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Purpose: Magnitude-based fitting of chemical shift–encoded data enables pro-
ton density fat fraction (PDFF) and R∗2 estimation where complex-based meth-
ods fail or when phase data are inaccessible or unreliable. However, tradi-
tional magnitude-based fitting algorithms do not account for Rician noise,
creating a source of bias. To address these issues, we propose an algorithm
for magnitude-only PDFF and R∗2 estimation with Rician noise modeling
(MAGORINO).
Methods: Simulations of multi-echo gradient-echo signal intensities are used
to investigate the performance and behavior of MAGORINO over the space of
clinically plausible PDFF, R∗2, and SNR values. Fitting performance is assessed
through detailed simulation, including likelihood function visualization, and in
a multisite, multivendor, and multi-field-strength phantom data set and in vivo.
Results: Simulations show that Rician noise–based magnitude fitting outper-
forms existing Gaussian noise–based fitting and reveals two key mechanisms
underpinning the observed improvement. First, the likelihood functions exhibit
two local optima; Rician noise modeling increases the chance that the global
optimum corresponds to the ground truth. Second, when the global optimum
corresponds to ground truth for both noise models, the optimum from Rician
noise modeling is closer to ground truth. Multisite phantom experiments show
good agreement of MAGORINO PDFF with reference values, and in vivo exper-
iments replicate the performance benefits observed in simulation.
Conclusion: The MAGORINO algorithm reduces Rician noise–related bias
in PDFF and R∗2 estimation, thus addressing a key limitation of existing
magnitude-only fitting methods. Our results offer insight into the importance
of the noise model for selecting the correct optimum when multiple plausible
optima exist.
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1 INTRODUCTION

In recent years, chemical shift–encoded MRI (CSE-MRI)
has emerged as the leading method for quantifying
proton density fat fraction (PDFF), an accurate and
“confounder-corrected” biomarker of tissue fat content.1–4

PDFF measurements are now established for the assess-
ment of hepatic steatosis5–7 and are used increasingly for
other applications including the pancreas, muscle, and
bone marrow.8–13 Chemical shift–encoded MRI typically
makes use of gradient echo–based acquisitions, which
have the advantage that R∗2 measurements can be extracted
simultaneously, enabling quantification of iron or cal-
cium.12,14–16 Gradient echo–based CSE-MRI is therefore a
flexible way to quantify a variety of biologic and patholog-
ical processes.

Chemical shift–encoded MRI relies on the fact that
fat and water have different resonant frequencies, and
therefore develop time-dependent phase differences in
an MRI experiment. These differences in phase can be
exploited using complex-based fitting methods, which uti-
lize the phase of the MRI signal to separate the fat and
water signals.1–3,17–21 Complex fitting also offers an accu-
rate method to measure R∗2,14 and avoids the need for
procedures such as baseline fitting, in which an additional
parameter is introduced into the model to capture the
noise floor,22,23 or truncation, whereby data from longer
TEs are discarded,24,25 which have otherwise been used to
avoid noise-related bias at high R∗2 values. However, com-
plex signal-based fitting methods may suffer from inaccu-
racies in field-map estimation and phase errors, may fail in
areas of large B0 inhomogeneity, and require phase data to
be accessible and reliable. Although this may be realistic
in a research setting, it can be challenging in multicenter
studies and in standard care, where sites may not all have
access to expensive research agreements or dedicated soft-
ware packages (this may particularly apply in countries or
regions with less funding). This limits the feasibility and
increases the cost of using these measurements in clinical
trials and standard care.

An alternative, potentially simpler approach is
magnitude-based fitting,26–28 whereby the phase is dis-
carded. However, existing signal magnitude–based fitting
fails to consider the Rician distribution of noise, lead-
ing to inaccuracies in the estimation of both PDFF
and R∗2.

To address the vulnerability of magnitude-based fitting
to Rician noise, we propose MAGORINO (magnitude-only
fat fraction and R∗2 estimation with Rician noise modeling),
a new fitting algorithm combining (1) Rician noise–based
likelihood optimization based on the signal magnitude and
(2) two-point search of the likelihood function to ensure
that both global and local optima are explored.

2 THEORY

2.1 Tissue and noise models

With a gradient echo–based CSE-MRI acquisition, assum-
ing that the fat and water signals have equal phase at t = 0
(a reasonable assumption for multi-echo gradient-echo
sequences), the noise-free complex signal S acquired at TE
t can be modeled as

S (t | 𝜌W ,𝜌f ,R∗2, fB) =
(

𝜌W + 𝜌F
∑M

m=1rm exp
(

i2𝜋fF,mt
))

exp (i2𝜋fBt) exp
(
−tR∗2

)
,

(1)
where 𝜌W and 𝜌F are the amplitudes of water and fat
components; fF,m is the frequency of each spectral fat com-
ponent; rm is the relative amplitude of each spectral fat
component; M is the total number of fat components; fB
is the frequency offset due to B0 inhomogeneity; and R∗2 =
1∕T∗2 (s−1) is an unknown relaxation constant. The stan-
dard approach is to assume that the relative amplitudes
and frequency offsets of each fat component are known a
priori; therefore, the unknown parameters are 𝜌W , 𝜌f , fB,
and R∗2.

With the addition of complex Gaussian noise, the mea-
sured signal S′ is modeled as

S′
(

t|𝜌W ,𝜌f ,R∗2, fB, 𝜎
2) = S

(
t|𝜌W , 𝜌f ,R∗2, fB

)

+ N
(
0, 𝜎2) + iN

(
0, 𝜎2)

, (2)

where N
(
0, 𝜎2) is Gaussian noise present in both

real and imaginary channels, and 𝜎
2 is the noise

variance.
For a single measurement, the log likelihood for the

measured signal is given by

log L
(

S′, S|𝜎2) = −2 log
(√

2𝜋𝜎2
)

− |S′ − S|2

2𝜎2 . (3)

For a set of measured signals, the log likelihood
becomes

log L
({

S′i
}
, {Si}

|
|
|
𝜎

2) = −2n log
(√

2𝜋𝜎2
)

−
n∑

i=1

|S′ − S|2

2𝜎2 , (4)

where
{

S′i
}

is the set of measured signals; {Si} is the cor-
responding set of predicted signals based on the parameter
estimates; and n is the number of measurements (double
the number of TEs for complex data, or the number of TEs
for magnitude data).

The second term is the sum of squared errors (SSE)
divided by 2𝜎2. The maximum value for Equation (4)
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BRAY et al. 1175

therefore corresponds to the minimum SSE value, mean-
ing that the maximum likelihood estimate can be obtained
minimizing the sum of squared errors (SSE), which is the
widely used nonlinear least-squares approach.

Having estimated 𝜌F and 𝜌W , the PDFF is calculated as

PDFF = 𝜌F

𝜌F + 𝜌W
. (5)

For the signal magnitude, the noise-free signal in
Equation (1) becomes

M
(
t | 𝜌W ,𝜌f ,R∗2

)
=
|
|
|
|
|
|

𝜌W + 𝜌F

M∑

m=1
rm exp

(
i2𝜋fF,mt

)
|
|
|
|
|
|

exp
(
−tR∗2

)
, (6)

with only three unknown parameters (𝜌W , 𝜌f , and R∗2).
The corresponding noisy signal becomes

M′ (t | 𝜌W ,𝜌f ,R∗2, 𝜎
2) = M

(
t |𝜌W ,𝜌f ,R∗2

)
+ NR

(
0, 𝜎2)

, (7)

where NR
(
0, 𝜎2) denotes Rician noise, and 0 and 𝜎

2

denote the mean and variance of the underlying complex
Gaussian distribution. Importantly, this distribution has a
nonzero mean that depends on 𝜎

2
.

Under Rician noise, the assumption of nonlinear least
squares that the minimum SSE corresponds to the maxi-
mum likelihood no longer holds, and parameter estimates
obtained in this way are subject to a noise-related bias
arising from the nonzero mean of Rician noise.

To address this problem, parameter estimates can be
obtained directly by maximizing the log likelihood:

log L
({

M′
i

}
, {Mi}

|
|
|
𝜎

2
)

=
n∑

i=1

[

log
M′

i

𝜎2 −
M′2

i +M2
i

2𝜎2

× log I0

(
M′

i+Mi

𝜎2

)]

,

(8)
where

{
M′

i

}
is the set of measured magnitude signals at

different TEs; and {Mi} is the corresponding set of pre-
dicted magnitude signals, where I0 is the zeroth-order
modified Bessel function of the first kind.

Note that this optimization needs to be performed with
sigma estimated a priori;29–35 although it is possible to
estimate sigma as a floating parameter in a “one-step” fit-
ting process, this leads to underestimation in low SNR
and/or high R∗2 voxels. This underestimation arises due
to overfitting, as the optimizer can increase the likeli-
hood by simultaneously reducing sigma and minimizing
SSE. Underestimation of sigma effectively increases the
SNR estimate toward the Gaussian regime and reduces the
effect of the Rician noise model.

A priori sigma estimation can be achieved in mul-
tiple ways, including by acquiring multiple realizations
of the same image or from the signal intensities within
a homogenous region of interest (ROI).29–35 The latter
approach has the advantage that an additional acquisition
is not required but has the disadvantage that it can be sus-
ceptible to spatial inhomogeneity in the ROI (also note
that the previous approach of estimating sigma from back-
ground is not commonly used now, as it can be inaccurate
with parallel imaging).

To address this susceptibility to inhomogeneity in the
ROI, we propose an extension to the ROI-based method,
in which fitting with floating sigma is performed in the
individual voxels within an ROI with good SNR (ie, in
the Gaussian regime, where sigma can be estimated accu-
rately), before performing fitting with fixed sigma for the
whole image. In vivo, muscle provides an appropriate tis-
sue, providing good SNR, low fat fraction and low R∗2,
enabling sigma estimation. Simulations show that this
approach provides similar sigma estimates to the conven-
tional ROI-based approach but is less vulnerable to spatial
inhomogeneity (Supporting Information Figure S1).

2.2 Dual optima problem
and two-point search method

With magnitude-based fitting, the likelihood function has
two optima: one “true” solution corresponding closely
to the ground truth and one incorrect “swapped” solu-
tion with a PDFF value at the opposite end of the range
(Figure 1). To ensure that both optima are explored, Triay
Bagur et al developed a two-point search method, in which
the fitting is initialized twice: once assuming a pure-water
voxel and once assuming a pure-fat voxel, where the solu-
tion with the lower error is taken as the output for the fit.28

However, this approach can fail in the presence of noise,
because the “true” solution is not always globally opti-
mal (Figure 2). Here, to increase the chance that the true
solution does correspond to the global optimum, we com-
bine this two-point search with optimization of the Rician
likelihood function in Equation (8). It should be noted
that the two-point search method refers to exploration of
the likelihood function and is distinct from the traditional
use of “two-point Dixon,” which refers to the number
of TEs.

2.3 Effect of parallel imaging on noise
distribution

The choice of coil combination method can affect the noise
distribution. If SENSE reconstruction is used, the noise
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1176 BRAY et al.

(A) (B)

(C) (D)

F I G U R E 1 Conceptual illustration of magnitude-only resolution of fat–water ambiguity. The Gaussian likelihood of proton density fat
fraction (PDFF) estimates are shown for water-dominant voxels (PDFF = 20%) (A, C) and fat-dominant voxels (PDFF = 80%) (B, D). A, B,
One-dimensional likelihood plots. C, D, Two-dimensional likelihood plots. The 2D plot shows the color-coded likelihood over the clinically
feasible space of possible PDFF and R∗2 values for a given pair of ground-truth parameter measurements. On the one-dimensional (1D) plots,
ground-truth estimates and the maximum likelihood are shown as red dotted lines and blue dotted lines, respectively. On the 2D plots, the
ground truth, maximum likelihood estimates from 2D PDFF/R∗2 grid search (MLE grid search), and local likelihood optima (ie, the likelihood
peak that is not globally optimum) are shown as black and white diamonds, respectively. For both water-dominant and fat-dominant voxels,
there are two likelihood maxima occurring at low PDFF and high PDFF; in each case, the true (nonswapped) maximum can be identified on
the basis that it has higher likelihood than the swapped solution, and thus the chosen solutions from the fitting correspond closely to the
ground truth

properties are equivalent to those of a spatial matched
filter reconstruction (which is the optimal coil combina-
tion with a maximized SNR of the resulting image), and
a Rician distribution is expected in the magnitude data.36

If a sum-of-squares reconstruction is used, the distribu-
tion is noncentral chi.36 In this case, the assumption of
Rician noise is violated but remains a more appropriate
approximation than the assumption of Gaussian noise. We
suggest that any fitting method should be implemented
with knowledge of the reconstruction method. However,
an appropriate spatial matched filter–based or SENSE
reconstruction should be available on most modern
scanners.

3 METHODS

3.1 Simulation experiments

3.1.1 Fitting implementation

We implement and compare three fitting algorithms: (1)
magnitude fitting with Gaussian noise model, which is
an equivalent implementation of the “MAGO” algorithm
described by Triay Bagur et al28; (2) magnitude fitting with
Rician noise model; and (3) complex fitting implemen-
tation including estimation of fB. Each method is imple-
mented twice using two different start points (ie, using
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BRAY et al. 1177

F I G U R E 2 Conceptual
illustration of failure in
magnitude-only resolution of
fat–water ambiguity in the
presence of noise. A, B, The
Gaussian likelihood of
fat-fraction estimates for a truly
water-dominant voxel
(PDFF = 20%) is shown in 1D
(A) and in 2D (B). In this case,
the swapped (incorrect) PDFF
maximum has a higher
likelihood than the true
(nonswapped) solution, leading
the algorithm to select the
wrong solution. In the 1D plot,
this manifests as a reversal in
the size of the two likelihood
peaks, whereas in the 2D plot it
manifests as a swap in the
positions of the MLE and local
optimum (ie, the black and
white diamonds have swapped
position compared with
Figure 1C)

(A) (B)

a “two-point search” method); fitting is therefore run 6
times in total for each voxel. The initial values of 𝜌W (for
water-dominant initialization) and 𝜌f (for fat-dominant
initialization) are set to the maximum signal magnitude
from the multi-echo data, max

t
∣ St ∣, multiplied by a con-

stant C. The constant C compensates for reduction in
the signal magnitude due to R∗2 decay and chemical shift,
and avoids the need for empirical manual adjustment of
initial values depending on scanner gain, as performed
in Triay Bagur et al.28 Here, we use C = exp

(
tSmaxR∗2init

)
,

where tSmax is the TE corresponding to the maximum sig-
nal magnitude, and R∗2init is the initialization R∗2 value.
Specifically, for water-dominant initialization, the initial
values are

{
𝜌w, 𝜌f ,R∗2

}
=
{

C ∗ maxt ∣ St ∣, 0.001, 0.1ms−1};
and for fat-dominant initialization, the initial values
are

{
𝜌w, 𝜌f ,R∗2

}
=
{

0.001,C ∗ maxt ∣ St ∣, 0.1ms−1}. Each
of these parameters is assigned a lower bound of 0, and R∗2
is assigned an upper bound of 2 ms−1. For complex fitting
during implementation, fB is correctly initialized at fB = 0
and is not constrained with either upper or lower bounds.
All fitting is performed by maximization of likelihood
functions (equivalent to minimization of error functions
under Gaussian noise); this approach ensures consistency
across noise models (the error function is not defined for
the Rician case). For each of the three methods, the solu-
tion providing the highest likelihood is chosen as the fit
output.

The frequency offsets and relative amplitudes for the
multipeak fat spectrum are matched to those used in Triay
Bagur et al28 and Hernando et al37 (ie, frequency shifts
relative to the water peaks of −3.90, −3.50, −2.70, −2.04,
−0.49, and+0.50 ppm and relative amplitudes of 0.087,
0.694, 0.128, 0.004, 0.039, and 0.048).

To mimic the proposed extension for sigma estimation
(detailed in section 2.1), we first implement Rician fitting
with 𝜎 included as floating parameter in the model (max-
imization of Equation [8]) in 100 simulated pure-water
voxels with low R∗2 (which have good SNR for each TE,
meaning that sigma can be estimated accurately) before
fitting the full set of simulated voxels with the sigma esti-
mated from the first step fixed. The choice of 100 voxels
approximately matches the size of a typical ROI in vivo,
and the use of pure-water, low R∗2 voxels mimics the prop-
erties of muscle, which we use to estimate sigma in vivo.
To compensate for slight overfitting (and underestimation
of sigma), we use a simulation-derived correction factor
k = 1.163. Details on the derivation of k are found in Sup-
porting Information Figure S1. Subsequent fitting of the
whole image is performed with sigma fixed to the estimate
from the first step.

All fitting is performed in MATLAB 2020a (Math-
Works, Natick, MA) using the fmincon minimizer with an
interior point algorithm on an Apple iMac with 3.8-GHz
8-Core Intel i7 processor. The processing time for both
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1178 BRAY et al.

MAGORINO and MAGO was approximately 0.01 s per
voxel, and approximately 20 min for a 320× 320 image
slice.

3.1.2 Experiment design

To determine the effect of varying PDFF and R∗2 on param-
eter estimation, simulations were performed across a
dense grid of PDFF and R∗2 combinations, with PDFF
values between 0% and 100% (at 2% intervals) and R∗2
values between 0 and 1 ms−1 (at 0.1 ms−1 intervals). For
each PDFF/R∗2 combination, 1000 noise-free signals were
simulated using Equation (1) and sampled at TEs cor-
responding to a typical in vivo protocol at 3 T using the
shortest available TEs (TE1 = 1.1 ms and ΔTE = 1.1 ms).28

Gaussian noise was added to the noise-free signals in both
the real and imaginary channels according to the SNR. The
simulations were performed at “typical SNR” for a 3T pro-
tocol in vivo (SNR = 60)28 and at “low SNR” (SNR = 20).
Two-point Gaussian magnitude fitting (MAGO), Rician
magnitude fitting (MAGORINO), and complex fitting
were then applied to the noisy signals to obtain PDFF and
R∗2 estimates.

Algorithm performance was assessed in three
domains: (1) parameter error, specifically the mean error
on PDFF, R∗2, and S0 estimates, where S0 = 𝜌f + 𝜌w; (2)
parameter SD for PDFF, R∗2, and S0; and (3) fitting error,
assessed in terms of (i) the sum-of-squared error (SSE), (ii)
the sum-of-squared error relative to the noiseless signal
generated directly from the ground truth parameter val-
ues in the simulation, referred to here as the “true SSE”,
and (iii) the estimated SSE of the noise compared with
the true noise SSE. Note that (ii) and (iii) inform on the
degree of overfitting, which results in an increase in true
SSE and a reduction in the estimated noise. Note also that
high performance in PDFF estimation should produce
both low parameter error and low SD, and that in some
cases consistently poor performance (consistent fat–water
swaps) can produce low SD.

3.1.3 Interrogation of specific PDFF/R∗2
combinations

To gain further insights into the differences in behavior
between Gaussian and Rician fitting, we selected spe-
cific PDFF/R∗2 combinations showing larger error for more
detailed analysis. Specifically, for the chosen PDFF/R∗2
combinations, the parameter estimates from fat-dominant
and water-dominant initializations were displayed for
each simulation instantiation using (1) fit success his-
tograms and (2) likelihood difference plots. The fit success
histograms show the frequency of parameter estimates

over all simulation instantiations, displayed on a his-
togram relative to the ground truth. The likelihood dif-
ference plots are scatterplots in which the parameter
estimates are plotted against the difference in likeli-
hood for the fat-dominant and water-dominant initializa-
tions. Assuming that the initialization functions correctly
(and both fat-dominant and water-dominant optima are
obtained from the fits), there are two main possibilities
that can be captured by the likelihood difference plot:
(1) The water-dominant solution is more likely than the
fat-dominant solution, resulting in a positive likelihood
difference for a low PDFF estimate; or (2) the fat-dominant
solution is more likely than the fat-dominant solution,
resulting in a negative likelihood difference for a high
PDFF estimate. Additionally, there are several further
possibilities that can occur if the optimization unexpect-
edly finds the opposite optimum to its initialization (ie, a
fat-dominant optimization finds a water-dominant solu-
tion, or vice versa). These are (3) both initializations find
the same local optimum, resulting a likelihood difference
of 0; or (4) both initializations find the wrong local opti-
mum, resulting in a “reversed” likelihood difference such
that a water-dominant solution has negative likelihood dif-
ference or a fat-dominant solution has a positive likelihood
difference.

We also generated PDFF/R∗2 scatterplots to investigate
the distribution of R∗2 values arising from the true and
swapped likelihood optima.

3.1.4 Likelihood function visualization

To gain deeper insights into the behavior observed using
fit success histograms and likelihood difference plots, we
computed and visualized the likelihood functions for the
chosen PDFF/R∗2 combinations. First, noise-free data were
simulated based on the PDFF/R∗2 values chosen for inter-
rogation, and Gaussian noise was added in real and imag-
inary channels. A grid of “candidate” PDFF/R∗2 values was
generated (PDFF 0%–100% and R∗2 0–1000 s−1), and the
likelihood at each point on the grid was computed based
on Equations (3) and (8). This 2D likelihood plot was dis-
played using a colormap, enabling identification of “true”
optima (corresponding closely to the ground truth) and
swapped optima (typically with a PDFF in the opposite
half of the range to the ground truth).

Having generated the 2D likelihood plot, the noisy
complex signal was passed to the fitting algorithm as
done previously. The positions of the two candidate solu-
tions (arising from fat-dominant and water-dominant ini-
tializations) were recorded and displayed on the like-
lihood function, with the chosen solution highlighted.
The paths taken by the optimizer for both initializations
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BRAY et al. 1179

were also displayed. A further estimate of the global opti-
mum was obtained using a search over the generated
2D grid of likelihood values. Note that the values from
this search will generally be close to but not exactly
match the values obtained from the fitting, because the
2D nature of the search means that the value of S0 is
fixed; this provides a useful simplification that reduces
the degrees of freedom and thus reduces the potential for
overfitting.

3.1.5 Sigma uncertainty

To assess the impact of inaccuracies in sigma on PDFF/R∗2
estimation, the simulations described in section 3.1.2 were
repeated with inaccurate sigma assumptions. Specifically,
the simulations were performed with a 30% overestimate
and a 30% underestimate and compared against the simu-
lations performed with accurate sigma estimates. Note that
these are relatively large sigma errors that are greater than
those expected based on simulation data (see Supporting
Information S1), thus providing a relatively conservative
measure of the robustness of the method.

3.2 Phantom experiments

To ensure the feasibility of MAGORINO-based fitting
on a range of scanners, MAGORINO was evaluated
in a publicly available multisite, multivendor, and
multi-field-strength phantom data set.37 Full details of the
phantom data set are given in Hernando et al.37 Briefly,
the data set consists of fat–water mixtures with known
varying fat fraction, scanned at 1.5 T and 3 T at six cen-
ters (two centers each for GE, Philips, and Siemens). Data
acquisition was performed using each site’s version of
a multi-echo 3D spoiled gradient-echo CSE sequence,
with two different protocols (each performed at 1.5 T
and 3 T) used to test the reproducibility across different
acquisition parameters. Protocols 1 and 2 were performed
at 1.5 T, and protocols 2 and 4 were performed at 3 T.
Protocols 1 and 3 generated approximately in-phase and
opposed-phased echoes, whereas protocols 2 and 4 used
the shortest echoes achievable. To obtain PDFF measure-
ments, circular ROIs were manually placed on each of the
vials by a radiologist (EL). The MAGORINO algorithm
was implemented as described previously, and sigma
was estimated a priori using fitting from the 0% PDFF
vial, again using the simulation-derived correction factor
k = 1.163 to compensate for slight overfitting. The rela-
tionship between PDFF estimates and references values
was assessed using linear regression for both MAGORINO
and MAGO.

3.3 In vivo imaging

To evaluate the feasibility of MAGORINO in vivo, we
imaged the pelvis and lower legs of 2 healthy volunteers.
These scans were performed with institutional review
board approval (Queen Square Research Ethics Commit-
tee, London, REC 15/LO/1475), and both subjects pro-
vided written informed consent. The data were acquired
on a 3T Philips Ingenia system using a multi-echo 3D
spoiled gradient-echo sequence with monopolar readouts
and flyback gradients (TE1 = 1.2 ms, ΔTE = 1.6 ms, flip
angle = 5◦, TR = 25 ms, matrix size = 320× 320, and pixel
spacing = 1.8 × 1.8 mm). Coil combination was performed
using SENSE (factor 1). The MAGORINO algorithm was
implemented as described previously, and sigma was esti-
mated from homogenous regions of muscle close to the
tissues of interest. To provide a qualitative performance
assessment, the images were assessed and compared by a
consultant radiologist with 9 years of MRI research expe-
rience. To provide a quantitative performance assessment,
particularly focusing on high R∗2 tissues (where perfor-
mance is expected to diverge from MAGO), we evaluated
differences between parameter estimates in bone marrow
and cortex, which are healthy tissues that have high R∗2.
To enable a direct comparison between the in vivo data
and the predictions of simulation, simulations were rerun
using the same PDFF and R∗2 values observed in the in vivo
data. Bias was determined for Gaussian fitting relative to
Rician fitting for both in vivo and simulation data.

4 RESULTS

4.1 Simulations

Results of the simulation experiments are shown in
Figure 3 and Supporting Information Figures S2–S4.
Figure 3 shows the parameter error; Supporting Informa-
tion Figure S2 shows the parameter SD; and Supporting
Information Figure S3 shows the fitting error on PDFF,
R∗2, and S0 at good SNR. Supporting Information Figure S4
shows the parameter error for low SNR. The subsequent
analysis for specific “interrogated” PDFF/R∗2 combina-
tions, using fit success histograms, likelihood difference
plots, and likelihood function visualization, is shown in
Figures 4–7.

4.1.1 Parameter error

Figure 3 shows the mean error on PDFF, R∗2, and S0 relative
to the ground-truth values. Note that, for fat fraction esti-
mates (top row), areas of positive error at low fat fraction
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1180 BRAY et al.

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

F I G U R E 3 Parameter error is lower for Rician than for Gaussian fitting. The plots show the color-coded error in PDFF (A–C), R∗2
(D–F), and S0 (G–I) estimates for each combination of PDFF and R∗2 values over all simulations, with SNR = 60. For fat-fraction
measurements (top row), Gaussian fitting suffers from fat-water swaps as R∗2 increases, particularly in the low PDFF range (producing the
bright yellow area at the top of [A]). This problem is substantially mitigated using Rician fitting (B), which approaches the performance of
complex fitting (C), although with a tradeoff of some increase in error at high PDFF and high R∗2. At low R∗2, both Gaussian and Rician
magnitude fitting (A, B) show lower error in PDFF than complex fitting (C); the figures below show that this is because complex fitting does
not reach the true (nonswapped) likelihood maximum in every case, resulting in a small positive bias and increase in parameter SD. D–F, For
R∗2 measurements (second row), Rician fitting (E) substantially reduces the negative bias occurring at high R∗2 values for Gaussian fitting (D),
with similar performance to complex fitting (F)

and negative error at high fat fraction arise predominantly
from fat–water swaps.

For PDFF measurements (top row) at low R∗2 (left edge
of plots), all three algorithms show minimal bias over the
full range of PDFF values. For higher R∗2 values, Gaus-
sian fitting shows a substantial positive bias in PDFF

measurements for PDFF values < 50% with R∗2 > 400 s−1

(see top-right quadrant of Figure 3A), indicating frequent
fat–water swaps. Rician and complex fitting both substan-
tially reduce this bias (upper-right quadrant of Figure 3B).
A caveat is that, for Rician fitting, there is a small increase
in bias at high fat fraction and high R∗2 (bottom-right
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BRAY et al. 1181

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

F I G U R E 4 PDFF error arises from incorrect selection of the correct optimum-fit success histograms. Each plot shows the frequency of
fat-fraction estimates relative to the ground-truth value. All plots were generated with PDFF = 20%, while three different R∗2 values (0.0, 0.3,
and 0.5 ms−1) were used to demonstrate the effect of varying R∗2, with each R∗2 value on a separate row. Plots have been generated for Gaussian
fitting (A, D, G), Rician fitting (B, E, H), and complex fitting (C, F, I). For Gaussian fitting, as R∗2 increases, the likelihood of the swapped
solution arising increases, but this increase is mitigated by the use of Rician or complex fitting. For Gaussian fitting, at high R∗2, most of the fitted
solutions are incorrected (swapped) (E), whereas most of the solutions are correct (nonswapped) for Rician fitting (H) and complex fitting (I)

quadrant of Figure 3B). Complex fitting with fB fixed
(Figure 3D) almost eliminates the bias observed with the
first three methods except for R∗2 values close to 1000 s−1.

For R∗2 measurements (middle row), Gaussian fitting
carries a substantial negative bias in R∗2 measurements,
which is most severe at high R∗2 and in the intermediate
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1182 BRAY et al.

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

F I G U R E 5 PDFF error arises from incorrect selection of the correct optimum-likelihood difference plots. For each plot, the y-axis
shows the difference in likelihood between water-dominant and fat-dominant solutions. A positive likelihood difference indicates that the
water-dominant (low PDFF) solution is more likely, whereas a negative likelihood indicates that the fat-dominant (high PDFF) solution is
more likely. All plots were generated with PDFF = 20%, while three different R∗2 values (0, 300, and 500 s−1) were used to demonstrate the
effect of varying R∗2, with each R∗2 value on a separate row. Plots have been generated for Gaussian fitting (A, D, G), Rician fitting (B, E, H),
and complex fitting (C, F, I). For Gaussian fitting, the incorrect (swapped) solution shows greater likelihood in most simulations at high R∗2
(G), whereas the true (nonswapped) solution shows greater likelihood in most simulations for Rician fitting (H) and complex fitting (I). Note
that in complex fitting, we can sometimes find the same minimum from both fat-dominant and water-dominant initializations, resulting in a
likelihood difference of zero, or find the wrong minima for both initializations, resulting in “reversed” likelihood values (negative at low
PDFF or positive at high PDFF)
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BRAY et al. 1183

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

F I G U R E 6 PDFF error arises from incorrect selection of the correct optimum-likelihood function visualization. To gain further insight
into the behaviors observed in Figures 3–5, likelihood functions (and fitted solutions) were visualized for three R∗2 values (0, 300, and 500 s−1)
with a fixed PDFF = 20%. Each plot shows the color-coded likelihood over the clinically feasible space of possible PDFF and R∗2 values for a
given pair of ground-truth parameter measurements. Plots have been generated for Gaussian fitting (A, D, G), Rician fitting (B, E, H), and
complex fitting (C, F, I). Each plot labels the ground-truth fat fraction and R∗2, maximum likelihood estimate from 2D PDFF/R∗2 grid search
(MLE grid search), local optimum from grid search, likelihood optima from water-dominant and fat-dominant initializations (opt1 and opt2,
with the chosen solution circled as the fit output), and paths on the objective function (path1 and path2 for opt1 and opt2, respectively). Note
that all three methods arrive at the true (nonswapped solution) for R∗2 = 0 and R∗2 = 300, but at R∗2 = 500 only Rician and complex fitting
correctly resolve the fat-water ambiguity. Note that there is a small discrepancy between the position of the MLE from the grid search and the
fitting outputs; this arises because the grid search was performed in two dimensions (over PDFF and R∗2 values, to match the dimensions of the
likelihood plot,) whereas the fitting includes Sw and Sf as separate parameters, which is more realistic but leads to a greater degree of overfitting
than the idealized grid search. For complex fitting, note that only the true (nonswapped) optimum is visible on the plots; this is because the
swapped optimum occurs at a different value for fB and is therefore not observed in this 2D grid of likelihood values that effectively has fixed fB

PDFF range. This bias is substantially reduced for by
Rician and complex fitting, with similar performance for
both algorithms.

For S0 measurements (bottom row), the results largely
mirror those of R∗2 error: Gaussian fitting carries a negative
bias at high R∗2 measurements, and the bias is reduced for
Rician and complex fitting.

The benefits of Rician fitting over Gaussian fitting
in terms of reduced bias are even more pronounced

at low SNR, with substantial reductions in bias for
PDFF and R∗2 estimation (Supporting Information
Figure S4).

4.1.2 Parameter SD

Supporting Information Figure S2 shows the SD of PDFF,
R∗2, and S0 estimates.
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1184 BRAY et al.

(A) (B) (C)

(D)

(G) (H) (I)

(E) (F)

F I G U R E 7 The R∗2 error arises from shifts in the position of the optima and incorrect selection of the correct optimum: fit success
histograms (A–C), PDFF/R∗2 scatterplots (D–F), and likelihood plots (G–H). For (A)–(C), the y-axis shows the frequency of R∗2 estimates
relative to the ground-truth value for Gaussian (A), Rician (B), and complex (C) fitting. For (D)–(F), the scatterplots show PDFF and R∗2
parameter estimates. All plots were generated with PDFF = 20%, R∗2 = 700 s−1, and SNR = 60. The histograms show a substantial downward
shift away from the ground-truth R∗2 value for Gaussian fitting; for Rician and complex fitting this bias is substantially reduced, and most
estimates cluster around the ground-truth value. The scatterplots show that there are two separate reasons for the R∗2 bias observed with
Gaussian fitting: (i) fat–water swaps, with the swapped solution having lower R∗2 than the true solution (this can be considered as an “R∗2
swap”); and (ii) a further negative bias for both true and swapped solutions relative to the ground truth and relative to solutions obtained
from Rician and complex fitting. G–I, Likelihood plots for Gaussian magnitude, Rician magnitude, and complex fitting, respectively. For both
Rician and complex fitting, the fit results are closer to the ground-truth solution than for Gaussian fitting. The distance between the MLE and
opt1 is reduced for Rician fitting compared with Gaussian fitting, indicating reduced overfitting. Abbreviation: FF, fat fraction

For PDFF measurements (top row), as R∗2 increases, all
three algorithms show an increase in PDFF SD. Note that
Gaussian fitting shows areas of low-PDFF SD in areas of
frequent swapping (ie, areas of high bias in Figure 3A),
whereas there are no corresponding areas of low-PDFF SD

associated with high bias for either Rician or complex fit-
ting. The PDFF SD is markedly reduced for complex fitting
with fixed fB.

For both R∗2 and S0, parameter variance increases with
increasing R∗2 and is broadly similar between algorithms.
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BRAY et al. 1185

4.1.3 Fitting error

Supporting Information Figure S3 shows the SSE (top
row), “true SSE” (ie, SSE relative to ground-truth parame-
ter estimates) (middle row), and estimated noise SD rela-
tive to the true noise SD (bottom row).

For Gaussian fitting, there is a substantial increase in
the true SSE (Supporting Information Figure 3E) at high
R∗2, which is not seen in the standard SSE value (Sup-
porting Information Figure 3A) and is accompanied by a
reduction in the noise estimate relative to the true noise
(Supporting Information Figure 3I), indicating overfitting.
For Rician and complex fitting, this overfitting is markedly
reduced.

For complex fitting, there are areas of increased SSE,
true SSE, and overestimation of the noise at low R∗2. This
could be eliminated by fixing fB, suggesting incorrect esti-
mation of fB (despite the correct initialization) as a poten-
tial cause. The following likelihood function analyses give
further insight into this behavior.

4.1.4 Interrogation of specific PDFF/R∗2
combinations

Figures 4, 5, and 6 provide further insight into the behavior
of the algorithms for three PDFF/R∗2 combinations corre-
sponding to the top half of the PDFF error plots shown in
Figure 3A–C . All three combinations consisted of a PDFF
of 20%; the R∗2 values were 0, 300, and 500 s−1 (correspond-
ing to the top, middle, and bottom rows, respectively, for
each Figure), which were chosen to illustrate the behavior
observed in Figure 3.

Figure 4 shows fit success histograms illustrating
the frequency at which the two-point Gaussian, Rician,
and complex fitting algorithms find the correct likeli-
hood maximum (optimum) at different R∗2 values. As R∗2
increases, the frequency with which the swapped solution
is selected also increases, but this increase is mitigated
by the use of Rician and complex fitting. For Gaussian
fitting at high R∗2, most of the fitted solutions are incor-
rect (swapped) (Figure 4G), whereas most of the solutions
are correct (nonswapped) for Rician and complex fitting
(Figure 4H,I).

Similarly, Figure 5 plots the difference in likelihood
for the true and swapped solutions from the fitting algo-
rithms against the chosen (higher likelihood) estimate.
Again, as R∗2 increases, the likelihood of the swapped
solution arising increases, but this increase is mitigated
by Rician and complex fitting. For Gaussian fitting, the
incorrect (swapped) solution shows greater likelihood in
most simulations at high R∗2 (Figure 5G), whereas the true
(nonswapped) solution shows greater likelihood in most
simulations for Rician and complex fitting (Figure 5H,I).

Figure 6 shows the likelihood functions obtained for
a single noise instantiation for the three chosen PDFF/R∗2
combinations. At low R∗2 (top and middle rows), all three
methods could identify the true (nonswapped) solution.
However, at higher R∗2 (third row) for Gaussian fitting,
the swapped solution assumes a higher likelihood and
is chosen as the fit output by the MAGO algorithm. For
Rician and complex fitting, the true solution has a higher
likelihood and is chosen as the fit output.

Figure 7 provides insight into the origin of R∗2 error
observed at high R∗2 values, and includes fit success his-
tograms (top row) and PDFF/R∗2 scatterplots (bottom
row). Figure 7A,D shows that Gaussian R∗2 estimates
are negatively shifted relative to the ground-truth value.
Figure 7D shows that this arises as a result of selection
of the swapped optimum and due to a downward shift
in the position of both the true and swapped optimum
relative to the ground truth. For Rician and complex fit-
ting, both the number of swaps and the negative shift in
the positions of the optima are reduced, contributing to a
reduction in bias. Figure 7G–I shows example likelihood
functions for Gaussian, Rician, and complex fitting at high
R∗2, and offers further insight into the R∗2 bias observed in
Figure 3E–H and Figure 7A–F. For Gaussian fitting, there
are two sources of negative bias in R∗2. First, the position
of the true optimum (closest to the ground truth) is neg-
atively shifted relative to the ground truth, as evidenced
by the position of opt1 and the maximum likelihood esti-
mation from grid search. Second, the fit has chosen the
swapped optimum due to its higher likelihood, resulting
in a further downward bias (this can be considered as
an “R∗2 swap”). For Rician and complex fitting, the local
optimum is closer to the ground truth value and has also
been chosen correctly as the fit output, mitigating bias
and accounting for the behavior in Figure 7A–F.

4.1.5 Sigma uncertainty

The accuracy of sigma estimation using three different
methods is shown in Supporting Information Figure S1.
All three methods provide accurate sigma estimates when
sigma is low (ie, when SNR is high). However, the signal
intensity–based method (“ROI sigma”) is less robust to any
inhomogeneity in the ROI, providing evidence for the use
of the fitting-based method in this work. Note that the fit-
ted sigma estimates slightly underestimate sigma due to a
degree of overfitting, but that the use of the correction fac-
tor allowed for very accurate sigma estimation on unseen
simulated data.

The impact of inaccuracies in the estimated sigma
is shown in Supporting Information Figure S5. Even
with relatively large inaccuracies (greater than those
expected from the previous simulations), the performance
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1186 BRAY et al.

(A) (B)

(D) (E)

(F) (G)

(H) (I)

(J) (K)

(C)

F I G U R E 8 Agreement of Rician (MAGORINO) and Gaussian (MAGO) PDFF with reference values on a multisite, multivendor,
multi-field-strength phantom data set. Agreement plots are shown for each of the four protocols, with individual points for each of the six
sites. The black line indicates perfect agreement with reference PDFF values. “Site 7” refers to the repeat scans at site 1. The example images
(A–C) are from site 1, 3T protocol 2, chosen to enable a direct visual comparison with Triay Bagur et al28
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BRAY et al. 1187

(A) (B)

(D) (E)

(G) (H)

(C)

(F)

(I)

F I G U R E 9 Example images of the pelvis (subject 1) for Gaussian fitting (left column) and Rician fitting (middle column). Both
methods produce satisfactory fat–water separation across the image and good-quality R∗2 maps. However, as predicted by the simulations, the
methods diverge in regions of high R∗2/low SNR, which is particularly pronounced in the bone marrow and cortex (red arrows) as well as the
skin. The difference maps (right column) show systematically higher R∗2 values in these regions, whereas differences in PDFF can be both
positive or negative. In accordance with predictions from theory and simulation, Rician-estimated S0 values are higher in regions of high R∗2
but lower in the air surrounding the patient than for Gaussian fitting. Figure 10 provides a more detailed graphical illustration of the
differences in these Rician-regime regions within the bone marrow (the region analyzed is indicated by the red “dashed box” in [C] and [F])

of MAGORINO remains superior to MAGO for almost
all plausible PDFF/R∗2 combinations (the only exception
being high PDFF and high R∗2 voxels, which is a very rare
combination in vivo).

4.2 Phantom experiments

Results of the analysis of the Hernando multisite phan-
tom data set (where the R∗2 values are close to 0) are
shown in Figure 8. The difference image shows excel-
lent voxel-wise agreement among the methods. Median
PDFF values for all 11 phantom vials are plotted against
reference fat-fraction values for all sites, acquisition pro-
tocols, and field strengths. Linear regression results are

found in Supporting Information Table S2 (slope, inter-
cept, and R-squared) for Hernando PDFF, MAGO PDFF,
and MAGORINO PDFF. The results show excellent agree-
ment among the methods, with high accuracy, high lin-
earity, and small bias (reflected in R-squared coefficients
close to 1, slope close to 1, and intercept close to 0). As
expected, the performance of MAGO and MAGORINO is
very similar in this data set, where R∗2 is close to 0.

4.3 In vivo imaging

Images from the 2 subjects are shown in Figure 9 and
Supporting Information Figure S6, and a more detailed
interrogation of the differences in parameter values
between MAGO and MAGORINO is found in Figure 10.
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1188 BRAY et al.

(A) (B)

(C) (D)

F I G U R E 10 The pattern of bias for Gaussian versus Rician fitting in vivo (A, B) is similar to that shown by simulation (C, D) in regions
where Rician noise dominates, suggesting that the simulation experiments can accurately predict performance in vivo. Parameter estimates
obtained for the central region of the image (indicated in Figure 9 by the dotted red line) are shown for subject 1 as 3D scatterplots. The
position of each point is dictated by the PDFF and R∗2 estimates from Rician fitting, and the color of each point represents the bias (Gaussian
estimate–Rician estimate). To facilitate direct comparison with simulation, the in vivo values shown in (A) and (B) were used to simulate and
fit noisy signals, thus generating the plots in (C) and (D). The pattern of bias is very similar for in vivo results (top row) and simulation results
(bottom row), with positive bias in PDFF values < 0.5 and R∗2 above 0.2 for Gaussian fitting and substantial negative bias for Gaussian fitting
at higher R∗2. This suggests that the simulation experiments can accurately predict performance in vivo

Both methods produced satisfactory fat–water separa-
tion across the image and good-quality R∗2 maps. In both
cases, there is some “speckle” in the images but no struc-
tured fat–water swaps. However, as predicted by the sim-
ulations, the methods diverged in regions of high R∗2/low
SNR such as bone marrow and cortex (where proton den-
sity is lower and the presence of calcium hydroxyapatite
causes rapid dephasing). The difference maps in Figure 9
and Supporting Information Figure S6 and the plots in
Figure 10 show that Gaussian R∗2 measurements are nega-
tively biased with respect to Rician R∗2 measurements, and
Figure 10 shows that the pattern of PDFF bias observed in
those high R∗2 tissues is extremely similar to the bias pre-
dicted by simulation experiments. This suggests that the

simulation experiments provide an accurate prediction of
performance in vivo.

5 DISCUSSION

The choice of fitting algorithm for PDFF and R∗2 estima-
tion represents a tradeoff. Complex-based fitting enables
resolution of fat–water ambiguity based on phase data,
has a greater number of datapoints, and avoids Rician
noise–related parameter bias, but dictates that phase infor-
mation must be accessible and reliable (an important
limitation for standard care and clinical trials, where a
range of scanners may be used) and can fail in areas of
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BRAY et al. 1189

large B0 inhomogeneity. Conversely, magnitude-based fit-
ting can be performed without reliable phase data but
suffers from bias due to the Rician nature of the noise dis-
tribution in the magnitude signal and requires fat–water
ambiguity to be solved by another method. The strengths
of the magnitude-based approach have led to its use as
a “final step” in processing of data from multisite stud-
ies37 and recently motivated the development of a pure
magnitude-only algorithm known as MAGO.28 Despite
producing good agreement values with complex-based
fitting, this method still suffers from noise-related bias,
which is an important limitation when imaging at low SNR
and/or high R∗2. Here, we describe a new fitting algorithm
known as MAGORINO that addresses a key limitation
of MAGO, namely, its vulnerability to PDFF and R∗2 bias
arising from the Rician distribution of noise.

The key results of our study are as follows. First,
Rician noise modeling increases the chance that the global
optimum corresponds to ground truth, thus increasing
the chance of finding the “true” solution and produc-
ing more accurate PDFF and R∗2 estimates than with the
erroneous Gaussian noise assumption. The advantage of
MAGORINO over MAGO becomes apparent with increas-
ing R∗2 and/or low SNR, where the performance of MAGO
begins to deteriorate but MAGORINO retains its perfor-
mance. We show that this behavior arises because the dif-
ference in likelihood between the true (nonswapped) and
swapped optima is, on average, greater for MAGORINO
than for MAGO because of the use of Rician noise mod-
eling. The use of the Rician noise model dictates that the
true (nonswapped) optimum is selected by the algorithm
in a greater proportion of cases, resulting in a reduc-
tion in PDFF bias and variance. Furthermore, our results
(Figure 7) demonstrate that the true and swapped maxima
typically occur at different R∗2 values: Effectively, the R∗2
measurement can also be “swapped,” further exacerbating
bias. This problem is also mitigated by the MAGORINO
algorithm.

Second, even when the global optimum corresponds to
the ground truth for both noise models, the optimum from
Rician noise modeling is closer to the ground truth. This
reflects the ability of the Rician noise–based fitting to cor-
rectly attribute the nonzero signal intensities at longer TEs
to noise rather than a reduction decay rate.

Third, we demonstrate the feasibility of using
MAGORINO in phantom data and in vivo. In the phantom
data, MAGORINO showed excellent agreement with ref-
erence values and, as predicted from simulations (because
R∗2 is low in the phantoms), was equivalent to MAGO.
However, in vivo, at higher R∗2 (demonstrated in regions of
bone marrow and cortex), we observed bias in both R∗2 and
PDFF measurements for MAGO relative to MAGORINO,
with a pattern entirely consistent with that predicted by

simulation. This suggests that the simulation experiments
provide an accurate indication of performance in vivo.

The improvement in PDFF and R∗2 quantification pro-
vided by MAGORINO at high R∗2 may be particularly
important when imaging tissues with “native” high R∗2,
such as bone marrow and cortex (particularly at low field
strength/SNR), in pathological states such as iron over-
load, or when using iron-based contrast agents.12,14–16 For
example, in severe iron overload, R∗2 values are typically
greater than .580 s−1 and can be as high as 2000 s−1,38

beyond the upper end of the range of values simulated
in this study, meaning that the biases observed here are
biologically and clinically relevant.

To our knowledge, this is the first study combining
explicit modeling of Rician noise with magnitude-based
fitting for CSE-MRI. Previous studies have investigated the
use of Rician noise and noncentral chi modeling in R∗2 esti-
mation in the liver38,39 but did not consider the effect of
fat, whereas Hernando et al used Rician noise modeling to
suppress chemical shift artifact due to olefinic fat suppres-
sion, but did not apply this to multi-echo gradient-echo
imaging.40 Triay Bagur et al’s MAGO algorithm described
a two-point search approach to magnitude-based fitting
but did not include Rician noise modeling.28 An impor-
tant contribution of our study is that combining two-point
search with Rician noise modeling has a synergistic effect,
particularly with regard to resolution of fat–water ambigu-
ity.

This work has several important limitations in terms
of the method itself and the validation studies. First, the
current implementation of MAGORINO assumes a sin-
gle R∗2 term for water and fat, whereas in some tissues
the true behavior may be more complex. However, the
mono-exponential model is broadly accepted to be a good
approximation in various tissues including liver and bone
marrow. Second, we did not explore the effect of variations
in imaging parameters such as the choice of field strength,
number of TEs, acquisition geometry, or volumetric imag-
ing. As these parameters affect SNR, they are likely to
impact on the success with which fat and water can be
resolved. It would be desirable to evaluate the robustness
of MAGORINO compared with MAGO using acquisitions
with different SNR (such as by modulating slice thickness
or number of averages), but this is beyond the scope of the
present study. Third, even with the Rician noise model,
MAGORINO cannot correctly resolve fat–water ambigu-
ity in all voxels; this generally results in a nonstructured
“speckle” across the image rather than fat–water swaps in
specific image locations. Incorporation of spatial regular-
ization may therefore be of value for improving the homo-
geneity of parameter estimates and would be a simple
addition to the method. Fourth, the current implementa-
tion of MAGORINO requires manual definition of a small
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ROI for sigma estimation, which introduces some subjec-
tivity. Automation of this step, such as using deep learning,
could help to address this issue. Finally, the phantom
experiments and in vivo validation performed in this work
are preliminary. In particular, the current in vivo results
were obtained from healthy subjects, meaning that “ex-
treme” R∗2 values observed in states such as iron overload
were not present. Although our results do show an advan-
tage of MAGORINO in normal tissues with higher R∗2
(particularly bone marrow), disease states (e.g., iron over-
load) or imaging with iron-based contrast agents, where
MAGORINO could show a more dramatic performance
benefit, have not yet been studied.

6 CONCLUSIONS

The MAGORINO algorithm reduces Rician noise–related
bias in PDFF and R∗2 estimation, thus addressing a key limi-
tation of traditional Gaussian noise-based magnitude-only
fitting and removing a potential barrier to wider imple-
mentation of CSE-MRI in clinical care and trials.
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Figure S1. Accuracy of sigma-estimation methods over
the range of plausible SNR values. A–C, Estimated sigma
on the y-axis against the true sigma on the x-axis over a
range of values corresponding to the expected SNR at typ-
ical clinical field strengths in vivo (the SNR ranged from
20 to 70). The plots were generated by simulating and fit-
ting 100 pure-water, low R∗2 voxels with three different
degrees of inhomogeneity in the signal intensities within
the region of interest (ROI). In (A), note that the fitted
sigma estimates (red line) consistently slightly underesti-
mate sigma due to a degree of overfitting. Note also that
the degree of overfitting is very consistent, even in inho-
mogeneous voxels. To correct for this overfitting, we used
linear regression to calculate and correct the slope of the
red line. Having derived this slope, we calculated a correc-
tion factor k, which could be applied to sigma estimates
to produce the “corrected fitted sigma” estimates. To allow
a fair estimate of the performance of this correction, the
slope was derived on a different set of noise instantiations
to those used for testing (ie, different “training” and “test”
simulation data were used). The “corrected fitted sigma”
method provides a very accurate estimation on the test
data set.
In (B) and (C), the effect of inhomogeneity on sigma esti-
mates is assessed. The inhomogeneity factor specifies the
proportional difference between the largest and smallest
S0 (where S0 = 𝝆W + 𝝆f) in the voxel, with all other val-
ues evenly spaced between the largest and smallest values.
In a homogenous voxel (A), all methods produce accurate
sigma estimates. As the voxel becomes more inhomoge-
neous (B, C), the fitting sigma estimates remain accurate
but the ROI-based sigma estimated becomes increasingly
biased. The most accurate method is the fitting-based
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sigma estimate with correction, referred to in the legend as
“corrected fitted sigma”
Figure S2. Parameter SD for SNR= 60. The plots show the
color-coded SD in PDFF (a-d), R∗2 (E-H) and S0 (I-L) esti-
mates for each combination of proton density fat fraction
(PDFF) and R∗2 values over all simulations, with SNR= 60.
Note that parameter SD generally increased with increas-
ing R∗2 because fat–water swaps become more frequent
(as shown in the figure above). At low R∗2, both Gaussian
and Rician magnitude fitting (A, B) show lower PDFF SD
than complex fitting (C); the figures below show that this
is because complex fitting does not reach the true (non-
swapped) likelihood maximum in every case, resulting in
a small positive bias and increased parameter SD. Note
that this behavior is eliminated by fixing fB (right-hand
column), although this step is likely to be unrealistic in
practice
Figure S3. Fitting error for SNR = 60. The plots show
the grayscale-coded sum of sum of squared errors (SSE;
A–D), “true SSE” (ie, SSE calculated relative to the ground
truth) (E–H), and estimated noise (SSE/simulated noise
SSE) (I–L) for each combination of PDFF and R∗2 values
over all simulations, with SNR = 60. For Gaussian fit-
ting, the “true SSE” (E) increases substantially at higher
R∗2 values, indicating overfitting to the noise. This problem
is substantially reduced by Rician magnitude fitting and
complex fitting. For complex fitting (third column), SSE
and noise estimates are highest at low R∗2 values because
the two-point initialization does not reach the true (non-
swapped) likelihood maximum in every case. Note that
this behavior is eliminated by fixing fB (right-hand col-
umn), although this step is likely to be unrealistic in
practice
Figure S4. Parameter error for SNR = 20. The plots show
the color-coded error in PDFF (A–D), R∗2 (E–H), and S0
(I–L) estimates for each combination of PDFF and R∗2 val-
ues over all simulations. Note that the benefit of Rician
fitting is more pronounced than for SNR = 60
Figure S5. Magnitude-only PDFF and R∗2 estimation with
Rician noise modeling (MAGORINO) is robust to inac-
curate sigma estimation. The plots show parameter error
maps for PDFF (top row) and for R∗2 (bottom row) for Gaus-
sian fitting (left column) and for Rician fitting with dif-
ferent sigma accuracies; the second column shows Rician
fitting with sigma underestimated; the third column shows
Rician fitting with correct sigma; and the right-hand
column shows Rician fitting with sigma overestimated.
Observe that the effect of the Rician noise model becomes

more pronounced from left to right, as the estimated sigma
increases (note that Gaussian fitting is equivalent to a
sigma assumption of 0). If sigma is underestimated by
30% (second column), the performance becomes closer
to Gaussian fitting (MAGO) (left column) than for the
correct sigma estimate (third column). If sigma is over-
estimated by 30% (right-hand column), the differences
between MAGO and MAGORINO are exaggerated. Impor-
tantly, there is very little deterioration in performance for
either underestimated or overestimated sigma, even with
the substantial sigma errors assumed here
Figure S6. Example images of the lower legs (subject 2) for
Gaussian fitting (left column) and Rician fitting (middle
column). Note that this is a challenging case in which com-
plex fitting produced a complete fat–water swap in one leg.
Both Gaussian (MAGO) and Rician (MAGORINO) fitting
produce satisfactory fat–water separation across the image
and good-quality R∗2 maps, albeit with some nonstructured
swapping in the subcutaneous fat. As with subject 1, the
methods diverge in regions of high R∗2/low SNR, which is
particularly pronounced in the bone marrow and cortex
(red arrows) as well as the skin. The difference maps (right
column) show systematically higher R∗2 values in these
regions, while differences in PDFF can be both positive or
negative
Table S1. Summary of models and fitted parameters.
All models were initialized using both fat-dominant and
water-dominant initializations, as specified in the second
column from the right. The objective functions and esti-
mation of fB varied among methods (i)–(iii). The constant
C effectively compensates for reduction in the signal mag-
nitude due to R∗

2 decay and chemical shift and avoids the
need for empirical manual adjustment of initial values
depending on scanner gain, as performed in Triay Bagur
et al.28 *For complex fitting, the Gaussian log likelihood
is computed separately for real and imaginary channels
before summation
Table S2. Summary of linear regression parameters for
multisite phantom data set (agreement between measured
PDFF values and reference values)
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