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Supplementary Methods 

Mendelian randomization overview 

Mendelian randomization (MR) is a form of instrumental variable analysis where exposures are 

measured indirectly using genotype. By measuring exposures using genetic proxies, which are 

randomised at meiosis (before conception) and are therefore less prone to bias such as selection 

bias, reverse causality, and confounding, MR may be able to provide estimates which more 

closely reflect underlying causal relationships. Since genotype is randomly allocated, MR 

studies simulate the design of a randomized controlled trial with groups defined by genotype 

analogous to trial arms, theoretically allowing MR to overcome key sources of bias in 

observational studies.  

Defining genetic instruments: additional information 

In defining instruments for our analysis, we selected genetic variants identified from GWAS 

models unadjusted for adiposity to avoid possible collider bias introduced by adjustment for a 

trait which is causally downstream.(1) We used the National Cancer Institute’s LDpair or 

LDmatrix applications (2) to confirm that SNPs in each instrument were in linkage equilibrium 

(independent) (highest r2=0.004). All SNPs were well-imputed (information score ≥0.90 for all 

but two SNPs; lowest score 0.84) (Table S2). 

Overall physical activity: additional information 

Our primary physical activity instrument was derived from a recent GWAS which used UK 

Biobank data on movement measured by wrist-worn triaxial accelerometers.(3) Working with 

the UK Biobank Accelerometer Working Group, Doherty and colleagues derived a measure for 

overall activity, assessed as average vector magnitude (in milligravities) per 30-second period, 

recorded across an accelerometer wear period of three to seven days.(3, 4) They identified five 

SNPs associated with this phenotype at conventional genome-wide significance (p<5x10-8).(3) 

A separate research group performed a GWAS of multiple physical activity measures using 

UK Biobank data,(5) including the overall activity (average accelerations) phenotype derived 

by the UK Biobank Accelerometer Working Group.(4). Of the ten SNPs Klimentidis and 

colleagues identified as associated with overall activity at relaxed significance (p<5x10-7), five 

signals overlapped with the Doherty-identified variants.(5, 6)  
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Vigorous physical activity: additional information 

Klimentidis et al examined UK Biobank physical activity data from wrist-worn accelerometers 

(n~91,000) and self-report (n~377,000) to identify SNPs associated at stringent significance 

(p<5x10-9) with vigorous activity.(5) 

Outcomes: additional information 

Ki-67 data to determine luminal A/B subtype was unavailable.  

Statistical analysis: additional information 

For the multi-SNP instruments, we used SNP-exposure and SNP-outcome beta coefficients and 

standard errors to estimate odds ratios and 95% confidence intervals of the effect of each trait 

on each outcome from inverse-variance weighted (IVW) MR, using a multiplicative random-

effects model with simple weights (first-order term from delta expansion).(7) IVW-MR 

averages estimates of the causal effect across multiple SNPs, weighted by SNP-exposure beta 

coefficients, to derive a summary estimate.(7, 8) For the single-SNP instrument (accelerations 

>425 milligravities) we used the Wald (ratio) MR technique, dividing the SNP-outcome 

association (ZY) by the SNP-exposure association (ZX) to estimate the causal OR. The ratio 

estimate of the causal effect using a SNP ‘k’ is βZYk/βZXk. IVW-MR averages these Wald 

ratios across SNPs.  

In sensitivity analyses, we applied weighted median MR(9) and MR-Egger(10), 

complementary methods which relax different MR assumptions. Weighted median MR allows 

up to half of the genetic instruments to be invalid; MR-Egger allows horizontal pleiotropy 

(although it has lower statistical power than IVW MR). We inspected causal estimates 

considering each SNP individually (inspecting scatter plots of SNP-exposure and SNP-

outcome associations, and forest plots of SNP-specific causal effects). We also performed 

leave-one-out analyses (omitting one SNP each time) to further explore the robustness of our 

results to instrument composition.  

Causal effects were estimated using the ‘MendelianRandomization’(11) package and outlier 

detection was performed using the ‘MR-PRESSO’ package.(12) Analyses were conducted and 

reported with reference to MR guidelines.(1, 13) 
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Supplementary Tables 

Table S1. Acronyms and study names of Breast Cancer Association Consortium studies in the analysis 

Study acronym Study name Reference(s) 

2SISTER * The Two Sister Study (14) 

ABCFS Australian Breast Cancer Family Study (15) 

ABCS Amsterdam Breast Cancer Study (16) 

ABCTB Australian Breast Cancer Tissue Bank (17) 

AHS Agricultural Health Study (18, 19) 

BBCC Bavarian Breast Cancer Cases and Controls (20, 21) 

BBCS British Breast Cancer Study (22, 23) 

BCEES Breast Cancer Employment and Environment Study (24) 

BCFR-NY * New York Breast Cancer Family Registry (25-27) 

BCFR-PA * Philadelphia Breast Cancer Family Registry (25, 28) 

BCFR-UTAH * Utah Breast Cancer Family Registry (25, 28) 

BCINIS Breast Cancer In Northern Israel Study (29, 30) 

BREOGAN Breast Oncology Galicia Network (31-35) 

BSUCH Breast Cancer Study of the University Clinic Heidelberg (36) 

CBCS Canadian Breast Cancer Study (37-40) 

CCGP Crete Cancer Genetics Program -- 

CECILE CECILE Breast Cancer Study (41) 

CGPS Copenhagen General Population Study (42) 

CPSII Cancer Prevention Study-II Nutrition Cohort (43) 

CTS California Teachers Study (44) 

DIETCOMPLYF DietCompLyf Breast Cancer Survival Study (45) 

EPIC European Prospective Investigation into Cancer and Nutrition (46) 

ESTHER ESTHER Breast Cancer Study (47) 

FHRISK * Family History Risk Study (48, 49) 

GC-HBOC * German Consortium for Hereditary Breast and Ovarian Cancer (50-53) 

GENICA Gene Environment Interaction & Breast Cancer in Germany (54, 55) 

GEPARSIXTO A randomized phase II trial investigating the addition of carboplatin to 

neoadjuvant therapy for triple-negative and HER2-positive early breast cancer 

(56-59) 

GESBC Genetic Epidemiologic Study of Breast Cancer by Age 50 (60) 

HABCS Hannover Breast Cancer Study (61) 

HCSC Hospital Clinico San Carlos (62, 63) 

HEBCS * Helsinki Breast Cancer Study (64-66) 

HMBCS Hannover-Minsk Breast Cancer Study (67) 

HUBCS Hannover-Ufa Breast Cancer Study (67) 

KARBAC * Karolinska Breast Cancer Study (68, 69) 

KARMA Karolinska Mammography Project for Risk Prediction of Breast Cancer – 

Cohort Study 

(70) 

KBCP Kuopio Breast Cancer Project (71, 72) 

LMBC Leuven Multidisciplinary Breast Centre (73, 74) 

MABCS Macedonian Breast Cancer Study -- 

MARIE Mammary Carcinoma Risk Factor Investigation (75) 

MBCSG * Milan Breast Cancer Study Group (76, 77) 

MCBCS Mayo Clinic Breast Cancer Study (78) 

MCCS Melbourne Collaborative Cohort Study (79) 

MEC Multiethnic Cohort (80) 

MISS Melanoma Inquiry of Southern Sweden (81, 82) 

MMHS Mayo Mammography Health Study (83) 

MSKCC * Memorial SloanKettering Cancer Center Study (84) 

MTLGEBCS Montreal Gene-Environment Breast Cancer Study -- 

NBCS Norwegian Breast Cancer Study (85-88) 
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Study acronym Study name Reference(s) 

NBHS Nashville Breast Health Study (89) 

NC-BCFR * Northern California Breast Cancer Family Registry (25, 28) 

NCBCS North Carolina Breast Cancer study (90, 91) 

NHS Nurses’ Health Study (92, 93) 

NHS2 Nurses’ Health Study 2 (94) 

OFBCR * Ontario Familial Breast Cancer Registry (25) 

ORIGO Leiden University Medical Centre Breast Cancer Study (95, 96) 

PBCS NCI Polish Breast Cancer Study (97) 

pKARMA Karolinska Mammography Project for Risk Prediction of Breast Cancer – 

Case-Control Study 

-- 

PLCO The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial (98) 

POSH Prospective Study of Outcomes in Sporadic Versus Hereditary Breast Cancer (99-104) 

PREFACE Evaluation of Predictive Factors regarding the Effectivity of Aromatase 

Inhibitor Therapy 

(105) 

PROCAS Predicting the Risk Of Cancer At Screening Study (48) 

RBCS * Rotterdam Breast Cancer Study (106) 

SBCS Sheffield Breast Cancer Study (107, 108) 

SEARCH Study of Epidemiology and Risk Factors in Cancer Heredity (109) 

SISTER * The Sister Study (110-112) 

SKKDKFZS Städtisches Klinikum Karlsruhe Deutsches Krebsforschungszentrum Study (113) 

SMC Swedish Mammography Cohort (114) 

SUCCESSB Simultaneous Study of Gemcitabine-Docetaxel Combination adjuvant 

treatment 

(115-117) 

SUCCESSC Simultaneous Study of Docetaxel Based Anthracycline Free Adjuvant 

Treatment Evaluation 

(118-121) 

SZBCS IHCC-Szczecin Breast Cancer Study (122-125) 

TNBCC Triple Negative Breast Cancer Consortium Study -- 

UBCS * Utah Breast Cancer Study (126, 127) 

UCIBCS UCI Breast Cancer Study (128, 129) 

UKBGS UK Breakthrough Generations Study (130) 

UKOPS UK Ovarian Cancer Population Study † (131) 

USRT US Radiologic Technologists Study (132-135) 

-- No citation 

* Included familial cases or controls (recruited on the basis of being at high risk for breast cancer). 

† This study contributed controls only. 
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Table S2. Single nucleotide polymorphisms used as instruments for physical activity or sedentary time 

SNP* Chr Position† Function Nearest gene 

Effect‡ / 

Other 

allele 

Beta for 

association 

with trait§ 

Standard 

error for 

association 

with trait§ 

UK Biobank 

effect allele‡ 

frequency 

OncoArray 

effect allele‡ 

frequency 

OncoArray 

imputation 

information 

score  

Overall (average) activity: 5 SNPs associated at p < 5 x 10-8 (identified by Doherty et al (3)) 

rs6775319 3 18,758,501  Intron SATB1-AS1 A/T 0.027 0.005 0.27 0.30 0.99 

rs6895232 5 152,039,421  -- -- T/A 0.027 0.005 0.66 0.69 0.99 

rs564819152 10 21,820,650  Intron MLLT10 A/G 0.028 0.005 0.68 0.65 0.99 

rs2696625 17 44,326,864  Downstream MAPK8IP1P1 G/A 0.037 0.005 0.23 0.21 0.97 

rs59499656 18 40,768,309  Intergenic RIT2 T/A 0.028 0.005 0.35 0.34 0.99 

Overall (average) activity, secondary instrument: 10 SNPs** associated at p < 5 x 10-7 (identified by Klimentidis et al (5, 6)) 

rs12045968 1  33,690,698  Intergenic ZNF362 G/T 0.029 0.005 0.22 0.21 1.00 

rs34517439 1  78,450,517  Intron DNAJB4 C/A 0.038 0.007 0.91 0.92 1.00 

rs6775319 3  18,758,501  Intron SATB1-AS1 A/T 0.028 0.005 0.30 0.30 0.99 

rs9293503 5  87,948,962  Intron LINC00461 T/C 0.040 0.007 0.88 0.86 0.93 

rs12522261 5  152,054,825  Intron LINC01470 G/A 0.026 0.005 0.67 0.69 0.99 

rs11012732 10  21,830,104  Intron MLLT10 A/G 0.028 0.005 0.65 0.63 1.00 

rs148193266 11  104,528,681  Intergenic RP11-681H10.1 C/A 0.063 0.011 0.02 0.03 0.87 

rs1550435 15  74,331,385  Intron PML T/C 0.025 0.005 0.53 0.54 0.99 

rs55657917 17  43,844,560  -- -- G/T 0.036 0.005 0.22 0.20 1.00 

rs59499656 18  40,768,309  Intergenic RIT2 T/A 0.028 0.005 0.34 0.34 0.99 

Fraction of time with accelerations >425 mg: 1 SNP associated at p < 5 x 10-9 (identified by Klimentidis et al (5)) 

rs743580 15 74,328,116 Missense PML A/G ¶ 0.025 0.00005 0.51 0.49 0.98 

Self-reported vigorous physical activity: 5 SNPs associated at p < 5 x 10-9 (identified by Klimentidis et al (5)) 

rs2764261 6 108,927,842 Intron FOXO3 A/G 0.039 0.001 0.37 0.40 1.00 

rs328902 7 35,020,843 Intron DPY19L1 T/C 0.041 0.001 0.31 0.31 1.00 

rs13243553 7 133,506,955 Intron EXOC4 G/A 0.039 0.001 0.61 0.62 0.98 

rs3781411 10 126,715,436 Missense CTBP2 C/T 0.058 0.001 0.88 0.85 1.00 

rs1248860 3 85,015,779 Intron CADM2 A/G 0.041 0.001 0.52 0.51 0.99 

Percent time spent sedentary: 6 SNPs associated at p < 5 x 10-8 (identified by Doherty et al (3)) 

rs61776614 1 2,166,406  Intron SKI C/T 0.050 0.009 0.93 0.93 0.84 

rs1858242 3 68,527,135  Intron FAM19A1 A/G 0.031 0.005 0.26 0.25 0.99 

rs26579 5 87,985,295  Intron LINC00461 G/C 0.028 0.005 0.42 0.46 0.95 

rs25981 5 106,822,908  Intron EFNA5 G/C 0.028 0.005 0.53 0.53 0.99 
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SNP* Chr Position† Function Nearest gene 

Effect‡ / 

Other 

allele 

Beta for 

association 

with trait§ 

Standard 

error for 

association 

with trait§ 

UK Biobank 

effect allele‡ 

frequency 

OncoArray 

effect allele‡ 

frequency 

OncoArray 

imputation 

information 

score  

rs6870096 5 151,945,811  Intergenic CTB-95D12.1 G/C 0.028 0.005 0.68 0.69 0.98 

rs34858520 7 71,723,883  Intron CALN1 A/G 0.028 0.005 0.56 0.57 0.99 

Abbreviations: Chr, chromosome; GWAS, genome-wide association study; SNP, single nucleotide polymorphism. 

* the National Cancer Institute’s LDpair or LDmatrix (2) applications were used to confirm that SNPs on the same chromosome within each instrument are 

independent (highest r2=0.004). 

† human genome assembly GRCh37 (hg19) 

‡ Allele associated with an increase in the trait (i.e., with increased physical activity [physical activity instruments], or with increased time spent sedentary 

[sedentary time instrument]) 

§ Betas and standard errors for associations between SNPs and exposure (physical activity or sedentary time) are from, or derived from, the GWAS which 

identified the SNPs. 

** Five signals overlap with the Doherty-identified variants for overall activity. 

¶ This SNP (rs743580, A/G) has an effect allele frequency near 50% and the minor allele in UK Biobank (G) differs from that in OncoArray (A) , but it is not 

palindromic so the trait-increasing allele was easily identifiable in OncoArray data. Additionally, we confirmed that the trait-increasing allele, A, was 

positively associated with strenuous activity in BCAC. 
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Table S3. Comparison of results from different Mendelian randomization methods: Association 

between the primary instrumental genetic variables for overall physical activity (per standard 

deviation) and risk of breast cancer 

Type of breast cancer 

N cases  

(vs. 54,452 controls) Odds ratios (95% CI) *† 

P for heterogeneity‡ 

or pleiotropy§ 

Invasive cancers    

All invasive 69,838   

IVW  0.48 (0.30-0.78) 0.016 

Weighted median  0.59 (0.39-0.90)  

MR-Egger  0.14 (0.00-11.0) 0.569 

Pre/perimenopausal ¶ 23,999   

IVW  0.51 (0.31-0.83) 0.419 

Weighted median  0.56 (0.30-1.07)  

MR-Egger  0.03 (0.00-1.50) 0.148 

Postmenopausal **45,839   

IVW  0.48 (0.28-0.80) 0.054 

Weighted median  0.58 (0.36-0.94)  

MR-Egger  0.36 (0.00-50.7) 0.911 

By receptor status    

ER+ 46,528   

IVW  0.45 (0.25-0.83) 0.004 

Weighted median  0.58 (0.37-0.91)  

MR-Egger  0.17 (0.00-48.1) 0.726 

ER- 11,246   

IVW  0.79 (0.37-1.66) 0.069 

Weighted median  0.66 (0.32-1.37)  

MR-Egger  0.45 (0.00-546) 0.875 

PR+ 34,891   

IVW  0.43 (0.22-0.85) 0.003 

Weighted median  0.56 (0.33-0.94)  

MR-Egger  0.08 (0.00-40.5) 0.601 

PR- 16,432   

IVW  0.65 (0.38-1.13) 0.186 

Weighted median  0.63 (0.34-1.14)  

MR-Egger  0.76 (0.00-140) 0.953 

HER2+ 6,945   

IVW  0.48 (0.26-0.89) 0.479 

Weighted median  0.47 (0.21-1.05)  

MR-Egger  0.01 (0.00-1.91) 0.149 

HER2- 33,214   

IVW  0.58 (0.35-0.98) 0.060 

Weighted median  0.64 (0.39-1.04)  

MR-Egger  0.17 (0.00-20.4) 0.613 

Combined hormone receptor- and/or HER2-defined subtypes 

ER+ or PR+; HER2+ 4,816   

IVW  0.42 (0.20-0.88) 0.478 

Weighted median  0.57 (0.22-1.46)  

MR-Egger  0.00 (0.00-0.94) 0.087 

ER+ or PR+; HER2- 27,874   

IVW  0.57 (0.28-1.18) 0.004 

Weighted median  0.64 (0.37-1.09)  

MR-Egger  0.13 (0.00-106) 0.667 
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Type of breast cancer 

N cases  

(vs. 54,452 controls) Odds ratios (95% CI) *† 

P for heterogeneity‡ 

or pleiotropy§ 

ER-; PR-; HER2+ 1,974   

IVW  0.53 (0.18-1.57) 0.700 

Weighted median  0.42 (0.11-1.68)  

MR-Egger  0.09 (0.00-801) 0.701 

ER-; PR-; HER2- 4,964   

IVW  0.60 (0.17-2.12) 0.015 

Weighted median  0.56 (0.20-1.59)  

MR-Egger  0.32 (0.00-51,961) 0.917 

ER- and PR- (all) 9,215   

IVW  0.65 (0.27-1.56) 0.036 

Weighted median  0.47 (0.21-1.07)  

MR-Egger  0.20 (0.00-841) 0.783 

By morphology    

Ductal 42,223   

IVW  0.52 (0.32-0.84) 0.053 

Weighted median  0.64 (0.41-1.02)  

MR-Egger  0.10 (0.00-7.61) 0.463 

Lobular 8,795   

IVW  0.32 (0.18-0.58) 0.500 

Weighted median  0.31 (0.14-0.68)  

MR-Egger  4.01 (0.03-533) 0.310 

By stage at diagnosis    

Stage I 17,583   

IVW  0.51 (0.32-0.82) 0.333 

Weighted median  0.47 (0.26-0.85)  

MR-Egger  0.11 (0.00-7.18) 0.471 

Stage II 15,992   

IVW  0.36 (0.22-0.58) 0.576 

Weighted median  0.35 (0.18-0.66)  

MR-Egger  0.11 (0.00-5.81) 0.553 

Stage III/IV 4,553   

IVW  0.37 (0.17-0.81) 0.499 

Weighted median  0.34 (0.13-0.94)  

MR-Egger  0.10 (0.00-70.0) 0.687 

By tumor grade    

Grade 1/2 34,647   

IVW  0.43 (0.23-0.81) 0.011 

Weighted median  0.54 (0.33-0.89)  

MR-Egger  0.18 (0.00-63.2) 0.768 

Grade 3 16,432   

IVW  0.46 (0.30-0.72) 0.552 

Weighted median  0.42 (0.23-0.75)  

MR-Egger  0.28 (0.01-10.7) 0.786 

In situ cancers    

All in situ 6,667   

IVW  0.63 (0.34-1.18) 0.390 

Weighted median  0.71 (0.32-1.59)  

MR-Egger  0.01 (0.00-1.24) 0.087 

Ductal carcinoma in situ 3,510   

IVW  0.92 (0.25-3.43) 0.039 

Weighted median  1.01 (0.31-3.25)  

MR-Egger  0.00 (0.00-0.12) 0.011 
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Abbreviations: CI, confidence interval; ER+/-, estrogen receptor positive/negative; GWAS, genome wide 

association study; HER2+/-, human epidermal growth factor receptor 2 positive/negative; IVW, inverse-

variance weighted; MR, Mendelian Randomization; PR+/-, progesterone receptor positive/negative; SNP, 

single nucleotide polymorphism. 

* Causal odds ratios were estimated by three different Mendelian randomization methods, using five SNPs 

identified in a GWAS of accelerometer-measured movement traits by Doherty et al (3)  

† Confidence intervals from weighted median MR were generated from 10,000 bootstrap samples (seed 

314159265)  

‡ Relating to IVW MR estimates: p-value associated with the heterogeneity test statistic (Cochran’s Q statistic) 

measuring heterogeneity of causal effects between SNPs 

§ Relating to MR-Egger estimates: p-value for the intercept test (p-value for pleiotropy) 

¶ vs pre/perimenopausal controls (n=17,686), assigned using age (<50 years) if menopause status was unknown 

** vs postmenopausal controls (n=36,766), assigned using age (≥50 years) if menopause status was unknown 
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Table S4. Leave-one-out analyses: Association between the primary instrumental genetic variables for overall physical activity (per standard deviation) and risk of 

breast cancer, omitting one SNP at a time 

 

Full instrument  

(five SNPs) Excluding rs6775319 * Excluding rs6895232 ** Excluding rs564819152 † Excluding rs2696625 †† Excluding rs59499656 ‡ 

Type of breast 

cancer 

Odds ratios 

(95% CI) § Phet¶ 

Odds ratios 

(95% CI) § Phet¶ 

Odds ratios 

(95% CI) § Phet¶ 

Odds ratios 

(95% CI) § Phet¶ 

Odds ratios 

(95% CI) § Phet¶ 

Odds ratios 

(95% CI) § Phet¶ 

Invasive cancers             

All invasive 0.48 (0.30-0.78) 0.016 0.46 (0.25-0.82) 0.010 0.44 (0.25-0.79) 0.014 0.59 (0.42-0.83) 0.312 0.52 (0.28-0.97) 0.010 0.43 (0.25-0.72) 0.031 

Pre/perimenopausal 0.51 (0.31-0.83) 0.419 0.46 (0.27-0.78) 0.402 0.48 (0.27-0.87) 0.306 0.57 (0.33-0.99) 0.383 0.63 (0.36-1.10) 0.565 0.45 (0.26-0.78) 0.404 

Postmenopausal 0.48 (0.28-0.80) 0.054 0.45 (0.24-0.86) 0.030 0.44 (0.24-0.82) 0.040 0.61 (0.42-0.89) 0.816 0.48 (0.24-0.95) 0.025 0.42 (0.23-0.77) 0.058 

By receptor status            

ER+ 0.45 (0.25-0.83) 0.004 0.41 (0.20-0.84) 0.004 0.40 (0.20-0.80) 0.006 0.60 (0.43-0.85) 0.459 0.47 (0.21-1.05) 0.002 0.42 (0.20-0.88) 0.003 

ER- 0.79 (0.37-1.66) 0.069 0.96 (0.44-2.06) 0.122 0.90 (0.38-2.18) 0.059 0.60 (0.31-1.17) 0.247 0.87 (0.33-2.31) 0.041 0.67 (0.28-1.60) 0.068 

PR+ 0.43 (0.22-0.85) 0.003 0.40 (0.18-0.92) 0.002 0.38 (0.17-0.85) 0.003 0.58 (0.37-0.91) 0.223 0.48 (0.20-1.14) 0.002 0.36 (0.17-0.76) 0.010 

PR- 0.65 (0.38-1.13) 0.186 0.68 (0.35-1.34) 0.111 0.80 (0.49-1.30) 0.472 0.53 (0.33-0.87) 0.412 0.67 (0.33-1.39) 0.105 0.61 (0.31-1.19) 0.125 

HER2+ 0.48 (0.26-0.89) 0.479 0.41 (0.21-0.82) 0.475 0.47 (0.22-0.98) 0.323 0.52 (0.26-1.06) 0.364 0.62 (0.30-1.27) 0.685 0.40 (0.20-0.80) 0.502 

HER2- 0.58 (0.35-0.98) 0.060 0.57 (0.30-1.09) 0.030 0.49 (0.30-0.81) 0.171 0.72 (0.49-1.07) 0.385 0.62 (0.31-1.23) 0.033 0.54 (0.29-1.03) 0.039 

Combined hormone receptor- and/or HER2-defined subtypes        

ER+/PR+; HER2+ 0.42 (0.20-0.88) 0.478 0.36 (0.16-0.81) 0.448 0.38 (0.17-0.85) 0.380 0.45 (0.19-1.07) 0.336 0.61 (0.26-1.41) 0.852 0.38 (0.17-0.86) 0.380 

ER+/PR+; HER2- 0.57 (0.28-1.18) 0.004 0.52 (0.22-1.22) 0.003 0.47 (0.23-0.97) 0.020 0.79 (0.49-1.26) 0.254 0.61 (0.24-1.58) 0.002 0.55 (0.22-1.37) 0.002 

ER-; PR-; HER2+ 0.53 (0.18-1.57) 0.700 0.41 (0.13-1.36) 0.756 0.69 (0.21-2.30) 0.758 0.56 (0.16-1.87) 0.539 0.61 (0.17-2.14) 0.569 0.44 (0.13-1.48) 0.628 

ER-; PR-; HER2- 0.60 (0.17-2.12) 0.015 0.95 (0.37-2.44) 0.224 0.61 (0.12-3.04) 0.007 0.39 (0.12-1.25) 0.094 0.69 (0.13-3.63) 0.008 0.51 (0.11-2.46) 0.009 

ER- and PR- (all) 0.65 (0.27-1.56) 0.036 0.81 (0.32-2.03) 0.070 0.74 (0.26-2.15) 0.027 0.46 (0.22-0.96) 0.226 0.75 (0.24-2.33) 0.024 0.54 (0.19-1.54) 0.034 

By morphology             

Ductal 0.52 (0.32-0.84) 0.053 0.47 (0.27-0.84) 0.045 0.48 (0.27-0.85) 0.041 0.63 (0.43-0.91) 0.346 0.57 (0.31-1.05) 0.039 0.46 (0.27-0.79) 0.067 

Lobular 0.32 (0.18-0.58) 0.500 0.33 (0.17-0.65) 0.348 0.36 (0.19-0.69) 0.435 0.39 (0.20-0.74) 0.581 0.27 (0.14-0.54) 0.488 0.27 (0.14-0.53) 0.550 

By stage at diagnosis            

Stage I 0.51 (0.32-0.82) 0.333 0.46 (0.28-0.75) 0.357 0.51 (0.28-0.94) 0.205 0.60 (0.37-0.98) 0.488 0.56 (0.31-1.01) 0.259 0.44 (0.27-0.72) 0.400 

Stage II 0.36 (0.22-0.58) 0.576 0.36 (0.21-0.61) 0.408 0.31 (0.19-0.53) 0.693 0.42 (0.25-0.71) 0.718 0.39 (0.22-0.67) 0.446 0.33 (0.20-0.57) 0.473 

Stage III/IV 0.37 (0.17-0.81) 0.499 0.46 (0.20-1.06) 0.570 0.28 (0.12-0.65) 0.854 0.38 (0.15-0.94) 0.340 0.41 (0.16-1.03) 0.360 0.37 (0.15-0.92) 0.339 

By tumor grade             

Grade 1/2 0.43 (0.23-0.81) 0.011 0.38 (0.19-0.73) 0.023 0.40 (0.19-0.85) 0.007 0.58 (0.39-0.85) 0.514 0.45 (0.20-1.02) 0.005 0.40 (0.19-0.87) 0.007 

Grade 3 0.46 (0.30-0.72) 0.552 0.51 (0.32-0.82) 0.546 0.43 (0.27-0.70) 0.466 0.50 (0.31-0.82) 0.477 0.48 (0.29-0.81) 0.402 0.40 (0.25-0.65) 0.722 

In situ cancers             

All in situ 0.63 (0.34-1.18) 0.390 0.53 (0.27-1.04) 0.485 0.57 (0.27-1.22) 0.299 0.59 (0.27-1.28) 0.274 0.85 (0.42-1.74) 0.666 0.69 (0.32-1.50) 0.286 

DCIS 0.92 (0.25-3.43) 0.039 0.69 (0.16-2.90) 0.055 0.65 (0.16-2.64) 0.071 0.82 (0.15-4.32) 0.021 1.69 (0.53-5.36) 0.228 1.16 (0.24-5.68) 0.031 
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Abbreviations: CI, confidence interval; DCIS, ductal carcinoma in situ; ER+/-, estrogen receptor positive/negative; GWAS, genome wide association study; 

HER2+/-, human epidermal growth factor receptor 2 positive/negative; PR+/-, progesterone receptor positive/negative; SNP, single nucleotide polymorphism. 

* This SNP was identified by MR-PRESSO as an outlier for analyses of triple negative cancers (ER-/PR-/HER2-). It was also associated with adiposity in a 

prior GWAS.  

** This SNP is correlated with a SNP predicting sedentary behaviour, rs6870096 (r2=0.25 using the National Cancer Institute’s LDpair application(2)). 

† This SNP was identified by pleiotropy investigations as an outlier for analyses of all invasive, ER+, PR+, HR+/HER2-, HR-, and well/moderately 

differentiated cancers. This SNP was associated with ovarian cancer risk in a prior GWAS. 

†† This SNP was associated with ovarian cancer risk in a prior GWAS. 

‡ This SNP was associated with adiposity in a prior GWAS. 

§ Causal odds ratios were estimated by inverse-variance weighted Mendelian randomization, using SNPs identified in a GWAS of accelerometer-measured 

movement traits by Doherty et al (3)  

¶ p-value associated with the heterogeneity test statistic (Cochran’s Q statistic) measuring heterogeneity of causal effects between SNPs 
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Table S5. Other phenotypes or gene expression differences associated with single nucleotide polymorphisms used in analysis as instruments for physical 

activity or sedentary time 

   

Characteristics associated with analysed (or correlated, r2≥0.8) SNPs in prior genome-wide 

association or gene expression studies (at p<5x10-8), by direction of effect for allele predicting 

greater activity (PA instruments) or more sedentary time (sedentary time instrument) † 

Relevance for our study 

SNP Chr Position* 

Traits: Conceivable 

confounders 

Traits: Adiposity-related 

(conceivable mediators) 

Traits: Cancer 

risk 

Gene expression changes in 

breast tissue  

Overall (average) activity: 5 SNPs associated at p < 5 x 10-8 (identified by Doherty et al (3)) 

rs6775319 3 18,758,501  -- ↓ Fat percentage (136) -- -- Effect of PA on BC risk may be 

partially mediated through 

reduced adiposity 

rs6895232 5 152,039,421  -- -- -- -- -- 

rs564819152 10 21,820,650  -- -- ↓ Ovarian cancer 

(137) 

-- Possible reflection of a 

confounding effect (away from 

null) along tumorigenic pathways; 

Reported results omitting this 

SNP 

rs2696625 17 44,326,864  -- -- ↑ Ovarian 

cancer (137) 

-- Conceivable reflection of a 

confounding effect, but the 

association would likely bias 

toward the null; Reported results 

omitting this SNP 

rs59499656 18 40,768,309  -- ↓: Fat mass, Fat 

percentage, Waist 

circumference, Weight 

(136) 

-- -- Effect of PA on BC risk may be 

partially mediated through 

reduced adiposity 

Overall (average) activity, secondary instrument: 10 SNPs associated at p < 5 x 10-7 (identified by Klimentidis et al (5, 6)) 

rs12045968 1 33,690,698  -- -- -- -- -- 

rs34517439 1 78,450,517  ↓: Height (136); 

Psoriasis (138) 
↓: Weight, Hip 

circumference, Fat mass, 

Basal metabolic rate, 

BMI, Waist 

circumference, Fat 

percentage (136) 

 

↓ Lung cancer 

(139) 

--  Any effect of PA on BC risk may 

be partially mediated through 

reduced adiposity;  

Possible confounding (height, 

psoriasis, unmeasured 
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Characteristics associated with analysed (or correlated, r2≥0.8) SNPs in prior genome-wide 

association or gene expression studies (at p<5x10-8), by direction of effect for allele predicting 

greater activity (PA instruments) or more sedentary time (sedentary time instrument) † 

Relevance for our study 

SNP Chr Position* 

Traits: Conceivable 

confounders 

Traits: Adiposity-related 

(conceivable mediators) 

Traits: Cancer 

risk 

Gene expression changes in 

breast tissue  

tumorigenic processes); Reported 

results omitting this SNP 

rs6775319 3 18,758,501  -- ↓ Fat percentage (136) -- -- Effect of PA on BC risk may be 

partially mediated through 

reduced adiposity 

rs9293503 5 87,948,962  -- --  -- -- -- 

rs12522261 5 152,054,825  -- -- -- -- -- 

rs11012732 10 21,830,104  -- ↓: Fat percentage, Weight, 

Fat mass, Waist 

circumference, Hip 

circumference, BMI (136) 

↑ Meningioma 

(140) 

↓ Ovarian 

cancer (137) 

-- Any effect of PA on BC risk may 

be partially mediated through 

reduced adiposity; 

Possible reflection of confounding 

effects along tumorigenic 

pathways; Reported results 

omitting this SNP 

rs148193266 11 104,528,681  -- -- -- -- -- 

rs1550435 15 74,331,385  ↑ Height (136, 141) -- -- -- Possible confounding, but the 

association would likely bias 

toward the null; Reported results 

omitting this SNP 

rs55657917 17 43,844,560  ↑: Alcohol intake 

frequency, Medication 

for pain relief/ 

constipation/heartburn 

(136) 

↓: Height, College 

qualifications, Daytime 

dozing or sleeping/ 

napping (136) 

-- ↑ Ovarian cancer 

(137) 

↑ Expression of nearby 

genes ARL17A, CRHR1, 

CRHR1-IT1, DND1P1, 

KANSL1-AS1, LRRC37A, 

LRRC37A2, RPS26P8, 

collectively associated at 

p<5x10-8 with >150 traits 

including alcohol intake 

frequency, bone mineral 

density, breast cancer in 

BRCA1 and BRCA2 

Possible confounding (via 

influencing alcohol intake, 

medication use, height, education, 

unmeasured tumorigenic 

processes, or via altering gene 

expression levels of genes 

associated with confounders, or 

directly with breast cancer); 

Reported results omitting this 

SNP 
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Characteristics associated with analysed (or correlated, r2≥0.8) SNPs in prior genome-wide 

association or gene expression studies (at p<5x10-8), by direction of effect for allele predicting 

greater activity (PA instruments) or more sedentary time (sedentary time instrument) † 

Relevance for our study 

SNP Chr Position* 

Traits: Conceivable 

confounders 

Traits: Adiposity-related 

(conceivable mediators) 

Traits: Cancer 

risk 

Gene expression changes in 

breast tissue  

carriers, education, fat 

mass/%, forced expiratory 

volume, height, and ovarian 

cancer  

↓ Expression of nearby gene 

LRRC37A4P (associated at 

p<5x10-8 with 18 traits, 

primarily red and white 

blood cell characteristics) 

rs59499656 18 40,768,309  -- ↓: Fat mass, Fat 

percentage, Waist 

circumference, Weight 

(136) 

-- -- Effect of PA on BC risk may be 

partially mediated through 

reduced adiposity 

Fraction of time with accelerations >425 mg: 1 SNP associated at p < 5 x 10-9 (identified by Klimentidis et al (5)) 

rs743580 15 74,328,116 ↑ Height (136, 142) ↓: Fat percentage, BMI 

(136) 

-- -- Any effect of PA on BC risk may 

be partially mediated through 

reduced adiposity;  

Conceivable confounding, but the 

association would likely bias 

toward the null; Reported results 

omitting this SNP 

Self-reported vigorous physical activity: 5 SNPs associated at p < 5 x 10-9 (identified by Klimentidis et al (5)) 

rs2764261 6 108,927,842 ↑ Age at menarche (136)  

↓ Height (136) 

↓: Weight, Fat mass, Hip 

circumference, Basal 

metabolic rate, Waist 

circumference, BMI, Fat 

percentage (136) 

-- -- Any effect of PA on BC risk may 

be partially mediated through 

reduced adiposity;  

Possible confounding (age at 

menarche, height); Reported 

results omitting this SNP 

rs328902 7 35,020,843 -- -- -- -- -- 

rs13243553 7 133,506,955 -- -- -- -- -- 
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Characteristics associated with analysed (or correlated, r2≥0.8) SNPs in prior genome-wide 

association or gene expression studies (at p<5x10-8), by direction of effect for allele predicting 

greater activity (PA instruments) or more sedentary time (sedentary time instrument) † 

Relevance for our study 

SNP Chr Position* 

Traits: Conceivable 

confounders 

Traits: Adiposity-related 

(conceivable mediators) 

Traits: Cancer 

risk 

Gene expression changes in 

breast tissue  

rs3781411 10 126,715,436 -- -- -- -- -- 

rs1248860 3 85,015,779 ↑ Comparative body size 

age 10 (136) 

↓ Past tobacco smoking 

(136) 

--  -- -- Possible confounding (early-life 

body size, smoking); Reported 

results omitting this SNP 

Percent time spent sedentary: 6 SNPs associated at p < 5 x 10-8 (identified by Doherty et al (3)) 

rs61776614 1 2,166,406  -- -- -- -- -- 

rs1858242 3 68,527,135  -- -- -- -- -- 

rs26579 5 87,985,295  ↑ Years of education 

(143); College 

Qualifications, High-

school completion 

qualifications, Other 

professional 

qualifications (136) 

↑ Trunk fat percentage 

(136) 

 

-- -- Effect of sedentary behaviour on 

BC risk may be partially mediated 

through increased adiposity;  

Possible confounding (education); 

Reported results omitting this 

SNP 

rs25981 5 106,822,908  -- -- -- -- -- 

rs6870096 5 151,945,811  -- -- -- -- -- 

rs34858520 7 71,723,883  -- -- -- -- -- 

Abbreviations: BC, breast cancer; BMI, body mass index; Chr, chromosome; DIY, do-it-yourself; GWAS, genome-wide association study; PA, physical 

activity; SNP, single nucleotide polymorphism; WHR, waist-hip ratio. 

* human genome assembly GRCh37 (hg19) 

† Data from the University of Cambridge PhenoScanner V2(144, 145) or NHGRI-EBI GWAS Catalog (146) (as of October 2020); arrows denote direction of 

effect (risk association or gene expression change) relating to the allele which is also associated with increased physical activity (activity instruments) or 

increased sedentary time (sedentary behaviour instrument). Expression data was from Genotype-Tissue Expression (GTEx) project.(147) 
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Table S6. Association between the secondary instrumental genetic variables for overall physical activity (per 

standard deviation) and risk of breast cancer 

  Full instrument (ten SNPs) 

Excluding one pleiotropic SNP for 

outcomes with detected pleiotropy * 

Type of breast cancer 

N cases  

(vs. 54,452 

controls) 

Odds ratios 

(95% CI) † 

P for 

heterogeneity‡ 

Odds ratios 

(95% CI) † 

P for 

heterogeneity‡ 

Invasive cancers      

All invasive 69,838 0.61 (0.44-0.85) 0.010 0.71 (0.57-0.88) 0.596 

Pre/perimenopausal § 23,999 0.65 (0.45-0.93) 0.494 --  

Postmenopausal ¶ 45,839 0.60 (0.43-0.84) 0.068 --  

By receptor status      

ER+ 46,528 0.57 (0.39-0.83) 0.004 0.69 (0.54-0.88) 0.931 

ER- 11,246 0.72 (0.45-1.17) 0.109 --  

PR+ 34,891 0.55 (0.36-0.84) 0.003 0.67 (0.51-0.88) 0.647 

PR- 16,432 0.66 (0.48-0.92) 0.443 --  

HER2+ 6,945 0.58 (0.34-0.97) 0.254 --  

HER2- 33,214 0.70 (0.50-0.99) 0.072 --  

Combined hormone receptor- and/or HER2-defined subtypes 

ER+ or PR+; HER2+ 4,816 0.49 (0.29-0.85) 0.458 --  

ER+ or PR+; HER2- 27,874 0.68 (0.45-1.04) 0.010 0.83 (0.62-1.12) 0.729 

ER-; PR-; HER2+ 1,974 0.74 (0.33-1.68) 0.468 --  

ER-; PR-; HER2- 4,964 0.73 (0.36-1.47) 0.088 --  

ER- and PR- (all) 9,215 0.70 (0.42-1.17) 0.126 --  

By morphology      

Ductal 42,223 0.63 (0.46-0.86) 0.067 --  

Lobular 8,795 0.45 (0.28-0.71) 0.358 --  

By stage at diagnosis      

Stage I 17,583 0.59 (0.43-0.82) 0.558 --  

Stage II 15,992 0.52 (0.35-0.78) 0.231 --  

Stage III/IV 4,553 0.51 (0.28-0.93) 0.385 --  

By tumor grade      

Grade 1/2 34,647 0.54 (0.37-0.80) 0.015 0.66 (0.50-0.86) 0.890 

Grade 3 16,432 0.59 (0.42-0.83) 0.373 --  

In situ cancers      

All in situ 6,667 0.95 (0.55-1.67) 0.155 --  

Ductal carcinoma in situ 3,510 1.29 (0.51-3.25) 0.019 1.02 (0.44-2.37) 0.096 

Abbreviations: CI, confidence interval; ER+/-, estrogen receptor positive/negative; GWAS, genome wide association 

study; HER2+/-, human epidermal growth factor receptor 2 positive/negative; PR+/-, progesterone receptor 

positive/negative; SNP, single nucleotide polymorphism. 

* SNP rs11012732 was identified by MR-PRESSO as outlying (likely pleiotropic) for analyses of all invasive, ER+, 

PR+, HR+/HER2-, and low-grade tumors. For analyses of DCIS (for which MR-PRESSO detected pleiotropy, 

global test p=0.02) SNP rs34517439 (MR-PRESSO poutlier=0.08) was identified as likely pleiotropic by inspecting 

genetic association scatter plots, comparing individual SNP causal effects, and inspecting leave-one-out analyses. 

† Causal odds ratios were estimated by inverse-variance weighted Mendelian randomization, using SNPs 

identified for accelerometer-defined physical activity in a GWAS by Klimentidis et al (5, 6)  

‡ p-value associated with the heterogeneity test statistic (Cochran’s Q statistic) measuring heterogeneity of causal 

effects between SNPs 

§ vs pre/perimenopausal controls (n=17,686), assigned using age (<50 years) if menopause status was unknown 

¶ vs postmenopausal controls (n=36,766), assigned using age (≥50 years) if menopause status was unknown 

-- No outlying SNPs were identified.
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Table S7. Comparison of results from different Mendelian randomization methods: Association between 

the secondary instrumental genetic variables for overall physical activity (per standard deviation) 

and risk of breast cancer 

Type of breast cancer 

N cases  

(vs. 54,452 controls) Odds ratios (95% CI) *† 

P for heterogeneity‡ 

or pleiotropy§ 

Invasive cancers    

All invasive 69,838   

IVW  0.61 (0.44-0.85) 0.010 

Weighted median  0.70 (0.51-0.95)  

MR-Egger  1.28 (0.27-5.98) 0.342 

Pre/perimenopausal ¶ 23,999   

IVW  0.65 (0.45-0.93) 0.494 

Weighted median  0.77 (0.47-1.29)  

MR-Egger  1.39 (0.24-8.00) 0.378 

Postmenopausal **45,839   

IVW  0.60 (0.43-0.84) 0.068 

Weighted median  0.65 (0.45-0.92)  

MR-Egger  1.30 (0.26-6.56) 0.343 

By receptor status    

ER+ 46,528   

IVW  0.57 (0.39-0.83) 0.004 

Weighted median  0.73 (0.53-1.02)  

MR-Egger  0.95 (0.15-6.23) 0.584 

ER- 11,246   

IVW  0.72 (0.45-1.17) 0.109 

Weighted median  0.63 (0.37-1.08)  

MR-Egger  0.37 (0.03-4.10) 0.575 

PR+ 34,891   

IVW  0.55 (0.36-0.84) 0.003 

Weighted median  0.67 (0.47-0.98)  

MR-Egger  0.83 (0.10-7.07) 0.695 

PR- 16,432   

IVW  0.66 (0.48-0.92) 0.443 

Weighted median  0.66 (0.42-1.03)  

MR-Egger  0.65 (0.12-3.47) 0.984 

HER2+ 6,945   

IVW  0.58 (0.34-0.97) 0.254 

Weighted median  0.45 (0.23-0.85)  

MR-Egger  0.33 (0.02-4.64) 0.674 

HER2- 33,214   

IVW  0.70 (0.50-0.99) 0.072 

Weighted median  0.79 (0.54-1.14)  

MR-Egger  1.07 (0.19-5.93) 0.626 

Combined hormone receptor- and/or HER2-defined subtypes 

ER+ or PR+; HER2+ 4,816   

IVW  0.49 (0.29-0.85) 0.458 

Weighted median  0.60 (0.29-1.28)  

MR-Egger  0.08 (0.01-1.16) 0.175 

ER+ or PR+; HER2- 27,874   

IVW  0.68 (0.45-1.04) 0.010 

Weighted median  0.81 (0.55-1.20)  

MR-Egger  1.15 (0.14-9.73) 0.622 



 

22 
 

Type of breast cancer 

N cases  

(vs. 54,452 controls) Odds ratios (95% CI) *† 

P for heterogeneity‡ 

or pleiotropy§ 

ER-; PR-; HER2+ 1,974   

IVW  0.74 (0.33-1.68) 0.468 

Weighted median  0.75 (0.25-2.23)  

MR-Egger  2.37 (0.04-129) 0.560 

ER-; PR-; HER2- 4,964   

IVW  0.73 (0.36-1.47) 0.088 

Weighted median  0.74 (0.35-1.57)  

MR-Egger  0.63 (0.02-21.6) 0.934 

ER- and PR- (all) 9,215   

IVW  0.70 (0.42-1.17) 0.126 

Weighted median  0.68 (0.38-1.22)  

MR-Egger  0.44 (0.03-5.93) 0.724 

By morphology    

Ductal 42,223   

IVW  0.63 (0.46-0.86) 0.067 

Weighted median  0.70 (0.50-0.99)  

MR-Egger  0.89 (0.18-4.37) 0.654 

Lobular 8,795   

IVW  0.45 (0.28-0.71) 0.358 

Weighted median  0.59 (0.32-1.09)  

MR-Egger  1.55 (0.18-13.6) 0.256 

By stage at diagnosis    

Stage I 17,583   

IVW  0.59 (0.43-0.82) 0.558 

Weighted median  0.63 (0.41-0.99)  

MR-Egger  0.81 (0.17-3.87) 0.694 

Stage II 15,992   

IVW  0.52 (0.35-0.78) 0.231 

Weighted median  0.51 (0.30-0.87)  

MR-Egger  1.69 (0.26-11.0) 0.206 

Stage III/IV 4,553   

IVW  0.51 (0.28-0.93) 0.385 

Weighted median  0.41 (0.19-0.89)  

MR-Egger  0.42 (0.02-8.94) 0.891 

By tumor grade    

Grade 1/2 34,647   

IVW  0.54 (0.37-0.80) 0.015 

Weighted median  0.60 (0.42-0.86)  

MR-Egger  0.73 (0.10-5.21) 0.755 

Grade 3 16,432   

IVW  0.59 (0.42-0.83) 0.373 

Weighted median  0.55 (0.35-0.88)  

MR-Egger  2.14 (0.45-10.2) 0.099 

In situ cancers    

All in situ 6,667   

IVW  0.95 (0.55-1.67) 0.155 

Weighted median  0.94 (0.48-1.84)  

MR-Egger  2.38 (0.15-36.5) 0.503 

Ductal carcinoma in situ 3,510   

IVW  1.29 (0.51-3.25) 0.019 

Weighted median  1.51 (0.59-3.84)  

MR-Egger  0.27 (0.00-27.7) 0.499 
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Abbreviations: CI, confidence interval; ER+/-, estrogen receptor positive/negative; GWAS, genome wide 

association study; HER2+/-, human epidermal growth factor receptor 2 positive/negative; IVW, inverse-

variance weighted; MR, Mendelian Randomization; PR+/-, progesterone receptor positive/negative; SNP, 

single nucleotide polymorphism. 

* Causal odds ratios were estimated by three different Mendelian randomization methods, using ten SNPs 

identified for accelerometer-defined physical activity in a GWAS by Klimentidis et al (5, 6)  

† Confidence intervals from weighted median MR were generated from 10,000 bootstrap samples (seed 

314159265)  

‡ Relating to IVW MR estimates: p-value associated with the heterogeneity test statistic (Cochran’s Q statistic) 

measuring heterogeneity of causal effects between SNPs 

§ Relating to MR-Egger estimates: p-value for the intercept test (p-value for pleiotropy) 

¶ vs pre/perimenopausal controls (n=17,686), assigned using age (<50 years) if menopause status was unknown 

** vs postmenopausal controls (n=36,766), assigned using age (≥50 years) if menopause status was unknown
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Table S8. Leave-one-out analyses: Association between the secondary instrumental genetic variables for overall physical activity (per standard deviation) and risk of 

breast cancer, omitting one SNP at a time 

 Odds ratios (95% CI) * 

Type of cancer 

Excluding 

rs12045968 

Excluding 

rs34517439 † 

Excluding 

rs6775319 § 

Excluding 

rs9293503 

Excluding 

rs12522261 

Excluding 

rs11012732 ¶ 

Excluding 

rs148193266 ** 

Excluding 

rs1550435 †† 

Excluding 

rs55657917 §§ 

Excluding 

rs59499656 § 

Invasive cancers 

All invasive ‡0.60 (0.42-0.85) ‡0.58 (0.42-0.81) ‡0.61 (0.43-0.87) ‡0.60 (0.42-0.85) ‡0.61 (0.43-0.87) 0.71 (0.57-0.88) ‡0.59 (0.42-0.83) ‡0.61 (0.42-0.87) ‡0.65 (0.46-0.92) ‡0.59 (0.42-0.85) 

Pre/perimenop. 0.68 (0.46-0.99) 0.59 (0.41-0.87) 0.62 (0.42-0.92) 0.61 (0.42-0.90) 0.65 (0.44-0.97) 0.71 (0.49-1.05) 0.62 (0.43-0.91) 0.63 (0.43-0.94) 0.72 (0.49-1.07) 0.62 (0.42-0.92) 

Postmenop. 0.57 (0.40-0.82) 0.58 (0.40-0.83) ‡0.60 (0.41-0.88) ‡0.59 (0.41-0.87) ‡0.6 (0.41-0.87) 0.71 (0.54-0.93) 0.58 (0.40-0.83) ‡0.60 (0.41-0.87) ‡0.62 (0.42-0.91) ‡0.59 (0.40-0.85) 

By receptor status 

ER+ ‡0.56 (0.37-0.85) ‡0.55 (0.37-0.83) ‡0.56 (0.37-0.84) ‡0.55 (0.36-0.83) ‡0.56 (0.37-0.84) 0.69 (0.54-0.88) ‡0.55 (0.37-0.83) ‡0.55 (0.36-0.83) ‡0.60 (0.39-0.91) ‡0.56 (0.37-0.86) 

ER- 0.73 (0.43-1.25) 0.65 (0.41-1.03) 0.79 (0.49-1.30) 0.74 (0.43-1.26) 0.77 (0.46-1.29) 0.63 (0.40-1.00) 0.79 (0.49-1.28) 0.73 (0.43-1.25) 0.76 (0.44-1.30) 0.66 (0.40-1.09) 

PR+ ‡0.53 (0.33-0.86) ‡0.52 (0.33-0.81) ‡0.54 (0.34-0.87) ‡0.54 (0.34-0.87) ‡0.54 (0.33-0.86) 0.67 (0.51-0.88) ‡0.53 (0.33-0.84) ‡0.53 (0.33-0.84) ‡0.59 (0.37-0.94) ‡0.52 (0.33-0.82) 

PR- 0.66 (0.46-0.95) 0.63 (0.45-0.89) 0.68 (0.47-0.97) 0.64 (0.45-0.92) 0.74 (0.53-1.05) 0.60 (0.43-0.85) 0.70 (0.49-0.98) 0.67 (0.46-0.96) 0.68 (0.47-0.98) 0.64 (0.45-0.92) 

HER2+ 0.49 (0.30-0.79) 0.53 (0.31-0.90) 0.55 (0.31-0.97) 0.60 (0.33-1.07) 0.59 (0.33-1.06) 0.62 (0.36-1.10) 0.60 (0.34-1.06) 0.61 (0.35-1.08) 0.68 (0.41-1.13) 0.54 (0.31-0.96) 

HER2- 0.72 (0.49-1.05) 0.65 (0.47-0.90) ‡0.70 (0.48-1.03) 0.68 (0.47-1.00) 0.67 (0.46-0.96) 0.81 (0.62-1.07) ‡0.69 (0.48-1.01) 0.68 (0.47-0.99) 0.74 (0.50-1.08) ‡0.69 (0.47-1.02) 

Combined hormone receptor- and/or HER2-defined subtypes 

HR+; HER2+ 0.42 (0.24-0.75) 0.46 (0.26-0.81) 0.46 (0.26-0.83) 0.52 (0.29-0.95) 0.48 (0.27-0.88) 0.53 (0.29-0.95) 0.53 (0.30-0.94) 0.49 (0.27-0.88) 0.60 (0.34-1.08) 0.47 (0.26-0.87) 

HR+; HER2- ‡0.70 (0.43-1.12) ‡0.64 (0.41-0.99) ‡0.66 (0.41-1.05) ‡0.66 (0.41-1.06) ‡0.63 (0.41-0.98) 0.83 (0.62-1.12) ‡0.67 (0.42-1.06) ‡0.67 (0.42-1.07) ‡0.71 (0.44-1.15) ‡0.68 (0.42-1.10) 

HR-; HER2+ 0.56 (0.24-1.32) 0.67 (0.29-1.58) 0.67 (0.28-1.61) 0.74 (0.30-1.82) 0.88 (0.37-2.09) 0.79 (0.32-1.93) 0.74 (0.30-1.79) 0.88 (0.37-2.09) 0.84 (0.35-2.04) 0.70 (0.29-1.73) 

HR-; HER2- 0.76 (0.35-1.64) 0.66 (0.32-1.39) 0.95 (0.54-1.67) 0.73 (0.33-1.60) 0.76 (0.35-1.64) 0.60 (0.31-1.17) 0.73 (0.34-1.57) 0.67 (0.32-1.42) 0.82 (0.38-1.76) 0.69 (0.32-1.50) 

HR- (all) 0.69 (0.39-1.22) 0.63 (0.38-1.04) 0.79 (0.48-1.31) 0.71 (0.40-1.26) 0.76 (0.44-1.31) 0.60 (0.37-0.97) 0.74 (0.43-1.28) 0.70 (0.39-1.23) 0.76 (0.44-1.34) 0.65 (0.37-1.12) 

By morphology 

Ductal 0.59 (0.43-0.82) 0.60 (0.43-0.84) ‡0.61 (0.43-0.86) ‡0.62 (0.44-0.88) ‡0.62 (0.44-0.88) 0.72 (0.56-0.93) 0.61 (0.43-0.86) ‡0.62 (0.44-0.89) 0.67 (0.48-0.94) 0.60 (0.43-0.85) 

Lobular 0.44 (0.26-0.73) 0.41 (0.26-0.66) 0.47 (0.29-0.78) 0.43 (0.26-0.71) 0.51 (0.32-0.81) 0.53 (0.33-0.85) 0.45 (0.27-0.74) 0.42 (0.26-0.68) 0.43 (0.26-0.73) 0.43 (0.26-0.72) 

By stage at diagnosis 

Stage I 0.56 (0.40-0.80) 0.59 (0.42-0.83) 0.57 (0.40-0.80) 0.61 (0.43-0.86) 0.61 (0.43-0.87) 0.67 (0.47-0.95) 0.57 (0.40-0.80) 0.58 (0.41-0.82) 0.63 (0.44-0.89) 0.56 (0.40-0.80) 

Stage II 0.49 (0.32-0.75) 0.49 (0.32-0.74) 0.54 (0.34-0.84) 0.52 (0.33-0.82) 0.52 (0.33-0.82) 0.59 (0.40-0.86) 0.47 (0.32-0.68) 0.50 (0.32-0.78) 0.58 (0.38-0.88) 0.52 (0.33-0.83) 

Stage III/IV 0.42 (0.23-0.77) 0.47 (0.25-0.87) 0.59 (0.32-1.09) 0.52 (0.26-1.01) 0.46 (0.25-0.86) 0.56 (0.29-1.07) 0.53 (0.27-1.02) 0.52 (0.27-1.01) 0.57 (0.30-1.10) 0.53 (0.27-1.04) 

By tumor grade 

Grade 1/2 ‡0.51 (0.34-0.76) ‡0.54 (0.35-0.83) ‡0.51 (0.34-0.78) ‡0.52 (0.34-0.80) ‡0.54 (0.35-0.83) 0.66 (0.50-0.86) ‡0.53 (0.35-0.82) ‡0.53 (0.34-0.81) ‡0.56 (0.36-0.87) ‡0.54 (0.35-0.83) 

Grade 3 0.58 (0.40-0.84) 0.54 (0.38-0.76) 0.63 (0.45-0.90) 0.59 (0.40-0.87) 0.59 (0.4-0.86) 0.64 (0.45-0.91) 0.55 (0.39-0.77) 0.60 (0.41-0.87) 0.62 (0.42-0.90) 0.56 (0.39-0.82) 

In situ cancers 

All in situ 0.81 (0.49-1.34) 0.88 (0.49-1.59) 0.91 (0.49-1.67) 0.95 (0.51-1.76) 0.96 (0.51-1.78) 0.97 (0.52-1.81) 0.89 (0.49-1.60) 1.03 (0.57-1.87) 1.17 (0.70-1.94) 1.05 (0.58-1.90) 

DCIS ‡1.14 (0.42-3.07) 1.02 (0.44-2.37) ‡1.14 (0.42-3.09) ‡1.24 (0.44-3.50) ‡1.14 (0.42-3.07) ‡1.27 (0.45-3.61) ‡1.47 (0.56-3.84) ‡1.36 (0.49-3.79) 1.79 (0.76-4.23) ‡1.51 (0.56-4.06) 

Abbreviations: CI, confidence interval; DCIS, ductal carcinoma in situ; ER+/-, estrogen receptor positive/negative; GWAS, genome wide association study; HER2+/-, 

human epidermal growth factor receptor 2 positive/negative; PR+/-, progesterone receptor positive/negative; SNP, single nucleotide polymorphism. 
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* Causal odds ratios were estimated by inverse-variance weighted Mendelian randomization, using SNPs identified for accelerometer-defined physical 

activity in a GWAS by Klimentidis et al (5, 6)  

† This SNP was identified by inspecting scatter plots and individual SNP causal effects as a likely outlier for analyses of DCIS, and was associated in prior 

GWAS with several possible confounders and with adiposity. 

§ This SNP was associated with adiposity in prior GWAS. 

¶ This SNP was identified by MR-PRESSO as an outlier for analyses of all invasive, ER+, PR+, HR+/HER2-, and well/moderately differentiated cancers, and 

was associated in prior GWAS with adiposity and risk of several cancers. 

** This SNP had imputation quality score <0.9 and low minor allele frequency (3.1%) 

†† This SNP was associated with a possible confounder (height) in prior GWAS. 

§§ This SNP was associated with several possible confounders, risk of cancer (ovarian), and with expression of genes associated with multiple relevant traits, 

including breast cancer risk. 

‡ p-value associated with the heterogeneity test statistic (Cochran’s Q statistic) measuring heterogeneity of causal effects between SNPs was <0.05 

¶
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Table S9. Comparison of results from different Mendelian randomization methods: Association 

between instrumental genetic variables for self-reported vigorous physical activity (≥ 3 vs. 

0 days/week) and risk of breast cancer 

Type of breast cancer 

N cases  

(vs. 54,452 controls) Odds ratios (95% CI) *† 

P for heterogeneity‡ 

or pleiotropy§ 

Invasive cancers    

All invasive 69,838   

IVW  0.83 (0.69-1.01) 0.650 

Weighted median  0.80 (0.62-1.02)  

MR-Egger  0.71 (0.18-2.87) 0.821 

Pre/perimenopausal ¶ 23,999   

IVW  0.62 (0.45-0.87) 0.788 

Weighted median  0.59 (0.39-0.89)  

MR-Egger  0.45 (0.04-5.25) 0.790 

Postmenopausal **45,839   

IVW  0.95 (0.75-1.19) 0.630 

Weighted median  0.95 (0.70-1.28)  

MR-Egger  0.95 (0.17-5.28) 0.997 

By receptor status    

ER+ 46,528   

IVW  0.86 (0.70-1.07) 0.917 

Weighted median  0.88 (0.68-1.14)  

MR-Egger  0.90 (0.19-4.25) 0.962 

ER- 11,246   

IVW  0.86 (0.61-1.21) 0.418 

Weighted median  0.91 (0.58-1.44)  

MR-Egger  0.23 (0.02-2.96) 0.311 

PR+ 34,891   

IVW  0.77 (0.61-0.98) 0.544 

Weighted median  0.81 (0.60-1.09)  

MR-Egger  0.88 (0.16-4.92) 0.886 

PR- 16,432   

IVW  0.95 (0.70-1.28) 0.948 

Weighted median  0.99 (0.68-1.42)  

MR-Egger  0.59 (0.06-5.35) 0.668 

HER2+ 6,945   

IVW  0.83 (0.53-1.31) 0.327 

Weighted median  0.88 (0.50-1.55)  

MR-Egger  0.04 (0.00-0.88) 0.052 

HER2- 33,214   

IVW  0.86 (0.68-1.10) 0.550 

Weighted median  0.92 (0.67-1.25)  

MR-Egger  2.10 (0.37-12.1) 0.315 

Combined hormone receptor- and/or HER2-defined subtypes 

ER+ or PR+; HER2+ 4,816   

IVW  1.00 (0.58-1.70) 0.321 

Weighted median  1.18 (0.60-2.31)  

MR-Egger  0.03 (0.00-1.33) 0.069 

ER+ or PR+; HER2- 27,874   

IVW  0.82 (0.64-1.06) 0.560 

Weighted median  0.87 (0.63-1.21)  

MR-Egger  2.47 (0.39-15.7) 0.241 
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Type of breast cancer 

N cases  

(vs. 54,452 controls) Odds ratios (95% CI) *† 

P for heterogeneity‡ 

or pleiotropy§ 

ER-; PR-; HER2+ 1,974   

IVW  0.57 (0.27-1.20) 0.727 

Weighted median  0.55 (0.21-1.40)  

MR-Egger  0.05 (0.00-10.3) 0.356 

ER-; PR-; HER2- 4,964   

IVW  1.30 (0.79-2.12) 0.593 

Weighted median  1.28 (0.68-2.43)  

MR-Egger  1.33 (0.03-50.9) 0.987 

ER- and PR- (all) 9,215   

IVW  0.95 (0.66-1.39) 0.559 

Weighted median  1.02 (0.63-1.67)  

MR-Egger  0.23 (0.01-3.67) 0.311 

By morphology    

Ductal 42,223   

IVW  0.81 (0.65-1.00) 0.932 

Weighted median  0.79 (0.61-1.03)  

MR-Egger  0.80 (0.16-3.99) 0.991 

Lobular 8,795   

IVW  0.78 (0.53-1.17) 0.809 

Weighted median  0.81 (0.49-1.34)  

MR-Egger  0.17 (0.01-3.17) 0.300 

By stage at diagnosis    

Stage I 17,583   

IVW  0.88 (0.65-1.19) 0.598 

Weighted median  0.78 (0.53-1.15)  

MR-Egger  0.37 (0.04-3.36) 0.435 

Stage II 15,992   

IVW  0.82 (0.59-1.14) 0.788 

Weighted median  0.79 (0.53-1.19)  

MR-Egger  0.84 (0.08-9.25) 0.991 

Stage III/IV 4,553   

IVW  0.75 (0.44-1.27) 0.910 

Weighted median  0.85 (0.44-1.62)  

MR-Egger  0.22 (0.00-10.3) 0.528 

By tumor grade    

Grade 1/2 34,647   

IVW  0.84 (0.66-1.06) 0.640 

Weighted median  0.78 (0.58-1.06)  

MR-Egger  0.41 (0.07-2.32) 0.417 

Grade 3 16,432   

IVW  0.99 (0.73-1.33) 0.557 

Weighted median  1.13 (0.76-1.70)  

MR-Egger  1.38 (0.15-12.8) 0.767 

In situ cancers    

All in situ 6,667   

IVW  0.94 (0.43-2.08) 0.007 

Weighted median  1.03 (0.52-2.04)  

MR-Egger  0.39 (0.00-308) 0.795 

Ductal carcinoma in situ 3,510   

IVW  0.85 (0.42-1.69) 0.204 

Weighted median  0.63 (0.28-1.43)  

MR-Egger  0.06 (0.00-8.63) 0.291 
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Abbreviations: CI, confidence interval; ER+/-, estrogen receptor positive/negative; GWAS, genome wide 

association study; HER2+/-, human epidermal growth factor receptor 2 positive/negative; IVW, 

inverse-variance weighted; MR, Mendelian Randomization; PR+/-, progesterone receptor 

positive/negative; SNP, single nucleotide polymorphism. 

* Causal odds ratios were estimated by three different Mendelian randomization methods, using five SNPs 

identified in a GWAS of physical activity by Klimentidis et al (5)  

† Confidence intervals from weighted median MR were generated from 10,000 bootstrap samples (seed 

314159265)  

‡ Relating to IVW MR estimates: p-value associated with the heterogeneity test statistic (Cochran’s Q 

statistic) measuring heterogeneity of causal effects between SNPs 

§ Relating to MR-Egger estimates: p-value for the intercept test (p-value for pleiotropy) 

¶ vs pre/perimenopausal controls (n=17,686), assigned using age (<50 years) if menopause status was unknown 

** vs postmenopausal controls (n=36,766), assigned using age (≥50 years) if menopause status was unknown 
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Table S10. Leave-one-out analyses: Association between instrumental genetic variables for self-reported vigorous physical activity (≥ 3 vs. 0 days/week) and risk of 

breast cancer, omitting one SNP at a time 

 

Full instrument  

(five SNPs) Excluding rs2764261 * Excluding rs328902 Excluding rs13243553 Excluding rs3781411 Excluding rs1248860 § 

Type of breast 

cancer 

Odds ratios 

(95% CI) † Phet‡ 

Odds ratios 

(95% CI) † Phet‡ 

Odds ratios 

(95% CI) † Phet‡ 

Odds ratios 

(95% CI) † Phet‡ 

Odds ratios 

(95% CI) † Phet‡ 

Odds ratios 

(95% CI) † Phet‡ 

Invasive cancers             

All invasive 0.83 (0.69-1.01) 0.650 0.86 (0.70-1.06) 0.569 0.80 (0.65-0.99) 0.635 0.79 (0.64-0.98) 0.681 0.84 (0.68-1.04) 0.488 0.87 (0.70-1.08) 0.656 

Pre/perimenopausal 0.62 (0.45-0.87) 0.788 0.61 (0.42-0.89) 0.644 0.57 (0.39-0.82) 0.933 0.63 (0.44-0.92) 0.640 0.64 (0.44-0.93) 0.651 0.67 (0.46-0.98) 0.800 

Postmenopausal 0.95 (0.75-1.19) 0.630 1.00 (0.77-1.29) 0.607 0.92 (0.71-1.20) 0.490 0.88 (0.68-1.14) 0.809 0.94 (0.73-1.22) 0.461 1.00 (0.77-1.30) 0.596 

By receptor status            

ER+ 0.86 (0.70-1.07) 0.917 0.87 (0.69-1.11) 0.825 0.86 (0.68-1.08) 0.816 0.83 (0.66-1.05) 0.943 0.86 (0.68-1.09) 0.816 0.90 (0.71-1.14) 0.939 

ER- 0.86 (0.61-1.21) 0.418 0.83 (0.54-1.29) 0.282 0.76 (0.52-1.11) 0.607 0.82 (0.54-1.25) 0.305 0.93 (0.63-1.38) 0.399 0.96 (0.65-1.42) 0.488 

PR+ 0.77 (0.61-0.98) 0.544 0.77 (0.59-0.99) 0.383 0.78 (0.60-1.01) 0.379 0.72 (0.56-0.94) 0.628 0.76 (0.59-0.98) 0.396 0.85 (0.66-1.11) 0.880 

PR- 0.95 (0.70-1.28) 0.948 0.94 (0.67-1.31) 0.874 0.91 (0.65-1.27) 0.947 0.93 (0.67-1.30) 0.877 0.98 (0.70-1.37) 0.905 0.99 (0.71-1.39) 0.935 

HER2+ 0.83 (0.53-1.31) 0.327 0.73 (0.45-1.17) 0.380 0.77 (0.45-1.33) 0.255 0.82 (0.46-1.46) 0.203 1.03 (0.64-1.65) 0.797 0.85 (0.47-1.54) 0.204 

HER2- 0.86 (0.68-1.10) 0.550 0.90 (0.69-1.17) 0.460 0.83 (0.64-1.08) 0.473 0.85 (0.65-1.11) 0.396 0.81 (0.62-1.06) 0.574 0.94 (0.72-1.23) 0.723 

Combined hormone receptor- and/or HER2-defined subtypes        

ER+/PR+; HER2+ 1.00 (0.58-1.70) 0.321 0.84 (0.48-1.45) 0.434 0.94 (0.48-1.83) 0.218 1.05 (0.53-2.06) 0.211 1.26 (0.72-2.21) 0.722 0.94 (0.47-1.88) 0.210 

ER+/PR+; HER2- 0.82 (0.64-1.06) 0.560 0.87 (0.66-1.15) 0.540 0.81 (0.61-1.07) 0.404 0.80 (0.60-1.05) 0.438 0.76 (0.57-1.01) 0.679 0.88 (0.67-1.17) 0.602 

ER-; PR-; HER2+ 0.57 (0.27-1.20) 0.727 0.54 (0.24-1.24) 0.580 0.57 (0.25-1.30) 0.563 0.46 (0.20-1.05) 0.894 0.67 (0.29-1.55) 0.704 0.65 (0.28-1.50) 0.650 

ER-; PR-; HER2- 1.30 (0.79-2.12) 0.593 1.23 (0.71-2.12) 0.455 1.11 (0.64-1.91) 0.771 1.37 (0.79-2.37) 0.462 1.29 (0.75-2.24) 0.424 1.52 (0.87-2.64) 0.715 

ER- and PR- (all) 0.95 (0.66-1.39) 0.559 0.93 (0.61-1.41) 0.408 0.87 (0.57-1.31) 0.597 0.89 (0.59-1.35) 0.483 1.05 (0.69-1.60) 0.556 1.06 (0.69-1.62) 0.597 

By morphology             

Ductal 0.81 (0.65-1.00) 0.932 0.82 (0.64-1.05) 0.861 0.81 (0.64-1.03) 0.840 0.77 (0.61-0.98) 0.987 0.81 (0.63-1.03) 0.840 0.83 (0.65-1.06) 0.896 

Lobular 0.78 (0.53-1.17) 0.809 0.78 (0.50-1.22) 0.660 0.74 (0.47-1.15) 0.754 0.79 (0.51-1.24) 0.663 0.88 (0.56-1.39) 0.954 0.74 (0.47-1.16) 0.735 

By stage at diagnosis            

Stage I 0.88 (0.65-1.19) 0.598 0.93 (0.66-1.29) 0.501 0.86 (0.62-1.20) 0.449 0.79 (0.57-1.10) 0.908 0.93 (0.67-1.31) 0.525 0.91 (0.65-1.28) 0.459 

Stage II 0.82 (0.59-1.14) 0.788 0.75 (0.52-1.08) 0.926 0.83 (0.58-1.19) 0.636 0.84 (0.58-1.20) 0.642 0.81 (0.56-1.18) 0.638 0.89 (0.62-1.29) 0.830 

Stage III/IV 0.75 (0.44-1.27) 0.910 0.80 (0.45-1.44) 0.862 0.73 (0.41-1.31) 0.812 0.71 (0.39-1.27) 0.846 0.83 (0.46-1.49) 0.914 0.69 (0.38-1.26) 0.874 

By tumor grade             

Grade 1 and 2 0.84 (0.66-1.06) 0.640 0.85 (0.65-1.10) 0.480 0.79 (0.61-1.02) 0.689 0.80 (0.61-1.03) 0.622 0.88 (0.68-1.14) 0.592 0.88 (0.68-1.15) 0.604 

Grade 3 0.99 (0.73-1.33) 0.557 0.93 (0.66-1.30) 0.502 1.07 (0.76-1.49) 0.587 0.93 (0.66-1.30) 0.496 0.95 (0.67-1.33) 0.436 1.08 (0.76-1.51) 0.599 

In situ cancers             

All in situ 0.94 (0.43-2.08) 0.007 1.30 (0.72-2.34) 0.189 0.76 (0.32-1.78) 0.020 0.93 (0.33-2.56) 0.003 1.05 (0.39-2.83) 0.004 0.77 (0.31-1.93) 0.012 

DCIS 0.85 (0.42-1.69) 0.204 0.94 (0.41-2.18) 0.146 0.74 (0.33-1.69) 0.165 0.91 (0.38-2.17) 0.129 1.06 (0.53-2.14) 0.310 0.64 (0.34-1.21) 0.483 

Abbreviations: CI, confidence interval; DCIS, ductal carcinoma in situ; ER+/-, estrogen receptor positive/negative; GWAS, genome wide association study; 

HER2+/-, human epidermal growth factor receptor 2 positive/negative; PR+/-, progesterone receptor positive/negative; SNP, single nucleotide polymorphism. 
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* This SNP was identified by MR-PRESSO as an outlier for analyses of in situ cancers. This SNP has also been identified in prior GWAS of several possible 

confounders (age at menarche, height), and of adiposity. 

§ This SNP has been associated in prior GWAS with comparative body size (height) at age 10, and past tobacco smoking. 

† Causal odds ratios were estimated by inverse-variance weighted Mendelian randomization, using SNPs identified in a GWAS of physical activity by 

Klimentidis et al (5)  

‡ p-value associated with the heterogeneity test statistic (Cochran’s Q statistic) measuring heterogeneity of causal effects between SNPs 
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Table S11. Comparison of results from different Mendelian randomization methods: Association 

between instrumental genetic variables for sedentary time (per standard deviation) and risk of breast 

cancer 

Type of breast cancer 

N cases  

(vs. 54,452 controls) Odds ratios (95% CI) *† 

P for heterogeneity‡ 

or pleiotropy§ 

Invasive cancers    

All invasive 69,838   

IVW  1.20 (0.93-1.55) 0.962 

Weighted median  1.23 (0.91-1.67)  

MR-Egger  0.99 (0.20-4.82) 0.806 

Pre/perimenopausal ¶ 23,999   

IVW  1.22 (0.78-1.90) 0.589 

Weighted median  1.15 (0.66-2.00)  

MR-Egger  1.22 (0.07-20.1) 0.998 

Postmenopausal **45,839   

IVW  1.21 (0.89-1.65) 0.983 

Weighted median  1.17 (0.81-1.68)  

MR-Egger  0.75 (0.11-5.24) 0.630 

By receptor status    

ER+ 46,528   

IVW  1.19 (0.90-1.57) 0.992 

Weighted median  1.23 (0.89-1.71)  

MR-Egger  0.75 (0.13-4.38) 0.604 

ER- 11,246   

IVW  1.43 (0.90-2.26) 0.926 

Weighted median  1.28 (0.73-2.22)  

MR-Egger  1.15 (0.06-21.3) 0.882 

PR+ 34,891   

IVW  1.19 (0.87-1.63) 0.386 

Weighted median  1.29 (0.88-1.91)  

MR-Egger  0.17 (0.02-1.17) 0.046 

PR- 16,432   

IVW  1.40 (0.94-2.09) 0.435 

Weighted median  1.33 (0.80-2.21)  

MR-Egger  3.85 (0.28-52.7) 0.443 

HER2+ 6,945   

IVW  1.17 (0.67-2.06) 0.718 

Weighted median  1.34 (0.67-2.67)  

MR-Egger  0.24 (0.01-8.33) 0.372 

HER2- 33,214   

IVW  1.27 (0.93-1.74) 0.955 

Weighted median  1.34 (0.92-1.95)  

MR-Egger  0.57 (0.08-4.15) 0.422 

Combined hormone receptor- and/or HER2-defined subtypes 

ER+ or PR+; HER2+ 4,816   

IVW  0.86 (0.44-1.67) 0.585 

Weighted median  0.78 (0.34-1.79)  

MR-Egger  0.18 (0.00-11.4) 0.452 

ER+ or PR+; HER2- 27,874   

IVW  1.12 (0.80-1.56) 0.801 

Weighted median  1.12 (0.75-1.68)  

MR-Egger  0.50 (0.06-4.07) 0.444 
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Type of breast cancer 

N cases  

(vs. 54,452 controls) Odds ratios (95% CI) *† 

P for heterogeneity‡ 

or pleiotropy§ 

ER-; PR-; HER2+ 1,974   

IVW  1.94 (0.71-5.25) 0.646 

Weighted median  1.56 (0.46-5.35)  

MR-Egger  0.06 (0.00-32.0) 0.272 

ER-; PR-; HER2- 4,964   

IVW  2.04 (1.06-3.93) 0.500 

Weighted median  2.52 (1.10-5.79)  

MR-Egger  0.31 (0.00-19.6) 0.367 

ER- and PR- (all) 9,215   

IVW  1.77 (1.07-2.92) 0.819 

Weighted median  1.72 (0.93-3.17)  

MR-Egger  1.15 (0.05-27.6) 0.788 

By morphology    

Ductal 42,223   

IVW  1.21 (0.91-1.62) 0.992 

Weighted median  1.21 (0.86-1.70)  

MR-Egger  1.07 (0.17-6.66) 0.894 

Lobular 8,795   

IVW  1.12 (0.66-1.91) 0.695 

Weighted median  1.02 (0.53-1.98)  

MR-Egger  0.17 (0.01-4.89) 0.266 

By stage at diagnosis    

Stage I 17,583   

IVW  1.62 (0.99-2.65) 0.187 

Weighted median  1.33 (0.79-2.23)  

MR-Egger  0.45 (0.02-11.2) 0.428 

Stage II 15,992   

IVW  1.23 (0.79-1.90) 0.820 

Weighted median  1.36 (0.80-2.31)  

MR-Egger  0.29 (0.02-4.47) 0.294 

Stage III/IV 4,553   

IVW  0.91 (0.45-1.84) 0.640 

Weighted median  1.02 (0.43-2.43)  

MR-Egger  1.17 (0.01-105) 0.912 

By tumor grade    

Grade 1/2 34,647   

IVW  1.15 (0.84-1.57) 0.901 

Weighted median  1.15 (0.79-1.67)  

MR-Egger  0.65 (0.09-4.68) 0.568 

Grade 3 16,432   

IVW  1.32 (0.88-1.97) 0.967 

Weighted median  1.24 (0.77-1.98)  

MR-Egger  0.94 (0.07-11.8) 0.788 

In situ cancers    

All in situ 6,667   

IVW  1.75 (1.00-3.07) 0.933 

Weighted median  1.79 (0.92-3.50)  

MR-Egger  0.75 (0.02-26.1) 0.637 

Ductal carcinoma in situ 3,510   

IVW  2.11 (0.99-4.49) 0.487 

Weighted median  2.49 (0.96-6.43)  

MR-Egger  0.23 (0.00-27.0) 0.357 
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Abbreviations: CI, confidence interval; ER+/-, estrogen receptor positive/negative; GWAS, genome wide 

association study; HER2+/-, human epidermal growth factor receptor 2 positive/negative; IVW, inverse-

variance weighted; MR, Mendelian Randomization; PR+/-, progesterone receptor positive/negative; 

SNP, single nucleotide polymorphism. 

* Causal odds ratios were estimated by three different Mendelian randomization methods, using six SNPs 

identified in a GWAS of accelerometer-measured movement traits by Doherty et al (3)  

† Confidence intervals from weighted median MR were generated from 10,000 bootstrap samples (seed 

314159265)  

‡ Relating to IVW MR estimates: p-value associated with the heterogeneity test statistic (Cochran’s Q 

statistic) measuring heterogeneity of causal effects between SNPs 

§ Relating to MR-Egger estimates: p-value for the intercept test (p-value for pleiotropy) 

¶ vs pre/perimenopausal controls (n=17,686), assigned using age (<50 years) if menopause status was unknown 

** vs postmenopausal controls (n=36,766), assigned using age (≥50 years) if menopause status was unknown 
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Table S12. Leave-one-out analyses: Association between instrumental genetic variables for sedentary time (per standard deviation) and risk of breast cancer, 

omitting one SNP at a time 

Odds ratios (95% CI) * † 

Type of cancer 

Full instrument  

(six SNPs) 

Excluding 

rs61776614 ‡ 

Excluding 

rs1858242 

Excluding 

rs26579 § 

Excluding 

rs25981 ** 

Excluding 

rs6870096 ¶ 

Excluding 

rs34858520 

Invasive cancers 

All invasive 1.20 (0.93-1.55) 1.22 (0.93-1.60) 1.21 (0.92-1.60) 1.18 (0.89-1.55) 1.26 (0.96-1.67) 1.19 (0.90-1.56) 1.16 (0.88-1.54) 

Pre/perimenopausal 1.22 (0.78-1.90) 1.20 (0.74-1.94) 1.30 (0.80-2.11) 1.26 (0.77-2.05) 1.40 (0.86-2.29) 1.10 (0.68-1.78) 1.08 (0.66-1.77) 

Postmenopausal 1.21 (0.89-1.65) 1.25 (0.90-1.74) 1.19 (0.84-1.67) 1.15 (0.82-1.62) 1.22 (0.87-1.71) 1.22 (0.87-1.72) 1.22 (0.86-1.71) 

By receptor status 

ER+ 1.19 (0.90-1.57) 1.21 (0.90-1.64) 1.23 (0.90-1.67) 1.16 (0.85-1.58) 1.17 (0.86-1.60) 1.18 (0.87-1.61) 1.16 (0.85-1.59) 

ER- 1.43 (0.90-2.26) 1.47 (0.90-2.42) 1.31 (0.79-2.18) 1.47 (0.89-2.45) 1.53 (0.92-2.55) 1.33 (0.81-2.21) 1.45 (0.87-2.41) 

PR+ 1.19 (0.87-1.63) 1.33 (0.95-1.85) 1.25 (0.86-1.81) 1.16 (0.79-1.70) 1.17 (0.80-1.73) 1.16 (0.79-1.70) 1.06 (0.76-1.49) 

PR- 1.40 (0.94-2.09) 1.30 (0.85-2.01) 1.46 (0.91-2.34) 1.49 (0.94-2.37) 1.33 (0.83-2.12) 1.24 (0.80-1.92) 1.62 (1.04-2.52) 

HER2+ 1.17 (0.67-2.06) 1.29 (0.70-2.38) 1.18 (0.64-2.20) 1.12 (0.60-2.09) 1.01 (0.54-1.88) 1.34 (0.72-2.48) 1.11 (0.60-2.08) 

HER2- 1.27 (0.93-1.74) 1.33 (0.94-1.86) 1.33 (0.94-1.88) 1.25 (0.88-1.77) 1.24 (0.87-1.76) 1.27 (0.90-1.80) 1.21 (0.86-1.72) 

Combined hormone receptor- and/or HER2-defined subtypes 

HR+; HER2+ 0.86 (0.44-1.67) 0.95 (0.47-1.94) 0.85 (0.41-1.77) 0.74 (0.36-1.53) 0.71 (0.34-1.48) 1.02 (0.49-2.09) 0.93 (0.45-1.93) 

HR+; HER2- 1.12 (0.80-1.56) 1.16 (0.81-1.66) 1.20 (0.83-1.73) 1.10 (0.76-1.59) 1.08 (0.74-1.56) 1.15 (0.80-1.65) 1.02 (0.70-1.47) 

HR-; HER2+ 1.94 (0.71-5.25) 2.38 (0.81-6.95) 2.05 (0.69-6.15) 2.14 (0.71-6.40) 2.01 (0.67-6.05) 1.90 (0.64-5.63) 1.31 (0.43-3.93) 

HR-; HER2- 2.04 (1.06-3.93) 2.35 (1.16-4.75) 1.82 (0.88-3.73) 1.99 (0.94-4.20) 1.92 (0.92-4.02) 1.74 (0.85-3.54) 2.55 (1.24-5.26) 

HR- (all) 1.77 (1.07-2.92) 1.84 (1.07-3.15) 1.66 (0.96-2.89) 1.83 (1.05-3.17) 1.74 (1.00-3.02) 1.58 (0.91-2.72) 2.00 (1.15-3.48) 

By morphology 

Ductal 1.21 (0.91-1.62) 1.22 (0.89-1.66) 1.24 (0.90-1.70) 1.17 (0.85-1.62) 1.25 (0.91-1.72) 1.21 (0.88-1.66) 1.19 (0.86-1.63) 

Lobular 1.12 (0.66-1.91) 1.26 (0.71-2.25) 1.11 (0.62-1.99) 0.96 (0.53-1.72) 1.19 (0.66-2.15) 1.04 (0.58-1.87) 1.18 (0.65-2.13) 

By stage at diagnosis 

Stage I 1.62 (0.99-2.65) 1.73 (0.98-3.04) 1.76 (0.99-3.12) 1.66 (0.91-3.03) 1.69 (0.93-3.08) 1.70 (0.94-3.05) 1.25 (0.81-1.95) 

Stage II 1.23 (0.79-1.90) 1.32 (0.83-2.11) 1.34 (0.83-2.17) 1.16 (0.72-1.87) 1.13 (0.70-1.82) 1.18 (0.73-1.89) 1.25 (0.77-2.02) 

Stage III/IV 0.91 (0.45-1.84) 0.90 (0.42-1.92) 0.88 (0.41-1.91) 1.07 (0.49-2.32) 0.81 (0.37-1.77) 0.76 (0.35-1.63) 1.10 (0.51-2.40) 

By tumor grade 

Grade 1/2 1.15 (0.84-1.57) 1.18 (0.84-1.65) 1.22 (0.86-1.72) 1.12 (0.79-1.58) 1.19 (0.84-1.69) 1.11 (0.79-1.56) 1.09 (0.77-1.54) 

Grade 3 1.32 (0.88-1.97) 1.37 (0.89-2.10) 1.25 (0.80-1.94) 1.25 (0.81-1.95) 1.34 (0.86-2.08) 1.38 (0.89-2.13) 1.35 (0.87-2.10) 

In situ cancers 

All in situ 1.75 (1.00-3.07) 1.84 (1.01-3.38) 1.76 (0.95-3.26) 1.74 (0.93-3.22) 1.56 (0.84-2.91) 1.93 (1.04-3.55) 1.69 (0.91-3.15) 

DCIS 2.11 (0.99-4.49) 2.55 (1.13-5.73) 1.67 (0.73-3.83) 2.33 (1.00-5.41) 1.91 (0.82-4.45) 2.48 (1.09-5.64) 1.86 (0.81-4.28) 

Abbreviations: CI, confidence interval; DCIS, ductal carcinoma in situ; ER+/-, estrogen receptor positive/negative; GWAS, genome wide association study; HER2+/-, 

human epidermal growth factor receptor 2 positive/negative; PR+/-, progesterone receptor positive/negative; SNP, single nucleotide polymorphism. 
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* Causal odds ratios were estimated by inverse-variance weighted Mendelian randomization using SNPs identified in a GWAS of accelerometer-measured 

movement traits by Doherty et al (3)  

† All p-values associated with the heterogeneity test statistic (Cochran’s Q statistic) measuring heterogeneity of causal effects between SNPs were >0.10 

‡ This SNP had imputation quality score <0.9 and low minor allele frequency (6.6%), and was suggested by scatter plots and per-SNP forest plots to be a 

possible outlier for PR+ analyses. 

§ This SNP has been associated with a possible confounder (education) and with adiposity in prior GWAS. 

** This is a strand-ambiguous SNP with minor allele frequency near 0.50. 

¶ This SNP is correlated with a SNP predicting overall activity, rs6895232 (r2=0.25 using the National Cancer Institute’s LDpair application (2)). 
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Table S13. Power to detect expected associations* and instrument strength by exposure trait and outcome analysed 

 Sample size (% cases)  Power (F-statistic) 

 

  

Overall physical 

activity instrument † 

Vigorous physical 

activity instrument 

(accelerometer) ‡ 

Vigorous physical 

activity instrument 

(self-reported) § 

Sedentary time 

instrument ** 

Type of breast 

cancer 

  

    

Invasive cancers       

All invasive 124,290 (56%)  52% (124.31) 15% (26.05) 37% (81.62) 34% (144.20) 

Pre/perimenopausal 41,685 (58%)  22% (42.36) 8% (9.40) 16% (28.04) 14% (49.03) 

Postmenopausal 82,605 (55%)  38% (82.96) 12% (17.65) 26% (54.58) 24% (96.17) 

By receptor status    

ER+ 100,980 (46%)  42% (101.19) 12% (21.35) 30% (66.50) 30% (117.35) 

ER- 65,698 (17%)  16% (66.18) 7% (14.24) 12% (43.61) 16% (76.69) 

PR+ 89,343 (39%)  35% (89.64) 11% (19.00) 25% (58.95) 27% (103.94) 

PR- 70,884 (23%)  21% (71.33) 8% (15.28) 15% (46.98) 19% (82.67) 

HER2+ 61,397 (11%)  12% (61.91) 6% (13.37) 10% (40.82) 12% (71.74) 

HER2- 87,666 (38%)  34% (87.98) 11% (18.67) 24% (57.86) 26% (102.01) 

Combined hormone receptor- and/or HER2-defined subtypes  

ER+/PR+; HER2+ 59,268 (8%)  10% (59.80) 6% (12.94) 8% (39.44) 10% (69.29) 

ER+/PR+; HER2- 82,326 (34%)  30% (82.68) 10% (17.59) 22% (54.40) 24% (95.85) 

ER-; PR-; HER2+ 56,426 (3%)  7% (56.98) 5% (12.37) 6% (37.60) 7% (66.01) 

ER-; PR-; HER2- 59,416 (8%)  10% (59.95) 6% (12.97) 8% (39.54) 10% (69.46) 

ER- and PR- (all) 63,667 (14%)  14% (64.17) 7% (13.83) 11% (42.30) 14% (74.35) 

By morphology       

Ductal 96,675 (44%)  40% (96.92) 12% (20.48) 28% (63.71) 29% (112.9) 

Lobular 63,247 (14%)  14% (63.75) 7% (13.75) 11% (42.02) 14% (73.87) 

By stage at diagnosis    

Stage I 72,035 (24%)  22% (72.47) 8% (15.52) 16% (47.72) 20% (84.00) 

Stage II 70,444 (23%)  21% (70.89) 8% (15.20) 15% (46.69) 19% (82.16) 

Stage III/IV 59,005 (8%)  10% (59.54) 6% (12.89) 8% (39.27) 10% (68.98) 

By tumor grade       

Grade 1/2 89,099 (39%)  35% (89.40) 11% (18.96) 25% (58.79) 27% (103.66) 

Grade 3 70,884 (23%)  21% (71.33) 8% (15.28) 15% (46.98) 19% (82.67) 

In situ cancers       

All in situ 61,119 (11%)  12% (61.64) 6% (13.32) 9% (40.64) 12% (71.42) 

DCIS 57,962 (6%)  9% (58.51) 6% (12.68) 7% (38.60) 9% (67.78) 

* Expected associations (assumed ‘true’ odds ratio of the outcome variable per standard deviation in the exposure) 

for these power calculations were odds ratios of 0.70 (for physical activity variables) and 1.30 (for sedentary 
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behaviour). The alpha level was set at 0.05. Power varied according to the sample size in each analysis (determined 

by outcome examined) and the proportion of variance explained for the association between each instrument and 

exposure (R2
xz), detailed below. Power was estimated using the mRnd Mendelian randomization power calculation 

tool, https://shiny.cnsgenomics.com/mRnd/ (148) 

† Calculations based on R2
xz = 0.00099 (0.099% of variance in the exposure explained). 

‡ Calculations based on R2
xz = 0.00020 (0.02% of variance in the exposure explained). 

§ Calculations based on R2
xz = 0.00065 (0.065% of variance in the exposure explained). 

** Calculations based on R2
xz = 0.00115 (0.115% of variance in the exposure explained). 

 

https://shiny.cnsgenomics.com/mRnd/
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Supplementary Figures 

Figure S1. Causal graph of the relationships investigated in this study, illustrating the Mendelian 

randomization approach and assumptions 

 

Legend: Crosses indicate an assumption that this causal path does not operate. 
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Figure S2. Scatter plots of SNP associations with exposure (overall activity; SNPs associated at p<5x10-8 (3)) 

and outcome, for analyses with suspected pleiotropy  

 

Legend: (A) all invasive breast cancers; (B) ER+; (C) PR+; (D) HR+/HER2-; (E) triple negative; (F) HR-; 

(G) well/moderately differentiated cancers; (H) DCIS. 
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Figure S3. Forest plots of individual SNP causal effects on outcomes with suspected pleiotropy: Association 

between single genetic variants predicting (at p<5x10-8) overall physical activity (per standard 

deviation) and risk of breast cancer 

Legend: (A) all invasive breast cancers; (B) ER+; (C) PR+; (D) HR+/HER2-; (E) triple negative; (F) HR-; 

(G) well/moderately differentiated cancers; (H) DCIS. Associations for each SNP were estimated by 

Mendelian randomization (Wald ratio technique).



 

41 
 

Figure S4. Scatter plots of SNP associations with exposure (overall activity; SNPs associated at p<5x10-7 (5, 6)) 

and outcome, for analyses with suspected pleiotropy  

 

Legend: (A) all invasive breast cancers; (B) ER+; (C) PR+; (D) HR+/HER2-; (E) well/moderately 

differentiated cancers; (F) DCIS. 
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Figure S5. Forest plots of individual SNP causal effects on outcomes with suspected pleiotropy: Association 

between single genetic variants predicting (at p<5x10-7) overall physical activity (per standard 

deviation) and risk of breast cancer 

 

Legend: (A) all invasive breast cancers; (B) ER+; (C) PR+; (D) HR+/HER2-; (E) well/moderately 

differentiated cancers; (F) DCIS. Associations for each SNP were estimated by Mendelian randomization 

(Wald ratio technique).
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Figure S6. Scatter plot of SNP associations with exposure (self-reported vigorous activity (5)) and in situ 

cancers (analysis with suspected pleiotropy) 
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Figure S7. Forest plot of individual SNP causal effects on risk of in situ cancers (suspected pleiotropy): 

Association between single genetic variants predicting self-reported vigorous physical activity (≥ 3 vs. 

0 days/week) and risk of in situ cancers 

 

Note: Associations for each SNP were estimated by Mendelian randomization (Wald ratio technique). 
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Figure S8. Scatter plot of SNP associations with exposure (sedentary time (3)) and PR+ cancers (analysis with 

possible pleiotropy)  
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Figure S9. Forest plot of individual SNP causal effects: Association between single genetic variants predicting 

sedentary time (per standard deviation) and risk of PR+ cancers (possible pleiotropy) 

 

Note: Associations for each SNP were estimated by Mendelian randomization (Wald ratio technique). 
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