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Abstract

Let I" be an arithmetic subgroup of SU (d, 1) with cusps, and let X|- be the associated locally
symmetric space. In this paper we investigate the pre-image of I in the covering groups of
SU(d, 1). Let H; (X, C) be the inner cohomology, i.e. the image in H*(Xp, C) of the com-
pactly supported cohomology. We prove that if the first inner cohomology group H!(Xp, C)
is non-zero then the pre-image of I in each connected cover of SU (d, 1) is residually finite.
At the end of the paper we give an example of an arithmetic subgroup I" satisfying the cri-
terion H!(Xp, C) # 0.
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1 Introduction

Let I" be an arithmetic subgroup of SU (d, 1) for some d > 2. The universal cover SU (d, 1)
of SU (d, 1) is an infinite cyclic cover, so that we have a central extension

l1-7Z- SU@,1)- SU@,1) - 1.

Furthermore, for every positive integer n, there is a unique connected n-fold cover of
SU (d, 1), which is isomorphic to Sﬁ?djl) /nZ. Let I'™ be the pre-image of I in the con-
nected n-fold cover, and let I" be the pre-image of I' in the universal cover. In this paper, we
shall investigate whether the groups I" and I’ are residually finite. There are two motiva-
tions for studying this question.

1. Itis a famous open question whether every word-hyperbolic group is residually finite.
If all such groups are indeed residually finite, then every I'® must be residually finite.
This would imply that T is also residually finite.
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2. IfT'™is residually finite, then for every sufficiently large integer m, there exist modular
forms on SU (d, 1) of weight % whose level is a subgroup of finite index in I". The exist-
ence of such modular forms is discussed in Proposition 2.1 of [9], and some examples
of the forms (of weight %) have recently been described in section 5.3 of [5].

The question of whether T" and T are residually finite has recently been studied in [9, 13]
[14] and [5]. In both [9], and [14], it is is shown (independently) that for a certain class of
cocompact arithmetic subgroups I', the groups I and T are residually finite. In the current
paper, we give some evidence that a similar result might be true when I has cusps.

To put our result in context, we first recall a theorem from [9] and [14]. Let k be a CM
field of degree [k : Q] = 2e. Choose a (d + 1) X (d + 1) Hermitian matrix J with entries in
k, such that

e The matrix J has signature is (d, 1) at one of the complex places of k;
e For each of the other e — 1 complex places of k, the matrix J is either positive definite or
negative definite.

Given such a matrix J, we define an algebraic group G over Q by
GA)={ge SL,, (A®yk) : g Jg=J},

for any commutative Q-algebra A. We shall regard G(Q) as a subgroup of
G(R) X G(Ay), where A, is the ring of finite adeles of Q. We have an isomorphism
G(R) = SU(d, 1) x SU(d + 1)°"". Given any compact open subgroup K; C G(Ap), we let
['(K;) be the group of elements of G(Q), which project into K;. The projection of I'(Ky) in
SU(d, 1) is called a congruence subgroup of SU (d, 1) of the first kind. Any subgroup of
SU(d, 1) which is commensurable with I'(K) is called an arithmetic subgroup of the first
kind.

Theorem 1 (Theorem 1 of [9], Theorem 1.1 in [14]) Let T" be an arithmetic subgroup of
SU (d, 1) of the first kind, constructed using a CM field k with [k : Q] > 2. Then the groups
[ and T™ are residually finite.

It is not known whether the theorem extends to the case [k : Q] = 2, and this is the
question which we investigate in this paper. The case [k : Q] = 2 is geometrically different
from the case e > 2, since the groups I" are cocompact for [k : Q] > 2 but have cusps in the
case [k : Q] =2.

To describe our result, let X- be the locally symmetric space corresponding to I'. We
shall write H}(X, C) for the image in H'(X, C) of the cohomology of compact support
H 'Compact (Xp, C). We prove the following result:

Theorem 2 Let T be an arithmetic subgroup of SU (d, 1) with cusps (i.e. constructed from a
complex quadratic field k). Assume that there exists an arithmetic subgroup T commensu-
rable with T such that H!1 (X, C) # 0. Then the groups [ and T™ are all residually finite.

We’ll briefly discuss the hypothesis that H!1 (Xp, C) # 0. The cuspidal cohomology is

contained in the inner cohomology (see [8]), so if H 1(XF,, C) contains any non-zero cusp
forms then the hypothesis of Theorem 2 holds. Furthermore, it is known (see for example
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Residual finiteness of extensions of arithmetic subgroups...

[11]) that there exists a congruence subgroup I”, such that H'(Xp, C) # 0. However, the
hypothesis of Theorem 2 is that H! (X, C) # 0 and this is rather stronger. We shall give
an example of a group satisfying this hypothesis at the end of the paper; the author is
extremely grateful to Matthew Stover for suggesting this example.

Here are some equivalent formulations of the hypothesis:

Proposition 1 Let I" be a neat arithmetic subgroup of SU (d, 1) of the first kind with cusps.
Let @ € H*(Xr, C) be the cohomology class represented by the invariant Kéhler form on
the symmetric space attached to SU (d, 1). Then the following are equivalent:

I H/(XC)#0;
2. HM*'(Xp,C) #0;
3. There exists ¢ € H'(Xp, C) such that ¢ U 0®' # 0 in H** (X, C).

(Here we are writing U for the cup product operation.)

The equivalence of 1 and 2 is by duality (see (3)). The equivalence of 2 and 3 follows
immediately from Lemma 10 below. In this context, it is reassuring to note that @?~! repre-
sents a non-zero cohomology class in H?*~2(Xr, C) (see Lemma 6 below).

The paper is organized as follows. In section 2, we recall a purely group theoretical
lemma, which gives a method for showing that certain extension groups are residually
finite. In section 3, we recall some standard facts about the the locally symmetric spaces
X and their compactifications. In section 4 we prove Theorem 2. In section 5 we give an
example of a group I satisfying H ,1 (T, C) # 0, allowing us to apply Theorem 2 in this case.

2 A group theoretical lemma

The method of proof of Theorem 2 is a modification of the argument in [9]. In particular,
we shall use the following lemma, which is proved in both [9, 13] and [14]. For complete-
ness, we include a short proof.

Lemma 1 Let G be a finitely generated, residually finite group, and suppose that we have a
central extension

1-Z->G->G-1.

Let 6, € HX(G, Z) be the cohomology class of the extension, and let o be the image of 65
in H*(G, C). Assume that there exist elements b,y € H'(G, C) such that

cc=d, Uy + -+ Uy,.

Then G is residually finite. Furthermore, the quotient group G/nZ is residually finite for
every positive integer n.

Proof Let G = G/[G, G]. Elements of H'(G,C) may be regarded as group homomor-
phisms G — C. Every such homomorphism is the inflation of a homomorphism G*® — C.

Hence o is also the inflation of a cohomology class on G, and we shall write G# for the
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corresponding central extension. It follows that we have a commutative diagram with exact

[

1 s C > Gab » (Gab 1

~
—_

\
4

We shall write A for the image of G in G®. The group G is nilpotent. Hence A is a
finitely generated nilpotent group, and is therefore residually finite. The group G injects
into A X G. Since A and G are both residually finite, it follows that G is residually finite.
Similarly, since A /nZ is residually finite, it follows that G/nZ is residually finite. a

Again let I" be an arithmetic subgroup of SU (d, 1) of the first kind with cusps. Lemma
1 will be applied in the case that G =T, G is its pre-image in SU (d, 1) and G/nZ =T'™.
We note that one may construct a different central extension of I" for which Lemma 1 can-
not be applied. For example, take d = 2 and let r € H*(T', Z) be a cohomology class whose
restriction to the Borel-Serre boundary of X is non-torsion (for example an Eisenstein
cohomology class, see [7]). Such a class 7 cannot be expressed as a sum of cup products
of elements of H', because all such cup products restrict to torsion on the Borel-Serre
boundary.

3 Background material

We shall now recall the construction of arithmetic subgroups of SU (d, 1) with cusps. Let
k be a complex quadratic extension of Q; we shall identify k with a subfield of C, and we
shall write z — Z for complex conjugation on C or on k. Let J, be a (d — 1) X (d — 1) posi-
tive definite Hermitian matrix with entries in k and let

J=

=
o~ o

1
0].
0

The matrix J defines a Hermitian form on C%*! of signature (d, 1) by
v, w) =9 Jw,

where 7' denotes the conjugate transpose of a column matrix v.
We define an algebraic group G over Q to be the group of isometries in SL ;. of the
Hermitian form. More precisely, for a Q-algebra A, we define

GA) = {g € SL,,,(AQ®g k) : gJg=1T}.

Since the matrix J has signature (d, 1), the group G(R) may be identified with SU (d, 1).
Let A, be the ring of finite adeles of Q. The group G(A,) is totally disconnected, and

contains the projection of G(Q) as a dense subgroup (by Kneser’s Strong Approximation

Theorem). For a compact open subgroup K, C G(A;), the intersection I'(K;) = G(Q) N K
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is called a congruence subgroup of G(Q). Any subgroup of G(Q) which is commensurable
with a congruence subgroup is called an arithmetic subgroup. It is known that there exist
arithmetic subgroups of G(Q), which are not congruence subgroups.

The group G(A;) may be identified with the projective limit of the sets G(Q)/I'(K;),
where I'(K}) ranges over the congruence subgroups of G(Q). We also define the arithme-
tic completion G(Q) to be the projective limit of the sets G(Q)/T", where T" ranges over all
the arithmetic subgroups of G(Q). Since the filtration by arithmetic subgroups is invariant
under conjugation, the arithmetic completion is a group, and we have a natural surjective

homomorphism @ - G(Aj-). The kernel of the homomorphism is an infinite profinite
group, and is called the congruence kernel Cg of G.

An arithmetic group I is said to be neat if for every g € T, the eigenvalues of g generate
a torsion-free subgroup of C*. For every congruence subgroup I, there is a neat congru-
ence subgroup I" of finite index in I'. Every subgroup of a neat group is neat, and every
neat group is torsion-free.

3.1 Quotient spaces and compactifications

Let
H={[v] € PYC) : (v,v) <0},

where we are writing [v] for the point in projective space represented by a non-zero vector
v. The complex manifold H has an obvious action of SU (d, 1), and is a model of the sym-
metric space attached to SU (d, 1). For each arithmetic subgroup I" in G(Q), we shall write
X = X for the quotient space I'\'H. If T is neat then X|- is a smooth, non-compact complex
manifold.

By a cusp, we shall mean a point [v] of P?(k), such that (v,v) = 0. For each such [v],
there is a parabolic subgroup P, of SU (d, 1), defined by

P,={ge SUWD :[g-v]=1[v]}

If T is an arithmetic subgroup of G(Q), then I" permutes the cusps with finitely many orbits.
Assume that [v] is a cusp, with corresponding parabolic subgroup P,. We may choose a
Langlands decomposition

P,=MAN,

vitvt Ty

where A, is the connected component of a split torus in P, which is isomorphic to R>?;
the group M, is isomorphic to U(d — 1), and N, is the unipotent radical of P,. There is a
homomorphism ¢, : P, — R>° defined by ¢, (p) = |A|, where A € CX satisfies pv = 1 -v.
The subgroups M, and N, are in the kernel of ¢,, and the restriction of ¢, to A, is an
isomorphism.

By the Iwasawa decomposition, the group A, X N, acts simply transitively on the sym-
metric space H, so by choosing a base point, we may identify  with this group.

Assume from now on that I is a neat arithmetic subgroup of G(Q). For such groups I',
the intersection I', = I'N P, is contained in N,, and is a cocompact subgroup of N,. The
subgroup I', acts on A, X N, by translation on N,, preserving the A,-coordinate. It therefore
acts also on the following subset
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ASN,={an :a€A,n€N, ¢, (a) <€},

where € is a positive real number. We may choose ¢ sufficiently small so that the quotient
space U, = [ ,\(A°N,) injects into Xr. We shall call such a subset U, of Xt a neighbour-
hood of the cusp [v]. By reduction theory, there are finitely many non-intersecting cusp
neighbourhoods (one for each I'-orbit of cusps), such that the complement of the cusp

neighbourhoods is a compact subset of X..
1

0 . . . .
As an example, choose the cusp v = | . |. In this case N, is a Heisenberg group, consisting

0
of all matrices of the form
1 — ZtJO - @ +ix
nzx) =10 I, z .,  z€C"xeR,
0 0 1

where ||z]|? = 7'Jz. We have a short exact sequence of Lie groups:

l1 >R > N, —>C*!' -1
x + n(0,x)
nz,x) » z

The image of T, in C¢"!is a full lattice L,, and the quotient C?~! /L, is an abelian variety
(indeed L, is commensurable with OZ"). The kernel of the map I'), — L, is isomorphic to
Z. Hence the topological space I',\N, is an R/Z bundle over the abelian variety C*~! /L.
The cusp neighbourhood U, is the product of this space with the open interval (0, €).

If we choose any other cusp v, then the groups P, and N, are conjuagates in SU (d, 1) of
the subgroups described above. Hence the cusp neighbourhood has a similar description as
a product of an open interval with a circle bundle over an abelian variety.

We shall consider two compactifications of X. The first is the Borel-Serre compactifica-
tion in which we embed each cusp neighbourhood U, into a larger topological space U VBS as
follows:

U, =—— TI',\INV, x (0,¢)
N
UBS ——=T,\N, x [0,€).

The embedding U, — UPS is evidently a homotopy equivalence. Therefore the resulting
compactification X BS has the same cohomology groups as X.

We shall write 0X BS for the complement of X in its Borel-Serre compactification. The
boundary of the Borel-Serre compactification is a disjoint union of manifolds homeomor-
phic to

oXPS =T )\N,.

Each of the boundary components 0X VBS is a circle bundle over an abelian variety.
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The second compactification which we shall consider is the smooth compactification X
constructed in [1]. This may be obtained from the Borel-Serre compactification by quo-
tienting each boundary component I' \N, by the centre of N,, i.e. by the subgroup of matri-
ces of the form n(0, x). The resulting boundary component is the abelian variety

oX,=C /L,

The compactification X is a smooth complex manifold but is not homotopic to X. There is
an obvious projection map X35 — X.

We shall write 0X for the complement of X in its smooth compactification. This
boundary set dX is the disjoint union of the abelian varieties 0X,.

3.2 Cohomology groups

In this paper we shall use various cohomology groups. For convenience, we list the
notation and some standard properties for each of these. In almost all cases we shall
consider cohomology with coefficients in C. In such cases, we shall not always write in
the coefficients.

e The continuous cohomology groups of the group SU(d,1) will be written
H;, (SU(d, 1), ). We may identify H, (SU(d, 1),C) with the vector space of dif-
ferential r-forms on H, which are invariant under the action of SU (d, 1) (see [2]).
For example, there is an invariant Kéhler form w on H. The form w generates

H?* (SU(d, 1),C). More generally we have

cts

C-0? ifr=0,2,4,...,2d

He (SUQ,d),C) = { 0 otherwise. (D

e The measurable cohomology groups (defined on page 42 of [10]) of a connected Lie

group G will be written H: (G, —). For a connected Lie group G with fundamen-
tal group 7,(G), there is a canonical isomorphism H%neas (G,Z) 2 Hom (7,(G), Z).
In particular, the group SU(d,1) has fundamental group Z, so we have
H?> (SU(d,1),Z) = Z. We shall choose a generator o for this group, i.e.

meas

2 —
H . (SUWd,1),2)=17 0.
The group extension of SU (d, 1) corresponding to the cocycle 6 is the universal cover
of SU(d, 1). By [15] there is an isomorphism

H, (G,O)=2H, (G Z2)®C. )

meas

In particular, the image of 6, in H %ts (SU(d, 1), C) is a non-zero multiple of w.

e For an arithmetic subgroup I', the Eilenberg—MacLane cohomology groups will be
written H*(I', —). There are restriction maps H, (SU(d, 1),C) — H'(T', C). Some of
these maps are injective and others are zero. (In fact, we’ll see in Lemma 6 that the
map is injective if r < 2d and zero if r = 2d).

e IfTI is a neat arithmetic subgroup of SU (d, 1), then the quotient space X =T'\'H is a
complex d-dimensional manifold. We shall write H*(X) for the singular or de Rham

cohomology groups of this manifold with complex coefficients.
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Apart from the manifold X, we shall also consider two compactifications X B and X.
Recall that there are canonical isomorphisms

H'(XBS)~ H'(X) =~ H' T, C).

The composition

H (SU,1), C)&)H’(F, C) =2 H'(X),

cts

takes an invariant differential form on H to its de Rham cohomology class on X.

e We shall write ¢, (X) for the first Chern class of the canonical sheaf on X, regarded as
an element of H%(X). It is known that ¢;(X) is a multiple of the cohomology class @
by a positive real number.

e We shall write H'COmpacl (X) for the compactly supported cohomology of X with com-
plex coefficients. The space H%‘émpact (X) is one-dimensional, and the cup-product
map

UtHXQH" " X)->H* (X)=C

compact compact

is a perfect pairing, allowing us to identify H"(X) with the dual space of H>?~" _(X).

compact
e The relative cohomology groups H*(XBS,0XBS) and H*(X,0X) are both canonically
isomorphic to the compactly supported cohomology. We therefore have a commutative
diagram whose rows are long exact sequences:

(X) —— H(X) —— H*(0X) —— Hhue(X) —— -

compact

(X) —— H*(X) — H*(0XPS) —— Hol (X)) —— -

compact

e —— 3 He

compact

e —— s He

compact

We shall write H;(X) for the kernel of the restriction map H*(X) — H"(0X BS), or
equivalently the image of the map H’COmpacl (X) — H*(X). The vector spaces H;(X) are
known as the inner cohomology groups.

e Forr=0,...,2d there is a perfect pairing (see for example Proposition 6.3.6 of [8]):
. r 2d—r 2d ~
<_’ _> : H! (X) ® H! (X) - Hcompact (X) =C, (3)
defined as follows. Given a € H(X) and be led"(X), we may choose a pre-image
@ compact € Hiopaet X) of a. The pairing (a,b) is defined to be the cup product
@ compact Y b. This cup product does not depend on the choice of a

e We shall use the notation
H, = 1£,n H* (Xr')’ H'. stable — h_I>n H‘. (XF’)’ H.compacl Lstable — h_I>n H.compact (XF’)’

stable
I I’ I’

compact*

where the limits are taken over all arithmetic subgroups I of I". These direct limits
may be regarded as unions, since all of the connecting homomorphisms are injective.

There is an obvious action of G(Q) on the vector spaces H e and H!,S[able, and this

action extends to a smooth action of the totally disconnected group G(Q).
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e Since cup products are compatible with restriction maps, the pairing (3) extends to a
perfect pairing

® sz r sz

!, stable compact , stable

1

C.

' , stable

This pairing is @-invariant, in the sense that

(ga,gb) = (a,b) forallg e @

e There is also an invariant positive definite inner product on H/ defined by

{(a,b)) = a, * b),

(see the bottom of page 71 of [8]). In particular, by Weyl’s unitary trick the representa-

tion H ,’ sable OF G(Q) is semi-simple.

e We shall use the notation

!, stable

Hi (o, = 1IN H{ Xk )s

K

where the limit is taken over all congruence subgroups I'(K;). There is a smooth action
of G(Ay) on the vector space H, ) Cong’ and we may identify H, ) Cong. with the subspace of
invariants (H; ! stable )Cs, where Cg is the congruence kernel of G.
e The vector space H; is a semi-simple representation of G(A;). More precisely
!, Cong. .

there is a countable direct sum decomposition (this is an easy consequence of the
theorem on page 226 of [8]):

Hy , Cong. @ H, (SU, 1), 7,) ® y, 4

mell]

where I1 is a certain set of automorphic representations of G(A). Each of the automor-
phic representations 7 decomposes as r,, ® 7y, where 7, is a simple representation of
SU(d, 1) and #; is a smooth, simple representation of G(Ay).

i)Y of G(Q)-invariant

c .
b atabte) ¢ = H] (o - it follows that

e We shall be particularly interested in the subspace (H;
cohomology classes. Since (H;

)G(@) =(H: )G(A,). (5)

( !, stable !, Cong.

The right hand side of (5) may be evaluated using (4). The trivial representation C
occurs with multiplicity at most 1 in each set IT]. For all non-trivial representations 7 in
I17, the vector space 7y is infinite dimensional. This implies

(6)

)‘5@) - { s (SU(d, 1), C) if the trivial representation is in IIj,
0

H' =
( !, stable otherwise.

G
By (6) and (1), if ( ! stable ) is non-zero, then r is even and this space is spanned by

the cohomology class of @'/ on X;- (or more accurately, by the image of this cohomol-

ogy class in the direct limit H* ).
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Lemma 2 Let I be an arithmetic subgroup of G(Q). The invariant Kdhler form w repre-
sents a non-zero cohomology class on Xr. Consequently, the restriction of 65 to I is a non-
zero element of H*(T', Z).

(Here we are using the assumption that d > 2; the statement would be false for
SU(1,1).)

Proof Since w is a multiple of the image of ¢, it is sufficient to prove the statement for w.
It is also sufficient to prove the result with I' sufficiently small. We may therefore assume,
without loss of generality, that I is neat. Hence X is a smooth complex manifold.

Suppose for a moment that there exists a compact Riemann surface Y C X. The Kéhler
form w restricts to a Kéhler form on Y, and by positivity of Kéhler forms (see for example

[6]) we have
/ w > 0.
Y]

Therefore w represents a non-zero cohomology class on Y, and hence also on X.

It is therefore sufficient to find a compact Riemann surface Y contained in X. The fol-
lowing construction of such a Y is taken from the final paragraph on page 590 of [11]. We
may choose a 2-dimensional subspace S C k%+!, such that the Hermitian form has signature
(1, 1) on § and is anisotropic. Let G be the group of isometries of S ®g R. Our choice
of § implies that G is isomorphic to SU (1, 1) and I'n G is cocompact in G. Let Y be the
locally symmetric space corresponding to the subgroup I' N G of G. The inclusion of G in
SU (d, 1) gives us an inclusion of Y in X as a compact Riemann surface. O

Lemma 3 Let I be a neat arithmetic subgroup of G(Q). For any cusp [v], the restrictions of
oy and w to I, are coboundaries.

Proof As w is a multiple of the image of o, in H%IS(SU d,1),C), it is sufficient to
prove the result for 6. Since T is neat, we have I', C N,. Therefore the restriction map
H?> (SU(d,1),Z) —» H*(T',,Z) factors through the group H2 _ (N,,Z). Since the Lie

meas meas

group N, is simply connected, we have H2 __(N,,Z) = 0. Therefore the restriction of 6, to
meas

I', is zero. O

Lemma 4 Let T" be a neat arithmetic subgroup of G(Q) and let X = Xr. The image of w in
H?(X) is in the subspace H !2(X ) of inner cohomology classes.

Proof 1t is sufficient to show that the class w vanishes on each Borel-Serre boundary com-
ponent 0X ®S. This follows from Lemma 3, in view of the following commutative diagram.

H?(XBS) —— H*(0XP9)
R R
H*(I,C) — H*(T,,C)
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Lemma 5 The vector space (H, stable Y6 is one-dimensional, and is spanned by the coho-
mology class of the invariant Kiihler Sform @ on Xr.

Proof By (6) and (1), the space H? )G(Q) is at most one-dimensional, so it is sufficient to
show that w is a non-zero element 1 1n thls space. Lemma 4 shows that @ is in the subspace
of inner cohomology classes, and Lemma 2 implies that o represents a non-zero cohomol-
ogy class on X for every arithmetic subgroup I'. O

Lemma 6 Let I' be an arithmetic subgroup of G(Q). For r =1,...,d — 1, the 2r-form o"

represents a non-zero cohomology class on Xy, which spans (H>" 1 stable )E@,

Proof By Lemma 5, the representation H> of @ has a trivial 1-dimensional subrep-

!, stable

resentation spanned by @. Hence by duality, H; ‘imile has a trivial 1-dimensional quotient

. . . .o . . 2d 2 &a) .
representation. By semi-simplicity, it follows that (H!’Stable) is non-zero. By (6) and (1),

(H2d—2 d—1

1 Stable )@ is one-dimensional, and is spanned by w?!. In particular, w? ! represents
a non-zero cohomology class on X. From this, it follows that @" represents a non-zero

cohomology class on X for 1 < r < d — 1. The image of " in H, able SPans a trivial one-

dimensional subrepresentation. Therefore (H>" )G(@) #0. By (6) and (1), (H*.

1, stabl )(@
, stable
is spanned by @’.

!, stable

Proposition 2 Let I' be a neat arithmetic subgroup of G(Q) and let X = Xp. Then there
exists an element & € H*(X), such that

e the restriction of @ to X is the invariant Kédhler form w.
e @ is in the ample cone in H"!(X).

Proof The lemma does not depend on our choice of normalization of w; we shall assume
for simplicity that @ = ¢, (X) in H*(X).

Let ® = ¢, (X) + € - [0X], where cl(f() is the first Chern class of the canonical sheaf on
X, and € is a positive real number. Here we are writing [0X] for the Poincaré dual of the
2d — 2-cycle 0X, or equivalently the first Chern class of the line bundle corresponding the
the divisor aX. It is shown in Theorem 1.1 of [3], that if € is in the interval (— 1) then & is
in the ample cone. By naturality of Chern classes, it follows that the restrlctlon of ¢,(X) to
X is ¢;(X), which we are assuming is equal to w. The restriction of the divisor 0X to X is 0;
hence the restriction of [0X] to X is 0. It follows that the restriction of @ to X is w. O

4 Proof of Theorem 2

Fix a neat arithmetic subgroup I' C G(Q) and let X be the quotient space I'\’H{. Recall
that we are writing X for the smooth compactification of X and dX for the union of the
boundary components of X. Each boundary component is an abelian variety. We choose
a neighbourhood U of 0X, so that X is a deformation retract of U/. We shall also write U
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for the intersection U/ N X. Note that U is homotopic to the Borel-Serre boundary of X.
The Mayer—Vietoris sequence for the cover X = X U U takes the form:

- H'X) » H"(X) ® H"(0X) » H"(0X®%) > H""'(}) - . (7)

Let [v] € PY(k) be a cusp, and let N, be the unipotent radical in the parabolic subgroup fix-
ing [v]. Recall that we have a central group extension:

1-R—>N,—»CH! 5 1.

We shall write T, for the intersection of T" with N,. We also let L, be the image of T, in C¢~!
and Z, be the kernel of the mapI', — L,.

The next three lemmas are well known (for example, see formula 1.2.1 and Satz
1.2.2(a) of [7]). We include proofs for the sake of completeness.

Lemma 7 The restriction map Hl(l“v, C) - Hl(ZV, C) is zero.

Proof We shall regard elements of H'(T',,C) as group homomorphisms ¢ : T, - C. We
must prove that ¢(g) = O for all elements g € Z,. For any such g, there is a positive integer
n such that g" € [T',, T, . Therefore ¢(g) = ~¢h(g") = 0. |

Lemma 8 The pullback map H'(0X) — H'(0X®S) is an isomorphism.

Proof It is sufficient to show that for each cusp v, the pullback H'(dX,) - H'(0X?S) is
an isomorphism. Recall that 90X, is an abelian variety C?~' /L, and dXVBS is a circle bundle
over this abelian variety, homeomorphic to I' ) \N,. We shall write Z, for the kernel of the
homomorphism I', — L,. We therefore have a commutative diagram

HY(0X,) —— H'(0XD>9)
IR IR
0—— HY(L, C) —— HYT,,C) —— H'(Z,,C),

where the bottom row is the inflation—restriction sequence in group cohomology. The result
now follows from Lemma 7. O

Lemma 9 The restriction map gives an isomorphism H 1(X) = H'(X).

Proof Consider the following section of the Mayer-Vietoris sequence (7):
H(X) ® H°(0X) —» H(0X®%) -» H'(X) » H'(X) ® H'(dX) — H'(0X"®5).

The map H°(0X) — H°(0XBS) is clearly an isomorphism. By Lemma 8, the pull-back map
H'(0X) — H'(0XBS)is an isomorphism. Hence H'(X) = H'(X). O

Lemma 10 The map H'(X) —» H**~'(X) given by cup product with o' has image
HX1(X).
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Proof By Proposition 2, there exists an ample class @ € H*(X), whose restriction to X is
the class w. We have a commutative diagram:

H'(X) ——— HY(X)

l@d—l lwdf 1

H2d_1(X) H2d—1(X) H2d_1(8XBS) ’

where the vertical maps are given by cup product with @?~! and w?~! respectively. The bot-
tom row is exact, as it is part of the Mayer—Vietoris sequence (7). Note that H*~1(9X) = 0
because dX has dimension 2d — 2.

The diagram is commutative because the restriction of @ to X is w. Since & is ample, the
Hard Lefschetz Theorem implies that the left hand vertical map is an isomorphism. There-
fore the image of the right hand vertical map is H}¢~!(X). |

Lemma 11 Assume H!I(X) # 0. Then there exist ¢ EH!I(X) and v € H'(X) such that
(pUy, i) £0.

Proof Choose a non-zero ¢ € H,1 (X). Then there exists an element ¢* € H,Zd_l(X), such
that (¢, ¢*) # 0. By Lemma 10, we have ¢* = y U w~! for some y € H'(X).

By Lemma 4 we have w € H!z(X), so we may choose a pre-image @ ypae Of @ in
H? (X). By definition of the pairing (—, —) in (3), we have

compact
(puw.0™)=@uy) Vol .
=pUW U, )
=(p.y vo™")
= (¢, 9")
#+0.
In the third equality above, we have used the fact that y U a)‘i;rlnpact e Hiﬁ;; oo (X) is a pre-
image of the element y U w?~!' € H}*"'(X). O

Theorem 2 Let T be an arithmetic subgroup of SU (d, 1) with cusps (i.e. constructed from
a complex quadratic field k). Assume that there exists an arithmetic subgroup T' commen-
surable with T such that H!1 (Xp) # 0. Then the groups T and T are all residually finite.

2
!, stable

andy € H' __ . We have a linear map

!, stable

1
stable

Proof Consider the subspace V of H spanned by cup products ¢ Uy with p € H

®:V-C, O = (T, ).

The map @ is a morphism of @ representations because w is @-invariant. Using our
assumption on IV, Lemma 11 shows that ® is surjective. Therefore V has a 1-dimensional

trivial quotient. Since H? wable 18 semi-simple, V must have a 1-dimensional trivial subrep-
2
!, stable

and y; € H! such that

!, stable

resentation. By Lemma 5, (H )6@ is spanned by w. Therefore w € V. In other words,

1

there exist elements ¢; € H.
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w=¢, Uy +-+d .Uy, (8)

Choose an arithmetic subgroup I'” of sufficiently high level, so that all of the elements ¢,
and y; are images in the direct limit of elements of H'(X""), where X" = I'""\H. Then (8)
holds in H*(X"").

The group extension rSTf(d, 1) of SU(d,1) is represented by the cocycle
o7 € aneas(SU (d,1),Z). We shall write o for the image of ¢, in H%rs(SU d, 1),C).
Recall that o is a multiple of @. By (8) the restriction of o to I'” is a sum of cup products
of elements of H'(I"”, C). This means that the restriction of ¢, to I"” satisfies the hypothe-
sis of Lemma 1. By Lemma 1, the groups I and T"""” are all residually finite. Since I' N I7”

has finite index in T" and T A T7" has finite index in T, it follows that I and T'® are
also residually finite. O

5 Non-vanishing of the first inner cohomology

In this section, we give an example of an arithmetic subgroup I' of SU (2, 1) with cusps, for
which H!(Xp, C) # 0. This demonstrates that the hypothesis of Theorem 2 is satisfied in at
least one case. The construction which we describe here was suggested to the author by Mat-
thew Stover, and is a modification of his construction of the towers G in section 5 of [12].

We begin with the Deligne-Mostow group F”, where u = (g, PR g) (see Theo-
rem 11.4 of [4] for the definition of the group I,). The group I',, is an arithmetic subgroup of
SU (2, 1) with cusps (as stated in line 7 of the table on page 86 of [4]). It is known (see page
227 of [12]) that there is a finite index subgroup I C T, for which there exists a surjective

homomorphism
f:r >z

where X is a hyperbolic surface group, i.e. the fundamental group of a compact Riemann
surface of genus at least 2. The next theorem shows that whenever such a homomorphism f
exists, the hypothesis of Theorem 2 is true.

Theorem 3 Let T" be an arithmetic subgroup of SU (d, 1) with cusps. Assume that there
exists a surjective homomorphism I' - Z, where T is a hyperbolic surface group. Then
there exists an arithmetic subgroup I"' C T, such that H!1 Xp,C) #0.

In the rest of this section, we shall prove Theorem 3 in a series of lemmata. We shall
assume from now on that I” is an arithmetic subgroup of SU (d, 1) with cusps, and that we
have a surjective homomorphism f : I" — X, where X is a hyperbolic surface group. Replac-
ing I" and X by finite index subgroups if necessary, we shall assume that I is torsion-free.

For a technical reason (in the proof of Lemma 16 below) it will be more convenient in this
section to work with cohomology with coefficients in R.

Recall that the cusps of I" are the elements [v] € P4(k) such that (v,v) = 0, where (—, —)
is the Hermitian form of signature (d, 1). In what follows, we shall abuse notation slightly
by writing v for a cusp, rather than [v]. Let v be a cusp of I', and let I, be the stabilizer of
vin I'. Since T is torsion-free, the subgroup I', is contained in the Heisenberg group N,,
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and is a cocompact lattice in N,. In particular, the restriction map gives an isomorphism
H! (N,,R)=H'(T,,R).
Given any subgroup X' of finite index in X, there is a linear map

Ry, : H'(Z',R) - H. (N,,R), defined as the following composition:
Rest

Ry, H‘(Z’,R)LHI(F’,R)—WKFC JR)=HL (N, R).

cts

Where IV =f~1(¥). If £/ C3X is a subgroup of finite index, then we have
Ry, = Ryy 0 Rest, where Rest : H'(X',R) -» H'(Z",R) is the restriction map, so we
actually have a map

cts

R, : limH'(Y,R) = H' _(N,,R),

where the direct limit is taken over all subgroups X’ of finite index in Z. Since the restric-
tion maps H'(Z',R) - H'(Z", R) are injective, the direct limit above may be regarded as a
union of an increasing sequence of finite dimensional vector spaces.

We shall call v an essential cusp if the map R, is non-zero. This is equivalent to say-
ing that there exists a subgroup X’ of finite index in X, such that the map Ry, , is non-
zero. Note that if Ry, , is non-zero then Ry, , is non-zero for each subgroup X” C X',

Lemma 12 Let X' be a normal subgroup of finite index in Z. If Ry, , is non-zero, then for all
g € I' the map Ry, ,, is non-zero.

Proof Assume that Ry, , is non-zero. Choose an element ¢ € H I(Z/,C) such that
Ry, ,(¢) # 0. In other words, ¢ : £’ — C is a homomorphism and the composition

reriyic

is non-zero. Choose an element n € I/ whose image in C is non-zero.
Define w € H'(Z',C) by w(o) = ¢(f(g)"'of(g)). The element n’ = gng~!is in F;V, and
we have

w(f(n')) = ¢(f(n)) # 0.
Therefore RZ,,gv(u/) #0. O

Lemma 13 Let Y/ be a subgroup of finite index in X and let T be the pre-image of ' inT.
For all g € T and all cusps v we have ker(Ry, ,,) = ker(Ry, ).

Proof Let ¢ € ker(Ry, ). This means that ¢ : ¥ — Cis a homomorphism and ¢(f(n)) = 0
foralln eI . Ifn’ € F;v then we have n’ = gng™' for some n € I'"/. This implies

(") = $(f(8)) + P(f(m) — P(f(g)) = 0.

Hence ¢ € ker Ry, ,,. The converse is proved in the same way, replacing g by gL a

Lemma 14 Ifv and w are cusps and w = gv for some g € I then v is essential if and only if
w is essential.

Proof This follows immediately from Lemma 12. a
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Lemma 15 There exists a normal subgroup X of finite index in X, such that for each essen-
tial cusp v, the map Ry, is non-zero.

Proof Let v,,...,v, be a set of representatives for the I'-orbits of the essential cusps. For
each i, we may choose a normal subgroup %; of X, such that Ry , is non-zero. We shall
prove the lemma with X, = X, N --- N Z,. Suppose w is any essential cusp. By Lemma 14
we have w = gv; for some g € I'. By Lemma 12 the map Ry ,, is non-zero. Since %, € Z;, it
follows that Ry ,, is non-zero. O

Lemma 16 Let X be chosen as in Lemma 15 and let I'y be the pre-image of X, in I'. There
exists a surjective homomorphism p . Xy — Z, such that for every essential cusp v, the
composition pof : I'y — Z is non-zero on T .

Proof Note that pof is non-zero on I'y, if and only if Ry, ,(p) # 0. We must therefore show

that there is an element of H'(Z,, Z) which is not in the kernel of Ry, , for any essential
cusp v.

Let v,...,v, be a set of representatives for the I'j-orbits of essential cusps. We have
chosen X, so that each of the maps Ry, , is non-zero. Hence ker Ry , is a proper subspace
of H 1(20, R). In particular, the union of the kernels of the Rzo,v,- is not the whole vector
space H'(Z,,R), and there is an open cone in H!(Z,, R) which does not intersect any of
these kernels. Choose a non-zero element p € H'(Z,, Z) in this open cone, so p & ker Ry, .,
for all i. It follows from Lemma 13 that p & ker Ry, for all essential cusps v. Dividing p by
a constant if necessary, we may assume that p : X, — Z is surjective. a

Now let %, be chosen as in Lemma 15 and let p : X, — Z be a homomorphism chosen
as in Lemma 16. We define a sequence of arithmetic groups I',, as follows:

r, =), where £, = {6 €% : p(6) =0 mod n}.

Lemma 17 The number of T',-orbits of essential cusps is bounded independently of n.

Proof Choose any essential cusp v, and let S, be the set of I' -orbits of cusps which are in
the same I'j-orbit as v. It is sufficient to show that the cardinality of each S, is bounded
independently of n. By the orbit-stabilizer theorem there is a bijection between S, and the
double coset set:

Sn = Iﬂn\r()/r(),v'

Using the homomorphism pof, we may identify I',\I', with Z/nZ. Therefore there is a
bijection between S, and the group Z/(nZ + p(f(['y,)). In particular we have

IS,.1 < 1Z/p(f T, ).

The homomorphism p is chosen so that p(f(I'y,)) # 0, so we have a bound on the cardinal-
ity of S, which does not depend on n. a

Lemma 18 The rank of the composition Hl(En, IR)L»HI(F,,, R) —» Hl(dXFn, R) is bounded
independently of n.
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Proof There is a decomposition

H'(0X; .R) = PH'T,,.R).

where v ranges over the I',-orbits of cusps. However, if v is not an essential cusp, then the
map H'(Z,,C) - H'(T, . C) is zero. Therefore, the image of H l(z)Xr”, C) is contained in
the direct sum of the spaces H 1(l“,w, C), where v ranges over the I',-orbits of the essential
cusps. The result now follows from Lemma 17. a

Lemma 19 For n sufficiently large, the inner cohomology H!1 Xr ,R) is non-zero.

Proof Since ¥, is a hyperbolic surface group, the dimension of H!(Z,,, R) tends to infinity
as n — oo. In view of Lemma 18, for large enough n, the map H!(Z,,R) — Hl(dXF”, R)is

not injective. Choose a non-zero element ¢ € ker(H'(Z,,R) - H' (()Xrn, R)). Then f*(¢)
is a non-zero element of H!1 T,,R). O

Lemma 19 concludes the proof of Theorem 3. By the discussion above, this shows that
the preimage of I 2 2 5 4 1) in each connected cover of SU (2, 1) is residually finite.
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