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Scientific modelling is a prime means to generate understanding and provide much-needed information to support public
decision-making in the fluid area of sustainability. A growing, diverse sustainability modelling literature, however, does not
readily lend itself to standard validation procedures, which are typically rooted in the positivist principles of empirical verification
and predictive success. Yet, to be useful to decision-makers, models, including their outputs and the processes through which they
are established must be, and must be seen to be “valid.” This study explores what model validity means in a problem space with
increasingly interlinked and fast-moving challenges. We examine validation perspectives through ontological, epistemic, and
methodological lenses, for a range of modelling approaches that can be considered as “complexity-compatible.” The worldview
taken in complexity-compatible modelling departs from the more standard modelling assumptions of complete objectivity and
full predictability. Drawing on different insights from complexity science, systems thinking, economics, and mathematics, we
suggest a ten-dimensional framework for progressing on model validity when investigating sustainability concerns. As such, we
develop a widened view of the meaning of model validity for sustainability. It includes (i) acknowledging that several facets of
validation are critical for the successful modelling of the sustainability of complex systems; (ii) tackling the thorny issues of
uncertainty, subjectivity, and unpredictability; (iii) exploring the realism of model assumptions and mechanisms; (iv) embracing
the role of stakeholder engagement and scrutiny throughout the modelling process; and (v) considering model purpose when
assessing model validity. We wish to widen the debate on the meaning of model validity in a constructive way. We conclude that
consideration of all these elements is necessary to enable sustainability models to support, more effectively, decision-making for
complex interdependent systems.

placed the natural environment under greater and greater
stress, reducing its health and future viability. Since the
1960s, environmental challenges have been discussed in
increasingly urgent terms by many influential thinkers [1-5].

1. Introduction and Context

1.1. Sustainability Challenges and Complexity. With the
advent of the industrial revolution, mechanised and tech-

nologised modes of production have dramatically improved
economic productivity and material welfare, accompanied
by a consistent growth in human population and their
consumption of goods and services. While reducing poverty
and providing many material benefits, these trends have

The growth of the importance of the concept of sustainability
[6, 7], as a state in which damages to natural systems and
social cohesion are reduced to below a dangerous level, is
now of core importance across society, from government, to
industry, and individuals. For example, sustainability is seen
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as a concept of “planetary health,” which acknowledges that
“human health and human civilisation depend on flour-
ishing natural systems” [8], or in the idea of sustainable
development goals, which cover the whole range of human
and environmental health challenges [9]. As sustainability
challenges are continually being identified around the world,
through direct observations or through modelling of the
future such as in climate models, many academic disciplines
have been increasing their research commitment to un-
derstanding and solving these issues. While this research is
vital, single discipline and/or positivistic approaches are only
able to address a limited portion of the complete sustain-
ability problem.

Sustainability, both as a concept and as a practical
problem space, is by its nature fluid, highly complex, difficult
to understand, and difficult to work with. Widespread
damages to the natural environment such as climate change
and biodiversity loss, associated with increasing social dis-
parities, are not, in general, intentional actions but unde-
sirable emergent properties or unintended outcomes of the
transformative changes from industrialisation; thus, sus-
tainability practitioners are sometimes only working with
second-order effects [10]. The problem space for sustain-
ability challenges can include long-term management of
natural systems and the human-nature relationship, fun-
damental transformation of socio-technical systems [11],
and changes to the political economy [12]. This wide-
ranging and complex problem space may have challenging
characteristics, such as being multifaceted, integrative, in-
terdependent, emergent, systemic, and long term. Sustain-
ability has been described as a super-wicked problem [13],
and it may be difficult to establish a clear boundary for a
“system of interest” in sustainability studies.

The transformation of cities towards sustainability is an
example of where these issues have been seen. For example,
(i) city sustainability is rooted in ever-evolving science-so-
ciety dialogue and is shaped by both conflictual and con-
sensual  social positions among a variety of
stakeholders—including people from government, industry,
NGOs, citizens, and academia [14]. (ii) Even when a specific
goal is set, say that of reducing greenhouse gas (GHG)
emissions to net zero, the problem definition may not be
straightforward—which types of GHG emissions can be
measured and reduced (CO,, methane, etc.) and whether
emissions responsibility should draw on production-based
or consumption-based accounting [15]. Commonly agreed
protocols for calculating consumption-based GHG emis-
sions are not established in many instances, rendering cross-
city comparisons difficult [16]. (iii) Problem boundary
setting in an open system is difficult. It is unclear how to treat
GHG emissions from vehicles that merely pass through a
city or are fuelled outside the city, in accounting for city-
based transport emissions [17].

The positivistic research paradigm, with its focus on
empirical verification and producing objective knowledge
from independent observations according to universal laws,
has been found lacking for research involving complex
interactions between social, ecological, and technological
systems in which future pathways can be impacted by factors
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such as social values, ethics, and aesthetics [18]. Sustain-
ability research has, in parts, begun to move away from ideas
of certainty and objectivity [19] and towards concepts of
consensus, the shared cognitive aspects of human behaviour
[20, 21], and the need to consider transformational, sudden,
or disruptive change [22]. For example, it is important to
highlight the need for decision-making under deep or
fundamental uncertainty that can “prepare and adapt” rather
than assuming it is always possible to “predict-then-act”
[23]. Thus, in some disciplines “the methodological grip of
objectivism is loosening. .. [while] interpretive dimensions
are becoming correspondingly enriched” ([24], pp. 92-93).
In social-ecological system research, this change has been
described as a “breakdown of the mechanistic worldview”
towards a relational worldview of complex adaptive systems
[25].

1.2. Modelling for Sustainability. The slow shift away from
positivism in sustainability has necessarily influenced research
methodology and in particular modelling methods. Modelling
is a prime means of generating, understanding, and supporting
learning and decision-making in the sustainability field. It
supports the development of effective public policy responses
through providing a systemic understanding of the causal
factors in sustainability challenges and analysis of the potential
secondary impacts of different actions to address these. Fol-
lowing the terminology in [26], the term “modelling” is used in
this study to describe both (i) hard models, as coded computer
models, mathematical models, and simulation models, and (ii)
soft models, as tacit mental models, worldviews, or broad
scenario and strategic analyses. We include in our discussion
both applied models and learning models (metaphorical,
perceptual, or informative): quantitative, qualitative, semi-
quantitative, and purely conceptual models. Table 1 presents
highlights from five literature sources that have reviewed the
field of sustainability modelling.

1.3. Complexity-Compatible Modelling. To ensure good
quality information is provided to decision-makers involved
in sustainability challenges, modellers may need to include
representation of some of the more difficult characteristics of
this complex problem space. This study uses the term
“complexity-compatible models” (CCMs) as an umbrella
term to cover the wide range of “hard” and “soft” modelling
approaches to sustainability challenges that can achieve this.
Based on the reviewed literature and the authors’ cross-
disciplinary experience with sustainability modelling, we
propose here three interdependent philosophical founda-
tions that are central to shaping and defining CCMs: on-
tological, epistemological, and methodological (Table2).

1.4. Background Basis for Model Validity. The modelling
process usually includes several stages, depending on the
methodology and context. For example, for environmental
models ten steps were identified in [41]: define purpose of
model; specify modelling context, scope, and resources;
conceptualise the system; specify data; select model features;



Complexity

TaBLE 1: Highlights from several reviews of challenges in sustainability modelling.

Source Subject Findings/recommendations
The suitability of a range of cross-disciplinary socio-
technological modelling approaches in adequately capturing All modelling types can tackle several aspects of sustainability
key features pertinent to the dynamics of sustainability research, but most fare poorly in dealing with fundamental and
[27] transitions, for example, energy-economy models, integrated deep uncertainty and in representing either qualitative or
assessment models, evolutionary economic models, complex quantitative changes in complex social system states and
system models, agent-based models, system dynamic models, structures
and socioecological system models
Requisite elements of a complexity-based modelling approach
A complexity-based framework for modelling complex should include integrative and probabilistic methods that can
[26] systems’ core properties, based on a rigorous interpretation of ~accommodate human-environment system interactions and
complexity theory. It goes beyond modelling deterministic their uncertainties and modelling techniques that are
mechanisms that underpin complex dynamic system behaviour participatory-based and adaptive to real-world changes in the
system structures under scrutiny
A narrative within the frame of the economic modelling of low-
carbon transitions. Equilibrium (under constrained OV S R
L : . . Distinguishing between equilibrium and nonequilibrium
optimisation) economic models that typically dominate the : . -
. . . . economic modelling would be a useful criterion for not only
economic domain are less successful at dealing with real-world . . .
[28] o o . understanding what drives model outputs but also assessing the
complexities. Any observed deviations from a theoretically , i s . .
. g . . models’ versatility in capturing the complex dynamics of energy-
assumed optimal state of equilibrium are treated as distortions . . .
. . . Lo . environment-economy interactions
to the economy, implying most policy action is, by its nature,
welfare decreasing (see also [29])
A broad discussion of sustainability modelling is classified into
five groups: quantitative, pictorial, conceptual, physical, and Although conventional economic models have been particularly
standardising models. Following [31], from a policy-making active in this area, “they have been poorly equipped to
[30]  perspective the most popular models are macro-econometric, accommodate a holistic perspective, address the local-global
economic (computable general) equilibrium models, perspective or acknowledge the need for stakeholders’
optimisation models, system dynamic models, Bayesian participation” ([30], p. 1401)
network models, and multi-agent simulation models
A review of different types of formal or quantitative models Researchers using simulation models must present their
32] tackling sustainability issues (agent-based, system dynamics,  objectives clearly, state their assumptions explicitly, declare

discrete event simulation) and the recent trend in hybrid
simulation models

underlying the limitations of their studies, and articulate valuable
insights gained

TaBLE 2: Philosophical foundations of complexity-compatible modelling.

(1) Foundation 1: an ontological lens that includes unpredictability and uncertainty

The nature of the world is characterised by unpredictability and uncertainty, a reality that is not knowable in its entirety [19]. When it
comes to an emergent property of a complex system, such as sustainability in society, many causal relationships of that property may be
hidden within a multilayered reality [33]. Modelling of sustainability necessarily requires consideration of known factors (“known
knowns”), factors known but not easily quantifiable (“known unknowns”), and factors not yet identified that even if they were to be
discovered would likely not lend themselves readily to quantification (“unknown unknowns”) [34].

(2) Foundation 2: an epistemic stance that acknowledges the occurrence and significance of interactions between values and science,
objectivity, and subjectivity

Both subjective and objective analyses are critical to advancing scientific understanding [35]. It is important to acknowledge the influential
role of the observer in interpreting the observed system and engage more directly with the users of models at different stages of the
modelling process. Many sustainability challenges need to be viewed from multiple stakeholder perspectives and require solutions that
achieve shared mutual understanding and consensus [36]. Understanding interactions between human values and science and between
objectivity and subjectivity supports modelling that can capture the social, cultural, and structural influences critical in sustainability.
(3) Foundation 3: a methodological angle that portrays the particular characteristics of complex systems such as interdependency and
emergence

Complex systems can include characteristics such as emergence, self-organisation, nondeterministic behaviours, adaptation to
environment, and hierarchies of agents [37]. To understand and model complex systems requires capturing their dynamic, systemic
characteristics, including interdependencies between subsystems (or discrete components). Complex systems need to be understood in
their integrity and interactivity [38], and in their intrinsic openness, in the sense of being subject to potential connectivity, learning,
evolution, and adaptation [39]. Modelling methods may need to account for feedbacks to achieve this understanding [40].




choose model structure and source of parameter values;
choose performance criteria; conditional verification in-
cluding diagnostic checking; quantification of uncertainty;
and model evaluation and testing (e.g., comparisons with
alternatives). Model validation can be done during the
development and test phase of modelling and also
throughout the lifetime of the model as it is used and
updated.

The difference between validation and verification
should be pointed out. Verification ensures that the model
reflects the developer’s conceptual design and has been
turned into a working model with enough accuracy (the
model was built right), while validation ensures that the
model is sufficiently accurate to serve the purpose for which
it was built [42]. While the word “accuracy” is used by
Robinson, he states that models have only to be “sufficiently
accurate” to act as a means to understand and explore reality.
Validation and verification processes tend to use different
kinds of tools and techniques. Verification can be done
through formal and mathematical methods, such as a direct
comparison between the model behaviour and its formal
design specifications. Validation methods can be more in-
formal, involving a variety of types of comparisons between
the structure and behaviour of the model and those of the
real-world system. Standard model validation is chiefly
pursued through testing model outputs against quantitative
evidence or observed data; a scientific rationality secures
knowledge to explain and control for observed phenomena
[43]. In this study, we use the word “validity” in a general
sense to mean that models are considered valid enough to be
used to inform decision-making. In other words, a valid
model is one that is used and where results from the model
are able, at least in theory, to improve real-world outcomes
of decision-making.

Models representing complex systems may be incom-
patible with the standard validation methods, yet they need
to undergo some form of appropriate scrutiny, even if based
on a different set of appraisal criteria [44]. A lack of historical
precedence in sustainability challenges is a concern since
modelling fundamental changes in socio-technical systems,
as sustainability transformations will likely require, cannot
be solely validated through comparison with current or
historical observations. Some of the new and more exper-
imental models being used in sustainability may be regarded
largely as learning or exploratory tools, rather than tools
capable of prediction. These issues raise questions about
what dimensions and principles of validity are appropriate
for such models, which is the subject of this study.

Our paper adopts a critical review perspective and draws
on four key areas of scientific investigation and modelling of
sustainability challenges. It aims to foster shared under-
standing and constructive debate among both modellers and
the beneficiaries of models, including decision-makers with
responsibility for leading responses to sustainability chal-
lenges. The study is next laid out as follows. Section 2
discusses some pertinent sustainability modelling aspects,
drawing on insights from the fields of complexity science,
systems thinking, mathematics, and economics. Section 3
takes further our cross-disciplinary views to explore salient
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concepts, dimensions, and principles akin to CCM validity.
It also proposes a guiding framework for advancing dis-
cussions on the meaning of validity of sustainability models.
Section 4 concludes.

2. Scientific Insights on Complexity-
Compatible Modelling

Empirical research that requires direct experimentation on a
real-world system is often not viable or safe to use for de-
cision-making, hence the need to gain a better under-
standing by representing the system through modelling. This
requires a translation of the a priori description of a problem
space into a model on which experiments can be conducted
[45]. Once an a posteriori description of a real system is
sufficiently assured, models can then be used to improve our
understanding of the system. However, insights are always
mediated by the limitations of the modelling method, the
related process for modelling formalism, and substitution
rules for mapping between the real world and its digital
representation [46].

2.1.  Methodological Considerations for Sustainability
Research. Most quantitative models used in sustainability
have a mathematical basis, and mathematics as a language of
formalism is increasingly deployed in modelling addressing
sustainability challenges [47]. Mathematical models are
generally either analytical or computational:

(i) Analytical models of dynamic systems are described
by mathematical functional relationships or entities;
they have mathematical formalism. If the link be-
tween the mathematics of a complex dynamic model
and its computer implementation is clear, it is
straightforward to subject the model to analytical
scrutiny [48-50]. Analytical models originate from
the mathematical theories of differential inclusions
and viability theory [51, 52]. A differential inclusion
is a generalisation of a differential equation where
the relationship on the right-hand side of the
equation is a multivalued map rather than a single
point. Viability theory extends the concept of dif-
ferential inclusion to the control of a dynamic system
conceptualised by a model, so that the system’s
trajectories remain indefinitely within a region; they
start from a set of all possible initial states, known as
viability kernels. This control policy ensures that the
dynamic system is sustainable because it is confined
to a prescribed region of sustainability. Viability
theory has been widely applied to study the sus-
tainability of biological, ecological, engineering, fi-
nancial, and economic systems [53, 54].

(ii) In computational type models, the underpinning
mathematical relationships are described either in
terms of a series of mathematical algorithms or in
terms of computer code. Computational models may
not always have mathematical formalism, but it may
be required for examination of the model from
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different perspectives without the need to carry out
an exhaustive set of computer simulations. Methods
that can be used to formulate computational models
in the mathematical form include the following: (i)
system dynamic models can be translated into dif-
ferential equations, differential-algebraic equations,
and possibly integro-differential equations. (ii)
Agent-based models and multi-agent systems alike
can be formulated using Markov chains [55], sto-
chastic process algebra [56], and category theory
[57]. (iii) Fuzzy set theory [58] and formal methods
in computer science including Kripke structures and
labelled transition systems [59] and mathematical
logic [60] can be used to analyse and verify a number
of other general classes of computational models.

The concept of scientific paradigms [61] is important in
discussing the nature of sustainability modelling. Specific
theories on one (or more) aspect(s) of sustainability, as
systems of concepts, are often developed within a single
knowledge domain of a particular paradigm. Yet, sustain-
ability is by its nature a multidimensional problem. Mod-
elling for sustainability can require consideration of several
interdependent topics at once, such as targets for sustain-
ability improvements, which types of interventions may
work or not and why, what factors influence environmental
damage, and the roles of public, private, and third sectors in
sustainability actions. High levels of complexity in sus-
tainability challenges can arise not only from interconnected
technological systems of systems [62] but also from the
political, societal, and cognitive elements that play a part in
system evolution.

For example, in energy supply systems the “energy tri-
lemma” is a recognised multidimensional issue, requiring
the simultaneous provision of energy security, energy equity,
and environmental sustainability, while solutions to each are
sometimes dichotomous [63]. The need to study multidi-
mensional and many-aspect problems is addressed in
complexity science. Complexity science modelling ap-
proaches allow experiments of sufficient variation to be
conducted and nonlinear outcomes and emergent behav-
iour(s) to be elicited and observed. It captures these types of
issues through multidimensional models, while allowing for
alternative systems of concepts. It can also accommodate the
integration of multiple modelling formalisms to represent
the diversity of objects within the scope of a research
investigation.

Many existing models used in sustainability planning are
techno-economic in design as they are often applied in the
economic domain., typically in the form of optimisation
models that search for “best” solutions under differing
constraints, targets, and natural system changes (e.g., inte-
grated assessment models). These models are trusted and
useful within the techno-economic paradigm that they as-
sume, but less useful for dealing with complex situations.
Large planning models tend to be prescriptive rather than
descriptive and must therefore include large numbers of
assumptions on technology development, economic be-
haviour, ecosystem responses, and societal responses to

interventions. This means they inadequately explore the full
complexity of the problem space in which interventions
must be made. These models reduce the reliability of the
prescriptive recommendations being generated, while
“known unknowns” are usually acknowledged but not ad-
equately included.

Elements outside the technical, environmental, and
economic areas, such as information flows, political changes,
public attitudes, and social perceptions, are important to
sustainability but frequently missing from modelling. A field
that has been very active in sustainability modelling is that of
systems thinking. Systems thinking incorporates multiple
views on epistemology, from quantitative modelling of what
are assumed to be simplified but rather realistic represen-
tations of core parts of a system (e.g., [64, 65]), to the use of
models with great awareness of their constructed nature,
when used to reduce conflict and generate consensus [66].
Systems thinking seeks to “replace a reductionist, narrow,
short-run, static view of the world with a holistic, broad, long-
term, dynamic view, reinventing our policies and institutions
accordingly” ([67] pp. 509). Systems thinkers tend to view
human decision-makers and the systems they are part of as
being dynamically linked and subject to adaptive interac-
tions and evolutionary dynamics (e.g., [68]).

2.2. Complexity-Compatible ~ Modelling ~ Methods.
Empirical and numerical data coupled with analytical or
computational methods tend to play a predominant role in
establishing the validity of quantitative models addressing
sustainability challenges. However, qualitative and partici-
patory approaches with potential for enhancing model
usefulness and stakeholder engagement are generally less
visible and underappreciated [69].

2.2.1. Qualitative Methods

(1) Soft Systems Methods. By soft systems methods, it is
generally meant those methods that work with people
systems, and if they do create models, they are purely (or
mainly) qualitative. For example, these may include the
conceptual model in soft systems methodology [70, 71], the
evaluation matrix in critical systems heuristics [72], which
can be used as a practical framework for carrying out critical
systems thinking [73], and the philosophy of critical realism,
which can be used as a framework with which to explore
relationships between different layers of reality [33, 74].

(2) Models as Ontologies. Models as ontologies can be used to
identify emphases and gaps in the domain of sustainability,
enabling technological innovations for sustainable growth
from a holistic perspective, systemically and systematically
[75]. In this approach, the conceptual structure of the target
world is understood through its ontology, with the latter
being the outcome of knowledge structuring: smoothing
communication among stakeholders and supporting sys-
temic thinking [76]. Modellers can use an ontology to select
appropriate variables when building a model. By applying



ontological analysis to sustainability transitions, systemic,
dynamic, scale, process, and other dimensions of complex
systems can be highlighted [77].

While systems thinking and complexity science have
been more inclusive of such qualitative methods, economics
remains largely quantitative and embedded in mathematical
formalism. There is a need to pay more attention in eco-
nomics to qualitative approaches to investigate the human
dimensions of economy-environment interactions, such as
public acceptance, cognitive biases, social norms, or non-
market barriers. The purpose, in relation to policy, of more
qualitative approaches could be descriptive and exploratory,
for example, the deployment of alternative energy transition
visions, economic narratives, or stories, including stake-
holder engagement [78, 79], historical case studies [80], or
observational ethnographic studies [81].

2.2.2. Quantitative Methods. There has been an increasing
interest in mathematical CCMs for sustainability. It requires
a focus on quantifying the uncertain and unpredictable
nature of the system and providing formalism and rigour in
capturing that nature. Examples include the mathematical
study of emergence phenomena produced by autonomous
agents [82], the behaviour of cellular learning automata [83],
and cities as complex dynamic systems [84]. Cities represent
a complex myriad of interconnected entities represented by
microscopic and macroscopic interactions. They can be
modelled with an analytical approach using physics prin-
ciples [85] or with a computational approach using cellular
automata [86], agent-based models [87], system dynamics
[88], or digital twins [89].

Complexity science has developed a set of tenets,
methods, and tools over several decades and from numerous
disciplinary and interdisciplinary investigations, to provide a
way to describe, explain, and intervene in all aspects (in-
cluding physical, behavioural, and social) of the real world.
This cross-cutting science exposes the coevolution of systems,
the nonlinear effects of numerous interactions and feedbacks,
the ability for novelty to emerge, and systems to self-organise
and adapt, making it especially relevant to the topic of sus-
tainable development. The framework in [90] provides a
typical complex system methodology, with five components:
(1) system representation, (2) exogenous scenarios, (3) design
variables for transition assemblages, (4) system evolution, and
(5) impact assessment. Key principles of complexity science
include self-organisation [91] and self-organised criticality
[92], emergence (e.g., swarming) and coevolution [93], path
dependency and feedback [94], interdependency and cou-
pling [95], and power laws [96]. Examples of complexity
science models include network models [97], agent-based
models [98], cellular automata [99], and artificial intelligence
[100]. Complexity systems modelling develops and applies
these principles to understand and inform interventions in
real-world systems—for example, towards resilience and
sustainability [26] and system survival [35]. Availability of
extant knowledge, the need for new knowledge, and famil-
iarity with conceptual systems and modelling methods guide
the selection of modelling tools.

Complexity

The term “systems model” in relation to sustainability
covers a wide range of types of representations of real-world
systems, developed to support decision-making for sus-
tainability actions—including reducing greenhouse gas
emissions, preserving ecosystems, waste reduction and waste
management, reduction in toxic pollution, and more soci-
etally focused metrics such as accessibility to green spaces to
improve well-being. The system spans around its individual
purpose [101], and so systems thinking takes a strongly
problem-focused approach to modelling. This means that
boundary setting is an important part of problem analysis
and boundaries may not align with those seen by people
working in different fields such as engineering or policy. All
factors known to be important to a problem need to be
included, even those not usually measured, which can re-
quire drawing from many disciplines at once. Interdisci-
plinary theory building may be needed before model
construction and can be achieved through the use of
problem structuring methods [102]. Difficulties in modelling
the complexity of real-world systems have led systems
modellers to sometimes focus on understanding and rep-
resenting patterns and thresholds, rather than on producing
precise numerical findings. Sensitivity testing and scenario
analyses are often used to explore a system’s behaviour
under different exogenous conditions, and work is ongoing
on deep uncertainty [103]. From a methodological angle,
effectively capturing feedback interactions between system
components is critical. Nonlinear and multi-loop dynamics,
delays within a system, and bounded rational decision-
making are all core to modelling [67, 104, 105].

Mainstream academic economists have contributed in-
sufficiently to solving sustainability challenges, with top-
ranked economic journals publishing few articles on climate
change [106]. Branches of economics related to sustain-
ability such as ecological, environmental, and resource
economics and complexity and evolutionary economics are
a small part of economic research [107]. Economic models
that do tackle sustainability largely follow the methodo-
logical format of standard optimisation models, which as-
sume that the baseline economy is in equilibrium, and
therefore, there are distortionary costs to the economy when
governments intervene to protect the climate or the envi-
ronment. A strong methodological bias exists towards
quantitative, predictive dimensions [24]. Most economic
models are used to identify aspirational sustainability sce-
narios, with some prescriptive implications [28]. A reaction
to this status quo in economic modelling methods has led
gradually to a more pluralist economic approach that
proposes a rethinking of human well-being that goes well
beyond a consumption-based concept of welfare [108]. For
example, economic modelling that draws on complexity
science is generally placed within a shared evolutionary, out-
of-equilibrium, and interconnected ontology of the nature of
complex systems [109]. In this case, complex dynamics in
economics portray the economy as being under continuous
change, unpredictable and subject to fundamental uncer-
tainty, open to reaction, and embedded in historical con-
siderations, and the suboptimal, heterogeneous behaviour of
diverse agents [110]. As such, a focus on interacting
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heterogeneous agents [111] arguably offers a more realistic
and useful alternative to standard economics ([112], p. 92).
Simulation models [29] can provide more freedom in
quantitatively exploring the propagation of perturbations to
the system.

3. Advancing Discussion on Complexity-
Compatible Model Validity

3.1. Overview of Model Validity Concepts. In mathematics,
there are several methods to proving theorems [113] that use
analytical reasoning and logic. There are also several
methods to disproving theorems [114]. Disproving a the-
orem can on occasions be simpler than proving a theorem
because a theorem can be invalidated by providing at least
one counterexample. Counterexamples can also be used to
define the conditions and the boundaries of the validity of a
theorem. Although CCMs are not mathematical theorems,
they can sometimes be validated through adapted methods
used in mathematics.

Models are always simplifications of reality [115]; thus,
there is always something omitted or bundled at a higher
level of abstraction. Since every model is idiosyncratic,
validation must consider myriad model aspects, including
how its data have been generated [116]. Validation in
complexity science focuses primarily on the logic of the
model and analysis of model outputs for a range of different
scenarios. The following seven aspects cover major con-
siderations for complex systems modelling relevant to model
validity: usefulness to stakeholders, credibility, transparency,
interpretability, reproducibility, external validity, and in-
ternal validity. A simulation model that fully meets all these
aspects has greater validity than one that meets only some or
all but partially.

In systems thinking, the validation of models deviates
from the more usual view that sees validity as a concept
inherent to the model per se. Instead, a relational view of
validity is taken that includes the model, the model purpose,
and the model users. Models drawing on systems thinking
are regarded as valid if they are credible and useful [117].
Emphasis is placed not only on the model’s ability to predict
behaviour but also on the level of confidence in the model
and its outputs when used for a specific purpose and/or used
by specific model users. The purpose could be, for example,
preventing failure in a system, improving a system to achieve
a desired behaviour, designing a suite of policies to intervene
in a system, and understanding system structure and many
other similar examples where models inform decision-
making. Even with well-justified model theory and stake-
holder involvement, it is impossible to prove that a model
truly represents the causation of a problem, and accusations
can be made of abductive fallacy [118] in which the model
creates the right system behaviour but for the wrong reasons.
Therefore, the validation of fully or partially interpretivist
models, and their acceptability in informing decision-
making, remains an ongoing challenge for those in the
sustainability modelling community. Where models are
interdisciplinary, the validation process may itself need to be
interdisciplinary.

There is no universally agreed understanding or
implementation strategy of the validation process in eco-
nomics, when it comes to modelling complex systems within
the context of sustainability challenges. Validity may be
more broadly interpreted across a wider range of views about
model structure and behaviour, instead of merely empha-
sising model outputs. The validity of research findings based
on models is related to their underpinning epistemic stance
(and corresponding ontology), which determines their
usefulness, credibility, and reliability of results [119].
Considering the validation of the increasing number of
CCMs in economics, the method needs to be pluralistic and
consider the suitability of both standard and nonstandard
economic validation approaches. The validity of model
mechanisms, inputs, and assumptions based on both
quantitative data and interpretive qualitative information
would need to receive more attention, rather than focusing
on internal validity and predictive success of model outputs,
as typically practiced in standard economic modelling.

3.2. Internal Validity. From a mathematical perspective, the
internal validation of CCMs requires several steps. Firstly,
ensuring the model is mathematically consistent: for de-
terministic models (any model can be classified as deter-
ministic, stochastic, or fuzzy), there should exist a unique
solution to the model equations starting from any set of
initial conditions. Highly nonlinear models, which exhibit
bifurcations or chaotic behaviour, do not have unique so-
lutions, and overdetermined sets of equations are often
inconsistent. Model checking methods originating in the-
oretical computer science can be used to analyse CCMs such
as those of concurrent distributed systems [120]. Secondly,
testing the overall macro-level features of the model, such as
its asymptotic behaviour, stability, and presence of emergent
behaviour: this helps in understanding the long-term be-
haviour of the model. Stability is another critical charac-
teristic of a model, which can be tested by performing
perturbation analysis [121]. Thirdly, evaluating model ro-
bustness: this certifies that the model’s results hold despite
uncertainties in the model parameters and in the presence of
small random perturbations to the model. Deterministic and
probabilistic approaches can be used for this purpose. If the
model is used for decision support, robust optimisation
methods can be employed to make robust decision-making
under uncertainty [122].

In complexity science, internal validity generally refers to
the logical (analytical and computational) consistency of the
model’s internal structure, meaning that the model is doing
what it is supposed to do. Sound selection of a modelling
formalism, definition of the components and interactions,
and substitution rules, from a system of interest to the
complex systems model and back, are the foundations of
internal validity. The implementation specifics and verifi-
cation choices of the model also affect internal validity: if
these are limited or do not sufficiently cover the landscape of
model possibilities, then tests may lead to false positives.
Internal validity can be tested by trying to “break” the model,
e.g., using outliers or numbers that could not be associated



with states of components, such as 0, or by changing some of
the assumptions in the model [123].

In economics, internal validity is often pursued through
a deductivist logical consistency approach. To achieve this,
standard economics relies on mathematical formalism
embedded in deterministic models, based on strong as-
sumptions and irrefutable axioms of homo economicus be-
haviour, extreme rationality, optimisation, and equilibrium.
Alternative economic approaches (e.g., Post Keynesian
economics, complexity economics) interrogate, however, the
usefulness of such assumptions for decision-making, e.g.,
logical time and complete reversibility as opposed to his-
torical time and real-world irreversibility [124]. Having said
this, when economics draws on complexity science insights,
its models (e.g., agent-based computational economic
models) are difficult to validate internally and mathemati-
cally, since these are not analytically formulated but solved
by simulation, and tend to prioritise external empirical
validation.

Several authors have provided guidelines on the vali-
dation of system dynamics models, for example [125, 126].
Structure validation occurs at every stage of the modelling
process and aims at ensuring that every element in the model
has a correspondence with the real world (but not that every
aspect of the real world is represented in the model) [127];
that the most relevant variables and especially feedback
relationships that endogenously explain how a problem
arises are included [128]; and that there is rigour and
transparency in getting from a real-world problem to model
structure [129, 130]. Many systems models incorporate
endogenous causation of observed system behaviours, both
planned and unplanned. For example, in socio-technical
systems, energy interventions can produce unwanted out-
comes such as the rebound effect [131] and the desired
outcomes of energy demand reduction. However, any claim
to an understanding of causation in complex systems can be
difficult to prove and requires strong theoretical justifica-
tions of the model design.

3.3. External Validity—Modeller’s Perspective. In mathe-
matical modelling, model performance is checked against
external sources. If empirical data are available, this step
involves comparing a model’s prediction to data observa-
tions. Otherwise, a model’s prediction is compared to the
prediction of another independent model simulating the
same system. If the model’s output is multidimensional and
time-varying, there are several metrics for these comparisons
including maximum absolute error, residual sum of squares,
mean bias, and correlations between the outputs among
several others. Model confidence, in the absence of empirical
data, can be inferred from the other dimensions of model
validation—for example, a fuzzy set measure of model
confidence [132]. In data-rich environments, the Bayesian
methods can be used to quantify the confidence in a model
compared with others [133]. Finally, there is a need to ensure
model transparency. This is achieved if all the fundamental
and underpinning mathematical equations and/or compu-
tational rules are explicitly defined, so that the model could
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be replicated. This is not necessarily an easy task as it is
known for example that agent-based models are difficult to
replicate [134].

In systems thinking models, behaviour validation in-
cludes the search for a model structure that replicates be-
haviour patterns endogenously. It reflects, to some extent,
standard validation practices in that model outputs are
usually compared with past time-series data, sometimes
using part of the time series for calibration and the other part
for cross-checking. Practically, calibration of historical data
can be done through numerous iterative rounds of testing
and adjusting, by ad hoc methods and/or via model opti-
misation to reduce error. A collection of small-scale system
archetype models [135-137] has been developed and vali-
dated over the years through use by many modellers
(sometimes called “molecules”). They can be applied in
many different fields of study and provide well-established
modelling structures, which require less validation than
completely new ones.

In economics, external empirical validity has generally
focused on predictive output success, certainty, and quan-
tifiable risk. This has been achieved, for at least since the
1960s, through the empirical testing of end results against
claimed independent objective data or facts—“the only
relevant test of the validity of a hypothesis is comparison of
its predictions with experience” [138]. The quest for pre-
dictive power in conventional economics has fostered a
“closed systems” worldview, with nonrandom influences
outside the closed system portrayed as a shock to exogenous
variables [19, 139]. Deductivists develop model structures
according to a “mechanistic epistemology” [140] driven
internal agenda, which is valid as long as some empirical
testing of model outputs is performed [19]. Despite the
acceptance of Popper’s falsificationism in economics, model
validation is largely done along the lines of the early prin-
ciples of verification [19].

Considering that the realism of inputs and processes is
also important, this has been reflected in more recent strands
of economic thinking, such as ecological economics,
behavioural economics, or complexity economics, with the
latter drawing heavily on a hard complexity science ap-
proach [141]. In relation to complexity economics, although
no consensus exists on suitable appraisal criteria for the
validation of models representing complex systems
[44, 142], there is growing focus on the empirical validation
of the modelled rules imposed on agents and the underlying
causal mechanisms of agent-based models. If the causal
structure incorporated in an agent-based model is a good
match with that underpinning real-world data, then the
modelled data-generating mechanism can be regarded as an
adequate representation of the real-data-generating mech-
anism, providing a rigorous reliable empirical support to
policy-making [143].

For complexity models, reproducibility is the model’s
ability to produce consistent results, or, on the other hand,
the level of fit between model results and the real-world
system it represents. Data collected on a system of interest
may be statistically compared with data generated by a
complex systems model. Usually, real-world data are split



Complexity

into nonoverlapping calibration (or training) datasets and
validation datasets, the former to generate algorithms re-
lating inputs to outputs, and the latter in model validation
[144]. Openly available source code, data for initial condi-
tions, data for initial variables, and software versioning
together with seed numbers for pseudorandom generators
provide the best reproducibility. However, agent-based
models often generate initial conditions from population
distribution data, meaning that stochastic choices are em-
bedded in models, and so replicability within a range is the
best we can hope for [145]. Validation of models of natural
systems may not be possible [146], although validation can
be confirmed through a step-by-step iterative procedure
[147].

3.4. External Validity—Users’ Perspective. In systems
thinking, stakeholder engagement plays an important role in
structure validation, particularly in participatory modelling.
Stakeholders are usually the intended users of the model,
people with expertise in the problem space, and lay people
related to the problem space in some way. The participation
of stakeholders and their knowledge grounded in rich ex-
perience [148] are used either to improve the model
structure through providing external validity, or, where
models involve people systems, to ensure that the model
reasonably represents all the relevant thinking and world-
views. Nonmathematical validation often includes having
stakeholders involved during the model design, construc-
tion, and testing phases. Methods such as group model
building provide a structured way to do this [149]. Models
built without stakeholder engagement are more likely to
misrepresent the problem being modelled, due to a lack of
in-depth knowledge about the realities of the system’s
workings and are less likely to be trusted by stakeholders and
used in earnest—although this is not the case for purely
theoretical exploratory models. Model confidence and
credibility can be built over time, as the model is used and
updated. If users see that decision-making without the
model would have been worse, this indicates the model’s
usefulness. Quantitative results from systems modelling tend
to be easier for decision-makers to use than qualitative
insights. However, they also risk that decision-makers un-
derestimate the uncertainties in quantitative results and
insufficiently acknowledge that the focus of such models is
more on scenario analysis and understanding rather than
prediction.

For mathematical models, engagement with the stake-
holder occurs at two ends of the model spectrum: initially in
problem formulation and finally in the interpretation of the
results. The stakeholder defines the problem, and the
modeller translates the problem into a set of mathematical or
computational rules and then simulates the model to get the
results. At the end of the chain, the stakeholder interprets the
results. The stakeholder can redefine the problem in the light
of the results as they may indicate that the problem is either
ill-defined or is infeasible.

The validity of a complex systems model may be de-
termined via the validity of the modelling results for

decision-making on the respective real-world system [144].
Co-creation is a method for stakeholder engagement con-
tributing to validating stakeholder usefulness [150]. Models
are more useful, used, and useable if stakeholders are in-
volved in the scoping and descriptions of the system of
interest in the real world and can relate these to the ab-
stractions in the model. Transparency on what has been
omitted, merged, or abstracted during model development
will improve validity, although greater veridicality does not
necessarily lead to a better understanding of the drivers of
the real world [151]. Where the model cannot be shown to
have captured the mechanisms responsible for measured
system outputs, its validity can be assessed through its
ontological structure (components and their interactions)
[152]. Overview, design, and detail (ODD) have become a de
facto standard in agent-based modelling for transparency
[153]. Interpretability is the notion that a model is under-
standable, which is only possible if model components and
connectors among components are explicitly described and
understood [45]. A definition of the substitution rules from
the real world to the model and back greatly adds to in-
terpretability. Many machine learning techniques are diffi-
cult to interpret [154], but attempts at explainable artificial
intelligence [155] present an opportunity to improve
complex systems model interpretability. Once a model has
external validity, it can be used to see what would happen in
the future (or could have happened in the past) if the inputs
are changed, i.e., to measure the sensitivity of the output
results with respect to changing input variables [154]. When
changes in modelled complex systems are associated with
big investments and long-life cycles, to inform decision-
making the timeline of models needs to be extended far into
the future; yet, this increases uncertainty about the validity of
the model outputs.

In economics, the external validity of a model from a
user’s perspective has been generally ignored. Nonetheless,
there are several strands of economic thought that em-
phasise the role of intersubjective meaning, narratives,
historical reasoning, persuasion, and rhetoric, in driving
behaviour and the economy, and working towards ac-
ceptable economic explanations and workable, con-
textualised policy conclusions [24, 156]. Methodological
validation in this case is more readily pursued through
interpretation, acknowledging the role of subjective values,
and heuristics, in addition to the typical scientific focus on
empirical verification [139]. It works towards shifting the
meaning of model validity from outcome to process vali-
dation and from the quest for hard proofs to plausible
argumentation for the purpose at hand, to flexibility, depth,
and plurality in views.

3.5. A Guiding Framework for Better Validating Sustainability
Models. Our discussion highlighted so far the trend of
CCMs slowly taking hold in research dealing with sus-
tainability challenges and the need for updated methods of
establishing their validity that are more suitable for their
philosophical foundations. It is clear that there is currently
no universally agreed upon approach to model validity for
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L. Model validity principles

i) Its meaning is fluid
and contextual

ii) It is a process that spans
the model life-cycle

iii) It is dependent on
the model’s purpose

iv) It is strongly
interpretive

1) Internal
model

consistency

2) External

Complexity

10) Model
usefulness

9) Stakeholder
engagement

& reliability

output
validation

3) Realism of
model inputs

II. Model validity
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8) Model
transparency

7) Model
confidence
& credibility

6) Model

4) Realism of
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5) Model
robustness

reproducibility
& replicability

FIGURE 1: A guiding framework for validating complexity-compatible models.

CCMs that could be applicable across all disciplines and
modelling methodologies. Figure 1 synthesises and further
expands on our previous discussions, by drawing out four
principles and ten dimensions that we think need addressing
when considering the validity of CCMs. It can be viewed as a
guiding framework for improving the development, testing,
and use of CCMs. Expected benefits include increasing the
likelihood that models are perceived as valid by those
working on sustainability challenges.

3.6. Validity Principles. A common set of four principles
emerges from our previous discussion that tends to shape
the process of model validity when applied to CCM and
sustainability challenges:

(i) First, model validity is not an all or nothing state. It
can be fuzzy and its meaning is fluid or temporary. It
may need to be revisited as the characteristics of the
system or challenge being modelled evolve. In other
words, it is often contextual, problem, and/or user-
specific.

(ii) Second, model validation is a process that spans the
whole life cycle of any model. It is not sufficient, for
instance, to validate only model outputs (e.g.,
predictive success). Validating modelling inputs,
assumptions, mechanisms, processes, and fitness for
purpose are all, at least, as equally important as
validating modelling output.

(iii) Third, model validity is dependent on the purpose of
the model and/or its application. In many cases, the
process of modelling for learning or exploration for
its users and beneficiaries (e.g., policy communities)
is more valuable than using the model as a pre-
dictive tool to generate estimates of future states.

(iv) Lastly, model validity has a strong interpretivist
trait. This means that in some cases, model users
must apply their own professional judgement to
reflect upon model assumptions and mechanisms.
Model users interpret the significance of model
outputs, before applying them to the sustainable
challenge they seek to address. Furthermore, any
professional judgement is not completely objective,
but bounded in time and space, and culturally
influenced [157]. This brings in an element of
plausible argumentation or credible reasoning,
when conveying the interpretation of the meaning
of model validation to others.

3.7. Synthesising Validity Dimensions. Validity dimensions
constitute an indicative basket from which model devel-
opers, users, and beneficiaries may choose depending on the
type of model being developed and on the purpose of its
application. They are grouped in Figure 1 under ten headings
and may be pursued through a mix of quantitative and/or
qualitative methods. The greater the number of applied
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validity dimensions, the more likely the model will be
considered valid and credible. They are explained as follows,
in clockwise order as displayed in Figure 1 starting from the
top:

(i) (1) Internal model consistency and reliability: this
entails checking the correctness and logic of model
formulation, for example, concerning unit con-
sistency at a basic level. This dimension largely
represents a formal (e.g., mathematical) checking
of the model, irrespective of whether it matches the
real world.

(ii) (2) External output validation, (3) realism of model
inputs, and (4) realism of model mechanisms:
these three dimensions indicate the ability of the
model to represent the observed system and how
credible it is in representing empirical or experi-
mental data, quantitatively and/or qualitatively.
They may be largely achieved empirically or sta-
tistically (as per standard methods), but also
through participatory and consensual approaches.
Models always remain a simplification of reality, in
that most elements aim to reflect the real world,
but not every real-world element is represented
[127].

(iii) (5) Model robustness: it implies that the model
functionality and output are generally preserved
despite uncertainties in model parameters and
exogenous perturbations. Put differently, estab-
lishing model robustness when dealing with
complex systems only makes sense when dealing
with model uncertainty (parametric and/or
structural) and model assumptions. However, in
some cases non-robust behaviour may be well
justified and point to interesting thresholds and
bifurcations in the behaviour patterns of the
model, adding to insight rather than invalidating
the model.

(iv) (6) Model reproducibility and replicability: model
robustness, reproducibility, and replicability are
mostly implemented through a mix of mathe-
matical, empirical, and computational approaches.
These are fairly straightforward when dealing with
deterministic models. However, careful thought is
required when dealing with CCMs that entail
stochasticity, nonlinearity, and uncertainty. In the
context of simulating unpredictable behaviour
(e.g., the emergence of disruptive low-carbon in-
novation consumer practices), one is seeking to
establish the reproducibility (or replicability) of
aggregate emergent behaviour, rather than indi-
vidual agent behaviour. For example, in agent-
based models, stochastic choices are made for
initial conditions or to describe heterogeneity in
agent behaviour, and so exact reproducibility of
the real world should hardly ever be possible.
Replicability within a range is the best one can
hope for [134]. In many CCMs, replicability
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associated with stochasticity can be assured using
computer methods to fix the sequence of random
numbers or the pattern of randomness.

(v) (7) Model confidence and credibility: these indi-

cate how easy is to interpret or understand
modelling results and their drivers, as well as the
extent to which one is confident that these apply to
real-world systems that the model aims to repre-
sent. It can be achieved via all of the four validation
approaches shown in Figure 1. Modelling findings
based on approaches that go beyond standard
empirical validation and their positivist worldview
of empirical verification and predictability can be
more difficult to interpret. For this reason, they
may be in stronger need of guidance on the in-
terpretability of and confidence in modelling re-
sults. This aspect connects with the subsequent
eighth and ninth validation dimensions advanced
in Figure 1.

(vi) (8) Model transparency: this involves a clear audit

trail of the model’s assumptions, inputs, mecha-
nisms, and outcomes; i.e., the model’s structure
and behaviour are clearly conveyed to stakeholders
and other modellers for scrutiny. Nonetheless,
since models are simplified representations of
reality, there is a need to safeguard that simplicity
or parsimony, fostering transparency, must not
come at the cost of ignoring key features of the
system under investigation [151]. This is important
because CCMs may often be opaque. There has
been a strong interest, lately, in developing
frameworks for making such models transparent
(e.g., for agent-based models, the ODD—overview,
design concepts, details—protocol [153], or, more
recently, its extension to incorporate depictions of
human decisions, i.e., the ODD + D framework, or
for system dynamics models, which have a tradi-
tion of openly portraying model structure visually
and mathematically such as the SDM-Doc tool)
[158].

(vii) (9) Stakeholder engagement: this is associated with

the co-creation of model design, usability, func-
tionality iteration, version control, improving the
depiction of the causal relationships being estab-
lished, and limiting unconscious biases, where
possible and applicable. In practice, this translates
into enabling the participation in the modelling
process of a wide range of stakeholders. Stake-
holders can include a large variety of decision-
makers, along with social actors who are likely to
be affected by the way the challenge is addressed.
This is particularly important in participatory
modelling such as participatory system dynamics
models [159] and group model building [149].
Stakeholder buy-in is crucial along every step of
model development, test, and publishing of results
or release of the model for use. Moreover, mod-
elling complex systems and sustainability
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challenges may sometimes involve significant
learning efforts for stakeholders in the language
and workings of complex systems.

(viii) (10) Model usefulness: CCMs may be perceived as
useful for a variety of reasons. First, they allow for
more versatility in capturing real-life complexities.
Second, if stakeholders are involved in the model’s
lifecycle, they can more closely relate to the ab-
stractions put forward in the model, hence in-
creasing its usefulness. Overall, CCMs are designed
to be less concerned about predictive success and
more focused on generating insights that are fit-
for-purpose and helpful in informing decision-
making. Thus, the deployment of various valida-
tion approaches depends chiefly on the purpose of
the modelling exercise or application.

Needless to say, these ten dimensions are not exhaustive.
They also have their limitations as they are based on dif-
ferent, wide-ranging, but not necessarily comprehensive set
of scientific perspectives.

3.8. Implications for Sustainability Modelling Choices. The
diversity of applications and modelling formalisms increases
the need for a shared multidisciplinary understanding of
model validation. In silico disciplines are growing, and
computational models are being applied to new problems
and are incorporated into operational processes (e.g., digital
twins). Zinov’ev opens the possibility of a formal meta-
methodology to various modelling formalisms, their specific
uses, and validation practices [45]. This formal meta-
methodology becomes necessary, as multiple models allow
multiple perspectives to the “object-original,” and multiple
interconnected original objects require multiple inter-
connected models that are valid and support distributed
synchronous modelling.

For sustainability research, this means that the validation
process of models needs to become more interdisciplinary
itself, matching up to the interdisciplinary nature of the
underlying sustainability problems. The use and usefulness
of applying the framework both retrospectively and for
future models could serve to further improve it, as well as
understand the limitations of past models with respect to
their validity. In other words, the above model validity
framework could serve as a guiding starting point for future
emerging methodological choices that would deliver a more
appropriate or credible mix of models and methods tackling
sustainability challenges.

As an example, when applied to the economic domain,
CCM validity entails a multifaceted approach, whereby both
standard and nonstandard economic validation methods are
pursued. It would go beyond checking the logical consis-
tency of model’s internal analytical and computational
structure, for which conventional economics is versatile. It
would also push model developers and users to shift their
thinking away from Milton Friedman’s typical “as if”
methodology of “positive economics,” whereby “the only
relevant test of the validity of a hypothesis is comparison of
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its predictions with experience,” irrespective of the realism
of the assumptions used [138].

Further targeting the economic domain, the guiding
framework we propose in Figure 1 supports a complexity-
compatible modelling ontological basis and, consequently,
helps foster pluralism in economic thinking. It also en-
courages the consideration of subjective values in economic
models and their validity, ignored in large swathes of eco-
nomics research. For instance, major schools of economic
thought, such as Post Keynesianism, Austrian economics,
(older) institutional economics, ecological economics, and
strands of evolutionary and behavioural economics, have
long advocated for the role of arguments, values, ethical,
cultural, and aesthetic principles, in adding richness to the
knowledge generated via formal quantitative models. The
contribution of subjective elements, imagination, and hu-
man emotions to innovation and market transformations
(with crucial implications for sustainability) are side-lined in
economics, though they are acknowledged in parts of the
economics literature on complex systems thinking (e.g., in
[160-162]). Emerging economics of sustainability research
agendas that couple complexity science with systems
thinking (e.g., [163]) would benefit from the validity of their
mixed quantitative/analytical-interpretivist/qualitative
modelling approaches being interrogated and shaped via our
multidimensional framework.

4. Concluding Remarks

The validity of what we have labelled “complexity-com-
patible models” (CCMs) will likely remain an open research
question for some time. With the advance in computer
modelling, artificial intelligence, the complexity of our
economies, societies, and the increasingly global, inter-
connected, and disruptive nature of the sustainability
problems we are facing, there may very well be a rush in
demand for credible, more realistic, more transparent, and
more useful models that are being used to steer decision-
making at various levels. Thinking about their validity from a
multidimensional and interdisciplinary perspective will be
relentlessly pressing.

One of the key differences with CCMs is that the concept
of validity is not absolute in the sense of model validity being
either true or false. It depends on the purpose of the model
and of the system it is supposed to represent. The fact that
validity is not absolute means that responsibility for validity
cannot be fully delegated to a technical process, such as
comparison with empirical data. It remains the shared re-
sponsibility of model builders, users, and beneficiaries, who
need to apply well-reasoned judgement. Overall, the process
of model validation requires value judgements. Value
judgements are not the same for different types of models
and also vary for what is being modelled, including the value
of sustainability itself. This process will be aided by the
progression of more formal validation approaches that are
more suited to establishing the validity of CCMs.

This study has set itself the overly ambitious target of
questioning the meaning of model validity when applied to
examining sustainability challenges. It is hoped that, through
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critically questioning model validity meanings from onto-
logical, epistemological, and methodological perspectives,
and through the shaping of the ten-dimensional framework
on CCM validity based on different scientific insights, the
study will spur and steer debate, on how to progress on the
validity of ever-more complex models investigating ever-
more urgent sustainability challenges.
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