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Abstract  25 

Wing morphology has been used in taxonomic and systematic studies of insects, often 26 

enabling the identification of groups based on variation. In this study, wing Geometric 27 

Morphometrics was used to verify if eastern and western populations of Partamona 28 

rustica, separated by the São Francisco River, are discriminated, thus confirming previous 29 

molecular data. The two groups of P. rustica exhibited significant differences in wing 30 

size and shape. Better differentiation of populations and groups was achieved with the 31 

centroid size. We generated dendrograms using Mahalanobis and Procrustes distances, 32 

which discriminated the eastern and western populations. Isolation by distance between 33 

morphometric and geographic distances was found. The confirmation of the two 34 

population groups points out the need of further studies investigating the occurrence of 35 

barriers to gene flow and colonization history in the semiarid region by this stingless bee. 36 
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Introduction 44 

The characterization of diversity and population structure is necessary to 45 

implement properly conservation strategies (Frankham et al. 2010). The use of different 46 

methods for estimating the degree of variation of traits and its distribution in populations 47 

enables an accurate assessment of their genetic status, the influence of environmental 48 

factors on the expression of phenotypic characteristics, and the adaptation of populations 49 

to specific ecotypes (Hurtado-Burillo et al., 2016; Nunes et al., 2013; Francoy et al., 50 

2011). Such methods of diversity characterization also allow the identification of the 51 

factors that may affect the size and shape of biological structures, such as geographic 52 

barriers, climate, temperature, altitude, and genetic differences (Dellicour et al., 2017). 53 

Pollinators are among the most important organisms for the maintenance of forest 54 

ecosystems and stingless bees (Meliponini, Apidae) are one the most important bee 55 

pollinators in the tropical and subtropical region (Grüter, 2020). In Brazil, 207 species of 56 

stingless bees’ genera have been described (Silveira et al. 2002), but the diversity in the 57 

Neotropics reached to 426 species (Grüter, 2020). Assessing the diversity and population 58 

structure of stingless bees using genetic and geometric morphometrics tools have been 59 

successfully achieved (Francisco et al., 2008; Halcroft et al., 2016; Hurtado-Burillo et al., 60 

2016; Galaschi-Teixeira et al., 2018). Those studies allow the discrimination of 61 

populations and are critical to understand the biodiversity of this group and point out 62 

important areas of bees’ conservation (Miranda et al., 2019). There is a need for more 63 

comprehensive studies on the biology and conservation efforts directed at protecting 64 

stingless bees’ biodiversity in the Neotropics, as it is expected that stingless bee´s 65 

diversity is even richer than it has been described (Gruter 2020). 66 

Stingless bees of the genus Partamona Schwarz 1939 are grouped into 32 67 

recognized species (Camargo & Pedro, 2003, 2013; Pedro & Camargo, 2003) distributed 68 
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from southern Mexico to southern Brazil. Partamona rustica Schwarz 1939 is endemic 69 

to the Cerrado (savanna) and Caatinga (xeric scrubland forest) biomes in Brazil. Those 70 

biomes have suffered profound anthropogenic changes and the fauna and the flora require 71 

further knowledge as a first step towards conservation (Klink & Machado, 2005; Zanella 72 

& Martins, 2003). Although the geographic distribution of P. rustica was described to be 73 

restricted from the northern portion of the state of Minas Gerais (Cerrado) to the 74 

southwestern portion of the state of Bahia (Caatinga) (Camargo & Pedro, 2003), the 75 

occurrence of colonies of this species 150 km north of this limit was reported (Miranda 76 

et al., 2015). Interestingly, 90% of P. rustica nests sampled were associated with active 77 

termite mounds built in the upper portion of trees, usually in association with 78 

Constrictotermes cyphergaster Silvestri. 79 

In a previous population genetics study of P. rustica with colonies from eleven 80 

locations in the states of Bahia and Minas Gerais, it was demonstrated the existence of 81 

two groups of genetically distinct populations based on sequences of four mitochondrial 82 

genes and eight microsatellite loci (Miranda et al., 2016). The first group was composed 83 

of two populations located western of the São Francisco River (SFR) and the second was 84 

composed of nine populations located eastern of the river. Molecular analysis of variance 85 

(AMOVA) based on gene sequences and microsatellite genotypes showed that much of 86 

the variation is between groups (ϕCT= 0.468; ϕCT = 0.218, respectively), indicating high 87 

and moderate differentiation between the two groups of populations. However, given the 88 

difference in number of populations between the two groups, the authors stressed the need 89 

for further studies as well as the use of a different analytical method to confirm the 90 

findings. 91 

The morphological variation of the wing has long been used in taxonomic and 92 

systematic studies of insects, making it possible to identify species comparing only the 93 



5 
 

morphology of this structure (Pretorius, 2005). In recent years, studies on morphological 94 

variation have predominantly employed geometric morphometrics (GM) of Cartesian 95 

geometric coordinates rather than linear measurements (Tatsuta et al., 2018). A large 96 

number of wasp and bee species has been studied in this way (Aytekin et al., 2007; 97 

Tofilski, 2008; Owen, 2012; Falamarzi et al., 2016; Žikićc et al., 2017; Dellicour et al., 98 

2017), and GM has been used as a taxonomic tool to discriminate from morphotypes and 99 

lineages inside populations to genera of bees, particularly stingless bees (Francoy et al., 100 

2009; Nunes et al., 2013; Combey et al., 2013; Bonatti et al., 2014; Quezada-Euán et al., 101 

2015; Halcroft et al., 2016; Francoy et al., 2016; Galaschi-Teixeira et al., 2018; Santos et 102 

al., 2019). 103 

Therefore, the present study aimed to verify whether wing geometric 104 

morphometrics discriminate P. rustica populations located at western and eastern sides 105 

of SFR. In this work, we included more samples located at the west side of the SFR to 106 

confirm the occurrence of the two groups. This would provide greater support to the 107 

notion that the SFR may act as a barrier to gene flow among populations of P. rustica. 108 

The establishment of possible proximal causes of interpopulation differentiation in this 109 

bee species provides relevance to the present study. 110 

 111 

Material and methods 112 

Sampling 113 

We obtained 161 colonies of P. rustica collected from 14 localities (Table S1 and 114 

Figure S1). We used the 143 colonies from 11 localities previously analyzed (Miranda et 115 

al., 2016) and we increased the sampling with 18 new colonies located at the western side 116 

of the SFR (including the localities of Coribe, São Félix do Coribe, and Montalvânia). 117 

Permits necessary for the fieldwork and collection of samples were issued by the Brazilian 118 
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Institute for Biodiversity Conservation (ICMBio) (number 31750). The field studies did 119 

not involve endangered or protected species. 120 

Morphometric analysis 121 

Three adult workers from each of the 161 nests sampled at the 14 locations (12 122 

located in the state of Bahia and two in Minas Gerais) were analyzed (Table S1, Figure 123 

S1). The right forewing of each adult worker was removed and mounted between 124 

microscope slides. Images were captured using a Leica S6D digital camera coupled to a 125 

Leica DFC450 stereomicroscope. For the analysis of partial deformations, a database was 126 

created using tps format to store the wing image information at the tpsUtil64 software, 127 

version 1.79 (Rohlf, 2015). 128 

To reduce possible human errors, seventeen landmarks (LM 9, 10, and 17 of type 129 

III, sensu Bookstein 1991) were manually digitized twice (independently) at the wing 130 

vein intersections using the tpsDig2 software, version 2.16 (Rohlf, 2015) (Figure S2). The 131 

data used for analysis correspond to the average of the two markings performed on each 132 

wing. In the MorphoJ software, version 1.6 (Klingenberg, 2011), the images underwent 133 

Procrustes adjustment, enabling discriminant function analysis (DFA), principal 134 

component analysis (PCA), and canonical variate analysis (CVA). ANOVA was 135 

performed using two classifiers: i) considering the 14 populations independently and ii) 136 

considering the two population groups (from the eastern and western sides of the SFR). 137 

Kaiser-Meyer-Olkin (KMO) test was used in order to determine the suitability of the data 138 

for the multivariate analyses. The function KMO in the package psych was used. The 139 

overall Measure of Sampling Adequacy (MSA) was 0.5, meaning all coordinates may 140 

reasonably be retained for the multivariate analyses. 141 

Kruskal-Wallis one-way ANOVA on ranks was performed using the 142 

STATISTICA 6.0 software (StatSoft 2001) to determine whether the mean values of 143 
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centroid size (CS) in the samples from the 14 populations were statistically different. 144 

Kruskal-Wallis analyses among populations were assessed conducting pairwise 145 

comparisons and Bonferroni correction for multiple comparisons. Additionally, a t-test 146 

was performed to compare the mean centroid size in samples from eastern (occurring 147 

predominantly in Caatinga areas) and western populations (predominantly in Cerrado 148 

areas) of the SFR. 149 

Mahalanobis and Procrustes distances were used to generate interpopulation 150 

similarity dendrograms based on the neighbor-joining algorithm using the Mega software, 151 

version 6.0 (Tamura et al., 2011). The correlation between morphological and geographic 152 

distances, obtained using Google Earth version 6.1.0.5001 (Google Inc. 2011), was 153 

verified using a Mantel test with the TFPGA software (Miller, 1997). 154 

All software used in our morphometric analysis are freely accessible and available 155 

at http://life.bio.sunysb.edu/morph and http://www.flywings.org.uk/MorphoJ. 156 

 157 

Results 158 

We analyzed 483 forewings of P. rustica. Based on the shape covariance data 159 

matrix derived from the Procrustes fit, the PCA of the seventeen anatomical landmarks 160 

revealed 30 components responsible for the total variation. The first 16 explained 92.16% 161 

of the total variation, with the first two PC axis explaining 43.30% of the variation (PC1: 162 

26.84%; PC2: 16.46%) (Figure S3). For data visualization, we showed the first two axes 163 

of the CVA (Figure 1) explaining 66.1% of the total variance in the data (CV1: 42.2%; 164 

CV2: 23.9%). The histogram of the first CV, obtained in the MorphoJ, showed a 165 

separation of the two groups located western and eastern of the SFR, with some overlaps 166 

(Figure S4). 167 

about:blank
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The Mahalanobis distances between pairs of populations ranged from 2.1961 168 

(TNO x MAC) to 7.2428 (IRA x MTV), whereas the Procrustes distances ranged from 169 

0.0064 (MAC x ITU) to 0.0271 (CSI x SFC) (Table S2). 170 

The discriminant function analysis resulted in 98.91%, demonstrating that nearly 171 

all workers were correctly assigned to their original populations. Accuracy in the cross-172 

validation test was 87.16%. 173 

Differences in size and shape of the wings of adult females of P. rustica were 174 

observed. ANOVA performed considering the 14 populations independently generated a 175 

statistically significant F (P < 0.0001***) for centroid size (Figure 2) and shape (Table 176 

1A). When populations were grouped into eastern and western groups, the ANOVA 177 

results were equally significant (P < 0.0001***) for centroid size and shape (Table 1B), 178 

with a significant increase in the F value for wing shape as well as a marked decrease in 179 

the F value for centroid size in this second approach. 180 

The discriminant analysis correctly assigned 95.73% of the individuals to their 181 

respective groups of origin (eastern or western), whereas the correct assignment rate in 182 

the cross-validation was 94.17%. As the PCA analyzed the same covariance matrix of the 183 

general data, the results for the two population groups were the same as described above 184 

for the populations taken as independent units.  185 

The Kruskal-Wallis one-way ANOVA on ranks showed that centroid values 186 

differed significantly between populations (H13 = 184.687, P < 0.001***). The 187 

populations from Coribe and São Félix do Coribe (located western of the SFR) had higher 188 

values of centroid size than the other populations. Comparing mean centroid size in the 189 

two population groups, it appears that the females from the western group (predominantly 190 

Cerrado area) have a significantly higher mean centroid value than females from the 191 

colonies/populations from the east of the SFR (predominance of Caatinga areas) (Figure 192 
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S5), as confirmed by the Student's t test (t = 8.512, df = 452, P < 0.001***; 95% CI = 193 

0.121 to 0.0756). 194 

The Mantel test revealed a positive correlation between geographic distances and 195 

Mahalanobis (r = 0.6117; P < 0.0001***) and Procrustes (r = 0.5317; P < 0.0001***) 196 

distances, which is consistent with the usually smaller Mahalanobis and Procrustes 197 

distances between populations of the same group (eastern or western) and larger 198 

Mahalanobis and Procrustes distances between populations of different groups (Table 199 

S2), as the groups were separated by the São Francisco river which could impose a 200 

geographical barrier. These results are reflected in the similarity dendrograms (Figure 3) 201 

generated from the Mahalanobis and Procrustes distances, which show the separation of 202 

populations into two groups, eastern and western populations of the SFR. 203 

 204 

Discussion 205 

Geometric morphometric analyses using wing size and shape discriminate the populations 206 

of P. rustica. As we expected based on our previous population genetics study (Miranda 207 

et al. 2016), the Mahalanobis and Procrustes distances discriminate eastern and western 208 

populations of Partamona rustica separated by São Francisco River. The differentiation 209 

of populations located on opposite banks of the San Francisco River was improved in the 210 

present work with the inclusion of 18 colonies of P. rustica from three new sites located 211 

to the western of the SFR, giving new support to the results previously reported based on 212 

molecular data (Miranda et al., 2016). 213 

Wing size is a good estimator of body size (Dellicour et al. 2017) and survival, 214 

resource acquisition and reproductive success are generally size-dependent traits 215 

(Takahashi & Blanckenhorn, 2015). Our analyses of wing size assessed by centroid size 216 

significantly exhibited higher variation among populations of P. rustica than wing shape 217 
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(Table 1A). This finding was expected, as size variation in insects is related to the quality 218 

and quantity of food given to the larvae (Peruquetti, 2003; Campos et al., 2018), and to 219 

the foraging range of colonies (Veiga et al., 2013). Colony fitness in stingless bees is 220 

highly associated with the variation in worker body size, which is dependent on trophic 221 

resources stored within the colony, as at least 75% of the variation are attributed not to 222 

phylogenetic effects but rather to food requirements (Pignata & Diniz-Filho, 1996). Thus, 223 

as wing size variation may reflect the availability of trophic resources in each 224 

environment, this makes sense as the supply dynamics certainly vary temporally in the 225 

Cerrado and Caatinga biomes (Campos et al., 2018; Miranda et al., 2021), which have 226 

distinct characteristics in terms of terrain, climate and vegetation composition, as well as 227 

the idiosyncratic evolutionary history of P. rustica (see Miranda et al., 2015; Miranda et 228 

al., 2016). Alternatively, this variation in body size has been also associated with a 229 

different response of these populations to specific features of their local environments 230 

(Grassi-Sella et al., 2018; Ribeiro et al., 2019).  231 

Canonical variate analyses revealed little overlap between samples of the two 232 

groups. A broader range of variation was found among individuals from the eastern group 233 

compared to those from the western group is consistent with the larger number of colonies 234 

from the eastern side as well as the larger number of haplotypes identified (n = 22) 235 

compared to the western group (n = 8) (Miranda et al., 2016). However, these authors 236 

found a different result regarding the microsatellite data, showing greater genetic 237 

diversity of these markers among populations in the western group despite the small 238 

number of populations on this side of the SFR (Miranda et al., 2016). The agreement 239 

between the similarity dendrograms and the characterization of the two groups previously 240 

defined by population genetic analysis denotes a high resolution of geometric 241 
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morphometrics to capture subtle differences in wing size and shape between close groups, 242 

corroborating with other studies in bees (Quezada-Euán et al., 2015; Francoy et al., 2016). 243 

In the analysis of variance (ANOVA) performed with Procrustes distances the 244 

estimated F was greater for centroid size than shape of the wing of P. rustica workers. 245 

The large reduction in the F value for centroid size and the large increase in the F value 246 

for shape when the analysis was performed with the two groups compared to the analysis 247 

considering the 14 populations independently is noteworthy. These results seem to be 248 

coherent, since a large variation in centroid size is expected in samples from different 249 

locations (first analysis considering the 14 populations) due to the different environments 250 

to which the respective local colonies are exposed. When analyzing the two groups 251 

(second analysis), the F value decreases because we are now comparing the average of 252 

the environments experienced by the populations east and west of the SFR. On the other 253 

hand, the significant increase in the F value found in the two groups can be attributed to 254 

the differences in genetic composition between population groups demonstrated 255 

previously (Miranda et al., 2016) and analyzing the shape of the wing in the present study. 256 

Ontogenetic aspects linked to maternal and feeding effects (Peruquetti, 2003), climate 257 

and temperature may be directly related to size variation among individuals from different 258 

populations and may be inducing adaptive responses in these populations (Nunes et al., 259 

2013). While environmental factors certainly contribute to the differences in size, the 260 

shape of a structure is a trait of greater complexity that involves environmental and 261 

genetic factors that are subject to developmental constraints (Klingenberg, 2016). So, 262 

shape differences may be linked to local adaptive responses to foraging behaviors, flight 263 

dynamics and different environments to which populations are exposed (Benítez et al., 264 

2013; Nunes et al., 2013). 265 
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The Mantel test supports the association between the variation in wing 266 

morphology and biotic as well as abiotic factors by revealing a positive correlation 267 

between morphological and geographic distances. However, one cannot rule out possible 268 

effects of phenotypic plasticity on the expression of individual characteristics (Nunes et 269 

al., 2013). Isolation by distance – reported here for morphometric data and elsewhere for 270 

microsatellite data (Miranda et al., 2016) – also explains some reduction in gene flow. 271 

Other factors, such as the mode of reproduction in Meliponini colonies, with the 272 

temporary dependence of daughter colonies on the mother colony (Nogueira-Neto, 1954; 273 

Engels & Imperatriz-Fonseca, 1990; Cronin et al., 2013), a small flight radius (Wille & 274 

Orozco, 1975; Araújo et al., 2004; but see Zayed et al., 2005 about the distance wild bees 275 

cover during foraging trips is related to their dispersal ability) and geographic barriers (in 276 

this case, the SFR valley and/or different phytophysiognomies) are additional factors that 277 

can lead to evolutionary processes that differentiate populations over time (May-Itzá et 278 

al., 2012; Hurtado-Burillo et al., 2016). As males, to some extent, ensure the dispersion 279 

of genes in populations, a certain level of genetic homogeneity must be produced, which 280 

is consistent with the moderate gene flow estimated by the microsatellite loci (Miranda 281 

et al., 2016) and the low overlap found between population groups in the geometric 282 

morphometric analysis. 283 

According to our previous work (Miranda et al., 2016), the eastern and western 284 

groups split recently – at the end of the Pleistocene about 102 kya (95% HPD: 45,588–285 

979,902 kya) – and phylogenetic reconstruction indicated that P. rustica possibly 286 

originated western of the SFR valley, with the subsequent colonization of the eastern 287 

region. The SFR or isolation by distance may be affecting gene flow and isolating the 288 

populations studied here. This argument is supported by the fact that this region has low 289 

potential for the historical occurrence of the species, as seen in the ecological niche 290 
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modeling analysis, as well as for the termite that builds the substrate in which this bee 291 

nest (Miranda et al., 2015). On the other hand, in a study using geometric morphometrics 292 

on populations of Melipona mandaçaia, which is a stingless bee that also occurs in 293 

Caatinga areas along the São Francisco River, it was found no evidence that the valley 294 

or the river itself was a barrier to gene flow between populations sampled on the different 295 

banks of the river (Prado-Silva et al., 2016). Alternatively, the differences between the 296 

western (predominantly Cerrado) and eastern (predominantly Caatinga) 297 

phytophysiognomies of the SFR may be valid arguments for the differentiation between 298 

the groups observed herein, as differences in rainfall, floral types, substrates and altitudes 299 

between the two regions may be limiting factors for the occurrence of the species, which 300 

has preferences for certain environments and substrates (termite nests) (Miranda et al., 301 

2015). 302 

The geometric morphometric differences between the two groups of populations 303 

provide support to the hypothesis that P. rustica originated in areas of the Cerrado and 304 

subsequently colonized areas of the Caatinga (Miranda et al., 2016). Thus, the previous 305 

hypothesis that the genus Partamona originated in Amazon and Andean areas (Camargo 306 

& Pedro, 2003), along with evidence that the biota of the Cerrado is more related to the 307 

biota found in the Amazon (Werneck et al. 2011) support the idea that the group located 308 

western of the SFR is older and gave rise to the eastern group. 309 

Concluding, geometric morphometrics was effective in demonstrating differences 310 

in wing size and shape among colonies of P. rustica from different geographical locations. 311 

The geometric morphometric data further supported the distinction between the two 312 

groups of P. rustica previously suggested by genetic analysis based on molecular markers 313 

(mtDNA and microsatellite loci). Despite the new evidence, it is not possible to confirm 314 

that the São Francisco River constituted an effective geographic barrier that induced 315 
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genetic differentiation processes, especially regarding wing shape, as the level of genetic 316 

isolation among populations in the two groups was not estimated, considering the possible 317 

recent separation between them. However, the observed geometric morphometric 318 

variation appears to be, at least partially, the result of interpopulation genetic variation. 319 

Thus, subsequent studies are needed to assess how much of this variation may be 320 

attributed to genetic and/or environmental factors as well as determine the possible 321 

meaning of this variation, which is an under explored subject in bees, despite being one 322 

of the central goals of evolutionary biology. 323 
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Tables 562 

 563 

Table 1. (A) ANOVA table including Procrustes distances for centroid size (CS) and 564 

shape (SH) using Partamona rustica wings considering the 14 populations. (B) 565 

ANOVA table including Procrustes distances for centroid size (CS) and shape (SH) 566 

using P. rustica wings considering the two groups (western and eastern side of SFR). 567 

Sum of squares (SS); mean squares (MS); degrees of freedom (dF). The F values have P 568 

< 0.0001***.  569 

 570 

A - ANOVA (considering the 14 populations) 

 Effect SS MS dF F 

CS 
Individual 

Residual 

28951189.154814 

4778672.443366 

2227014.550370 

10254.661896 

13 

466 
217.7 

SH 
Individual 

Residual 

0.06004763 

0.16124608 

0.0001539683 

0.0000115341 

390 

13980 
13.35 

B - ANOVA (considering Western x Eastern populations) 

 Effect SS MS dF F 

CS 
Individual 

Residual 

6199655.653226 

27530205.944955 

6199655.65322 

57594.573107 

1 

478 
107.6 

SH 
Individual 

Residual 

0.02122182 

0.20007189 

0.0007073941 

0.0000139520 

30 

14340 
50.7 
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Figures 582 

 583 

 584 

 585 

Figure 1. Scatter plot of the fourteen populations of Partamona rustica analyzed, 586 

generated from the first two canonical variate analyses (CVA). Ellipses indicated 95% 587 

confidence intervals. The green circles represent the western populations and the red 588 

circles the eastern populations. 589 

 590 
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 592 

 593 

Figure 2. Boxplot of the wing centroid sizes for each population of Partamona rustica. 594 

Vertical bars represent 95% confidence intervals. Pairwise comparisons among 595 

populations are indicated by the letters of significance: SFC (a); COR (bcd); MTV 596 

(bcdefg); CMA (bcd); COC (bcd); TNO (bcd); CSI (ef); ITU (bc); MAC (b); IRA (cdg); 597 

MIL (eg); RBA (deg); MVT (f); BVT (efg). The green colors represent the western 598 

populations and the red colors the eastern populations. (median ± quartiles; whiskers: data 599 

range; circles: outliers). 600 

 601 
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 603 

 604 

Figure 3. Neighbour-joining dendrogram showing the relationships of similarity among 605 

populations of Partamona rustica based in Mahalanobis (A) and Procrustes (B) distances 606 

(in green, western group and in red eastern group). 607 
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