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Abstract

Estimating the number of species in a community is important for assessments

of biodiversity. Previous species richness estimators are mainly based on non-

parametric approaches. Although parametric asymptotic models have been

applied, they received limited attention due to specific limitations. Here, we

introduce parametric models fitting the probability-based rarefied species rich-

ness curve that allow us to estimate the “Total Expected Species” (TES) in a

community based on species’ abundance data. We develop two approaches to

calculate TES (termed “TESa” and “TESb”), based on two slightly different

mathematical assumptions regarding Expected Species (ES) models. We pro-

vide R functions to calculate both these estimation approaches and their stan-

dard deviation. The function also enables users to visualize the estimation. We

test the performance of TESa, TESb, and their average (TESab) across simu-

lated and empirical data, and compare their bias, precision, and accuracy with

other commonly used, nonparametric species richness estimators: the

bias-corrected (bc-)Chao1 and the abundance-based coverage estimator (ACE).

Simulation reveals that in small samples TESa shows a tendency to

overestimate and TESb to underestimate overall species richness. TESab per-

forms well in bias, precision, and accuracy when compared with (bc-)Chao1

and ACE estimators. Results from empirical data show that the variance gen-

erated from TES estimates is comparable with that for (bc-)Chao1 and ACE.

Our study demonstrates that rarefaction theory in combination with paramet-

ric approximation models provides a valuable new approach to estimate the

species richness of incompletely sampled communities. Robust estimates are

likely to be obtained where the observed number of species is greater than half

of the TES estimation. When the ratio of TESa to the observed richness is �2,

we suggest the use of TESb or TESab. Although more comprehensive compari-

sons with other estimators are suggested, we encourage researchers to consider

the TES approach in their biodiversity studies as a complement to current

existing estimators.
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INTRODUCTION

Knowledge of a community’s species richness is a crucial
prerequisite for the effective assessment and conservation
of biodiversity. Samples of mobile organisms routinely
provide only a partial picture of the complete species
pool representing the sampled communities. Such
under-sampling represents a problem in biodiversity assess-
ments (Coddington et al., 2009). Estimating the number
of species in a community or at a specific sample site
has attracted great interest from ecologists for a long
time (Bunge & Fitzpatrick, 1993; Chao & Chiu, 2016;
Clench, 1979; Palmer, 1990).

There are a variety of statistical methods used
to estimate the total number of species (Bunge &
Fitzpatrick, 1993), which can generally be grouped into
nonasymptotic and asymptotic approaches (Chao &
Chiu, 2016). In this study, we focus on asymptotic estima-
tions, which can be further divided into nonparametric
and parametric approaches.

Nonparametric asymptotic approaches consider the
frequencies in the number of rare species, for example,
looking at species only present with one or two individuals
(singletons and doubletons) in a sample. Examples of this
approach are the Chao1 estimator (Chao, 1984) and its
improved, bias-corrected versions (Chiu et al., 2014;
O’Hara, 2005), the abundance-based coverage estimator
(ACE) (Chao & Lee, 1992), as well as the Jackknife estima-
tor family (Cormack, 1989). Such nonparametric estima-
tions generally generate “lower boundary” estimations,
providing estimates of the minimum species richness that
can be expected to exist in the base community, although
they have been widely used in diversity studies as a mea-
sure of expected total species richness (e.g., McGeoch
et al., 2007; Vester et al., 2007). These nonparametric mea-
sures require very large sample sizes and associated sam-
pling efforts in order to generate reliable estimations of the
true species pool (Brose et al., 2003; Hortal et al., 2006;
Reese et al., 2014).

Parametric asymptotic models that use fitted curves
to extrapolate saturation points reflecting a community’s
species richness have been used for many decades
(Preston, 1948). A majority of these curve-fitting methods
use sample-based (or quadrat-based in botanical studies)
accumulations, where sampling census points (e.g., speci-
mens recorded in traps or standardized areas) represent the
observation unit and only presence–absence data are
required (Flather, 1996; Jiménez-Valverde & Lobo, 2006;

Keating & Quinn, 1998; Rosenzweig et al., 2003). In
contrast, few parametric curve-fitting approaches are based
on species’ abundance accumulation models, where each
individual specimen represents an observation unit (Fisher,
1999; Jiménez-Valverde & Lobo, 2006; Palmer, 1990). While
some studies report that parametric methods based on
resulting species’ abundance distributions give a better esti-
mate of the true species richness than nonparametric esti-
mates (O’Hara, 2005), this approach has so far received very
limited attention.

There are three main limitations for species’
abundance-based accumulation curves. Firstly, abundance-
based accumulation curves are per se discrete and not
smooth, and direct curve-fitting may result in high inaccu-
racies (Colwell & Coddington, 1994; Gotelli & Colwell,
2001). Secondly, a good fit of the curve depends on the
underlying species’ abundance distribution pattern, but this
pattern is commonly unknown and context-dependent
(McGill et al., 2007). In this context, different mathematical
models may fit curves equally well, but their predictions
can differ dramatically (Colwell & Coddington, 1994).
Finally, parametric curve-fitting methods usually do not
provide a variance for their estimations (Colwell &
Coddington, 1994). Therefore, parametric specimen-based
curve-fitting approaches have been regarded as generally
poorly suited to approximate the total number of species
(Chao & Chiu, 2016; Walther & Moore, 2005).

Rarefaction curves estimate the expected number of
species for a given sample size (that has to be equal to or
smaller than the actual sample) based on a hypergeometric
distribution model (Hurlbert, 1971; Sanders, 1968).
Rarefaction curves are smooth and therefore overcome the
first limitation in parametric curve-fitting methods. These
curves have been widely used to compare the biodiversity
of incompletely sampled communities that are represented
by samples of varying sizes (see the review by Gotelli &
Colwell, 2001). However, as the curve per se does not pro-
vide an asymptotic value, it cannot be used to estimate the
total species richness (Tipper, 1979). Rarefaction curves
can also be extrapolated to a standardized sample size that
exceeds that of the original sample, for example, using the
iNEXT approach (Chao et al., 2014; Chao & Jost, 2012;
Colwell et al., 2012), but these extrapolations do not gener-
ate asymptotic values either. To date, studies using asymp-
totic models to estimate the total species richness based on
rarefaction curves are surprisingly rare (see, e.g., Mauffrey
et al., 2007; O’Hara, 2005). Mauffrey et al. (2007) tested
several models to extend rarefaction curves and estimate a
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value for the resulting asymptote. They found that, while
model performance varied when compared against known
community compositions, none of the tested models
showed a general superior performance, even for large
sample sizes (Mauffrey et al., 2007).

Zou and Axmacher (2021) recently proposed an
approach to estimate the total number of species shared
between two incompletely sampled communities (i.e., the
intrinsic element of β-diversity) based on parametric rare-
faction curve-fitting. This method has been shown to be
robust for different species’ abundance distribution
models. In this study, we follow a similar approach, by
applying parametric curve-fitting to two different
“Expected Species” (ES) functions proposed by Hurlbert
(1971) and Smith and Grassle (1977) to estimate the
species richness (i.e., α-diversity). We refer to this esti-
mate as “Total Expected Species” (TES) and provide the
standard deviation of the estimation, which potentially
allows us to overcome all limitations in species’
abundance-based accumulation parametric curve fittings.
We furthermore test the performance of TES across dif-
ferent simulated species distribution models commonly
observed in natural communities, and we compare its
bias, precision, and accuracy with other commonly used
species richness estimators for different sample sizes and
associated sample completeness scenarios. We finally
apply the TES calculations to two empirical datasets. The
functions to compute TES values and their respective
standard deviations are provided in R language (R Core
Team, 2018) in Appendix S1.

METHODS

The Expected Species concept

The Total Expected Species model we present in this
paper is fundamentally based on the concept of the
Expected Species (ES) richness, calculated as number
of species when randomly selecting m individuals from
a collection based on a hypergeometric distribution
(Hurlbert, 1971), hereafter referred to as “ESa”:

ESam ¼
XS

i¼1

1�
N�Ni
m

� �

N
m

� �
" #

, ð1Þ

where S represents the total number of (observed) species
in the sample collection, while N represents the total
number of individuals, Ni represents the number of indi-
viduals of species i in the sample, and m is the standard-
ized sample size that is rarefied to.

Under a multinomial sampling model based on the
assumption of a community containing an infinite number

of individuals, where each individual is sampled
independently from all others (Smith & Grassle, 1977)
without assuming any sampling or detection bias, this
function can alternatively (referred to as “ESb”) be formu-
lated as:

ESbm ¼
XS

i¼1

1� 1�Ni

N

� �m� �
: ð2Þ

For m = 2, the resulting value of ESb is linked to
Simpson’s concentration index as: ESb2 ¼ Simpsonþ1.
For larger values of m, the value for ES in both formats
can furthermore be expected to converge toward the true
species richness of the underlying community. Once
m approaches infinity, it can hence be assumed that the
resulting value does represent the total number of species
that are contained in the community. In practice, it is
also possible to calculate the change in ES values for a
sample containing Nt specimens drawn randomly from
an underlying community N for increasing values of
m from m= 1 to m=Nt, where Nt≤N.

From Expected Species to Total Expected
Species

Once the change in ES values in response to an increasing
sample size m has been calculated, a curve can be fitted
to represent this change. For the curve fitting, we applied
a Weibull-logistic model based on the nonlinear least
square estimation described by Zou and Axmacher (2021).
In brief, we calculated values of ESa (formula 1) and
ESb (formula 2) at regular integer intervals of sample
size m varying between 1 and Nt, initially resulting in a
curve representing the relationship between the estimated
number of species ES and m, that is, the rarefaction curve.
This curve can in turn be extrapolated for values of
m > Nt to generally describe how the estimated species
richness changes as a function of changes in the sample
size m (ES = ƒ[ln(m)]) using a four-parameter Weibull
model:

ESm ¼ a�b� e�c�Md
, where M¼ ln mð Þ: ð3Þ

Here, the parameter a, which is the horizontal intercept
of asymptotes of the curve, represents the estimated over-
all number of species (Figure 1).

While the calculation of the Weibull model requires
substantial sample sizes, the curve can alternatively
be fitted using a three-parameter logistic regression model:

ESm ¼ a0

1þ e
b0�M
c0
: ð4Þ
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The curve of the logistic regression model can be fitted
either based on equations ESa or ESb—in both cases
leading to an asymptotic value representing TES, hereaf-
ter called “TESa” and “TESb,” respectively, in accordance
with the use of formula 1 or 2.

The variance of TESa and TESb was calculated as the
estimated standard deviation (σ) following O’Hara’s
(2005) proposal, which can be expressed as:

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sest2� n�pð Þ

p
, ð5Þ

where sest is the standard error of either of the estima-
tions (i.e., TESa or TESb), n is the number of knots that
are used in the model fitting and p is the number of esti-
mated coefficients, that is, 3 for the logistic model and 4
for the Weibull model. We did not use the estimated stan-
dard error generated from the resampling procedure of

the curve fitting (e.g., Colwell & Coddington, 1994;
Keating & Quinn, 1998), as the standard error in this con-
text refers to the error related to resampling processes, as
pointed out by O’Hara (2005).

In practice, our approach uses nonlinear regression
models to fit the change of ES values to the increases in
the theoretical sample size m. The regression initially uses
the four-parameter Weibull model. If the overall sample
size proves too low to calculate the Weibull model, then
the regression is refitted using the three-parameter logistic
regression model. Although ESa and ESb values are very
similar, particularly for large sample sizes (Appendix S1:
Figure S1a,b), the shape of their curves differs slightly,
resulting in different values for TESa and TESb
(Appendix S1: Figure S1c,d). Therefore, we also calculated
the mean value of TESa and TESb, hereafter called
“TESab,” with TESab = (TESa + TESb)/2. Here we
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F I GURE 1 Bias (expressed as the mean), precision (expressed as the coefficient of variance [CV]), and accuracy (expressed as the root

of mean square error [RMSE]), for different species richness estimators based on samples randomly taken from the three simulated baseline

communities. Each community contains 100 species (the dashed line), following a lognormal (LN), negative binomial (NB), or geometric

(GEO) distribution. ACE, Abundance-based Coverage Estimator; TES, Total Expected Species.
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consider the value of TESab as the mathematical average
of TESa and TESb (i.e., these two estimators are generated
independently from two curves), and hence its standard
deviation is 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2aþσ2b

p
, where σa and σb represent the

standard deviation of TESa and TESb, respectively.
In addition to the Weibull-logistic model, we also fit

the curve with the Michaelis–Menten model, which has
been extensively used in curve-fitting methods to esti-
mate species richness (Butler & Chazdon, 1998;
Clench, 1979; Keating & Quinn, 1998; Rosenzweig
et al., 2003; Soberon & Llorente, 1993). The asymptote of
the Michaelis–Menten model has been reported to be a
good estimator of species richness (e.g., Rosenzweig
et al., 2003), although this assumption has also been
questioned (e.g., Keating & Quinn, 1998). The respective
equation can be written as:

ESm ¼ a00 �m
b00 þm

, ð6Þ

where the asymptote, a00, represents the value of TES.
Again, we calculated TESa and TESb based on formulae 1
and 2, and the average value, TESab.

Simulated dataset

We created three simulated baseline communities based
on three different abundance distribution models. In order
to allow for direct comparisons of species richness estima-
tor performances between different distribution models,
we created a separate community so that it contained a
total of 100 species that were distributed across ~100,000
individuals. The three abundance distribution models we
used are based on models suggested in the literature as
approximations of species’ abundance patterns in natural
populations: a lognormal distribution (LN), a negative
binomial distribution (NB), and a geometric distribution
(GEO) (Appendix S1: Figure S2). The abundance of
each species in each community exceeded 50 individuals,
which was chosen as the minimum threshold for a
self-sustainable population size (Franklin, 1980).

Comparisons of the Weibull-logistic model
and Michaelis–Menten model

The first step in our analysis was to compare the esti-
mated species richness generated by the Weibull-logistic
versus the Michaelis–Menten model. In both cases, we
established respective regression models for TESa,
TESb, and TESab for the three abundance distribution
datasets (LN, NB, and GEO) for different, randomly

selected samples ranging in size between 100 and 1000
individuals, at intervals of 100 individuals. The TES
values were calculated for 1000 independent, randomly
selected samples for each distribution dataset and sample
size, and we compared our TES estimations generated
from Weibull-logistic and Michaelis–Menten models for
their respective bias, precision, and accuracy, following
suggestions from Walther and Moore (2005). As the
actual richness of the underlying community was known
and stable at 100 species, our “bias” represents the mean
value rather than the mean value of mean error, in order
to give a direct picture. Precision was calculated as the
coefficient of variation (CV), while accuracy was calcu-
lated as the root of the mean square error (RMSE).
Further calculation details can be found in Appendix S1.

Our analysis showed that results based on the
Michaelis–Menten model had a consistent positive estima-
tion bias (i.e., overestimate) for the geometric distributions
for both TESa and TESb, resulting in a low accuracy
even for large sample sizes (>500 individuals). The
Weibull-logistic model had a much higher accuracy for
geometric distributions, while both estimation methods
showed similar performance for lognormal and negative
binomial-distributed communities (Appendix S1: Figure
S3). These results indicate that the Michaelis–Menten
model works well only for communities with specific
abundance distribution patterns. We therefore only used
TES values based on Weibull-logistic models in our subse-
quent evaluations and applications.

Evaluation of the TES performance

The performance of TESa, TESb, and TESab based on the
Weibull-logistic model were tested in comparison with
two commonly used species richness estimators—the
bias-corrected form of Chao1 (Chao, 1984; O’Hara, 2005)
and the ACE (Chao & Lee, 1992), which are two default
estimators used for example in the “vegan” package
(Oksanen et al., 2018) in R. The performance of TESa,
TESb, TESab, (bc-)Chao1, and ACE were assessed for
samples of sizes ranging from 100 to 1000 individuals,
again using intervals of 100 individuals and 1000 replica-
tions. The abovementioned bias (mean), precision (CV),
and accuracy (RMSE) were again compared for the differ-
ent estimated species richness values.

Applying TES to empirical dataset

We finally applied and tested the TES estimation on two
empirical datasets, both provided in the context of the
vegan package (Oksanen et al., 2018). The first dataset is

ECOSPHERE 5 of 11
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the mite dataset comprising data on oribatid mites
(Acari, Oribatei) at an ecological station in Quebec,
Canada, comprised of 9800 individuals spread across
35 species based on 70 individual observations
(Borcard & Legendre, 1994). The least abundant species
in this dataset contains 11 individuals (i.e., no singleton
and doubleton). We hence consider this dataset to be
widely complete (Chao, 1984) in the sense that the
35 recorded species likely represent the total species pool
of the underlying community. To use TES in the
context of this dataset, we pooled all observations. We
then randomly created subsamples from the pooled data
accounting for 1% (98 individuals), 5%, 10%, 50%, and
100% of the total dataset. The resampling procedure
allowed for multiple sampling of the same individual
under the assumption of an indefinite local population.
For each resampled community, we calculated TESa,
TESb, TESab, (bc-)Chao1, and ACE. As before, we then
compared the mean, CV, and RMSE between these
estimators based on 1000 simulated replications for those
indices.

The second dataset we used in our testing of TES is
the BCI data from Barro Colorado Island, reporting on
trees sampled on 50 plots (1 ha each) that resulted in a
total of 21,457 recorded trees representing 225 species
(Condit et al., 2002). Unlike mite, 19 species in the BCI
dataset are represented by a single individual (singleton)
only, indicating that the samples are incomplete
(Chao, 1984). In this case, we therefore do not know the
real species richness of the community from which this
dataset was collected. We calculated the total species
richness, estimated using TESa, TESb, and TESab, and
their standard deviation, and we compared these values
with estimates and standard deviation for (bc-)Chao1 and
ACE. The calculation was done in different steps:
(1) the first sampling plot in the dataset containing
448 individuals across 93 species, (2) then pooling
the first 5 plots (2359 individuals and 152 species),
(3) followed by pooling the first 10 plots (4510 individuals
and 170 species), and finally (4) pooling all plots.

All simulations and calculations were completed in
the R software (R Core Team, 2018). The R functions for
the calculation of ESa and ESb, as well as TESa and
TESb, are presented at Dryad (Zou et al., 2022). We pro-
vide the “ES()” function to calculate the Expected Species
with parameter “a” and “b” to calculate ESa (formula 1)
and ESb (formula 2), of which results from ESa are iden-
tical to “rarefy()” function in the vegan package
(Oksanen et al., 2018). We provide the “TES()” function
to calculate Total Expected Species based on ESa and ESb
according to the Weibull-logistic model. The function
returns the mean value and estimated standard deviation
of TESa, TESb, and TESab. We also provide the “plot.

TES()” function that allows users to visualize the quality
of their curve-fitting. The “estimateR()” function in the
vegan package (Oksanen et al., 2018) was used to calcu-
late the (bc-)Chao1 and ACE estimators.

RESULTS

Simulated dataset

For the samples of different sizes randomly drawn from
the three simulated datasets, TESa estimator consistently
overestimates the true species richness, which was partic-
ularly pronounced for small sample sizes (Figure 1). For
the overall estimation of mean, this measure still per-
forms well when compared with the other estimators for
the geometric distribution model community, but shows
a worse performance for negative binomial and
log-normal distribution populations. TESb, in contrast,
consistently underestimates the overall richness and per-
forms generally worse than the established estimators
included in the analysis (Figure 1).

For precision, TESb performs better than all other
species richness estimators. In contrast, TESa shows
levels of precision that are very similar to the established
measures we used in this comparison. With regards to
accuracy, TESb shows a performance that is similar to
the other species richness estimators, with ACE com-
monly performing slightly better, while (bc-)Chao1 per-
forms slightly worse (Figure 1). Nonetheless, TESa shows
consistently the worst accuracy for the NB community as
well as for a wide range of under-sampling scenarios for
the LN community, while it proves widely superior in the
GEO community (Figure 1).

When comparing the performance of TESab with its
two foundation measures, TESa and TESb, but also with
both, (bc-)Chao1 and ACE, this measure shows qualities
that are promising to estimate the true species richness
from the incomplete samples. TESab approaches the true
value of 100 species much more rapidly than all other
measures, while its precision is only slightly worse than
that of TESb, but better than that of all other species rich-
ness estimators, and its accuracy is also generally similar
or better than that of all the other species richness esti-
mators we used in this analysis (Figure 1).

Empirical dataset

For the mite dataset, TESa and TESab both overestimate
the total species richness for sample sizes <5% of the total
number of individuals (Figure 2), while the value esti-
mated by TESb are much closer to the assumed true

6 of 11 ZOU ET AL.
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species richness (Figure 2). Both precision and accuracy
from TES estimates are worse than these measures for
(bc-)Chao1 and ACE (Figure 2).

For the BCI dataset, values estimated by TESa and
TESab are consistently slightly higher, while TESb values
are similar to the species richness values estimated by
(bc-)Chao1 and ACE, based on the first sampling plot
(Figure 3a), the first five sampling plots (Figure 3b), and
the first 10 sampling plots (Figure 3c). When pooling all
plots, TESa estimates are similar to (bc-)Chao1 and ACE
and slightly higher than for TESb (Figure 3d). Here, the
standard deviations of the TES series values are similar to
those calculated by (bc-)Chao1 and ACE (Figure 3).

DISCUSSION

Our study demonstrates that probability theory can be
combined with parametric approximation models to

calculate meaningful estimates of the total number of
species in a community represented by incomplete sam-
ples. Our parametric approaches are novel in three ways:
(1) our tests across simulated communities representing
different species abundance distribution models show
that our novel approach generates results that are widely
applicable across these different models; (2) we provide a
way to calculate the variance for this parametric estima-
tor; and (3) we present an approach to easily visualize the
curve-fitting results that allow a direct evaluation of the
respective shape of the curve. This information can, for
example, be used to establish the saturation predicted by
the model, providing indications for the reliability of the
predicted species saturation point.

While the theoretical basis of TES resulted in two dis-
tinct, mathematically slightly different formulas to
approximate total species richness (TESa and TESb), both
of these show some strong qualities, but also some perfor-
mance issues, when compared with established species

-

F I GURE 2 Bias (expressed as the mean), precision (expressed as the coefficient of variance, CV), and accuracy (expressed as the root of

mean square error, RMSE), for the different species richness estimators based on samples randomly taken from the mite dataset that

contains a total of 9800 individuals spread across 35 species (the dashed line). Samples were randomly taken to represent 1%, 5%, 10%, 50%,

and 100% of the number of individuals in this dataset. ACE, abundance-based coverage estimator; TES, Total Expected Species.
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richness estimators. TESa appears to represent a promis-
ing estimator of the total species richness in communities
following a geometric abundance distribution, while
TESb appears to be a useful measure for samples
reflecting the other distribution models. Results further-
more indicated a tendency for TESa to overestimate and
for TESb to chiefly underestimate the overall species rich-
ness of a community represented by small, highly incom-
plete samples. We are not able to correct these biases
from TESa and TESb, and we encourage further studies
to investigate optimization methods for the mathematical
curve-fitting that will further reduce these biases. The
average value of these two approximation models, TESab,
showed a good performance in all three criteria, bias, pre-
cision, and accuracy, when compared with commonly

used (bc-)Chao1 and ACE estimators. Given the symmet-
ric property for the “S” shape of the TES curve, a robust
estimate more likely can be obtained when the observed
value is greater than half of the model asymptotic value.
We therefore suggest users to use TESb or TESab when
the ratio of TESa to the observed richness is �2.

To calculate TES, we used a curve-fitting method based
on established rarefaction curves, that is, calculating
the expected species for variations of given sample sizes, m,
with saturation parameters. This leaves our approach
fundamentally different from already widespread rarefac-
tion and extrapolation curve-fitting approaches (Chao
et al., 2014; Chao & Jost, 2012). In these latter cases, rarefac-
tion and extrapolation do not generally result in saturation
estimates, with estimates instead approximating infinity for
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F I GURE 3 The observed and estimated number of species richness for different estimators for the BCI dataset based on the pooling

of the first (a; 448 individuals and 93 species), the first five (b; 2359 individuals and 152 species), the first 10 (c; 4510 individuals and

170 species), and all (d; 21,457 individual and 225 species) sampling plots. The dashed lines refer to the total number of species.

ACE, abundance-based coverage estimator; TES, Total Expected Species.
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large sample sizes (Cayuela et al., 2015). In addition, our
approach also inherently differs from other parametric
curve-fitting methods that are based on sample-based spe-
cies accumulation curves (either with asymptotic or not)
(e.g., Flather, 1996; Rosenzweig et al., 2003). Although boot-
strap subsampling could be used to smoothen the respective
curves in these instances (Flather, 1996; Rosenzweig
et al., 2003), this approach might result in a strong increase
in uncertainty during subsampling (Ulrich et al., 2020).

Traditional individual-based curve-fitting approaches,
either based on individual-accumulation curves (Palmer,
1990) or rarefaction curves (Mauffrey et al., 2007;
O’Hara, 2005), have always strongly depended on prior
decisions relating to the specific species distribution
model (Chao & Chiu, 2016; Walther & Moore, 2005).
Here we use the Weibull-logistic model based on the log-
arithm of the rarefied parameter (m) for the curve-fitting,
showing that this Weibull-logistic model is more robust
than the Michaelis–Menten model. Our simulation
results demonstrate that the TES approach can be effec-
tively used to estimate total species richness across all
three common species’ abundance distribution models
even where samples are highly incomplete. These results
mean that the TES approach has a relatively high toler-
ance for the species’ abundance distribution, which indi-
cates the potential of this new approach to serve as a
good estimator, or, at least, as a viable alternative to non-
parametric approaches.

Resampling from the pooled mite dataset shows an
overestimation of TES, particularly for TESa, in compari-
son to the overall species richness. Nonetheless, it needs
to be noted that here we assume the observed total num-
ber of species represents the true value and then
conducted a resampling procedure. By pooling all study
plots and conducting the resampling procedure, we also
assume that subsamples are randomly collected from the
community, which might not be the case. As the real
total species richness is unknown and could indeed be
higher than the total observed number, we are not able
to fully judge whether the higher TES estimates show a
true positive bias.

A further important novelty of our study is that we
provide the variance for our parametric estimates.
Parametric curve-fitting methods usually do not provide
the variance, which is one of the reasons why they
received more limited attention than nonparametric
approaches (Chao & Chiu, 2016). Traditional boot-
strapping methods to estimate the variance might work
for nonparametric methods (e.g., Chao & Jost, 2012), but
to take a subsample (even sampling with replacement at
the same size as Nt) is problematic in this instance, as the
resulting variance reflects the estimates from a subsam-
ple, and hence cannot be used for the calculation of the

variance of the total species richness estimation
(O’Hara, 2005). It needs to be noted that the variance of
our estimates is generated based on the estimation of
standard deviation (i.e., residual mean square) of the
curve-fitting, which can be viewed as a prediction ques-
tion (O’Hara, 2005). Our results show that the variance
from TES estimates is comparable to the variance of non-
parametric estimates such as (bc-)Chao1 and ACE. This
robust estimated variance supports a wider potential
application of the TES estimates in rigorous comparisons.

While our TES approach is based on individual-based
rarefaction, TES for sample-based rarefaction (Pielou,
1975) might also be developed. Here we compared TES
only with two commonly used species estimators, (bc-)
Chao1 and ACE. We are aware that a wide variety of
further estimators is available, whose performances
have been the focus of a variety of previous studies
(Beck & Schwanghart, 2010; Chiu et al., 2014; Colwell &
Coddington, 1994; Hortal et al., 2006; Mao &
Colwell, 2005; Reese et al., 2014; Rosenzweig et al., 2003).
A comprehensive comparison of TES with the majority of
existing estimators, however, is beyond the scope of our
current study, which is chiefly based on the formulation
and preliminary evaluation of the performance of TES.
We now strongly encourage such wider comparisons
based both on simulated and empirical data to be
conducted in the near future.

The estimation of a community’s species richness in
target taxa from an incomplete sample in terms of the
species pool remains a strong challenge. Overall, we
showed that rarefaction theory in combination with para-
metric approximation models provides a valuable new
approach to estimate the species richness of incompletely
sampled communities. Our parametric method, TES,
demonstrates a high tolerance to different species’ abun-
dance distribution models. Although TES is not impres-
sively superior to traditional nonparametric approaches,
the R functions we developed allow users to visualize the
performance of the estimation. Therefore, we encourage
researchers to consider this approach as a complement to
current existing estimators in their biodiversity studies.
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