processes required further
experimental evaluation including cellular and in vivo studies. In particular, different
genetic-interference strategies which impact plasticity of structural interactions between as-
trocytes and synapses can be used to monitor memory impairments in animal studies [53].
We expect that the article can bring these unattended aspects to biologists” attention as a
better understanding of this topic may pave the way for some transformative findings as to
how neurons and glial cells adapt their behaviors in response to the external stimuli.
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