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Abstract

This paper provides an experimentally validated optimal control approach based on a Hamilton–Jacobi–Bellman (HJB)
model for optimising aggregated distributed energy resources across multiple energy carriers. The research incorporates
nonlinear e↵ects arising from storage degradation, conversion e�ciency and self-discharge as well as multiple energy
carrier storage. A semi-Lagrangian HJB solver was implemented on low-cost digital controllers, and integrated into a
real fully functional cloud-based aggregation platform. The computational cost is kept at a minimum, enabling on-line
computations on the low-cost controller, while maintaining a rigorous proof of convergence to the theoretical value
function of the nonlinear, non-convex optimal control problem.

The controller links into a distributed optimal control platform that is using local as well as cloud-based information
and performs all the computation and decision-making locally. The distributed controllers were tested and validated
on site with an electrical and a thermal storage device. Experimental results confirm that the framework is practical,
accommodates nonlinear e↵ects and inaccurate external forecasts, has a small computational cost, is robust and can
deliver significant cost benefits to the stakeholders.

Keywords: energy storage, optimal control, energy management, aggregation, multiple energy carriers, integrated
energy system

1. Introduction

Multiple energy carriers, otherwise referred to as in-
tegrated energy systems or multi-vector energy systems,
have been introduced as a research concept several years
ago, by defining the Energy Hub unit [1, 2]. An Energy
Hub is considered to be a closed system with energy in-
puts and outputs of multiple types, and internal conversion
components. These internal components are typically used
to convert energy between energy carriers, but can also
include demand-side management and energy storage as a
bu↵er between inputs and outputs [3]. The relationships
between inputs and outputs are described by a coupling
matrix [1]:
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The elements of the coupling matrix are representations of
the conversion devices that are included in the hub.
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A key benefit of incorporating energy storage in energy
hub optimisation is that it can be used to o↵set variability
caused by renewables [4], even in a residential context [5].

Yet, a comprehensive representation of the physical en-
ergy hub through a model requires replication of highly
nonlinear and non-convex e↵ects. Dealing with these ef-
fects proves to be challenging, not least because gradient-
based optimization methods are often ine�cient and tend
to convergence to local minima, as outlined in the recent
review in [6]. In that review, it is also highlighted how
metaheuristic nonlinear programming as well as machine
learning approaches, while computationally e�cient, may
lack the necessary guarantees needed for the independent
operation of an energy system.

For this reason dynamic programming techniques have
recently attracted great interest for the robust, realistic
and e�cient energy management of small and mid-sized
energy systems. In this article we propose the use of energy
hubs linked as distributed dynamic programming platform
through a cloud-based information system. When consid-
ering time and charge levels as continuous variables the
dynamic programming principle leads to an Hamilton–
Jacobi–Bellman partial di↵erential equation.

A central component of our work is the full experimen-
tal validation of the optimal control model in a testing
laboratory, assessing the ramifications arising from mod-
elling assumptions as well as forecasting inaccuracies.
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We highlight other recent developments for the opti-
mal control of small and mid-sized energy systems with
dynamic programming. In [7] battery management was
compared with and without weather prediction, using a
discrete control model for a single energy carrier. The re-
sulting algorithm was predicted to be computationally ef-
ficient for implementation on battery controllers. A linear
programming optimal control formulation was proposed in
[8], taking real-time predictions into account, using data
from the Pecan Street Project. A piecewise quadratic con-
trol model with a single energy carrier was solved in [9],
and the results validated at the Biling substation, China.
Here charge and discharge constraints were added to pro-
long the storage life expectancy. Finally, [10] uses dynamic
programming to assess the optimal investment into pho-
tovoltaic generation and storage in domestic settings.

We note that none of these approaches has considered
whether the proposed algorithms will approximate the the-
oretically optimal control increasingly well as the time step
and storage charge levels are refined, noting that time and
charge levels are physically continuous quantities. Yet,
the approximation of entirely incorrect spurious solutions
is a well-documented problem of dynamic programming,
e.g. see [11, Section 1.4] and [12, Section 1.5], which is
addressed in this work.

In [13] the semi-Lagrangian HJB approach was recently
compared with direct NLP techniques in a setting with
a single electrical storage device and a diesel generator.
Even though the nonlinear structure of the optimal con-
trol problem in [13] di↵ers from ours, the work provides
evidence that this approach is well-suited to energy stor-
age problems, as it is linearisation-free, computationally
e�cient and provides globally optimal solutions.

We now turn to optimal control of multi-carrier resi-
dential energy systems. Setups with multi-carrier energy
sources and demands are, for example, analysed in [14],
[15]; we refer also to the references therein. Generally,
the application of multiple energy carrier microgrids is
widespread, ranging from residential micro-hubs to com-
mercial and agricultural macro-hubs, as reviewed in [16].
On district level, multi-carrier storage has been modelled
in [17]. When it comes to a local residential focus, this re-
duces the problem size on the one hand, but on the other
hand it also increases uncertainty, due to the lack of multi-
customer load diversity [18].

Forecasting methodologies in connection with optimal
control models and strategies to deal with uncertainty in
forecasting have been compared in [19]. From the assess-
ment in [19], we find that the deterministic look-ahead
strategies are competitive for a range of storage applica-
tions, while computationally e�cient. In order to enable
the predictive computation of optimal controls on storage
control units, we embed one such strategy in this work,
where forecasts are generated by a cloud-based industrial
provider [20]. Alternative forecasting techniques are out-
lined in [21], regarding photovoltaic power generation, and
in [22], regarding energy consumption.

Optimisation of energy systems typically is either or-
ganised centrally, hierarchically or in distributed form [23].
Distributed control in the energy system context has been
a developing research field, and local controllers are of-
ten referred to as intelligent, since they can perform ad-
vanced functions beyond simple automation [24]. Agent-
based control is one form of intelligent control that has
long been under development for use by the energy indus-
try [25]. The extension of agent-based control to multiple
energy carrier systems was previously proposed by the au-
thors in [26], which combines the benefits of distributed
control with the integration of energy systems. Di↵erent
layers of aggregation and control localisation can be con-
sidered, depending on the application, but it is logical to
assume that the energy hub will be one of the layers. A
similar approach was proposed in [27], where electric ve-
hicles are considered to have a similar functionality as en-
ergy storage. Furthermore, distributed control improves
the scalability of the system, especially compared to cen-
tral control, and more easily accommodates privacy and
data protection concerns. Due to the above benefits of lo-
cal control, the framework proposed in this paper is based
upon the concept of local optimisation controllers, and in
some respects an extension of the work published by the
authors in [26].

The practical implementation of such control method-
ologies requires interoperability with current industrial prac-
tices. One example is the use of existing smart home
equipment, such as Home Automation Systems (HAS) or
smart meters [28]. Typically, an aggregator server is re-
quired centrally, to co-ordinate the operation of multiple
residential devices, as well as interface with the market
and other entities [28]. Experimental implementations of-
ten rely on SCADA systems and communication protocols
such as Modbus and OPC UA, which can sometimes be
found in real microgrids, but rarely in residential premises
[29]. Real smart grid communications often involve more
agile platforms, such as ZigBee and Home Area Networks
(HAN), which are used in commercial smart meters [30].
At the local level, such commercial platforms can provide
su�cient capability, and this capability is augmented by
cloud-based services, which are becoming more popular
for smart grid applications [31]. Such implementation ar-
chitectures have also been applied to energy storage con-
trollers [32]. The key challenge in such distributed and lo-
cal implementations is for the system to be able to perform
local optimisation rigorously and e�ciently, on small-scale
platforms that are computationally constrained.

Following the above literature gaps, the key contribu-
tions of this paper can be summarised as follows:

• The experimental validation of a novel optimally con-
trolled energy hub methodology, which confirmed
significant cost savings compared to the conventional
balance mode.

• Incorporation of the nonlinear e↵ects of storage degra-
dation, conversion e�ciency as well as self-discharge
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into a model of energy hubs with multi-carrier energy
storage devices.

• A computational control framework that approxi-
mates the continuous-time optimal control problem
rigorously, despite non-convex nonlinearities. The
optimal control algorithm returns controls for the
whole state space and time horizon, ensuring a con-
trolled, operational aggregator system even when the
environment deviates from the cloud-supplied fore-
casts.

• The enabling advantage of the proposed method is
the combination of computational e�ciency, allow-
ing adaptive rolling horizon updates on a Raspberry
Pi controller under operational conditions, with a
robust, non-heuristic optimal control formulation.

• All aspects of the methodology are implemented ex-
perimentally and validated with a real-life opera-
tional aggregation platform (GridShare). In order to
align this research with current industrial agent prac-
tices, the implementation was designed in line with
the recently published developments IEEE 2660.1-
2020 Recommended Practice [33].

The remainder of the paper consists of the model de-
scription (Section 2), a case study (Section 3) and sim-
ulations and experimental validation (Sections 4 and 5).
Conclusions are drawn in Section 7. Subsection 2.1 proves
convergence of the optimization method.

2. Model

We present a mathematical model to perform multi-
ple energy carrier optimisation within an energy hub con-
taining energy storage devices. The aim is to supply the
forecasted loads at the lowest possible financial cost. The
coupling equation to quantify these interactions is given
by the identity:

L =
⇥
Ds Df Di

⇤
·

2

4
Ps

Pf

Pi

3

5 . (2)

Here L is a vector representing the loads, Ps the powers at
the energy storage devices, Pf the powers at the flexible
power sources and Pi the powers at the inflexible power
sources, respectively. Finally, D = [Ds, Df , Di] is the cou-
pling matrix, consisting of the sub-matrices Ds, Df and
Di. An inflexible power source represents a source where
the power output cannot be controlled, such as solar pho-
tovoltaic where the power output is subject to the local
weather conditions. A flexible power source by contrast
represents a source where the power can be controlled by
the hub, such as power drawn from the electrical grid.

The controls v = (v1, . . . , vm)T of the system deter-
mine the powers at the storage devices and flexible power

sources through a matrix A:

Ps

Pf

�
= A · v. (3)

We ensure that loads L 2 Rn can be supplied with the
requirement that A is such that for any L there is a v

solving L = [Ds, Df ] · A · v +DiPi. Mathematically, this
means that the rank of [Ds, Df ] ·A is equal to the number
n of loads. In interesting scenarios v is not unique and it
is the aim of this paper to choose the v which minimises
the operational costs.

Energy stored in the jth storage unit is constrained by
the minimum and maximum State Of Charge level (SOC)
of the storage unit:

C
min
j

 Cj  C
max
j

. (4)

The charges C are related to the powers Ps through the
ordinary di↵erential equation

dtC = R(Ps, C). (5)

For an ideal storage device R(Ps, C) = Ps, but generally
R is subject to charging and discharging ine�ciencies as
well as energy dissipation and may be nonlinear.

Each power flow Pj 2 R in the Ps, Pf and Pi vectors
may be constrained from below by a P

min
j

, i.e. Pmin
j

 Pj ,
and from above by a P

max
j

, i.e. Pj  P
max
j

. In case of a

storage device P
min
j

is typically negative and called the
peak charging rate, and P

max
j

is typically positive and
called the peak discharging rate. The constraints (4) can
now be realised through additionally restricting Pj at min-
imum and maximum SOCs; we confine the admissible Pj

at C
min
j

to exclude further discharging and at C
max
j

to
exclude further charging:

R(Ps, C
min
j

) � 0,
R(Ps, C

max
j

)  0.
(6)

The cost functional consists of three terms: Firstly, the
forecasted cost of energy to satisfy demand is a time-
dependent running cost (7). This cost is derived from the
coupling equation as the product of the energy consumed
from or sold to the power sources Pf and Pi with their
associated financial costs Ff and Fi:

`EC = Pf Ff + Pi Fi. (7)

Secondly, the cost for storage degradation, also a running
cost, which is a function of Ps:

`SD = `SD(Ps). (8)

Often `SD(Ps) is represented through a quadratic penalty,
i.e. `SD(Ps) = P

2
s
· FSD, where FSD is the storage degra-

dation coe�cient and has the unit £/(W 2
h).

Finally, the monetary value of energy in the storage
devices at the end time T of the forecasted period con-
tributes a (negative) terminal cost, where F is the value
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associated with the energy type released by the storage
device:

 = �C(T ) · F (T ). (9)

Let ` = `EC + `SD. Then the forecasted cost is

J =

Z
T

t

`(⌧) d⌧ +  , (10)

which depends on the current time t and current SOC C

as well as the scheduled control v(⌧), which is a function
of time for ⌧ 2 [t, T ].

The value function represents the forecasted cost at
time t with SOC C under optimal control:

u(t, C) = min
v

J(t, C, v). (11)

Owing to the dynamic programming principle, cf. [34], we
find for small time steps �t that

u(t, C) ⇡ min
v

[�t · `(t) + u(t+�t, C +�C)] , (12)

where C +�C is the updated SOC at t+�t via (5):

�C = C(t+�t)� C(t) =

Z
t+�t

t

R(Ps(⌧), C(⌧)) d⌧. (13)

The minimisers on the right-hand side of (12) provide the
optimal controls of the model [34].

The right-hand side of (13) provides a discretisation of
the optimal control problem in time. Also the dependence
on the state variable needs to be fully discretised in order
to arrive at a system with a finite number of degrees of
freedom. For that purpose we represent u at each time
step through a continuous piecewise linear finite element
function. At this point we obtain then a semi-Lagrangian
approximation of the value function, following the deriva-
tion of [35, Section 3].

2.1. Convergence proof of the numerical method

In this subsection we prove that the semi-Lagrangian
solution approximates the true value function arbitrarily
well through su�cient mesh and time step refinement, even
when D depends nonlinearly on P and the states of the
storage devices.

The numerical solution at the jth time step is uj ⇡
u(j�t). It belongs to a piecewise linear continuous finite
element space on a triangulation of the state space

C := [Cmin
1 , C

max
1 ]⇥ · · ·⇥ [Cmin

k
, C

max
k

],

where k is the number of storage devices. The numerical
solution satisfies the scheme

uj(C) = min
v

[�t · `(t, C, v) + uj+1(C+�t)] , (14)

where C+�t = C +�tR(Ps(v), C) is (approximately) the
state of charge at the (j + 1)st time step when applying

control v at the jth step at state of charge C, discretising
(13). Here Ps(v) is given by (3). The control v ranges in
(14) through Rm, subject to Ps(v) 2 [Pmin

1 , P
max
1 ]⇥ · · · ⇥

[Pmin
k

, P
max
k

] and C+�t 2 C, consistent with (6). Let �x

be the largest element diameter. All constants are assumed
independent of �t and �x.

Theorem 1. Suppose `, are continuous with Hölder ex-

ponent � 2 (0, 1] and R is Lipschitz. Then there is a c1 > 0
such that

|uj(C)� u(j�t, C)|  c1

✓
(�x)�

(�t)�/2
+ (�t)�/2

◆

at all time steps j and charge levels C if there is a constant

c2 > 0 with
�x

�t
< c2.

Proof. Following [34], the exact value function u of (11)
satisfies �@tu+Hu = 0 with u(T ) =  as viscosity solution
where Hu = sup

v
[�R(t, C, v) ·ru� `(t, C, v)].

Owing to the chain rule,

û(t, C) = u(t, C) exp(�t)

solves �@tû+ �û+Hû = 0 for � > 0 and ûj = uj exp(�t)
solves, importantly, (14) of [35] for this modified Bellman
equation. Noting that (28) of [35] follows from C+�t 2
C, the a priori convergence bound [35, Theorem 3.1] ap-
plies to ûj . Finally, kuj � u(j�t)k1 = exp(��j�t)kûj �
û(j�t)k1.

The set of controls in the minimisation of (14) may be
discretised in the computer implementation without losing
convergence [36, part 2 of section 3].

This convergence proof stands in contrast to guarantees
which can be given with NLP solvers, which directly mini-
mize the cost subject to (discretisations of) the constraints
(2)–(6) because NLP solvers are generally not guaranteed
to find the global optimum of such nonlinear, non-convex
problems. In this context the brute force approach of in-
vestigating all possible paths is not advisable: even though
it would surely provide the global optimum of the nonlin-
ear, non-convex problem, the number of paths increases
exponentially with the number of time steps (given a fixed
discretisation of the control set and of the other parame-
ters). In contrast the computational cost of the HJB dis-
cretisation increases on linearly in 1/�t, other parameters
being fixed.

3. Case Study

The case study in this work considers a residential
property equipped with an electrical energy storage de-
vice, a thermal energy storage device and an array of pho-
tovoltaic solar generation cells (PV). The energy hub dia-
gram, cf. Fig. 1, shows the interactions between the loads,
external energy sources, energy converters, and storage de-
vices. Throughout the subsequent text the subscript E

represents the electrical grid, R renewable electrical, T
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PV
electrical
storage

water
heater

thermal
storage

PE LE

PR

PES PWH

PTS LT

Figure 1: Energy hub with electrical (——), thermal (——) and
solar (——) power flows.

thermal, WH water heater, ES electrical storage and TS

thermal storage.
The coupling equation, following (1),


LE

LT

�
=


1 ⌘PV ⌘ES �1 0
0 0 0 ⌘WH ⌘TS

�
·

2

66664

PE

PR

PES

PWH

PTS

3

77775
(15)

quantifies these interactions. The letter ⌘ denotes e�cien-
cies, in combination with the respective subscript. The
e�ciency coe�cients ⌘ES and ⌘TS depend nonlinearly on
P . Here ⌘ES is an e�ciency factor that is linked to the
charging and discharging e�ciency of the storage device,
and during charging (PES > 0) it is equal to the inverse
of the charging e�ciency:

⌘ES(PES) =

(
⌘
D

ES
: PES  0,

1/⌘C
ES

: PES > 0.
(16)

The relationships between ⌘
C

TS
, ⌘D

TS
and ⌘TS are analo-

gous.
The power flow PR is inflexible. Also LE and LT are

determined externally and are not controllable. The power
flow PWH is uni-directional, i.e. subject to a one-sided
constraint. There are two controllable units within the
system, namely the electrical storage and thermal storage
units. These controls are referred to as vES and vTS , re-
spectively, with vES = PES and vTS = PTS . Hence A is
an identity matrix.

Equations (2)–(12) are used in combination with (15)–
(16) to create the specific equations (17)–(22) for this case
study. FSD is selected empirically as 10�6

£/(W 2
/h).

The following inputs must be provided to the optimiser:

1. Forecasts: Electrical and thermal loads, PV gener-
ation, and electricity price.

2. Non-controllable constraints: Charge limits, ef-
ficiencies, storage capacities, power constraints, and
self-discharge rates.

3. State space parameters: Forecast duration, time
step size, number of discretised dispatch factor steps,
and number of discretised SOC steps.

Remark: Theorem 1 applies for the specific model (17)–
(22) of the case study with the dimension of the domain
k = 2 and the Hölder exponent � = 1. Then, if �x

�t
re-

mains constant in the course of the refinement, we find the
guarantee that

kuj(C)� u(j�t, C)k1  c3(�t)1/2  c4(�x)1/2

for some constants c3, c4 > 0.

3.1. Assumptions

Two 72 hour datasets were created using the CREST
Demand Model [37] to evaluate the optimisation model
during periods of summer and winter, corresponding to
high and low PV energy generation, respectively. In both
cases the storage units begin at 100% SOC and run initially
for 48 hours to allow the system to settle into a steady
state. The results from the subsequent 24 hours are used
for evaluation and the corresponding forecasts are shown in
Fig. 2. It was considered if energy stored in a storage unit
at the end of study period should be equal to the initial
value, as in [5], but was decided that this was unrealistic.
The demand profiles were created for a dual occupancy
terraced residential building in Brighton, UK; fitted with
a 10 m2 photovoltaic array (selected in accordance with the
standard CREST configuration), a 4.8 kWh Moixa solar
electrical storage battery [38], and a 3.5 kWh SunampPV
thermal storage battery [39].

The electricity prices are given by the Npower ‘Go
Green Energy Fix’ tari↵ in 2019, with an Economy 7 meter
[40]. The seven low cost hours are from 23:00 until 06:00
daily. The value of electricity sold to the grid is 0.0379
£/kWh, in accordance with the 2019 Feed-in Tari↵ higher
rate for 0–10 kW standard solar PV [41]. All UK tari↵
rates are currently fixed at single or dual rates; however,
the optimiser is able to check the tari↵ rate at every time
step, so it can be used in countries where electricity prices
fluctuate throughout the day.

Forecasting platforms such as GridShare [20] operated
by Moixa o↵er a single scenario as forecast. A crucial ben-
efit of the dynamic programming approach is that the nu-
merical solution of the underlying HJB equation allows us
to evaluate the whole state space e�ciently, ensuring the
availability of controls when forecasts deviate from real
consumption and prices. Furthermore, in this framework,
forecasting errors can be mitigated through the use of a
receding horizon control [42]. This is defined as the rerun-
ning of the optimiser at regular intervals, or following sig-
nificant discrepancies between forecasted and actual loads.

The electrical storage unit is prevented from operating
below 20% SOC by the manufacturer. The thermal storage
unit is only used for domestic hot water in this study, not
for space heating, so this component has been removed
from the CREST demand models. Table 1 summarises the
unit capacities, constraints, e�ciencies, and optimisation
parameters.
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u(t, CES , CTS) = min
vES ,vTS

J(t, CES , CTS , vES , vTS), (17)

`EC =


�LE � PR · ⌘PV � vES · ⌘ES(vES)�min

✓
LT + vTS · ⌘TS(vTS)

⌘WH

, 0

◆�
· FE , (18)

`SD = (v2
ES

+ v
2
TS

) · FSD, (19)

 = [�CES(T )� CTS(T )] · FE(T ), (20)

dt


CES

CTS

�
=


�⌘ES(vES) · vES �DES · CES

�⌘TS(vTS) · vTS �DTS · CTS

�
, (21)

u(t, CES , CTS) ⇡ min
vES ,vTS

[�t · `(t, vES , vTS) + u(t+�t, CES +�CES(vES , vTS), CTS +�CTS(vES , vTS))] . (22)
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Figure 2: Forecasts of PV generation (——), electrical load (——),
thermal load (——) and electricity price (——)

4. Simulations

The optimal control model described in Section 3 was
discretised with a semi-Lagrangian method in MATLAB
using the flowchart in Fig. 3 as the basis of the code’s
structure. The code is made available as supplementary
material to the paper, as a stand-alone library under the
GNU GPLv3 license without dependencies on third-party
solvers. The time needed to calculate the optimal control
on a Windows 10 computer with an Intel i5-8250U (1.8
GHz) processor and 8GB RAM is 3.96 seconds per time
step t. Moreover, the algorithm can be readily extended
to include variable time-steps [35] and receding horizon

Description Value

Electrical storage capacity CESM 4.8 kWh
Electrical storage minimum charge CESm 0.96 kWh
Thermal storage capacity CTSM 3.5 kWh
Thermal storage minimum charge CTSm 0 kWh
Electrical storage charge limit PESm 0.75 kW
Electrical storage discharge limit PESM 0.85 kW
Thermal storage charge limit TESm 2.8 kW
Thermal storage discharge limit TESM 5 kW
Water heater converter e�ciency ⌘WH 95%
PV array converter e�ciency ⌘PV 10%
Electrical storage charge e�ciency ⌘C

ES
86.5%

Electrical storage discharge e�ciency ⌘D
ES

88%
Thermal storage charge e�ciency ⌘C

TS
96.1%

Thermal storage discharge e�ciency ⌘D
TS

96.1%
Electrical storage self-discharge rate DES 11 W
Thermal storage self-discharge rate DTS 24 W
Forecast period T 24 hrs
Time step size �t 1 min
Number of numerical time steps Nt 1440
Number of numerical charge steps Nc 100
Number of numerical control steps Nv 100

Table 1: Unit capacities, constraints, e�ciencies, and optimisation
parameters

control.
The optimal controls are determined through the par-

tial derivatives of the optimisation surface of the value
function. Indeed, the proposed numerical scheme is guar-
anteed to deliver the optimal strategy, cf. Theorem 1 in
Subsection 2.1.

A model of the residential building described in Sec-
tion 3.1 was built in Simulink, in order to accurately rep-
resent the practical system that is tested in Section 5. The
simulated response was validated as having a 98.2% cor-
relation with the hardware in the Moixa Test Laboratory,
which is further described in Section 5. Moixa operates
GridShare, a cloud-based aggregation server that connects
storage devices to the grid to enable smart energy manage-
ment. GridShare has a charging profile known as balance
mode which can be applied to any connected storage de-
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Figure 3: Optimisation model algorithm

vices. The basic logic is as follows, in order of priority:

1. Charge when there is excess PV energy.
2. Charge during periods of low cost energy.
3. Discharge when photovoltaic energy insu�cient to

satisfy load.
4. If the stored energy is insu�cient for satisfying the

load, the load is supplemented by the grid.

The balance mode profile is included in the Simulink model
for comparison with the optimised results. As there are
two energy storage devices in the model, it was assumed
that balance mode would equally distribute any excess PV
energy between the two devices; however, if one device is
fully charged, the other device receives all the excess PV.

The winter and summer forecasts described in Section
3.1 were supplied to the MATLAB optimisation model,

Base case Optimised

daily cost daily cost Saving

Summer £0.95 £0.74 29%
Winter £2.14 £2.11 1.2%

Table 2: Cost and savings results from optimiser

and the resulting optimal plans were downloaded to the
Simulink test model. The Simulink model then used the
same forecasts to evaluate the optimised response and the
balance mode response. The electrical and thermal storage
units were given a starting SOC of 2.4 kWh and 1.75 kWh,
respectively.

4.1. Results & Discussion

The results in Table 2 show the optimiser is capable of
providing a 29% saving to utility bills (in £/day) for the
summer profile and 1.2% saving for winter.

The main benefits in these scenarios arise from the op-
timiser choosing between charging from low cost Economy
7 energy or waiting for excess PV energy, and controlling
how the excess PV is divided between the storage units.
The summer results are shown in Fig. 4 and demonstrate
the above points. From 00:00 to 03:00 hours the opti-
mised electrical storage device does not charge from low
cost Economy 7 energy, this ensures capacity to absorb
the excess PV energy from 09:00 to 15:00 hours instead of
selling it to the Grid. When there is excess PV energy at
16:00 hours, the charging of the electrical storage device
is observed to be prioritised; indeed, the thermal storage
benefits from higher charging rates which allows it to ex-
ploit the short Economy 7 time slot more e↵ectively.

In the caption of Fig. 4, ‘electrical forecast’ is the sum
of the electrical load and PV generation forecasts. A neg-
ative value of electrical or thermal forecast denotes a load,
whereas a positive value of electrical forecast is an excess.
Positive battery response corresponds to charging, while
negative is discharging. These results demonstrate a clear
di↵erence in strategies between the optimised and balance
mode responses, which is particularly visible in the battery
SOC profiles.

The optimised electrical storage response only partially
charges during the low cost period to ensure su�cient ca-
pacity for charging from the excess PV energy. The op-
timised thermal storage response opts to not charge at
all during the low cost period as there are no significant
thermal loads until later in the day. The balance mode
response however has both storage devices charging from
low cost energy and saturated by 12:00 hours, with the
unused excess PV sold to the grid.

The optimiser was stress tested using the summer data-
set at a variation of starting SOC values for the storage
units. These starting SOCs are shown along with the ac-
companying cost saving in Fig. 5. The results show a con-
sistent cost saving for most combinations; however, there
is a reduced saving available when both units start the day
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Figure 4: Summer electrical and thermal results with battery response (——), electrical/thermal forecast (——) and battery SOC (——)
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Figure 5: Summer cost saving vs. starting SOC

fully charged. This reduction is due to the particular pro-
file of the loads. The excess PV energy is front loaded in
the day but the optimiser has little chance to benefit from
this as the storage units have no capacity to charge.

The controller may be supplied with imperfect fore-
casts. To test the e↵ect of imperfect load forecasting, we
provided it with a 24-hour forecasted load profile which
deviates from the actually occurring load profile. The de-
viation involves a 1.6 kWh laundry cycle in the electrical
load forecast which occurs at 18:00. The accurate forecast
has full knowledge of this deviation, but the inaccurate
forecast expects the laundry cycle to occur at 12:00. The

results from this test showed that the inaccurate forecast
was still capable of delivering 68.5% of the daily cost sav-
ing provided by the accurate forecast.

Because the entire statespace is mapped with the HJB
method, the optimal control can still operate during fore-
cast inaccuracies. The SOC will be di↵erent than pre-
dicted following a forecast inaccuracy, but the optimal
control is calculated for all possible values of SOC at ev-
ery time step. Therefore, sub-optimal control instructions
will still exist and can be used until an updated forecast
is available.

5. Experimental Validation

The optimisation model described in Section 3 was also
implemented in C++ using the same basic structure as
the MATLAB code in Section 4. The optimisation pro-
gramme was then supplemented with extra code to man-
age the communication with the aggregation server and
the energy storage devices. The algorithm structure is
shown in Fig. 6. This code was installed on a Raspberry Pi
microcontroller. It is capable of autonomously download-
ing forecasts from the aggregation server, optimising for a
given period, and uploading optimal operating plans to the
storage devices. This is in line with the “Coupled” prac-
tice as described by the IEEE 2660.1-2020 Recommended
Practice [33]. Communication between the optimiser and
the aggregation server is restricted to JavaScript Object
Notation (JSON) format using Client URL (cURL) with
secure authorisation tokens. This was managed in C++
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Figure 6: Raspberry Pi control algorithm

by implementing the jsmn [43] and cURL [44] libraries re-
spectively.

The MATLAB Coder Toolbox was considered for gen-
erating the C++ code, however it was deemed unsuitable
as it could not translate the mathematical functionality
correctly. Instead the C++ code was, with minor excep-
tions, written from scratch. The code was initially tested
on both a Bachmann MC205 Controller System and a
Raspberry Pi computer. The Raspberry Pi was ultimately
selected due to its open architecture and relative ease of
wireless communication with the aggregator.

With this code, the time required to calculate the opti-
mal approach on a Raspberry Pi 3 Model B+ is 1.6 seconds
per time step or 38 minutes when T is 24 hours and dis-
cretisation parameter�t is 1 minute. With a variable time
step, which changes the step size after 4 hours to �t = 10
minutes, the runtime is reduced to 10 minutes. This run-
time is shorter than the MATLAB version of the model
due to inherent e�ciencies in the C++ language.

It is important to note that at this stage three distinct
time scales are involved. Firstly, the above mentioned
discretisation parameter �t, which is chosen to balance

Function Duration Percentage

(s) of total

Download forecasts 10 0%
Assign conditions 0.007 0%
Set mesh resolution 0.007 0%
Set ucand

t
0.014 0%

Calculate ut 2173.763 90%
Check if ut < u

cand
t

35.638 1%
Update u

cand
t

, vcand
t

157.725 7%
Save u

cand
t

, vcand
t

0.107 0%
Download SOC values 10 0%
Determine optimal control 0.01 0%
Create server instructions 0.01 0%
Calculate new SOC values 0.5 0%
Upload plans 10 0%

Table 3: Unit capacities, constraints, e�ciencies, and optimisation
parameters

run-time with discretisation error (the latter being indi-
cated qualitatively in Theorem 1). Secondly, the times
at which the controller issues new controls to the storage
units, which depends on the shape of the approximated
value function as well as the instances at which the do-
mestic residents interact with the power system. Generally
these times are entirely independent of �t. Thirdly, the
frequency at which the HJB solution is updated, i.e. how
often the optimisation part of the code is executed. This
only happens when there is significant deviation between
the new and the old forecasts. Because the entire state
space is mapped with the HJB method, the optimizer does
not need to be called as long as this deviation is su�ciently
small (in contrast to a Pontryagin approach for instance
which relies on exact forecasts). Thus, the run-time of the
full optimisation code is not restricted by the time-step du-
ration �t or the incidence of user interactions, as is some-
times the case with other rolling optimisation methodolo-
gies.

In order to provide an understanding of the computa-
tional costs involved, the MATLAB Profiler tool was used
to analyse the di↵erent parts of the code. The results can
be seen in Table 3. It can be seen that the largest part of
the computational time is taken by the above functionality.

The interactions between the Raspberry Pi, the aggre-
gation server, the storage units, power sources, and loads
are depicted in the energy hub diagram Fig. 7 and the
experimental system diagram in Fig. 8. Each property in
Fig. 7 can utilise di↵erent energy storage devices, power
sources, and loads; the parameters would simply need to
be altered on the individual Raspberry Pi.

The testing laboratory reflects a single property as
these were shown in Fig. 7 and is comprised of the following
commercially available hardware and testing equipment:

• Electrical storage: Moixa V4, 4.8 kWh,

• Thermal storage: Sunamp uniQ eHW3, 3.1 kWh,
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Figure 8: Experimental configuration of the system, including the
controllers and electrical and thermal storage devices

• Electrical load: 15 · 100 W halogen lights,

• PV: 650 W solar PV simulator,

• Electrical grid: Local electrical supply,

• Thermal load: Hot water system with a 9 l/min flow
rate,

• Communication: Wi-Fi link between the Raspberry
Pi, the storage units, and the aggregation server.

A 25 minute test plan was created in the form of fore-
casts for the PV generation, electrical load, and thermal
load. These forecasts were loaded onto the Raspberry Pi
which followed the process described in Fig. 6 and up-
loaded optimal plans to the storage devices. The solar
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Figure 9: Experimental validation results with electrical load forecast
(– – –), actual electrical load (——), electrical storage plan (– – –),
electrical storage response (——), thermal storage plan (– – –) and
thermal storage response (——).

PV simulator, electrical load, and thermal load were then
all controlled manually with the aim of closely matching
their forecasts. The net electrical load was 0.06 kWh, com-
prised of 0.24 kWh electrical load and 0.18 kWh solar PV
generation. A total of 0.37 kWh of hot water was drawn
as thermal load at varying intervals throughout the test-
ing period. The thermal storage unit’s electrical response
trace as shown in Fig. 9 was reconstructed from the closed
electrical circuit as the thermal charge data is not logged
on the Sunamp device. It can be seen that the system was
able to implement the plans successfully, with very small
deviations. These deviations were mainly caused by the
actual load variation against the forecast.

The purpose of this experimental procedure is to val-
idate the complete system operation when every compo-
nent is integrated and the system is fully functional with
real domestic devices. The composition of the 25 minute
test plan is chosen to include representative elements of a
continuous operation within a domestic setting.

The experimental results demonstrate the functionality
of the system in the following ways:

• The optimiser has been implemented in a prototype
controller board, similar to the one that could be
integrated in a storage product, and in accordance
with IEEE 2660.1-2020 recommendations [33].

• The Raspberry Pi control board has been able to
e↵ectively connect to and communicate with the ag-
gregator’s system, in order to upload and download
controls and measurements.

• The real electrical and thermal storage systems were
shown to follow the controls sent to them by the
experimental controller.

• Minor deviations between the forecasted and actual
loads were implemented in a realistic way, which
demonstrates the methodology’s ability to flexibly
respond to uncertainties.
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6. Commercial value of the methodology

6.1. Wider benefits to society and the energy industry

The identified benefits of the proposed approach ad-
dress all three elements of the energy trilemma, which is
set between cost, emissions and security, as follows:

• Reducing cost of energy: The benefits of the pro-
posed approach in electricity networks would mate-
rialise in the form of savings from necessary network
upgrades to accommodate the new renewable and
distributed energy resources (estimated annually at
£63 / kWh installed). Apart from the network in-
frastructure, the proposed approach helps mitigate
new generation needs that may arise, e.g. reserves
for covering the variability of renewables, or peak
plant capacity (estimated annually at £23 / kWh
installed) [45].

• Reducing emissions: The method described in
this paper demonstrates that storage can introduce
the flexibility required by energy networks to reduce
emissions. For example, solar energy can be stored
during the day to be used in the evening, displacing
gas or grid electricity use. Emissions can be reduced
by:

– facilitating increased renewable energy uptake
and

– emissions optimisation of joint electrical and
thermal systems.

• Improving security of supply: Energy storage
is key to improving security of supply. Aggregated
storage is also useful for grid balancing, therefore
avoiding black-outs or brown-outs. Supply security
can be improved by:

– providing a storage bu↵er for events such as
temporary loss of generation capacity,

– mitigating the variability of renewables to re-
duce network stress, as well as

– by providing ancillary services.

6.2. Commercial value for the aggregator

The above methodology has been proven to work well
with a commercial aggregator’s software system. However,
in order for it to be formally adopted, it needs to o↵er
added value to the aggregator’s business. The proposed
methodology o↵ers added value in the following ways:

• Additional functionality: The proposed approach
enhances significantly the aggregator’s capability of
optimising the end user’s device(s), ultimately sav-
ing them money. This is a powerful incentive for
attracting more users, hence provides a competitive
advantage to the aggregator.

SOC headroom Potential ancillary

available daily service fee income

Electrical 0.62 kWh £39.07
Thermal 0.80 kWh £50.22

Table 4: Commercial benefit of proposed method for the aggregator

• Resource heterogeneity: The optimal control ap-
proach allows for the combined optimisation of mul-
tiple energy carriers, and a variety of di↵erent types
of devices. This opens up a much wider market for
energy resource aggregation, which has been pre-
dominantly based on electrical devices.

• More headroom for ancillary service provi-

sion: Optimising the use of devices across multiple
energy carriers provides much greater flexibility for
the aggregator to exploit, in order to provide services
to distribution and transmission network operators,
such as demand management and congestion relief.

The results in Table 4 demonstrate the additional in-
come that the aggregator can incur by o↵ering ancillary
services with the extended headroom a↵orded by the pro-
posed method. They also show the value of integrating
heat into a storage aggregation and dispatch platform,
showing that di↵erent energy vectors can be optimised in
the home for customer benefits and dispatch for external
services.

It was assumed that, as seen in Figure 4, the SOC of
the optimised results was on average 13% lower for the
electrical storage and 26% lower for the thermal storage.
This allows for further exploitation of that SOC margin.
It should be noted that the thermal storage margin can
also be exploited for electrical ancillary services indirectly,
through preventing electricity use for heating. An ancil-
lary service provision fee of £63 / kWh was assumed [45].
The values shown are for a single day, and realistically an-
cillary service provision may happen scarcely, perhaps a
few days per year.

Finally, in terms of the additional costs of implement-
ing the proposed technique, these are minimal, and consist
mostly of the new hardware requirement, as well as some
additional maintenance costs. The prototype was imple-
mented on a Raspberry Pi device, which costs less than
£50, but contains several unnecessary features. An aggre-
gator would be able to reduce those hardware costs with
custom, cost-optimised hardware that remove these unnec-
essary features. If the control system is implemented ro-
bustly, it should not incur significantly more maintenance
costs than existing low-level hardware in the aggregator’s
products.

7. Conclusions

This paper presents an experimentally validated frame-
work for optimally controlling energy resource aggregators
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with energy storage devices within a multiple energy car-
rier system. The Hamilton–Jacobi–Bellman framework in-
corporate nonlinear e↵ects arising from storage degrada-
tion, conversion e�ciency and self-discharge.

A semi-Lagrangian algorithm was developed and fully
implemented in MATLAB and C++, which returns con-
trols even when supplied inaccurate, single-valued fore-
casts. Moreover, we demonstrated that this HJB based
approach is that it will approximate the globally optimal
control strategy, see the Subsection 2.1.

The computational cost was found to be small, en-
abling on-line computations on a Raspberry Pi and which
make the independent reliable operation in residential en-
ergy systems possible. The approach yields significant cost
savings compared to conventional balance mode, up to
£0.21 per day (Fig. 5) and 29% as in Table 2. This can
o↵set any additional cost of the controller within a fraction
of the system’s lifetime.

The methodology of was work developed in agreement
with the new IEEE 2660.1-2020 Recommended Practice,
cf. [33].
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