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Abstract
Let Γ be an arithmetic subgroup of SU (d, 1) with cusps, and let XΓ be the associated locally 
symmetric space. In this paper we investigate the pre-image of Γ in the covering groups of 
SU (d, 1) . Let H∙

!
(XΓ,ℂ) be the inner cohomology, i.e. the image in H∙(XΓ,ℂ) of the com-

pactly supported cohomology. We prove that if the first inner cohomology group H1

!
(XΓ,ℂ) 

is non-zero then the pre-image of Γ in each connected cover of SU (d, 1) is residually finite. 
At the end of the paper we give an example of an arithmetic subgroup Γ satisfying the cri-
terion H1

!
(XΓ,ℂ) ≠ 0.
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1  Introduction

Let Γ be an arithmetic subgroup of SU (d, 1) for some d ≥ 2 . The universal cover ̃SU (d, 1) 
of SU (d, 1) is an infinite cyclic cover, so that we have a central extension

Furthermore, for every positive integer n, there is a unique connected n-fold cover of 
SU (d, 1) , which is isomorphic to ̃SU (d, 1)∕nℤ . Let Γ̃(n) be the pre-image of Γ in the con-
nected n-fold cover, and let Γ̃ be the pre-image of Γ in the universal cover. In this paper, we 
shall investigate whether the groups Γ̃ and Γ̃(n) are residually finite. There are two motiva-
tions for studying this question. 

1.	 It is a famous open question whether every word-hyperbolic group is residually finite. 
If all such groups are indeed residually finite, then every Γ̃(n) must be residually finite. 
This would imply that Γ̃ is also residually finite.

1 → ℤ → ̃SU (d, 1) → SU (d, 1) → 1.
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2.	 If Γ̃(n) is residually finite, then for every sufficiently large integer m, there exist modular 
forms on SU (d, 1) of weight m

n
 whose level is a subgroup of finite index in Γ . The exist-

ence of such modular forms is discussed in Proposition 2.1 of [9], and some examples 
of the forms (of weight 1

3
 ) have recently been described in section 5.3 of [5].

The question of whether Γ̃ and Γ̃(n) are residually finite has recently been studied in [9, 13] 
[14] and [5]. In both [9], and [14], it is is shown (independently) that for a certain class of 
cocompact arithmetic subgroups Γ , the groups Γ̃ and Γ̃(n) are residually finite. In the current 
paper, we give some evidence that a similar result might be true when Γ has cusps.

To put our result in context, we first recall a theorem from [9] and [14]. Let k be a CM 
field of degree [k ∶ ℚ] = 2e . Choose a (d + 1) × (d + 1) Hermitian matrix J with entries in 
k, such that

•	 The matrix J has signature is (d, 1) at one of the complex places of k;
•	 For each of the other e − 1 complex places of k, the matrix J is either positive definite or 

negative definite.

Given such a matrix J, we define an algebraic group � over ℚ by

for any commutative ℚ-algebra A. We shall regard 𝔾(ℚ) as a subgroup of 
𝔾(ℝ) × 𝔾(𝔸f ) , where �f  is the ring of finite adèles of ℚ . We have an isomorphism 
𝔾(ℝ) ≅ SU (d, 1) × SU (d + 1)e−1 . Given any compact open subgroup Kf ⊂ �(�f ) , we let 
Γ(Kf ) be the group of elements of 𝔾(ℚ) , which project into Kf  . The projection of Γ(Kf ) in 
SU (d, 1) is called a congruence subgroup of  SU (d, 1) of the first kind. Any subgroup of 
SU (d, 1) which is commensurable with Γ(Kf ) is called an arithmetic subgroup of the first 
kind.

Theorem 1  (Theorem 1 of [9], Theorem 1.1 in [14]) Let Γ be an arithmetic subgroup of 
SU (d, 1) of the first kind, constructed using a CM field k with [k ∶ ℚ] > 2 . Then the groups 
Γ̃ and Γ̃(n) are residually finite.

It is not known whether the theorem extends to the case [k ∶ ℚ] = 2 , and this is the 
question which we investigate in this paper. The case [k ∶ ℚ] = 2 is geometrically different 
from the case e ≥ 2 , since the groups Γ are cocompact for [k ∶ ℚ] > 2 but have cusps in the 
case [k ∶ ℚ] = 2.

To describe our result, let XΓ be the locally symmetric space corresponding to Γ . We 
shall write H1

!
(XΓ,ℂ) for the image in H1(XΓ,ℂ) of the cohomology of compact support 

H1
compact

(XΓ,ℂ) . We prove the following result:

Theorem 2  Let Γ be an arithmetic subgroup of SU (d, 1) with cusps (i.e. constructed from a 
complex quadratic field k). Assume that there exists an arithmetic subgroup Γ� commensu-
rable with Γ such that H1

!
(XΓ� ,ℂ) ≠ 0 . Then the groups Γ̃ and Γ̃(n) are all residually finite.

We’ll briefly discuss the hypothesis that H1
!
(XΓ� ,ℂ) ≠ 0 . The cuspidal cohomology is 

contained in the inner cohomology (see [8]), so if H1(XΓ� ,ℂ) contains any non-zero cusp 
forms then the hypothesis of Theorem 2 holds. Furthermore, it is known (see for example 

𝔾(A) = {g ∈ SL d+1(A⊗
ℚ
k) ∶ ḡtJg = J},
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[11]) that there exists a congruence subgroup Γ� , such that H1(XΓ� ,ℂ) ≠ 0 . However, the 
hypothesis of Theorem 2 is that H1

!
(XΓ� ,ℂ) ≠ 0 and this is rather stronger. We shall give 

an example of a group satisfying this hypothesis at the end of the paper; the author is 
extremely grateful to Matthew Stover for suggesting this example.

Here are some equivalent formulations of the hypothesis:

Proposition 1  Let Γ be a neat arithmetic subgroup of SU (d, 1) of the first kind with cusps. 
Let � ∈ H2(XΓ,ℂ) be the cohomology class represented by the invariant Kähler form on 
the symmetric space attached to SU (d, 1) . Then the following are equivalent: 

1.	 H1
!
(XΓ,ℂ) ≠ 0;

2.	 H2d−1
!

(XΓ,ℂ) ≠ 0;
3.	 There exists � ∈ H1(XΓ,ℂ) such that � ∪ �d−1 ≠ 0 in H2d−1(XΓ,ℂ).

(Here we are writing ∪ for the cup product operation.)
The equivalence of 1 and 2 is by duality (see (3)). The equivalence of 2 and 3 follows 

immediately from Lemma 10 below. In this context, it is reassuring to note that �d−1 repre-
sents a non-zero cohomology class in H2d−2(XΓ,ℂ) (see Lemma 6 below).

The paper is organized as follows. In section  2, we recall a purely group theoretical 
lemma, which gives a method for showing that certain extension groups are residually 
finite. In section 3, we recall some standard facts about the the locally symmetric spaces 
XΓ and their compactifications. In section 4 we prove Theorem 2. In section 5 we give an 
example of a group Γ satisfying H1

!
(Γ,ℂ) ≠ 0 , allowing us to apply Theorem 2 in this case.

2 � A group theoretical lemma

The method of proof of Theorem 2 is a modification of the argument in [9]. In particular, 
we shall use the following lemma, which is proved in both [9, 13] and [14]. For complete-
ness, we include a short proof.

Lemma 1  Let G be a finitely generated, residually finite group, and suppose that we have a 
central extension

Let �
ℤ
∈ H2(G,ℤ) be the cohomology class of the extension, and let �

ℂ
 be the image of �

ℤ
 

in H2(G,ℂ) . Assume that there exist elements �i,�i ∈ H1(G,ℂ) such that

Then G̃ is residually finite. Furthermore, the quotient group G̃∕nℤ is residually finite for 
every positive integer n.

Proof  Let G ab = G∕[G,G] . Elements of H1(G,ℂ) may be regarded as group homomor-
phisms G → ℂ . Every such homomorphism is the inflation of a homomorphism G ab

→ ℂ . 
Hence �

ℂ
 is also the inflation of a cohomology class on G ab , and we shall write G̃ ab for the 

1 → ℤ → G̃ → G → 1.

�
ℂ
= �1 ∪ �1 +⋯ + �r ∪ �r.
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corresponding central extension. It follows that we have a commutative diagram with exact 
rows:

We shall write Δ for the image of G̃ in G̃ ab . The group G̃ ab is nilpotent. Hence Δ is a 
finitely generated nilpotent group, and is therefore residually finite. The group G̃ injects 
into Δ × G . Since Δ and G are both residually finite, it follows that G̃ is residually finite. 
Similarly, since Δ∕nℤ is residually finite, it follows that G̃∕nℤ is residually finite. 	�  ◻

Again let Γ be an arithmetic subgroup of SU (d, 1) of the first kind with cusps. Lemma 
1 will be applied in the case that G = Γ , G̃ is its pre-image in ̃SU (d, 1) and G̃∕nℤ = Γ̃(n) . 
We note that one may construct a different central extension of Γ for which Lemma 1 can-
not be applied. For example, take d = 2 and let � ∈ H2(Γ,ℤ) be a cohomology class whose 
restriction to the Borel–Serre boundary of XΓ is non-torsion (for example an Eisenstein 
cohomology class, see [7]). Such a class � cannot be expressed as a sum of cup products 
of elements of H1 , because all such cup products restrict to torsion on the Borel–Serre 
boundary.

3 � Background material

We shall now recall the construction of arithmetic subgroups of SU (d, 1) with cusps. Let 
k be a complex quadratic extension of ℚ ; we shall identify k with a subfield of ℂ , and we 
shall write z ↦ z̄ for complex conjugation on ℂ or on k. Let J0 be a (d − 1) × (d − 1) posi-
tive definite Hermitian matrix with entries in k and let

The matrix J defines a Hermitian form on ℂd+1 of signature (d, 1) by

where v̄t denotes the conjugate transpose of a column matrix v.
We define an algebraic group � over ℚ to be the group of isometries in SL d+1 of the 

Hermitian form. More precisely, for a ℚ-algebra A, we define

Since the matrix J has signature (d, 1), the group 𝔾(ℝ) may be identified with SU (d, 1).
Let �f  be the ring of finite adèles of ℚ . The group �(�f ) is totally disconnected, and 

contains the projection of 𝔾(ℚ) as a dense subgroup (by Kneser’s Strong Approximation 
Theorem). For a compact open subgroup Kf ⊂ �(�f ) , the intersection Γ(Kf ) = 𝔾(ℚ) ∩ Kf  

1 Z G̃ G 1

1 C Gab Gab 1

J =

⎛⎜⎜⎝

0 0 1

0 J0 0

1 0 0

⎞⎟⎟⎠
.

(v,w) = v̄tJw,

𝔾(A) = {g ∈ SL d+1(A⊗
ℚ
k) ∶ ḡtJg = J}.
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is called a congruence subgroup of 𝔾(ℚ) . Any subgroup of 𝔾(ℚ) which is commensurable 
with a congruence subgroup is called an arithmetic subgroup. It is known that there exist 
arithmetic subgroups of 𝔾(ℚ) , which are not congruence subgroups.

The group �(�f ) may be identified with the projective limit of the sets 𝔾(ℚ)∕Γ(Kf ) , 
where Γ(Kf ) ranges over the congruence subgroups of 𝔾(ℚ) . We also define the arithme-
tic completion 𝔾(ℚ) to be the projective limit of the sets 𝔾(ℚ)∕Γ , where Γ ranges over all 
the arithmetic subgroups of 𝔾(ℚ) . Since the filtration by arithmetic subgroups is invariant 
under conjugation, the arithmetic completion is a group, and we have a natural surjective 
homomorphism 𝔾(ℚ) → 𝔾(𝔸f ) . The kernel of the homomorphism is an infinite profinite 
group, and is called the congruence kernel C

�
 of �.

An arithmetic group Γ is said to be neat if for every g ∈ Γ , the eigenvalues of g generate 
a torsion-free subgroup of ℂ× . For every congruence subgroup Γ , there is a neat congru-
ence subgroup Γ� of finite index in Γ . Every subgroup of a neat group is neat, and every 
neat group is torsion-free.

3.1 � Quotient spaces and compactifications

Let

where we are writing [v] for the point in projective space represented by a non-zero vector 
v. The complex manifold H has an obvious action of SU (d, 1) , and is a model of the sym-
metric space attached to SU (d, 1) . For each arithmetic subgroup Γ in 𝔾(ℚ) , we shall write 
X = XΓ for the quotient space Γ�H . If Γ is neat then XΓ is a smooth, non-compact complex 
manifold.

By a cusp, we shall mean a point [v] of ℙd(k) , such that (v, v) = 0 . For each such [v], 
there is a parabolic subgroup Pv of SU (d, 1) , defined by

If Γ is an arithmetic subgroup of 𝔾(ℚ) , then Γ permutes the cusps with finitely many orbits.
Assume that [v] is a cusp, with corresponding parabolic subgroup Pv . We may choose a 

Langlands decomposition

where Av is the connected component of a split torus in Pv which is isomorphic to ℝ>0 ; 
the group Mv is isomorphic to U (d − 1) , and Nv is the unipotent radical of Pv . There is a 
homomorphism 𝜙v ∶ Pv → ℝ

>0 defined by �v(p) = |�| , where � ∈ ℂ
× satisfies pv = � ⋅ v . 

The subgroups Mv and Nv are in the kernel of �v , and the restriction of �v to Av is an 
isomorphism.

By the Iwasawa decomposition, the group Av ⋉ Nv acts simply transitively on the sym-
metric space H , so by choosing a base point, we may identify H with this group.

Assume from now on that Γ is a neat arithmetic subgroup of 𝔾(ℚ) . For such groups Γ , 
the intersection Γv = Γ ∩ Pv is contained in Nv , and is a cocompact subgroup of Nv . The 
subgroup Γv acts on Av ⋉ Nv by translation on Nv , preserving the Av-coordinate. It therefore 
acts also on the following subset

H =
{
[v] ∈ ℙ

d(ℂ) ∶ (v, v) < 0
}
,

Pv = {g ∈ SU (d, 1) ∶ [g ⋅ v] = [v]}.

Pv = MvAvNv,
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where � is a positive real number. We may choose � sufficiently small so that the quotient 
space Uv = Γv�(A

<𝜖
v
Nv) injects into XΓ . We shall call such a subset Uv of XΓ a neighbour-

hood of the cusp [v]. By reduction theory, there are finitely many non-intersecting cusp 
neighbourhoods (one for each Γ-orbit of cusps), such that the complement of the cusp 
neighbourhoods is a compact subset of XΓ.

As an example, choose the cusp v =

⎛⎜⎜⎜⎝

1

0

⋮

0

⎞⎟⎟⎟⎠
 . In this case Nv is a Heisenberg group, consisting 

of all matrices of the form

where ||z||2 = z̄tJ0z . We have a short exact sequence of Lie groups:

The image of Γv in ℂd−1 is a full lattice Lv , and the quotient ℂd−1∕Lv is an abelian variety 
(indeed Lv is commensurable with Od−1

k
 ). The kernel of the map Γv → Lv is isomorphic to 

ℤ . Hence the topological space Γv�Nv is an ℝ∕ℤ bundle over the abelian variety ℂd−1∕Lv . 
The cusp neighbourhood Uv is the product of this space with the open interval (0, �).

If we choose any other cusp v, then the groups Pv and Nv are conjuagates in SU (d, 1) of 
the subgroups described above. Hence the cusp neighbourhood has a similar description as 
a product of an open interval with a circle bundle over an abelian variety.

We shall consider two compactifications of X. The first is the Borel–Serre compactifica-
tion in which we embed each cusp neighbourhood Uv into a larger topological space U BS

v
 as 

follows:

The embedding Uv → U BS
v

 is evidently a homotopy equivalence. Therefore the resulting 
compactification X BS has the same cohomology groups as X.

We shall write �X BS for the complement of X in its Borel–Serre compactification. The 
boundary of the Borel–Serre compactification is a disjoint union of manifolds homeomor-
phic to

Each of the boundary components �X BS
v

 is a circle bundle over an abelian variety.

A<𝜖
v
Nv = {an ∶ a ∈ Av, n ∈ Nv,𝜙v(a) < 𝜖},

n(z, x) =

⎛
⎜⎜⎝

1 − z̄tJ0 −
��z��2
2

+ ix

0 Id−1 z

0 0 1

⎞
⎟⎟⎠
, z ∈ ℂ

d−1, x ∈ ℝ,

1 → ℝ → Nv → ℂ
d−1

→ 1

x ↦ n(0, x)

n(z, x) ↦ z

Uv Γv\Nv × (0 )

UBS
v Γv\Nv × [0 ).

⊂

�X BS

v
= Γv�Nv.
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The second compactification which we shall consider is the smooth compactification X̃ 
constructed in [1]. This may be obtained from the Borel–Serre compactification by quo-
tienting each boundary component Γv�Nv by the centre of Nv , i.e. by the subgroup of matri-
ces of the form n(0, x). The resulting boundary component is the abelian variety

The compactification X̃ is a smooth complex manifold but is not homotopic to X. There is 
an obvious projection map X BS

→ X̃.
We shall write 𝜕X̃ for the complement of X in its smooth compactification. This 

boundary set 𝜕X̃ is the disjoint union of the abelian varieties 𝜕X̃v.

3.2 � Cohomology groups

In this paper we shall use various cohomology groups. For convenience, we list the 
notation and some standard properties for each of these. In almost all cases we shall 
consider cohomology with coefficients in ℂ . In such cases, we shall not always write in 
the coefficients.

•	 The continuous cohomology groups of the group SU (d, 1) will be written 
H∙

cts
( SU (d, 1),−) . We may identify Hr

cts
( SU (d, 1),ℂ) with the vector space of dif-

ferential r-forms on H , which are invariant under the action of SU (d, 1) (see [2]). 
For example, there is an invariant Kähler form � on H . The form � generates 
H2

cts
( SU (d, 1),ℂ) . More generally we have 

•	 The measurable cohomology groups (defined on page 42 of [10]) of a connected Lie 
group G will be written H∙

meas
(G,−) . For a connected Lie group G with fundamen-

tal group �1(G) , there is a canonical isomorphism H2
meas

(G,ℤ) ≅ Hom (�1(G),ℤ) . 
In particular, the group SU (d, 1) has fundamental group ℤ , so we have 
H2

meas
( SU (d, 1),ℤ) ≅ ℤ . We shall choose a generator �

ℤ
 for this group, i.e. 

 The group extension of SU (d, 1) corresponding to the cocycle �
ℤ
 is the universal cover 

of SU (d, 1) . By [15] there is an isomorphism 

 In particular, the image of �
ℤ
 in H2

cts
( SU (d, 1),ℂ) is a non-zero multiple of �.

•	 For an arithmetic subgroup Γ , the Eilenberg–MacLane cohomology groups will be 
written H∙(Γ,−) . There are restriction maps Hr

cts
( SU (d, 1),ℂ) → Hr(Γ,ℂ) . Some of 

these maps are injective and others are zero. (In fact, we’ll see in Lemma 6 that the 
map is injective if r < 2d and zero if r = 2d).

•	 If Γ is a neat arithmetic subgroup of SU (d, 1) , then the quotient space X = Γ�H is a 
complex d-dimensional manifold. We shall write H∙(X) for the singular or de Rham 
cohomology groups of this manifold with complex coefficients.

𝜕X̃v = ℂ
d−1∕Lv.

(1)Hr
cts
( SU (1, d),ℂ) =

{
ℂ ⋅ �r∕2 if r = 0, 2, 4,… , 2d

0 otherwise.

H2
meas

( SU (d, 1),ℤ) = ℤ ⋅ �
ℤ
.

(2)H∙

cts
(G,ℂ) ≅ H∙

meas
(G,ℤ)⊗ ℂ.
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	   Apart from the manifold X, we shall also consider two compactifications X BS and X̃ . 
Recall that there are canonical isomorphisms 

 The composition 

 takes an invariant differential form on H to its de Rham cohomology class on X.
•	 We shall write c1(X) for the first Chern class of the canonical sheaf on X, regarded as 

an element of H2(X) . It is known that c1(X) is a multiple of the cohomology class � 
by a positive real number.

•	 We shall write H∙
compact

(X) for the compactly supported cohomology of X with com-
plex coefficients. The space H2d

compact
(X) is one-dimensional, and the cup-product 

map 

 is a perfect pairing, allowing us to identify Hr(X) with the dual space of H2d−r
compact

(X).
•	 The relative cohomology groups H∙(X BS , �X BS ) and H∙(X̃, 𝜕X̃) are both canonically 

isomorphic to the compactly supported cohomology. We therefore have a commutative 
diagram whose rows are long exact sequences: 

 We shall write H∙

!
(X) for the kernel of the restriction map H∙(X) → H∙(�X BS ) , or 

equivalently the image of the map H∙
compact

(X) → H∙(X) . The vector spaces H∙

!
(X) are 

known as the inner cohomology groups.
•	 For r = 0,… , 2d there is a perfect pairing (see for example Proposition 6.3.6 of [8]): 

 defined as follows. Given a ∈ Hr
!
(X) and b ∈ H2d−r

!
(X) , we may choose a pre-image 

a compact ∈ Hr
compact

(X) of a. The pairing ⟨a, b⟩ is defined to be the cup product 
a compact ∪ b . This cup product does not depend on the choice of a compact.

•	 We shall use the notation 

 where the limits are taken over all arithmetic subgroups Γ� of Γ . These direct limits 
may be regarded as unions, since all of the connecting homomorphisms are injective. 
There is an obvious action of 𝔾(ℚ) on the vector spaces H∙

stable
 and H∙

!, stable
 , and this 

action extends to a smooth action of the totally disconnected group 𝔾(ℚ).

H∙(X BS ) ≅ H∙(X) ≅ H∙(Γ,ℂ).

H∙

cts
( SU (d, 1),ℂ)

Rest

−−−→H∙(Γ,ℂ) ≅ H∙(X),

∪ ∶ Hr(X)⊗ H2d−r
compact

(X) → H2d
compact

(X) ≅ ℂ

· · · H•
compact(X) H•(X̃) H•(∂X̃) H•+1

compact(X) · · ·

· · · H•
compact(X) H•(X) H•(∂XBS) H•+1

compact(X) · · ·

(3)⟨−,−⟩ ∶ Hr
!
(X)⊗ H2d−r

!
(X) → H2d

compact
(X) ≅ ℂ,

H∙

stable
= lim

⟶

Γ�

H∙(XΓ� ), H∙

!, stable
= lim

⟶

Γ�

H∙

!
(XΓ� ), H∙

compact , stable
= lim

⟶

Γ�

H∙

compact
(XΓ� ),
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•	 Since cup products are compatible with restriction maps, the pairing (3) extends to a 
perfect pairing 

 This pairing is 𝔾(ℚ)-invariant, in the sense that 

•	 There is also an invariant positive definite inner product on Hr
!, stable

 defined by 

 (see the bottom of page 71 of [8]). In particular, by Weyl’s unitary trick the representa-
tion Hr

!, stable
 of 𝔾(ℚ) is semi-simple.

•	 We shall use the notation 

 where the limit is taken over all congruence subgroups Γ(Kf ) . There is a smooth action 
of �(�f ) on the vector space H∙

!,Cong.
 , and we may identify H∙

!,Cong.
 with the subspace of 

invariants (H∙

!, stable
)C� , where C

�
 is the congruence kernel of �.

•	 The vector space H∙

!,Cong.
 is a semi-simple representation of �(�f ) . More precisely 

there is a countable direct sum decomposition (this is an easy consequence of the 
theorem on page 226 of [8]): 

 where Πr
!
 is a certain set of automorphic representations of �(�) . Each of the automor-

phic representations � decomposes as 𝜋∞ ⊗ 𝜋f  , where �∞ is a simple representation of 
SU (d, 1) and �f  is a smooth, simple representation of �(�f ).

•	 We shall be particularly interested in the subspace (H∙

!, stable
)𝔾(ℚ) of 𝔾(ℚ)-invariant 

cohomology classes. Since (H∙

!, stable
)C� = H∙

!,Cong.
 , it follows that 

 The right hand side of (5) may be evaluated using (4). The trivial representation ℂ 
occurs with multiplicity at most 1 in each set Πr

!
 . For all non-trivial representations � in 

Πr
!
 , the vector space �f  is infinite dimensional. This implies 

 By (6) and (1), if 
(
Hr

!, stable

)𝔾(ℚ)

 is non-zero, then r is even and this space is spanned by 
the cohomology class of �r∕2 on XΓ (or more accurately, by the image of this cohomol-
ogy class in the direct limit Hr

stable
).

Hr
!, stable

⊗ H2d−r
!, stable

→ H2d
compact , stable

≅ ℂ.

⟨ga, gb⟩ = ⟨a, b⟩ for all g ∈ 𝔾(ℚ).

⟨⟨a, b⟩⟩ = ⟨a, ∗ b⟩,

H∙

!,Cong.
= lim

⟶

Kf

H∙

!
(XΓ(Kf )

),

(4)Hr
!,Cong.

=
⨁
𝜋∈Πr

!

Hr
cts
( SU (d, 1),𝜋∞)⊗ 𝜋f ,

(5)(H∙

!, stable
)𝔾(ℚ) = (H∙

!,Cong.
)𝔾(𝔸f ).

(6)
(
Hr

!, stable

)𝔾(ℚ)

≅

{
Hr

cts
( SU (d, 1),ℂ) if the trivial representation is in Πr

!
,

0 otherwise.
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Lemma 2  Let Γ be an arithmetic subgroup of 𝔾(ℚ) . The invariant Kähler form � repre-
sents a non-zero cohomology class on XΓ . Consequently, the restriction of �

ℤ
 to Γ is a non-

zero element of H2(Γ,ℤ).

(Here we are using the assumption that d ≥ 2 ; the statement would be false for 
SU (1, 1).)

Proof  Since � is a multiple of the image of �
ℤ
 , it is sufficient to prove the statement for � . 

It is also sufficient to prove the result with Γ sufficiently small. We may therefore assume, 
without loss of generality, that Γ is neat. Hence X is a smooth complex manifold.

Suppose for a moment that there exists a compact Riemann surface Y ⊂ X . The Kähler 
form � restricts to a Kähler form on Y, and by positivity of Kähler forms (see for example 
[6]) we have

Therefore � represents a non-zero cohomology class on Y, and hence also on X.
It is therefore sufficient to find a compact Riemann surface Y contained in X. The fol-

lowing construction of such a Y is taken from the final paragraph on page 590 of [11]. We 
may choose a 2-dimensional subspace S ⊂ kd+1 , such that the Hermitian form has signature 
(1,  1) on S and is anisotropic. Let G be the group of isometries of S⊗

ℚ
ℝ . Our choice 

of S implies that G is isomorphic to SU (1, 1) and Γ ∩ G is cocompact in G. Let Y be the 
locally symmetric space corresponding to the subgroup Γ ∩ G of G. The inclusion of G in 
SU (d, 1) gives us an inclusion of Y in X as a compact Riemann surface. 	�  ◻

Lemma 3  Let Γ be a neat arithmetic subgroup of 𝔾(ℚ) . For any cusp [v], the restrictions of 
�
ℤ
 and � to Γv are coboundaries.

Proof  As � is a multiple of the image of �
ℤ
 in H2

cts
( SU (d, 1),ℂ) , it is sufficient to 

prove the result for �
ℤ
 . Since Γ is neat, we have Γv ⊂ Nv . Therefore the restriction map 

H2
meas

( SU (d, 1),ℤ) → H2(Γv,ℤ) factors through the group H2
meas

(Nv,ℤ) . Since the Lie 
group Nv is simply connected, we have H2

meas
(Nv,ℤ) = 0 . Therefore the restriction of �

ℤ
 to 

Γv is zero. 	�  ◻

Lemma 4  Let Γ be a neat arithmetic subgroup of 𝔾(ℚ) and let X = XΓ . The image of � in 
H2(X) is in the subspace H2

!
(X) of inner cohomology classes.

Proof  It is sufficient to show that the class � vanishes on each Borel-Serre boundary com-
ponent �X BS

v
 . This follows from Lemma 3, in view of the following commutative diagram.

	�  ◻

∫
[Y]

𝜔 > 0.

H2(XBS) H2(∂XBS
v )

H2(Γ,C) H2(Γv,C)

∼= ∼=
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Lemma 5  The vector space (H2
!, stable

)𝔾(ℚ) is one-dimensional, and is spanned by the coho-
mology class of the invariant Kähler form � on XΓ.

Proof  By (6) and (1), the space (H2
!, stable )

�̂(ℚ) is at most one-dimensional, so it is sufficient to 
show that � is a non-zero element in this space. Lemma 4 shows that � is in the subspace 
of inner cohomology classes, and Lemma 2 implies that � represents a non-zero cohomol-
ogy class on XΓ for every arithmetic subgroup Γ . 	�  ◻

Lemma 6  Let Γ be an arithmetic subgroup of 𝔾(ℚ) . For r = 1,… , d − 1 , the 2r-form �r 
represents a non-zero cohomology class on XΓ , which spans (H2r

!, stable
)𝔾(ℚ).

Proof  By Lemma 5, the representation H2
!, stable

 of 𝔾(ℚ) has a trivial 1-dimensional subrep-
resentation spanned by � . Hence by duality, H2d−2

!, stable
 has a trivial 1-dimensional quotient 

representation. By semi-simplicity, it follows that (H2d−2
!, stable

)𝔾(ℚ) is non-zero. By (6) and (1), 

(H2d−2
!, stable

)𝔾(ℚ) is one-dimensional, and is spanned by �d−1 . In particular, �d−1 represents 
a non-zero cohomology class on XΓ . From this, it follows that �r represents a non-zero 
cohomology class on XΓ for 1 ≤ r ≤ d − 1 . The image of �r in H2r

!, stable
 spans a trivial one-

dimensional subrepresentation. Therefore (H2r
!, stable

)𝔾(ℚ) ≠ 0 . By (6) and (1), (H2r
!, stable

)𝔾(ℚ) 
is spanned by �r . 	�  ◻

Proposition 2  Let Γ be a neat arithmetic subgroup of 𝔾(ℚ) and let X = XΓ . Then there 
exists an element 𝜔̃ ∈ H2(X̃) , such that

•	 the restriction of 𝜔̃ to X is the invariant Kähler form �.
•	 𝜔̃ is in the ample cone in H1,1(X̃).

Proof  The lemma does not depend on our choice of normalization of � ; we shall assume 
for simplicity that � = c1(X) in H2(X).

Let 𝜔̃ = c1(X̃) + 𝜖 ⋅ [𝜕X̃] , where c1(X̃) is the first Chern class of the canonical sheaf on 
X̃ , and � is a positive real number. Here we are writing [𝜕X̃] for the Poincaré dual of the 
2d − 2-cycle 𝜕X̃ , or equivalently the first Chern class of the line bundle corresponding the 
the divisor 𝜕X̃ . It is shown in Theorem 1.1 of [3], that if � is in the interval ( 1

3
, 1) then 𝜔̃ is 

in the ample cone. By naturality of Chern classes, it follows that the restriction of c1(X̃) to 
X is c1(X) , which we are assuming is equal to � . The restriction of the divisor 𝜕X̃ to X is 0; 
hence the restriction of [𝜕X̃] to X is 0. It follows that the restriction of 𝜔̃ to X is � . 	�  ◻

4 � Proof of Theorem 2

Fix a neat arithmetic subgroup Γ ⊂ 𝔾(ℚ) and let X be the quotient space Γ�H . Recall 
that we are writing X̃ for the smooth compactification of X and 𝜕X̃ for the union of the 
boundary components of X̃ . Each boundary component is an abelian variety. We choose 
a neighbourhood Ũ of 𝜕X̃ , so that 𝜕X̃ is a deformation retract of Ũ . We shall also write U 
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for the intersection Ũ ∩ X . Note that U is homotopic to the Borel–Serre boundary of X. 
The Mayer–Vietoris sequence for the cover X̃ = X ∪ Ũ takes the form:

Let [v] ∈ ℙ
d(k) be a cusp, and let Nv be the unipotent radical in the parabolic subgroup fix-

ing [v]. Recall that we have a central group extension:

We shall write Γv for the intersection of Γ with Nv . We also let Lv be the image of Γv in ℂd−1 
and Zv be the kernel of the map Γv → Lv.

The next three lemmas are well known (for example, see formula 1.2.1 and Satz 
1.2.2(a) of [7]). We include proofs for the sake of completeness.

Lemma 7  The restriction map H1(Γv,ℂ) → H1(Zv,ℂ) is zero.

Proof  We shall regard elements of H1(Γv,ℂ) as group homomorphisms � ∶ Γv → ℂ . We 
must prove that �(g) = 0 for all elements g ∈ Zv . For any such g, there is a positive integer 
n such that gn ∈ [Γv,Γv] . Therefore �(g) = 1

n
�(gn) = 0 . 	�  ◻

Lemma 8  The pullback map H1(𝜕X̃) → H1(𝜕X BS ) is an isomorphism.

Proof  It is sufficient to show that for each cusp v, the pullback H1(𝜕X̃v) → H1(𝜕X BS
v

) is 
an isomorphism. Recall that 𝜕X̃v is an abelian variety ℂd−1∕Lv , and �X BS

v
 is a circle bundle 

over this abelian variety, homeomorphic to Γv�Nv . We shall write Zv for the kernel of the 
homomorphism Γv → Lv . We therefore have a commutative diagram

where the bottom row is the inflation–restriction sequence in group cohomology. The result 
now follows from Lemma 7. 	�  ◻

Lemma 9  The restriction map gives an isomorphism H1(X̃) ≅ H1(X).

Proof  Consider the following section of the Mayer-Vietoris sequence (7):

The map H0(𝜕X̃) → H0(𝜕X BS ) is clearly an isomorphism. By Lemma 8, the pull-back map 
H1(𝜕X̃) → H1(𝜕X BS ) is an isomorphism. Hence H1(X̃) ≅ H1(X) . 	� ◻

Lemma 10  The map H1(X) → H2d−1(X) given by cup product with �d−1 has image 
H2d−1

!
(X).

(7)→ Hn(X̃) → Hn(X)⊕ Hn(𝜕X̃) → Hn(𝜕X BS ) → Hn+1(X̃) → .

1 → ℝ → Nv → ℂ
d−1

→ 1.

H1(∂X̃v) H1(∂XBS
v )

0 H1(Lv,C) H1(Γv,C) H1(Zv,C) ,

∼= ∼=

H0(X)⊕ H0(𝜕X̃) → H0(𝜕X BS ) → H1(X̃) → H1(X)⊕ H1(𝜕X̃) → H1(𝜕X BS ).
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Proof  By Proposition 2, there exists an ample class 𝜔̃ ∈ H2(X̃) , whose restriction to X is 
the class � . We have a commutative diagram:

where the vertical maps are given by cup product with 𝜔̃d−1 and �d−1 respectively. The bot-
tom row is exact, as it is part of the Mayer–Vietoris sequence (7). Note that H2d−1(𝜕X̃) = 0 
because 𝜕X̃ has dimension 2d − 2.

The diagram is commutative because the restriction of 𝜔̃ to X is � . Since 𝜔̃ is ample, the 
Hard Lefschetz Theorem implies that the left hand vertical map is an isomorphism. There-
fore the image of the right hand vertical map is H2d−1

!
(X) . 	�  ◻

Lemma 11  Assume H1
!
(X) ≠ 0 . Then there exist � ∈ H1

!
(X) and � ∈ H1(X) such that 

⟨� ∪ � ,�d−1⟩ ≠ 0.

Proof  Choose a non-zero � ∈ H1
!
(X) . Then there exists an element �∗ ∈ H2d−1

!
(X) , such 

that ⟨�,�∗⟩ ≠ 0 . By Lemma 10, we have �∗ = � ∪ �d−1 for some � ∈ H1(X).
By Lemma 4 we have � ∈ H2

!
(X) , so we may choose a pre-image � compact of � in 

H2
compact

(X) . By definition of the pairing ⟨−,−⟩ in (3), we have

In the third equality above, we have used the fact that � ∪ �d−1
compact

∈ H2d−1
compact

(X) is a pre-
image of the element � ∪ �d−1 ∈ H2d−1

!
(X) . 	�  ◻

Theorem 2  Let Γ be an arithmetic subgroup of SU (d, 1) with cusps (i.e. constructed from 
a complex quadratic field k). Assume that there exists an arithmetic subgroup Γ� commen-
surable with Γ such that H1

!
(XΓ� ) ≠ 0 . Then the groups Γ̃ and Γ̃(n) are all residually finite.

Proof  Consider the subspace V of H2
!, stable

 spanned by cup products � ∪ � with � ∈ H1
stable

 
and � ∈ H1

!, stable
 . We have a linear map

The map Φ is a morphism of 𝔾(ℚ) representations because � is 𝔾(ℚ)-invariant. Using our 
assumption on Γ� , Lemma 11 shows that Φ is surjective. Therefore V has a 1-dimensional 
trivial quotient. Since H2

!, stable
 is semi-simple, V must have a 1-dimensional trivial subrep-

resentation. By Lemma 5, (H2
!, stable

)𝔾(ℚ) is spanned by � . Therefore � ∈ V  . In other words, 
there exist elements �i ∈ H1

stable
 and �i ∈ H1

!, stable
 such that

H1(X̃) H1(X)

H2d−1(X̃) H2d−1(X) H2d−1(∂XBS) ,

∼=

ω̃d−1 ωd−1

⟨� ∪ � ,�d−1⟩ = (� ∪ �) ∪ �d−1
compact

= � ∪ (� ∪ �d−1
compact

)

= ⟨�,� ∪ �d−1⟩
= ⟨�,�∗⟩
≠ 0.

Φ ∶ V → ℂ, Φ(Σ) = ⟨Σ,�d−1⟩.
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Choose an arithmetic subgroup Γ�� of sufficiently high level, so that all of the elements �i 
and �i are images in the direct limit of elements of H1(X��) , where X�� = Γ���H . Then (8) 
holds in H2(X��).

The group extension S̃U (d, 1) of SU (d, 1) is represented by the cocycle 
�
ℤ
∈ H2

meas
( SU (d, 1),ℤ) . We shall write �

ℂ
 for the image of �

ℤ
 in H2

cts
( SU (d, 1),ℂ) . 

Recall that �
ℂ
 is a multiple of � . By (8) the restriction of �

ℂ
 to Γ�� is a sum of cup products 

of elements of H1(Γ��,ℂ) . This means that the restriction of �
ℤ
 to Γ�� satisfies the hypothe-

sis of Lemma 1. By Lemma 1, the groups Γ̃�� and Γ̃��(n) are all residually finite. Since Γ̃ ∩ Γ̃�� 
has finite index in Γ̃ and Γ̃(n) ∩ Γ̃��(n) has finite index in Γ̃(n) , it follows that Γ̃ and Γ̃(n) are 
also residually finite. 	�  ◻

5 � Non‑vanishing of the first inner cohomology

In this section, we give an example of an arithmetic subgroup Γ of SU (2, 1) with cusps, for 
which H1

!
(XΓ,ℂ) ≠ 0 . This demonstrates that the hypothesis of Theorem 2 is satisfied in at 

least one case. The construction which we describe here was suggested to the author by Mat-
thew Stover, and is a modification of his construction of the towers Cj in section 5 of [12].

We begin with the Deligne–Mostow group Γ� , where � = (
2

6
,
2

6
,
3

6
,
4

6
,
1

6
) (see Theo-

rem 11.4 of [4] for the definition of the group Γ� ). The group Γ� is an arithmetic subgroup of 
SU (2, 1) with cusps (as stated in line 7 of the table on page 86 of [4]). It is known (see page 
227 of [12]) that there is a finite index subgroup Γ� ⊆ Γ𝜇 for which there exists a surjective 
homomorphism

where Σ is a hyperbolic surface group, i.e. the fundamental group of a compact Riemann 
surface of genus at least 2. The next theorem shows that whenever such a homomorphism f 
exists, the hypothesis of Theorem 2 is true.

Theorem  3  Let Γ be an arithmetic subgroup of SU (d, 1) with cusps. Assume that there 
exists a surjective homomorphism Γ → Σ , where Σ is a hyperbolic surface group. Then 
there exists an arithmetic subgroup Γ� ⊂ Γ , such that H1

!
(XΓ� ,ℂ) ≠ 0.

In the rest of this section, we shall prove Theorem  3 in a series of lemmata. We shall 
assume from now on that Γ is an arithmetic subgroup of SU (d, 1) with cusps, and that we 
have a surjective homomorphism f ∶ Γ → Σ , where Σ is a hyperbolic surface group. Replac-
ing Γ and Σ by finite index subgroups if necessary, we shall assume that Γ is torsion-free.

For a technical reason (in the proof of Lemma 16 below) it will be more convenient in this 
section to work with cohomology with coefficients in ℝ.

Recall that the cusps of Γ are the elements [v] ∈ ℙ
d(k) such that (v, v) = 0 , where (−,−) 

is the Hermitian form of signature (d, 1). In what follows, we shall abuse notation slightly 
by writing v for a cusp, rather than [v]. Let v be a cusp of Γ , and let Γv be the stabilizer of 
v in Γ . Since Γ is torsion-free, the subgroup Γv is contained in the Heisenberg group Nv , 

(8)� = �1 ∪ �1 +⋯ + �r ∪ �r.

f ∶ Γ�
→ Σ,
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and is a cocompact lattice in Nv . In particular, the restriction map gives an isomorphism 
H1

cts
(Nv,ℝ) ≅ H1(Γv,ℝ).

Given any subgroup Σ� of finite index in Σ , there is a linear map 
RΣ� ,v ∶ H1(Σ�,ℝ) → H1

cts
(Nv,ℝ) , defined as the following composition:

Where Γ� = f −1(Σ�) . If Σ�� ⊆ Σ� is a subgroup of finite index, then we have 
RΣ� ,v = RΣ��,v◦Rest , where Rest ∶ H1(Σ�,ℝ) → H1(Σ��,ℝ) is the restriction map, so we 
actually have a map

where the direct limit is taken over all subgroups Σ� of finite index in Σ . Since the restric-
tion maps H1(Σ�,ℝ) → H1(Σ��,ℝ) are injective, the direct limit above may be regarded as a 
union of an increasing sequence of finite dimensional vector spaces.

We shall call v an essential cusp if the map Rv is non-zero. This is equivalent to say-
ing that there exists a subgroup Σ� of finite index in Σ , such that the map RΣ� ,v is non-
zero. Note that if RΣ� ,v is non-zero then RΣ��,v is non-zero for each subgroup Σ�� ⊆ Σ�.

Lemma 12  Let Σ� be a normal subgroup of finite index in Σ . If RΣ� ,v is non-zero, then for all 
g ∈ Γ the map RΣ� ,gv is non-zero.

Proof  Assume that RΣ� ,v is non-zero. Choose an element � ∈ H1(Σ�,ℂ) such that 
RΣ� ,v(�) ≠ 0 . In other words, � ∶ Σ�

→ ℂ is a homomorphism and the composition

is non-zero. Choose an element n ∈ Γ�
v
 whose image in ℂ is non-zero.

Define � ∈ H1(Σ�,ℂ) by �(�) = �(f (g)−1�f (g)) . The element n� = gng−1 is in Γ�
gv

 , and 
we have

Therefore RΣ� ,gv(�) ≠ 0 . 	�  ◻

Lemma 13  Let Σ� be a subgroup of finite index in Σ and let Γ� be the pre-image of Σ� in Γ . 
For all g ∈ Γ� and all cusps v we have ker(RΣ� ,gv) = ker(RΣ� ,v).

Proof  Let � ∈ ker(RΣ� ,v) . This means that � ∶ Σ�
→ ℂ is a homomorphism and �(f (n)) = 0 

for all n ∈ Γ�
v
 . If n� ∈ Γ�

gv
 then we have n� = gng−1 for some n ∈ Γ�

v
 . This implies

Hence � ∈ kerRΣ� ,gv . The converse is proved in the same way, replacing g by g−1 . 	�  ◻

Lemma 14  If v and w are cusps and w = gv for some g ∈ Γ then v is essential if and only if 
w is essential.

Proof  This follows immediately from Lemma 12. 	�  ◻

RΣ� ,v ∶ H1(Σ�,ℝ)
f ∗

−→H1(Γ�,ℝ)
Rest

−−−→H1(Γ�

v
,ℝ) ≅ H1

cts
(Nv,ℝ).

Rv ∶ lim
→

H1(Σ�,ℝ) → H1
cts
(Nv,ℝ),

Γ�

v
↪ Γ�

f
−→Σ�

�
−→ℂ

�(f (n�)) = �(f (n)) ≠ 0.

�(f (n�)) = �(f (g)) + �(f (n)) − �(f (g)) = 0.
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Lemma 15  There exists a normal subgroup Σ0 of finite index in Σ , such that for each essen-
tial cusp v, the map RΣ0,v

 is non-zero.

Proof  Let v1,… , vr be a set of representatives for the Γ-orbits of the essential cusps. For 
each i, we may choose a normal subgroup Σi of Σ , such that RΣi,vi

 is non-zero. We shall 
prove the lemma with Σ0 = Σ1 ∩⋯ ∩ Σr . Suppose w is any essential cusp. By Lemma 14 
we have w = gvi for some g ∈ Γ . By Lemma 12 the map RΣi,w

 is non-zero. Since Σ0 ⊆ Σi , it 
follows that RΣ0,w

 is non-zero. 	�  ◻

Lemma 16  Let Σ0 be chosen as in Lemma 15 and let Γ0 be the pre-image of Σ0 in Γ . There 
exists a surjective homomorphism � ∶ Σ0 → ℤ , such that for every essential cusp v, the 
composition �◦f ∶ Γ0 → ℤ is non-zero on Γ0,v.

Proof  Note that �◦f  is non-zero on Γ0,v if and only if RΣ0,v
(�) ≠ 0 . We must therefore show 

that there is an element of H1(Σ0,ℤ) which is not in the kernel of RΣ0,v
 for any essential 

cusp v.
Let v1,… , vs be a set of representatives for the Γ0-orbits of essential cusps. We have 

chosen Σ0 so that each of the maps RΣ0,vi
 is non-zero. Hence kerRΣ0,vi

 is a proper subspace 
of H1(Σ0,ℝ) . In particular, the union of the kernels of the RΣ0,vi

 is not the whole vector 
space H1(Σ0,ℝ) , and there is an open cone in H1(Σ0,ℝ) which does not intersect any of 
these kernels. Choose a non-zero element � ∈ H1(Σ0,ℤ) in this open cone, so � ∉ kerRΣ0,vi

 
for all i. It follows from Lemma 13 that � ∉ kerRΣ0,v

 for all essential cusps v. Dividing � by 
a constant if necessary, we may assume that � ∶ Σ0 → ℤ is surjective. 	�  ◻

Now let Σ0 be chosen as in Lemma 15 and let � ∶ Σ0 → ℤ be a homomorphism chosen 
as in Lemma 16. We define a sequence of arithmetic groups Γn as follows:

Lemma 17  The number of Γn-orbits of essential cusps is bounded independently of n.

Proof  Choose any essential cusp v, and let Sn be the set of Γn-orbits of cusps which are in 
the same Γ0-orbit as v. It is sufficient to show that the cardinality of each Sn is bounded 
independently of n. By the orbit-stabilizer theorem there is a bijection between Sn and the 
double coset set:

Using the homomorphism �◦f  , we may identify Γn�Γ0 with ℤ∕nℤ . Therefore there is a 
bijection between Sn and the group ℤ∕(nℤ + �(f (Γ0,v)) . In particular we have

The homomorphism � is chosen so that �(f (Γ0,v)) ≠ 0 , so we have a bound on the cardinal-
ity of Sn which does not depend on n. 	� ◻

Lemma 18  The rank of the composition H1(Σn,ℝ)
f ∗

−→H1(Γn,ℝ) → H1(�XΓn
,ℝ) is bounded 

independently of n.

Γn = f −1(Σn), where Σn = {� ∈ Σ0 ∶ �(�) ≡ 0 mod n}.

Sn ≃ Γn�Γ0∕Γ0,v.

|Sn| ≤ |ℤ∕�(f (Γ0,v))|.
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Proof  There is a decomposition

where v ranges over the Γn-orbits of cusps. However, if v is not an essential cusp, then the 
map H1(Σn,ℂ) → H1(Γn,v,ℂ) is zero. Therefore, the image of H1(�XΓn

,ℂ) is contained in 
the direct sum of the spaces H1(Γn,v,ℂ) , where v ranges over the Γn-orbits of the essential 
cusps. The result now follows from Lemma 17. 	�  ◻

Lemma 19  For n sufficiently large, the inner cohomology H1
!
(XΓn

,ℝ) is non-zero.

Proof  Since Σ0 is a hyperbolic surface group, the dimension of H1(Σn,ℝ) tends to infinity 
as n → ∞ . In view of Lemma 18, for large enough n, the map H1(Σn,ℝ) → H1(�XΓn

,ℝ) is 
not injective. Choose a non-zero element � ∈ ker(H1(Σn,ℝ) → H1(�XΓn

,ℝ)) . Then f ∗(�) 
is a non-zero element of H1

!
(Γn,ℝ) . 	�  ◻

Lemma 19 concludes the proof of Theorem 3. By the discussion above, this shows that 
the preimage of Γ

(
2

6
,
2

6
,
3

6
,
4

6
,
1

6
)
 in each connected cover of SU (2, 1) is residually finite.
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