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Abstract:We collect examples of boundary-value problems of Dirichlet and Dirichlet–
Neumann type which we found instructive when designing and analyzing numerical
methods for fully nonlinear elliptic partial differential equations. In particular, our
model problem is the Monge–Ampère equation, which is treated through its equiva-
lent reformulation as a Hamilton–Jacobi–Bellman equation. Our examples illustrate
how the different notions of boundary conditions appearing in the literature may ad-
mit different sets of viscosity sub- and supersolutions. We then discuss how these ex-
amples relate to the application of comparison principles in the analysis of numerical
methods.
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7.1 Introduction

In this short note we collect a small number of examples which we found instructive
when designing and analyzing numerical methods for fully nonlinear elliptic partial
differential equations (PDE). In particular, we are interested in the comparison prin-
ciple between sub- and supersolutions, as used in the convergence proof by Barles
and Souganidis [4] for the approximation of viscosity solutions by monotone numer-
ical schemes. Recall that the comparison principle required for the analysis [4, equa-
tion (2.5)], called there the strong uniqueness property, was stated as an assumption.

Our model problem is the following simple Monge–Ampère equation

M(D2u) = 0 , M(A) := 1
2 f

2 − det A (7.1.1)

on a domain Ω ⊂ ℝd, d ≥ 2 with f ≥ 0.
The problem is complemented with either Dirichlet or mixed Dirichlet–Neumann

boundary conditions, as well as the requirement that u be a convex function in Ω.
In order to conform to the standard framework of degenerate elliptic operators, we
consider the following reformulation of (7.1.1) as a Hamilton–Jacobi–Bellman (HJB)
equation [8, 11]

H(D2u) = 0 , H(A) := sup
B∈S1

(−B : A + f√det B) , (7.1.2)

whereS1 is the set of symmetric positive semidefinitematrices inℝd×d with trace equal
to 1 and B : A := trace(B ⋅ A). In particular, it was shown [8] that (7.1.1) (including the
https://doi.org/10.1515/9783110543599-007
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convexity constraint) is equivalent to (7.1.2) in the sense of viscosity solutions. Note
that this equivalence result concerns only the equations inside the domain Ω, without
referring to the boundary condition.

The reason for selecting this as our model problem is not only its relevance to
applications, but also its degenerate elliptic structure, which will be exploited in the
examples below. A further property of Dirichlet boundary conditions in combination
with the Monge–Ampère operator is that the existence of solutions admitting classical
boundary conditions depends on the convexity properties of the domain,making it an
interesting test problem to explore different notions of Dirichlet boundary conditions.

Remark 7.1.1. Observe that the Barles–Souganidis theorem cannot be considered di-
rectly for (7.1.1) because (7.1.1) is only elliptic on the set of convex functions and its test
functions are usually assumed to be convex [9, Definition 1.3.1]. This is the reasonwhy
we shall work with the equivalent formulation (7.1.2).

Comparison principles are central to the theory of viscosity solutions, both for the
analysis of well-posedness of the PDE and for the analysis of numerical methods.
While conceptually the statement of a comparison principle requires that subsolu-
tions lie below supersolutions, the different formulations of the boundary conditions
and the different sets of available test functions raise the question of the validity of
the corresponding comparison principle. For instance, the boundary conditions can
be imposed in the following variety of ways:
1. In the classical sense, where the Dirichlet boundary condition is understood

pointwise everywhere on the boundary; this is the setting for the comparison
principle of Theorem 3.3 in the User’s Guide [5] by Crandall, Ishii, and Lions, and
also in the numerical analysis in [8].

2. As in the setting of the Barles–Souganidis theorem [4], where the Dirichlet bound-
ary condition is relaxed from its classical pointwise sense, and is understood in
a generalized sense that allows extensions of the PDE onto the boundary. This
notion of the boundary conditions is the subject of Section 7.2 below.

3. As in Definition 7.4 of the User’s Guide [5], where boundary conditions are relaxed
similarly to the Barles–Souganidis approach, but semicontinuity of sub- and su-
persolutions is assumed from the outset and a closure operation is applied to the
second-order jets. See also [3], where the semicontinuity for sub- and supersolu-
tions of Hamilton–Jacobi equations is imposed, but the closure of the jets is not
introduced.
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Wealso refer the reader to [5, Definition 7.1] on the intermediate notion of the boundary
condition named therein as the strong viscosity sense.

The sets of sub- and supersolutions are usually chosen within
(a) the spaces USC(Ω) of bounded upper semicontinuous functions and LSC(Ω) of

bounded lower semicontinuous functions;
(b) or within the function space C(Ω) of continuous functions;
(c) or, in the classical setting, within the function space C(Ω) ∩ C2(Ω) of twice con-

tinuously differentiable functions.

Here, we shall focus our attention on the semicontinuous case because this is the rel-
evant one for the analysis of numerical methods, where only the semicontinuity of
upper and lower envelopes of sequences of numerical solutions is known a priori.
Nevertheless, it is worth observing that the existence of a comparison principle may
well be conditional to further regularity or structure assumptions on the set of sub-
and supersolutions. We point to Section 7.C of [5] for a general discussion of the sub-
ject.

Using the simple Monge–Ampère equation as a reference problem, we show ex-
amples where the sets of viscosity sub- and supersolutions vary depending on the
notion of boundary condition employed, i.e., the different notions of boundary condi-
tion do lead to different solution sets in some cases. In turn this also informs us how
a numerical convergence analysis may be approached.

While the purpose of this note is to illustrate the differences between the var-
ious notions of boundary conditions with concrete examples, we point out that
there is a substantial body of literature which provides analytic insights into this
question. Besides the contributions mentioned above we name as examples [2]
and [12, 13].

While we consider in the subsequent text different notions of viscosity sub- and
supersolutions, a function u is always said to be a viscosity solution if it is simultane-
ously a viscosity subsolution and supersolution.

Given a function v we denote its upper semicontinuous envelope by v∗ and its
lower semicontinuous envelope by v∗, respectively. More precisely, for all x ∈ Ω,

v∗(x) := sup
{yn}n⊂Ω
yn→x

lim sup
n→∞

v(yn) , v∗(x) := inf
{yn}n⊂Ω
yn→x

lim inf
n→∞

v(yn) ,
where sup{yn}n⊂Ω,yn→x denotes the supremumover the set of all sequences with values
in Ω which converge to x.
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7.2 Dirichlet boundary conditions as in the
Barles–Souganidis theorem

Let Ω be an open subset of ℝd and consider the model problem (7.1.2) with a homo-
geneous Dirichlet boundary condition u = 0 on ∂Ω. In line with Definition 1.1 and
equations (1.8), (1.9) of [4], we say that a locally bounded function v is a viscosity sub-
solution of the boundary value problem if

F∗(D2ϕ(x), v∗(x), x) ≤ 0
for all ϕ ∈ C2(Ω) such that v∗ − ϕ has a local maximum at x ∈ Ω, where F∗ denotes
the lower semicontinuous envelope of F defined by

F∗(A, w, x) = {{{H(A) : x ∈ Ω ,
min{H(A), w} : x ∈ ∂Ω .

Analogously, v is a viscosity supersolution whenever

F∗(D2ϕ(x), v∗(x), x) ≥ 0 (7.2.1)

for all ϕ ∈ C2(Ω) such that v∗−ϕ has a local minimumat x ∈ Ω, where F∗ is the upper
semicontinuous envelope of F given by

F∗(A, w, x) = {{{H(A) : x ∈ Ω ,
max{H(A), w} : x ∈ ∂Ω .

We consider in the following example the Monge–Ampère equation on possibly
one of the simplest domains with a boundary, namely a d-dimensional half-space. In
particular, let Ω = ℍd, with d ≥ 2, where ℍd = {x = (x1, . . . , xd) ∈ ℝd , x1 > 0},
and consider the problem (7.1.2) with vanishing source term f = 0, corresponding to
the degenerate elliptic case, complemented with homogeneous Dirichlet boundary
conditions on ∂Ω = {x = (x1, . . . , xd) ∈ ℝd , x1 = 0}. It is clear that the function u ≡ 0
is a viscosity solution of the problem in the sense of [4].

In fact, by noticing that the definition of viscosity solutionused in [4] does not pre-
scribe any conditions at infinity on the solution, it is clear that this problem does not
admit a unique classical solution. However, what we shall show below is that different
notions of the boundary condition on ∂Ω admit different sets of viscosity solutions, re-
gardless of the behavior at infinity.

Proposition 7.2.1. Let d ≥ 2 and let Ω = ℍd as above. For a fixed but arbitrary constant
c > 0, let the locally bounded function vc be defined by vc(x) = 0 if x ∈ Ω and vc(x) = −c
if x ∈ ∂Ω. Then vc is a viscosity solution of (7.1.2) in the sense of [4].
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Proof. It follows from the definition of vc that (vc)∗ ≡ 0 identically in Ω, whereas(vc)∗ = v in Ω since vc is lower semicontinuous. It is thus clear that vc is a viscosity
subsolution of the problem.

We now prove that the function vc is also a viscosity supersolution and hence
a viscosity solution of the problem in the sense of [4]; in particular, we must show
that (7.2.1) holds for all ϕ ∈ C2(Ω) such that (vc)∗ − ϕ has a local minimum at x ∈ Ω.
It is clear that (7.2.1) is satisfied whenever x ∈ Ω is an interior point, since v∗ ≡ 0
in Ω. Hence, we need only to consider boundary points x ∈ ∂Ω. Suppose now that
ϕ ∈ C2(Ω) is such that (vc)∗ − ϕ has a local minimum at x ∈ ∂Ω. Then, since d ≥ 2,
we may take a unit tangent vector y = (0, y1, . . . , yd−1) to the boundary, with |y| = 1,
noting that for any ε ∈ ℝ, x ± εy ∈ ∂Ω. Then, we deduce that, for ε > 0 sufficiently
small,

ϕ(x + εy) − 2ϕ(x) + ϕ(x − εy)
ε2

≤ 0 , (7.2.2)

where we have used the fact that (vc)∗(x ± εy) − ϕ(x ± εy) ≥ (vc)∗(x) − ϕ(x) whenever
ε is small enough, and that (vc)∗(x ± εy) = (vc)∗(x) since (vc)∗ ≡ −c on ∂Ω. There-
fore, taking the limit ε → 0, we deduce from (7.2.2) that the second-order directional
derivative (y ⊗ y⊤) : D2ϕ(x) ≤ 0. Note that the matrix By := y ⊗ y⊤ belongs to the set
S1 appearing in (7.1.2), since By is positive semidefinite and has trace equal to |y|2 = 1
(recall that ywas chosen as a unit vector). Therefore, using the definition ofH(D2ϕ(x))
from (7.1.2), we see that H(D2ϕ(x)) ≥ −By : D2ϕ(x) ≥ 0, and hence

F∗(D2ϕ(x), (vc)∗(x), x) = max{H(D2ϕ(x)), (vc )∗(x)} ≥ 0 ,
as required by (7.2.1). Hence, vc is also a viscosity supersolution and thus a viscosity
solution of (7.1.2).

Remark 7.2.2. In Proposition 7.2.1, we considered negative perturbations on the
boundary, i.e., vc(x) = −c, with c > 0. For the case of positive perturbations, i.e.,
vc = c, it is possible to construct test functions showing that the subsolution property
does not hold.

7.3 Dirichlet boundary conditions as in the User’s Guide

The definition of viscosity solution is formulated in a different way in the User’s
Guide [5]. There the gradient and Hessians obtained from the test functions define the
jets

J2,+u(x) := {(Dϕ(x), D2ϕ(x)) : ϕ ∈ C2 and u − ϕ has local maximum at x} ,
J2,−u(x) := {(Dϕ(x), D2ϕ(x)) : ϕ ∈ C2 and u − ϕ has local minimum at x} .

These jets may not be rich enough to replace the notion of the classical gradient and
Hessian in the proof of a comparison principle in [5], which is why one considers the
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closures

J2,+Ω u(x) := {(p, X) ∈ ℝd × S : ∃(xn , pn , Xn) ∈ Ω × ℝ × S so that(pn , Xn) ∈ J2,+u(xn) and (xn , u(xn), pn , Xn) → (x, u(x), p, X)} ,
J2,−Ω u(x) := {(p, X) ∈ ℝd × S : ∃(xn , pn , Xn) ∈ Ω × ℝ × S so that(pn , Xn) ∈ J2,−u(xn) and (xn , u(xn), pn , Xn) → (x, u(x), p, X)} ,

which “inherit” nearby gradients and Hessians.
In line with Example 1.11, Definition 7.4 and equation (7.24) of [5], we keep the

above definitions of F, F∗, and F∗. We say that a function v is a viscosity subsolution
of the boundary value problem if u is upper semicontinuous on Ω and

F∗(A, v(x), x) ≤ 0 ∀ (A, p) ∈ J2,+Ω v(x) .
Similarly, v is a viscosity supersolution whenever v is lower semicontinuous on Ω and

F∗(A, v(x), x) ≥ 0 ∀ (A, p) ∈ J2,−Ω v(x) .
Consequently, there are two differences with the Barles–Souganidis definition:

(a) The equation is tested with a larger set of derivatives as a result of the closure of
the semijets.

(b) Both u and v are assumed to be semicontinuous, rather than taking their lower
and upper semicontinuous envelopes.

The functions vc fromProposition 7.2.1, which are lower semicontinuous by definition,
are not affected by the closure of the jets (a) in the sense that the above arguments from
the previous section related to the supersolution property of vc remain valid without
change.

However, the requirement of semicontinuity (b) means that now the functions vc
do not qualify as subsolutions (and thus are not viscosity solutions) in the sense of [5].

Thus, in this case the set of viscosity solutions using the definition from [4] does
not coincidewith the set of solutions from [5]. More broadly, this raises the question of
the applicability of comparison principles such as [5, Theorem 7.9] when attempting
to prove the convergence of numerical methods as done in [4].

7.4 Dirichlet boundary conditions in the classical sense

As in [5, Definition 2.2] we now say that a function u is called a viscosity subsolution
(resp. supersolution) of (7.1.2) if u ∈ USC(Ω) (resp. u ∈ LSC(Ω)) and if for all φ ∈ C2(Ω)
such that u − φ has a local maximum (resp. minimum) at x ∈ Ω we have

F(D2φ(x), ∇φ(x), u(x), x) ≤ 0
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(resp. F(D2φ(x), ∇φ(x), u(x), x) ≥ 0). In this case, the boundary conditions are not
part of the definition of the viscosity solution of the equation, but are instead under-
stood in the classical pointwise sense:

u(x) = 0 ∀x ∈ ∂Ω .

This is the setting of the comparison principle [5, Theorem 3.3]. It is then clear that the
functions vc from Proposition 2.1 are not viscosity solutions satisfying homogeneous
Dirichlet boundary conditions in the classical sense as we assume c > 0. This shows
how the set of viscosity sub- and supersolutions can then potentially differ between
all three definitions described so far.

7.5 An example on a bounded domain

In the case of bounded, convex domains Ω, Lemma 3.6 in [8], in the spirit of [5, Sec-
tion 5.C], states that if u is a subsolution and v is a supersolution of (7.1.2) and crucially
if u ≤ v on ∂Ω, then u ≤ v onΩ. Hence, a viscosity solution that satisfies the boundary
conditions in a pointwise sense is necessarily unique, if it exists.

The existenceanduniqueness of viscosity solutionsholdswith classical boundary
conditions on strictly convex domains, noting that Perron’s theorem requires not only
a comparisonprinciple, but also the construction of a sub- anda supersolution, which
is in full generality not possible if Ω is not strictly convex.

In fact, if the domain Ω is not strictly convex or not convex at all, then existing
proofs of well-posedness [6, 7] require additional regularity of Ω and, in the case of
nonhomogeneous boundary conditions, of the boundary data. In addition the bound-
ary data needs to be the restriction of a convex function. For the closely related prob-
lem of prescribed Gaussian curvature, Bakelman [1] imposes Dirichlet boundary con-
ditions in terms of the border operator of convex functions, which may be viewed as
leading to multivalued solutions. A connection between [1, 6, 7] and the Bellman for-
mulation (7.1.2) is made in [10].

We highlight that the construction of a stable, monotone, consistent scheme to-
gether with the successful application of a Barles–Souganidis theorem amounts to the
proof of the existence of a unique viscosity solution. Therefore, one would not expect
that a straightforward application of the Barles–Souganidis argument is possible on
nonstrictly convex Ω, unless assumptions akin to [1, 6, 7] enter the construction.

Indeed, it is interesting to pinpoint at which step the argument in [8] breaks down
if Ω is not a strictly convex domain. Lemma 6.4 of [8] shows how, on strictly convex
domains, the upper and lower semicontinuous envelopes of the numerical solutions
in the small-mesh limit satisfy the classical boundary conditions; this argument relies
on the existence of certain test functions, for which the strict convexity of the domain
is needed.
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Fig. 7.1: Numerical solution of (7.1.2) on an L-shaped domain with homogeneous boundary condi-
tions and f ≡ 1.
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Fig. 7.2: Cross sections of the numerical solution along the first diagonal x1 = x2.

To illustrate how on nonconvex domains, the numerical solutions need not satisfy the
boundary conditions in the classical sense in the small mesh limit, we shall therefore
consider the scheme of [8] for (7.1.2) on the L-shaped domain

Ω = [(0, 1) × (−1, 1)] ∪ [(−1, 1) × (0, 1)] ,
noting that the existence and uniqueness of numerical solutions also hold on non-
convex domains. A numerical solution is depicted in Figure 7.1, while Figure 7.2 shows
the cross sections on {(x1, x2) ∈ Ω: x1 = x2} of the numerical solutions over several
levels of refinement, where mesh 1 is the coarsest with 328 degrees of freedom while
mesh 5 has 83,968 DoFs. The figures illustrate how amesh-dependent boundary layer
appears in the vicinity of the re-entrant corner. Thus, it is reasonable to expect that
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the lower semicontinuous envelope

u(x) := lim inf
y→x
h→0

uh(y) , ∀x ∈ Ω ,

of the sequence (uh)h of numerical solutions will not satisfy the boundary conditions
in the classical sense, so that the above-mentioned comparison principle may not be
used to determine the convergence of the numerical method and to guarantee exis-
tence of the viscosity solution.

7.6 Mixed Dirichlet–Neumann boundary conditions as in the
Barles–Souganidis theorem

We now show some generalizations of the example of Section 7.2 to problems with
mixed boundary conditions on bounded convex domains in order to highlight some
further subtleties and challenges of treating the boundary conditions in a generalized
sense. We therefore return to the definition of viscosity sub- and supersolutions of [4],
as detailed in Section 7.2.

vc = 0

nΓN

vc = −c

ΓD ΓD

ΓN

ΓN

Fig. 7.3: Construction of the viscosity solutions vc in Proposi-
tion 7.6.1.

As illustrated in Figure 7.3, we choose the unit square domainΩ = (0, 1)2 in two space
dimensions, and consider the simple Monge–Ampère equation (7.1.2) with mixed
Dirichlet–Neumann boundary conditions

H(D2u) = 0 in Ω ,
u = 0 on ΓD ,∇u ⋅ n = 0 on ΓN ,

(7.6.1)

where H(⋅) is as in (7.1.2), where ΓD = {x = (x1, x2) ∈ ∂Ω, x1 ∈ {0, 1}, x2 ∈ (0, 1)}
is composed of the left and right faces of ∂Ω (which are open relative to ∂Ω), and
ΓN = {x = (x1, x2) ∈ ∂Ω, x1 ∈ (0, 1), x2 ∈ {0, 1}} is composed of the top and bottom
open faces of ∂Ω. Furthermore, we introduce ΓD the closure of ΓD, and we note that
ΓD and ΓN partition ∂Ω.
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To formalize the definition of the viscosity sub- and supersolutions, we define the
operator B : ℝd × ℝ × ∂Ω → ℝ by

B(p, r, x) :− {{{r = 0 if x ∈ ΓD ,
p ⋅ nΓN = 0 if x ∈ ΓN ,

where nΓN is the unit outward normal on ΓN , which in this example is simply given by
nΓN = (0, 1) when x2 = 1, and nΓN (0, −1) when x2 = 0.

The lower and upper envelopes of B are given by

B∗(p, r, x) := {{{B(p, r, x) : x ∈ ΓD ∪ ΓN ,
min{r, p ⋅ nΓN } : x ∈ ∂Ω \ (ΓD ∪ ΓN)

and

B∗(p, r, x) := {{{B(p, r, x) : x ∈ ΓD ∪ ΓN ,
max{r, p ⋅ nΓN } : x ∈ ∂Ω \ (ΓD ∪ ΓN) .

Following [4] and [5, Section 7.B], a locally bounded function v is called a viscosity
subsolution of the boundary value problem (7.6.1) if

F∗(D2ϕ(x), ∇ϕ(x), v∗ (x), x) ≤ 0
for all ϕ ∈ C2(Ω) such that v∗ − ϕ has a local maximum at x ∈ Ω, where F∗ is defined
by

F∗(A, p, w, x) = {{{H(A) : x ∈ Ω ,
min{H(A), B∗(p, w, x)} : x ∈ ∂Ω .

Analogously, v is a viscosity supersolution of (7.6.1) whenever

F∗ (D2ϕ(x), v∗(x), x) ≥ 0 (7.6.2)

for all ϕ ∈ C2(Ω) such that v∗ − ϕ has a local minimum at x ∈ Ω, where F∗ is given by

F∗(A, w, x) = {{{H(A) : x ∈ Ω ,
max{H(A), B∗(p, w, x)} : x ∈ ∂Ω .

It is clear that the function u ≡ 0 is a viscosity solution of the boundary value prob-
lem (7.6.1). However, we show in Proposition 7.6.1 below that again uniqueness of the
viscosity solution fails due to the lack of a comparison principle.

Proposition 7.6.1. For a fixed but arbitrary constant c > 0, let the locally bounded func-
tion vc be defined by vc = 0 on Ω ∪ ΓN and vc = −c on ΓD. Then vc is a viscosity solution
of (7.6.1).
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Proof. The upper envelope (vc)∗ ≡ 0 in Ω, so we see that vc is a subsolution. To show
the supersolution property, consider a function ϕ ∈ C2(Ω) such that (vc)∗ − ϕ has
a local minimum at x ∈ Ω. First, it is clear that (7.6.2) holds whenever x ∈ Ω is an
interior point or when x ∈ ΓN is a “Neumann” boundary point. It remains only to
consider “Dirichlet” points x ∈ ΓD and corner points x ∈ ∂Ω \ (ΓN ∪ ΓD).

If x ∈ ΓD is a “Dirichlet” point, i.e., x = (x1, x2) with x1 ∈ {0, 1} and x2 ∈ (0, 1),
then we can follow the same argument used in the proof of Proposition 7.2.1 to de-
duce that ∂2x2x2ϕ(x) ≤ 0 and hence that H(D2ϕ(x)) ≥ 0. This implies that (7.6.2) holds
whenever x ∈ ΓD.

The only remaining case is when x is a corner point, i.e., x = ∂Ω \ (ΓN ∪ ΓD). For
this case, we note that for ε > 0 sufficiently small, x − εnΓN ∈ ΓD since nΓN = ±(0, 1)
is the outward normal for the “Neumann” part of the boundary. Therefore, we deduce
that, for all ε > 0 sufficiently small,

ϕ(x) − ϕ(x − εnΓN )
ε ≥ 0 , (7.6.3)

where we have used the facts that (vc)∗(x − εnΓN ) − ϕ(x − εnΓN ) ≥ (vc)∗(x) − ϕ(x) for
ε > 0 sufficiently small and that (vc)∗(x − εnΓN ) = vc(x) = −c.

Therefore, taking the limit ε → 0 in (7.6.3) gives ∇ϕ(x) ⋅ nΓN ≥ 0, and hence
B∗(∇ϕ(x), (vc )∗(x), x) = max{∇ϕ(x)⋅nΓN , (vc)∗(x)} ≥ 0. Thus,wefind that (7.6.2) is sat-
isfied in the case where x is a corner point. Hence, vc is also a viscosity supersolution
and thus a viscosity solution of (7.6.1).
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