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Abstract

Whether adding songs to a playlist or groceries to a shopping basket, every-

day decisions often require us to choose between an innumerable set of options.

Laboratory studies of preferential choice have made considerable progress in

describing how people navigate fixed sets of options. Yet, questions remain

about how well this generalises to more complex, everyday choices. In this

thesis, I ask how people navigate large option spaces, focusing particularly on

how long-term memory supports decisions. In the first project, I explore how

large option spaces are structured in the mind. A topic model trained on the

purchasing patterns of consumers uncovered an intuitive set of themes that cen-

tred primarily around goals (e.g., tomatoes go well in a salad), suggesting that

representations are geared to support action. In the second project, I explore

how such representations are queried during memory-based decisions, where

options must be retrieved from memory. Using a large dataset of over 100,000

online grocery shops, results revealed that consumers query multiple systems of

associative memory when determining what choose next. Attending to certain

knowledge sources, as estimated by a cognitive model, predicted important

retrieval errors, such as the propensity to forget or add unwanted products.

In the final project, I ask how preferences could be learned and represented

in large option spaces, where most options are untried. A cognitive model of

sequential decision making is proposed, which learns preferences over choice

attributes, allowing for the generalisation of preferences to unseen options, by

virtue of their similarity to previous choices. This model explains reduced

exploration patterns behaviour observed in the supermarket and preferential
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choices in more controlled laboratory settings. Overall, this suggests that con-

sumers depend on associative systems in long-term memory when navigating

large spaces of options, enabling inferences about the conceptual properties

and subjective value of novel options.



Impact Statement

My research elucidates the contribution of long-term memory to preferen-

tial choices in naturalistic environments. Experimental studies of preferen-

tial choice tend to examine how participants choose between small sets of

explicitly-presented options, which tends to minimise the contribution of prior

knowledge about option relationships. The results presented in Chapter 2 and

3 show how conceptual representations of shoppers (and their individual dif-

ferences) can be approximated through their prior choice history. I hope this

will be a useful tool for cognitive scientists wishing to study the contribution

of mental representations of option similarity during naturalistic preferential

choice.

These findings also emphasise many of the unique characteristics of natu-

ralistic preferential choice. As detailed throughout the thesis, long-term mem-

ory helps to guide preferential choices in everyday contexts (like the supermar-

ket), where the option space is large and often requires retrieval of attributes

and options from memory. Fewer studies have explored how people make

decisions in these contexts. I hope this thesis will stimulate more studies

investigating naturalistic preferential choice and prompt others to use large

observational datasets of human choices to validate their theoretical claims.

The ideas proposed in my research have had a direct impact for my em-

ployer, dunnhumby, and should be of substantial relevance to those working

in retail marketing. Specifically, the idea of using Latent Dirichlet Alloca-

tion (LDA) to approximate conceptual representations of products through

product co-occurrences (proposed in Chapter 2) is now used widely across the
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business. LDA helps retailers to discover and track the high-level goals of

shoppers. Our work shows that these goals closely resemble the way that con-

sumers think about products (e.g., “meals for tonight”) and contrast with more

widely-available, highly-curated product groups created by logistics teams (e.g.

“fresh food”).

Similarly the ideas proposed in Chapter 3 should be of interest to mar-

keters and machine learning practitioners building personalised recommender

systems. Retailers often wish to predict consumers’ subsequent purchases on-

line, as it helps them to prioritise marketing, such as personalised promotions.

Typically this would be achieved using machine learning models, such as re-

current neural networks. However, our results revealed that sequential choices

could be predicted using a relatively simple cognitive model of memory re-

trieval. Cognitive models may capture new variance that machine learning

models may not, helping them to improve the relevance of recommendations

to customers (see Kopeinik et al., 2017, for an example). They may also be

more computationally efficient than machine learning models and are often

more interpretable.

Finally, the ideas proposed in Chapter 4 highlight an interesting inter-

action between recommender systems and human preferences. In particular,

recommender systems are often designed to suggest similar products or con-

tent to those consumed by a user in the past. Our results indicate that con-

sumers update their preferences to support their choices. This could lead to

self-perpetuating cycles, in which preferences and recommendations focus on

an increasingly narrow set of attributes. Machine learning practitioners could

mitigate this by promoting more diverse recommendations or leveraging this

interaction to – with consent – encourage more pro-social behaviour, such as

healthier or more sustainable choices.
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Chapter 1

Memory and preferential choice

1.1 Introduction

“Learning to choose is hard.

Learning to choose well is

harder. And learning to choose

well in a world of unlimited

possibilities is harder still”

Barry Schwartz

The Paradox of Choice

Whether deciding which restaurant to visit or which shampoo to pur-

chase, we are often required to navigate an unfathomable amount of choice. In

the supermarket, consumers often choose between tens of thousand of options

and do so according to a breadth of considerations. Which products go well

together? Which are interchangeable? Which are overpriced? Which ones

taste bad? Despite having never tried most products on offer, we can navi-

gate large option spaces with relative ease. In this thesis, I ask how, focusing

particularly on how long-term memory provides the cognitive apparatus for

supporting everyday decisions in-the-wild.

Since early economic models of subjective utility, psychological experi-

ments have helped to progress our understanding of how humans learn and

30
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use subjective preferences during decision making. For example, simple exper-

imental manipulations — such as changing how a risky investment decision

is framed (Tversky and Kahneman, 1981; Slovic et al., 1985) or introducing

an additional option into a choice set (Simonson and Tversky, 1992) — have

been shown to reverse preferences for options. These experimental findings

contradict many of the basic assumptions of economic models, such as that

preferences are stable (Savage, 1954). Accounting for these preference reversals

is now considered a benchmark for models of preferential choice.

An important facet of these behavioural experiments is that they are

carefully designed so as to minimise the effects of extraneous variables that

are otherwise hard to account for, such as prior knowledge. For example,

choice options are often presented explicitly; we refer to these as stimulus-based

choices (Lynch and Srull, 1982). Moreover, participants are often asked to

make their choices on the basis of explicit attributes, and thus make decisions

by description (Hertwig, 2012). The set of possible alternatives also tends to

be small and choices are often randomised so as to be independent.

Yet, preferential choices in real-world environments are rarely so straight-

forward. In a supermarket, consumers must choose between tens of thousands

of products, most of which will be new to them. Attributes of options may be

retrieved from memory; these are often referred to as memory-based choices

(Bettman, 1979; Weber and Johnson, 2006) and may be integrated with ex-

plicitly presented attributes (Bettman, 1979; Lynch and Srull, 1982). Related

prior experience may be exploited to guide inferences about the properties of

options, such about their subjective value (known as decisions from experience,

Hertwig, 2012). Choices may depend on those made previously, like whether

a given ingredient complements the ones we already have in our shopping bas-

ket. Thus, preferential choices in lab tasks often contrast with those made in

naturalistic domains in a number of important ways.

The aim of this thesis is to understand how people navigate large op-

tion spaces in naturalistic preferential choice environments. These contexts
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are uniquely characterised by many of the properties described above; the

option space is large and dynamic, often requiring attributes and options to

be retrieved from memory and thus dependent on prior experience. I will

show long-term memory facilitates preferential choice in these spaces; helping

decision-makers to mentally organise the plethora of options available, infer

their properties when making decisions and justify them in retrospect. To do

this, I will combine laboratory experiments with analyses of large, naturally

occurring datasets that capture consumer choices made in-the-wild. I will use

computational models to bridge this behaviour with cognition, building on ex-

isting theories of how humans represent and retrieve long-term knowledge and

update these in the context of choice.

1.2 A brief history of preferential choice re-

search

Preferences are most typically defined as an order given by an agent to al-

ternatives when making a choice. Early economic models of choice assumed

that preferences could be described by their utility (Bentham, 1789). Initially,

utilities were represented using real numbers over available options, allowing

for options and bundles to be aggregated and compared. For example, early

choice models used utilities to model the functional relationship between dif-

ferent products, such as the point which consumers became indifferent towards

bundles of goods (a brief review of these models is provided in Appendix A

and the reader is advised to consult Busemeyer and Rieskamp 2014 for further

information). The terms utility and preference are nowadays used interchange-

ably (Warren et al., 2011), although may be measured in different ways. For

example, some may equate preferences with a choice or willingness to pay (i.e.,

revealed preferences) whereas others may measure them explicitly using rat-

ing scales (i.e., stated preferences). Revealed preferences such as choices may

appeal to those wanting to predict subsequent choices, given that there can
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be a gap between what people say and do (LaPiere, 1934). However — as I

will introduce below — preferential decisions are highly sensitive to the choice

context and people may not even choose the same option consistently within

the same experiment (Mosteller and Nogee, 1951; Hey, 2001).

Early work by cognitive scientists argued that — contrary to rational

economic models — decision makers are limited in their capacity for processing

information (Simon, 1955) and may therefore restrict their consideration of

attributes and alternatives. A major focus was therefore to characterise the

search strategies used when making preferential choices, particularly when

making decisions-by-description. Many heuristic strategies have been proposed

to explain how consumers navigate such scenarios (Tversky, 1972; Simon, 1955;

Alba and Marmorstein, 1987), ranging from lexicographic strategies (which

choose options based on whichever is superior on a given attribute, such as

price) to weighted additive strategies (where a subjective importance weight

is assigned to each available attribute). Broadly, strategies vary in the extent

to which they consider available information (Bettman et al., 1998), namely

the number of attributes processed, the amount of information processed for

each attribute, whether information is processed by alternative (i.e., multiple

attributes studied for a single option) or by attribute (i.e., multiple alternatives

considered on a given attribute) and whether strategies are compensatory (i.e.,

a good value on one attribute can compensate for a bad value on another) or

non-compensatory. Whilst some strategies make use of an invariant set of

preferences (Tversky et al., 1988), a prevailing view is that people often do not

have well-defined preferences; instead constructing them on the spot based on

properties of the task at hand and the constraints of their cognitive systems

(for a review, see Bettman et al., 1998).

A related strand of experimental research has focused on characterising

the situations where decision-makers reverse their preferences. Notable early

studies showed that people often violate the assumptions of subjective expected

utility theory when making decisions under risk (e.g., gambles) (Savage, 1954;
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von Neumann and Morgenstern, 1944). For example, suppose you are informed

about the outbreak of an unusual disease, and subsequently asked whether

you would save 1
3 of patients for certain, or invest in a program that has a 1

3

probability of saving 100% of patients. With this framing, the majority (∼72%)

choose the first option, opting to save lives with high certainty. However, when

the same question is asked but framed in the context of lives lost, the majority

(∼78%) choose the second option. When framed in terms of gains, people tend

to be risk-averse, whereas the prospect of losses tends to elicit risk-seeking

(Tversky and Kahneman, 1981).

Preferences for options described across multiple attributes may also re-

verse depending on the presence or absence of irrelevant alternatives (Huber

et al., 1982; Simonson, 1989). For example, suppose a decision maker is asked

to choose between options A and B, where A is high in quality and price and

B is low on both. When a decoy option D is introduced that is similar to A

but deficient on price, the probability that people choose A increases; this is

known as the attraction effect (Huber et al., 1982). If the decoy is instead

middling on both attributes between options A and B, then decision makers

may be drawn to that option by virtue of the fact that it is a compromise

(Simonson, 1989). When a decoy option is added that is competitive with

option A — say, slightly deficient in quality but more competitive in price —

this can reduce the choice share of A but not B; this is known as the simi-

larity effect (Tversky, 1972). Context effects have been demonstrated among

risky prospects (Herne, 1999; Soltani et al., 2012; Farmer et al., 2017), percep-

tual decisions (Choplin and Hummel, 2005; Trueblood et al., 2013), consumer

choices (Huber et al., 1982; Noguchi and Stewart, 2014; Simonson and Tver-

sky, 1992) and even slime mould (Latty and Beekman, 2011). These context

effects breach the assumption that choices are independent from irrelevant

alternatives (IIA) (amongst other assumptions of economic models), thereby

emphasising the context-sensitive nature of preferential choice. They can even

drive choices towards inferior prospects (Farmer et al., 2017), thereby also
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violating value-maximising models of behaviour.

Starting in the 1990s with work by Tversky and Simonson (1993), a wide

array of computational models have been proposed that aim to account for

context effects and the factors that amplify and diminish them (see Busemeyer

et al., 2019, for a full review). Perhaps some of the best-known are evidence

accumulation models, such as Multi-alternative Decision Field Theory (Roe

et al., 2001) and the Multi-alternative Linear Ballistic Accumulator (Trueblood

et al., 2014), amongst others. Whilst their details are beyond the scope of

this introduction (for a recent review, see Trueblood, 2021), these models are

unified in that they assume that evidence (i.e., valuation) for each option

accumulates over time until one reaches a decision threshold. Competitors are

evaluated in terms of their ability to explain both choices and their response

times.

More recently, the focus has shifted towards explaining seemingly irrele-

vant experimental manipulations that amplify or diminish context effects, such

as the spatial ordering of options on the screen (Evans et al., 2021) or the con-

creteness of the attributes (for a recent review, see Spektor et al., 2021). To

date, no model can account for all of these moderating factors (Spektor et al.,

2021). Some have questioned the importance of studying context effects, given

that they can be amplified and diminished by seemingly irrelevant changes in

experimental design (Frederick et al., 2014).

An additional challenge is that context effects may disappear or reverse

in more naturalistic contexts. For example, Frederick et al. (2014) found no

evidence of the attraction effect when participants were given the opportunity

to taste products or when options were presented perceptually (e.g., hotels of

different quality were presented pictorially). A recent follow-up similarly found

no evidence for the attraction effect when participants were asked to choose

between movies carefully matched for similarity (Trendl et al., 2021). In these

naturalistic settings, attributes of options must be retrieved from memory,

which appears to drive important differences in preferential choices.
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The highly-stylised presentation of options in certain experimental tasks

may therefore limit their external validity, particularly because they diminish

the role of long-term prior knowledge. In this thesis, I will argue that — to un-

derstand how they are made in naturalistic settings — we must examine how

long-term knowledge is exploited during preferential decision-making. This

interaction has been described in several related fields. For example, studies

of category learning have shown how discriminative decisions can warp se-

mantic knowledge (i.e., general knowledge about the world) (Davis and Love,

2010; Braunlich and Love, 2019) and how selective retrieval of related exem-

plars can bias decisions (Nosofsky and Palmeri, 1997; Giguere and Love, 2013;

Hornsby and Love, 2014). Studies of reinforcement learning have shown how

semantic knowledge may be abstracted from sequential experiences, such as

the map of a well-explored maze (Tolman, 1948; Eichenbaum, 2017b), and

how episodic knowledge can facilitate inferences of an action’s value in large

state spaces (Gershman and Daw, 2017; Mnih et al., 2015). Elsewhere, stud-

ies of judgment have shown that when people make decisions from experience

they tend to underweight the probability of rare events, perhaps because they

selectively retrieve recent exemplars from memory when constructing their es-

timates (Hertwig et al., 2004).

Summary: Psychologists have made considerable progress understand-

ing how people make isolated, stimulus-based choices with a fixed set of op-

tions. Preferential choices are highly context sensitive, depending on the

attribute similarity with competing options. Despite this, questions remain

about the generalisability of well-studied effects, such as context effects.

Whilst comparatively uncommon, behavioural studies investigating the role

of long-term memory in preferential choice has been of growing interest, and

I aim to review the key findings in the bulk of this introduction.
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1.3 A brief introduction to human memory

systems

I now briefly introduce some key concepts about human memory, before dis-

cussing what is known about the role of long-term memory in preferential deci-

sions. Memory allows humans to encode, store and retrieve prior information.

A primary function of memory is to help us predict future events and thus can

be considered as an adaptation to allow better decision-making (Dasgupta and

Gershman, 2021; Biderman et al., 2020). Memory is an information processing

system thought to comprise of a sensory processor, short-term, working and

long-term memory (Tulving, 1972). Sensory processors like the eye allow for

information from the outside world to be perceived by the agent. Short-term

memory allows for knowledge to be stored in an active, readily available state,

albeit at a limited capacity (Miller, 1956). Working memory allows for the ac-

tive manipulation of information and helps to determine what is encoded and

what is retrieved (Baddeley, 2007). Long-term memory allows for the storage

of such information over longer time periods.

Long-term memory has been subdivided into declarative and non-

declarative (or implicit) memory (Squire and Zola, 1996). Storage and re-

trieval of declarative memory is thought to occur above the level of conscious

awareness. For example, a person may store or retrieve episodic memories of

past experiences or events and they may also store or retrieve semantic knowl-

edge, such as general knowledge about concepts or facts in the world (Tulving,

1972). Non-declarative or implicit memory is said to operate below the level

of conscious awareness (Graf and Schacter, 1985). For example, speaking a

language, tying one’s shoes may or learning a conditioned response recruits

procedural memories that are easier to perform than to articulate (Gershman

and Daw, 2017). Implicit memories may also be subconsciously activated or

primed by an environmental stimulus.

Associations are fundamental building blocks of memory. During asso-
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ciative learning, one learns that a cue or behaviour predicts another stimulus.

Learning of associations may occur across different memory systems depending

on properties of the stimulus (Eichenbaum, 2017a; Mason et al., 2021), such as

whether it is rewarding (e.g., food) (Pavlov, 1927) or unrewarding (Wimmer

and Shohamy, 2012). Associative memories can be organised into higher level

structures, according to their consecutive, temporal and hierarchical associa-

tions (Mandler, 2011; Eichenbaum, 2017a). These organisational structures

allow for memories to be associated indirectly, allowing for higher-level knowl-

edge to be abstracted. Mental representations can therefore be constructed

from associations in memory to reflect attributes, features, properties or char-

acteristics about the world and things in it. Computational cognitive methods

often use ideas from linear algebra to approximate these representations and

describe how they are learned (for a recent review, see Polyn, 2022).

Insights about the organisation and interaction of memory systems can

be revealed by studying memory retrieval. During list recall tasks, where lists

of words are memorised and then recalled, participants tend to be more accu-

rate at recalling items experienced first and last; these primacy and recency

effects are thought to characterise episodic rehearsal and short-term memory,

respectively (Murdock, 1962). During semantic fluency tasks, where items are

listed from a category (e.g., animals), sequential retrievals are often close se-

mantic associates (Bousfield and Sedgewick, 1944). Associative memories can

also be highly context sensitive, with learned associations more likely to be

recalled in the specific context in which they were encoded (Bouton, 1993,

2004). Memories can also be fallible, such as when the high semantic simi-

larity between studied items causes related items to be erroneously retrieved

during test (Deese, 1959; Roediger and McDermott, 1995). These character-

istic patterns of human memory reach beyond simple list recall tasks. For

example, in this thesis, I will demonstrate how associations across declarative

memory influence retrieval of options and their attributes during preferential

decision-making.
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Summary: The storage and retrieval of information from memory im-

proves our ability to make predictions and decisions about the future. Our

prior experiences accumulate into long-term knowledge, such as episodic

and semantic memories. This knowledge undoubtedly facilitates preferential

decision-making in environments for which we have related prior experience.

Yet, as discussed earlier, the interaction between declarative memory and pref-

erential choices has received relatively little attention in the psychological lit-

erature. In the remainder of this chapter, I’ll discuss what is known. In

particular, I’ll discuss how option attributes are retrieved from memory when

they are not present, how options are retrieved from memory when they are not

explicitly presented and how memory is updated following a choice. Whilst not

an exhaustive review, I hope to provide a solid foundation for understanding

the subsequent chapters.

1.4 Retrieval of option attributes from mem-

ory

To demonstrate context effects, attributes of choice options are often presented

explicitly, in cue-attribute matrices. This affords researchers a high degree

of experimental control, allowing them to model both the process (Bettman

et al., 1998) and the outcome (Bröder, 2003; Rieskamp and Hoffrage, 1999) of

preferential decisions. In naturalistic domains, people often make judgments

on the basis of information that is not explicitly presented, such as experience

attributes relating to the experience of sampling an option (e.g., taste) (Wright

and Lynch, 1995).

1.4.1 Determinants of attribute retrieval

Information processing strategies have been a core focus in studies of stimulus-

based choice (Tversky, 1972; Simon, 1956; Tversky and Simonson, 1993). Dur-

ing memory-based choice, it seems that people often rely on attribute-wise
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processing (Lynch and Srull, 1982). Biehal and Chakravarti (1982) asked par-

ticipants to study four fictitious toothpaste brands, either to choose or to

prepare for questions later. When asked to freely recall information about the

studied brands, participants in the choice condition tended to recall attributes

of options (e.g., price), whereas those in the learning condition recalled more

brand-based information. Interestingly, those in the choice condition recalled

less information overall, indicating that studying options with the goal of mak-

ing a choice directs attention selectively towards certain attributes of options.

The nature of the choice and the decision strategy used can also affect

what is retrieved. For example, many processing strategies benefit from alter-

natives that can be aligned and thus used for comparison. Aligned attributes

therefore tend to be better remembered and also receive comparatively larger

weights than nonaligned attributes (Gentner and Markman, 1997; Lindemann

and Markman, 1996; Markman and Medin, 1995). Attributes may also be

retrieved to the extent to which they support a given decision. For example,

Lynch et al. (1988) asked participants to choose between two previously-rated

alternatives, for which prior ratings of quality and price were either diagnostic

(i.e., better on both ratings) or non-diagnostic (i.e., better on one but not the

other). When later tested on their memory for prior ratings and the option

attributes, participants tended to recall choice attributes better for cases in

which prior ratings were non-diagnostic and recalled prior ratings better for

cases in which they were diagnostic during choice. Thus, attributes are more

likely to be recruited when they support the decision-making process.

Of course, a great deal also depends on properties of memory itself. For

example, by manipulating the depth at which participants encoded informa-

tion about televisions (using a retroactive interference paradigm), Feldman

and Lynch (1988) found that participants who studied option attributes with

less subsequent interference were more likely to recall and subsequently use

those attributes to make a subsequent choice. Thus much depends on the ac-

cessibility of knowledge at the time of decision. Memory retrieval also depends



1.4. Retrieval of option attributes from memory 41

on how knowledge is structured (Raaijmakers and Shiffrin, 1981; Howard and

Kahana, 2002). Using a free recall paradigm, Biehal and Chakravarti (1982)

found that participants were primarily biased towards retrieving information

about brands of studied products, leading them to suggest that “consumer

memory for product information is primarily brand organized”. However this

likely differs depending on how options are encoded. For example, when choice

options were organised by brand during encoding, people tended to recall them

in an alternative-wise way, whereas when they were organised by attributes

during encoding, they tended to recall options with similar attributes (Bettman

and Kakkar, 1977).

1.4.2 Conceptual representation of options

So far we have discussed how extrinsically presented information is retrieved

to support choices. But what about the knowledge we gain through our direct

experience? Such knowledge is not directly observable, meaning that it must

be inferred. One approach is to have participants explicitly organise stimuli

into categories. For example, when asked to freely sort food items, emerging

categories indicated that people defaulted to taxonomic (e.g., fruit and meat)

and — to a lesser degree — script organisations (e.g., breakfast foods) (Ross

and Murphy, 1999; Murphy and Ross, 1999). A challenge with this approach

is that it may be biased by the stimuli present in the task. For example, free-

sorting of larger set sizes indicated that semantic classifications tended to be

more thematic as the sets became larger (Lawson et al., 2017).

Another approach is to learn approximations of mental representations

representations through people’s behaviour. For example, distributed models

of semantic memory have been used to approximate representations of objects

and concepts (Landauer and Dumais, 1997; Shepard, 1974; Yee et al., 2018).

Typically, these models are trained to explain the co-occurrences of words in

people’s language use. Words are represented using low-dimensional vector

representations and items that are nearby in vector space are considered more
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similar. Words may become less similar in semantically meaningful ways as

they become more distant along a vector direction (Mikolov et al., 2013).

Numerous vector space models have been proposed, but they are united in

their ability to successfully predict human responses, such as judgments of

semantic similarity (Landauer and Dumais, 1997; Jones and Mewhort, 2007),

word categorisation (Laham, 2000) and word gist (Griffiths et al., 2007).

Whilst initially used to approximate semantic representations of objects

and concepts, vector space models can also explain conceptual representation

of options in naturalistic domains. Bhatia and Stewart (2018) used a popular

vector space model (known as word2vec) as input to several well-known cog-

nitive models of preferential choice. This semantic space was hypothesised to

capture mental representation of options in domains where attributes are not

presented explicitly, such as when choosing foods or movies by images. Results

showed that these computational models could accurately predict preferential

choices out-of-sample, indicating that they may reflect the mental organisation

of options.

Summary: When attributes of options are not presented explicitly, they

must be retrieved from memory. These so-called memory-based choices can

therefore be influenced by properties of memory, such as the accessibility of at-

tributes in memory or the nature by which memory for attributes is organised.

The mental organisation of option attributes has been approximated using

distributed models of semantic memory, with promising results. In Chapter

2, we introduce a method for estimating conceptual representations of options

directly from their choices, by observing the co-occurrences of products in

shopper’s baskets.

1.5 Retrieval of options from memory

As with attributes, choice options may not be presented explicitly when mak-

ing preferential choices in the real-world. For example, when shopping for
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groceries online, one must retrieve ideas of what to buy from memory before

searching for them. This was first identified by early marketing research on

consideration set construction, which showed that recall of brands in the ab-

sence of explicit choice sets could be predicted by marketing variables, such

as advertising and provenance (Nedungadi, 1990; Shocker et al., 1991) (for a

review, see Roberts and Lattin, 1997). These studies rightly emphasised the

importance of memory retrieval in cases where choice sets are large or not

presented explicitly. However, I focus on the problem of option retrieval here,

which is broader than recall of brands typically studied in marketing.

1.5.1 Option generation

Open-ended choices require a consideration set to be generated from memory

before a selection can be made. One key determinant of what is retrieved is the

strength of the association between options and the current choice context in

memory (Keller and Ho, 1988)1. For example, brands more strongly associated

with a cue category during encoding (e.g., “soft drinks”) were more likely to

be retrieved for consideration and indicated as a preference in a later test (e.g.,

“which soft drink would you most like to consume?”) (Posavac et al., 2001).

Thus, options that have a strong episodic association with a choice context

may have a high probability of being considered.

As well as episodic associations, options may also be retrieved according to

their semantic association with the choice context (Bhatia, 2019). For example,

when asked to list foods one would most like to consume, participants tend to

recall items in semantically related clusters (Bhatia, 2019). This clustering of

responses could be predicted by distributed models of semantic memory (such

as those discussed in the previous section), further supporting the claim that

these models capture how options are represented and retrieved in naturalistic

domains. These models feature prominently within this thesis.
1Note that other determinants of option generation have been proposed, such as cognitive

control and ideation fluency (Del Missier et al., 2015). However, these proposals are less
relevant to long-term memory and thus not reviewed here
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The quality of generated options may depend on one’s experience with

the domain. For example, Raab and Johnson (2007) found that experienced

Handball players generated a greater diversity of suggested plays when watch-

ing videotapes of games and retrieved better options first, as marked by expert

judges. Analyses of chess moves proposed by experienced players indicated a

higher overall quality of initially generated options (Klein et al., 1995). Experts

may therefore be able to perform deep searches of possibilities that are con-

tingent on the first one being considered, in ways analogous to the tree-search

algorithms used by expert game-playing AI (Silver et al., 2016).

1.5.2 Option selection

Once a consideration set has been generated, one must then decide on an op-

tion. During their analyses of suggested plays of Handball players, Johnson

and Raab (2003) argued that an adequate heuristic strategy is to take-the-

first option that comes to mind. This is because the first option generated

was often the best. Analyses revealed that participants would have had a

higher accuracy if they had only selected this option. This is consistent with

“less-is-more” effects, which have also been demonstrated in attribute-wise pro-

cessing of stimulus-based judgments (Goldstein and Gigerenzer, 2002) (though

see Parpart et al., 2018). Taking the first may similarly work in preferential

domains, particularly when one is experienced or under time pressure.

In preferential choice tasks, retrieved options may be evaluated accord-

ing to their subjective value. For example, using the “remember-and-decide”

task, in which participants learn to associate snacks with positions on a screen,

Gluth and colleagues (Gluth et al., 2015a; Mechera-Ostrovsky and Gluth, 2018;

Kraemer et al., 2021; Weilbächer et al., 2020) showed that participants exhib-

ited a bias towards choosing remembered snack positions during a preferential

choice task, but tended to reject remembered options if they had a very low

subjective value, as indicated by initial ratings. This suggests that remembered

options are compared to a reference subjective value before being selected. In
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a choice-directed recall task — where participants were asked to study a list of

snacks and then recall them in order of preference — Aka and Bhatia (2021)

showed that the retrieval order was best explained by a model that incorpo-

rated subjective valuations with memory-based determinants of list-recall, such

as recency and semantic associations. Similarly, when modelling answers to

open-ended questions, such as “what is your favourite fast-food restaurant?”,

choices were best predicted by a model that integrated semantic retrieval pro-

cesses with subjective valuations (Zhang et al., 2021). These findings indicate

that subjective valuation of generated options may interact with retrieved op-

tions to additionally influence their probability of being chosen.

Summary: In open-ended tasks, where the space of potential options

is less well-defined, people must retrieve options from memory. The proba-

bility of a retrieval depends on how strongly options are associated with the

cue in memory. Retrieved options may be selected according to a heuristic

(e.g., “take-the-first”) or selected according to their subjective value. In Chap-

ter 3, I discuss how long-term memory systems such as episodic and seman-

tic knowledge guide sequential consumer choices in a real-world open-ended

decision-making task; online grocery shopping.

1.6 Exploiting past experience

In laboratory decision-making tasks, the explicit presentation of novel options

and their attributes deliberately minimises the contribution of prior experi-

ence and thus memory. However, decision makers in naturalistic domains like

grocery stores often have prior experience with options that can help facilitate

inferences about their properties and subjective value. Typically, this takes the

form of episodic memories for past events (Tulving, 1972). Indeed, some have

argued that the role of memory is to facilitate value-based decision making

(Biderman et al., 2020) and to reduce the complexity of these computations

(Dasgupta and Gershman, 2021).
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1.6.1 Recognition, familiarity and fluency

Research from the heuristics and biases program (Gigerenzer and Todd, 1999)

has shown that decision makers tend to choose options that they have more

prior experience with. Arguably the simplest of these shortcuts is the recog-

nition heuristic, which states that a higher value (on a given criterion) will

be ascribed to whichever of two options is recognised. Recognition knowledge

is thought to arrive early on the mental stage and thus may support choices

when computational resources or prior experience are limited (Gigerenzer and

Goldstein, 1996). Whilst initially thought to be a non-compensatory strat-

egy — meaning that no other information can reverse a choice determined

by recognition — studies of naturalistic consumer choice have suggested that

recognition is used alongside other learned knowledge about a brand when it

is available (Oeusoonthornwattana and Shanks, 2010).

When both options are recognised, choice options may be preferred to

the extent that they are familiar; this is known as the familiarity heuristic.

For example, mere exposure to choice options tends to increase liking (Zajonc,

1968) and has been demonstrated across numerous domains, including words,

paintings, faces and sounds (Zajonc, 2001). However, familiarity may play a

more subtle role when choice options must be retrieved from memory. For

example, Gluth et al. (2015b) asked participants to memorise snack items to

locations on a screen and later asked them to recall which locations contained

snacks they would most like to consume. Responses were indicative of a fa-

miliarity bias, in that participants tended to recall snacks in locations that

were presented more times during encoding. But not always. In particular,

participants rejected the remembered option when it had a lower subjective

value (as measured by an auction-task performed beforehand). Negative sub-

jective valuations may therefore override familiarity biases when options must

be retrieved from memory.

The fluency by which options are retrieved from memory can boost the

subjective valuation of options. Namely, if two options are recognised but one
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is more fluently retrieved from memory, then this option tends to be preferred

against a given criterion; this is known as the fluency heuristic (Schooler and

Hertwig, 2005). For example, Hertwig et al. (2008) showed that cities that

were recognised more quickly accurately tracked judgments about their popu-

lation size. However, fluency in domains with less ecological validity, such as

judgments of company annual revenues, was a less accurate predictor of the

correct answer. Fluency therefore appears sensitive to statistical regularities

observed in the world, which highlights how prior experience can influence

judgments in naturalistic domains.

1.6.2 Decisions from experience

Decisions may differ depending on whether they are based on explicit de-

scriptions or prior experience; this is known as the description-experience gap

(Hertwig et al., 2004; Wulff et al., 2018). For example, given access to ex-

plicit descriptions of the likelihood of events, such as the probability it will

rain, people tend to overweight the probability of rare events, leading to a

general aversion to risky choice (Kahneman and Tversky, 1979). In contrast,

when people only have access to samples of prior experience, such as history

of past weather, risky events tend to be underweighted relative to their actual

occurrence (Hertwig et al., 2004). A proposed explanation for this gap is that

decisions from experience are susceptible to the recency effect, or the tendency

to retrieve recent exemplars from memory (Hogarth and Einhorn, 1992). In

particular, rare events are less likely to be experienced recently, biasing sub-

jective estimates of their likelihood downwards (Hertwig et al., 2004).

Episodic knowledge of one’s past choices within a domain can be used to

support inferences. For example, Scheibehenne et al. (2015) showed that par-

ticipants could accurately estimate the market prices of wines when they had

chosen similar wines during training. More recently, Jarecki and Rieskamp

(2022) showed that subjective choices of novel options (pens and snacks)

were better predicted by an exemplar comparison process than more tra-
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ditional attribute-value comparison theories. Interestingly, these exemplar-

based strategies were originally described by models of category learning

(Nosofsky, 1984), which categorise based on their proximity to stored exem-

plars in memory. Such models have an attractive explanatory power, in that

they formalise the ongoing interaction between memory and choice when mak-

ing repeated decisions from experience.

Episodic knowledge from distinct events can also be integrated to guide

value-based inferences. For example, having experienced that A is more valu-

able than B and that B is more valuable than C, A is often preferred over

C, despite no prior experience of this combination (Dusek and Eichenbaum,

1997; Heckers et al., 2004). Similarly, when two stimuli are first associated in

the absence of reward (e.g., through sensory preconditioning), the later asso-

ciation of one stimulus to a reward can increase preference for the unrewarded

associate (Wimmer and Shohamy, 2012). Indeed, such associations may only

need to be imagined for valuations to be inferred, such as imagining one’s

preference for “tea-jelly” or “avocado-milkshake” (Barron et al., 2013). After

choosing between two options, experiencing a reward can cause the nonchosen

option to be ascribed the inverse value Biderman and Shohamy (2021), sug-

gesting that deliberation binds choices in memory. Thus, value can propagate

through episodic experience to influence the probability of choosing novel, but

related options.

1.6.3 Sequential sampling from memory

During the decision making process, prior experience is thought to accumulate

sequentially over time. This process can be formalised using sequential sam-

pling models, such as drift-diffusion models (Ratcliff, 1978). Whilst initially

used to describe perceptual decision-making (such as the direction of moving

dots, Britten et al., 1992), adaptations have subsequently been proposed to ac-

count for preferential choice, such as risky gambles (Busemeyer and Townsend,

1993; Usher and McClelland, 2004), multi-attribute (Trueblood et al., 2014;
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Bhatia, 2013) and value-based choice (Krajbich et al., 2010; Krajbich and

Rangel, 2011). One proposed explanation for the close correspondence be-

tween perceptual and preferential decisions (Dutilh and Rieskamp, 2016) is

that both depend on the sequential retrieval of evidence from memory (Shadlen

and Shohamy, 2016). In particular, memory circuits may integrate evidence

about the options (e.g., attribute values) and compute their subjective value,

even when the attributes themselves are presented explicitly. As these value

estimates are sequentially updated, evidence towards options grows, helping

choices to become increasingly representative of one’s preferences over time.

Taken to the extreme, the theory of Decision by Sampling (Stewart et al.,

2006) proposes that subjective valuations are constructed online by sequen-

tially comparing attribute values drawn from memory and those available in

the surrounding context (e.g., from other options available). By keeping a

tally of the number of ordinal comparisons that favour a target option, one

can generate a relative utility for each option. A consequence of this the-

ory is that people do not possess underlying psychoeconomic scales, merely

the memory of attribute values for related options, which are used during the

online comparison process. Despite its simplicity, decision by sampling can

account for several well-known economic phenomenon (Stewart et al., 2006),

such as temporal discounting and the overestimation of rare events, in addition

to multi-attribute context effects (Ronayne and Brown, 2017).

1.6.4 Reinforcement learning

Reinforcement learning (RL) is a framework that describes how agents learn to

ascribe value to options through direct experience. Computational models of

RL describe how knowledge about action values or the world can be extracted

from many experiences to drive choice. Recent advances have driven several

artificial intelligence breakthroughs (Mnih et al., 2015; Silver et al., 2016, 2017)

and earlier “model-free” RL models exhibit remarkable overlap with neural

firing patterns in the brain (Schultz et al., 1997; O’Doherty et al., 2003). More



1.6. Exploiting past experience 50

recent advances have endowed these models with more deliberative, “model-

based” evaluation (Daw et al., 2005; Dolan and Dayan, 2013), allowing them to

adapt more easily to novel tasks. Cognitively, the processes of reward learning

and knowledge abstraction map closely on to procedural and semantic memory

and distinctions between model-free and model-based RL align with procedural

and declarative memory systems in the brain (Eichenbaum and Cohen, 2004;

Poldrack et al., 2001).

Typically, value estimates of model-free RL models are updated incremen-

tally, leading to a decaying influence of past experiences. However, as we have

discussed above, people may sample episodic knowledge in domains where they

have prior experience, causing their behaviour to depart from model-free RL.

For example, related episodic knowledge may be cued by the choice context,

such as inferring the payoff of a gamble based on which room it was in (Born-

stein and Norman, 2017). Reminders of prior choices can similarly bias our

actions (Bornstein et al., 2017). These insights have inspired computational

analogues, such as replay of recent experience during online training Mnih et al.

(2015). Episodic knowledge can therefore help to guide value-based decisions

in contexts for which we have prior experience.

When learning about an environment through repeated decisions, one

may be drawn to novel options. For example, in non-stationary environments

where the options are changing (like supermarkets introducing new products),

it makes sense to periodically explore new options in addition to exploiting

known favourites. Seeking novel options in these cases brings an opportunity

to discover potentially valuable outcomes, and decision-makers appear biased

towards such behaviour in certain learning environments (Wittmann et al.,

2008). Attributes may be used to infer the value of novel options via function-

based generalisation, helping to guide explorations towards options that are

similar to previously rewarding outcomes (Stojić et al., 2020). For example, a

study of takeaway purchases showed that consumers tended to explore dissim-

ilar restaurants after a bad experience (measured through a negative rating)
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or transition to similar restaurants after a positive experience (Schulz et al.,

2019). Thus, exploration of new options appears to depend on both episodic

memory of what was tried in the past as well as semantic knowledge to guide

exploration towards options that share features with previously valuable out-

comes.

Summary: Naturalistic choices rarely exist in isolation and therefore

may be influenced by related past experience. This may manifest in heuristics

or biases, such as the tendency to prefer options that are more familiar. In

many circumstances, we must choose options to learn about their outcomes.

Our success in these tasks depends on our ability to encode and retrieve related

episodes from memory and generalise from those experiences. Choice may also

depend on more fundamental properties of human memory, such as the bias

towards retrieving recent exemplars. In Chapter 2, I discuss how knowledge

can be abstracted from experience with preferential choices. In Chapter 3,

I discuss how such experience may guide sequential preferential choices. In

Chapter 4, I discuss how subjective preferences can be learnt over time in the

absence of a clear extrinsic reward signal.

1.7 Choice-supportive memory biases

Following a choice, evidence from that past experience may be integrated into

memory. For example, as discussed, prior experience of options may be stored

in episodic memory to support inferences in familiar domains. Interestingly,

the mere act of making a choice may skew memory in favour of that option.

Such choice-supportive memory biases can be particularly pronounced in pref-

erential domains, where choices are not followed by extrinsic feedback (Nakao

et al., 2012).
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1.7.1 Choice-supportive misremembering

One such bias is the tendency to retroactively ascribe positive attributes to a

chosen option and/or to demote attributes of a foregone option (Lind et al.,

2017). For example, a consumer may downplay the faults of a car they had

purchased and emphasise the negative qualities of a car they had eschewed.

The facts of a decision — such as the attributes of chosen and nonchosen

options — can be distorted to be supportive of a past choice2. For example,

Svenson et al. (2009) presented participants with facts about patients, such as

the expected survival time, and asked them to prioritise a patient for surgery.

After deciding and then performing a distractor task, participants tended to

exaggerate positive characteristics of their choice and downweight negative

characteristics. Memory of previously experienced attributes can therefore be

distorted to favour one’s prior choices.

People may also misattribute values to the wrong option when their mem-

ory is tested after a delay, so as to justify their past choice. For example, using

a decision-by-description design, Mather et al. (2000) tested participants’ re-

call of attributes belonging to prior choices of job-candidate, blind-date and

roommate. Results revealed that — following a distractor task — participants

tended to recall positive attributes of the foregone option as belonging to their

choice, and vice versa. Such memory distortions also occurred for choices par-

ticipants incorrectly believed they had made, either because they misrecalled

(Henkel and Mather, 2007) or they were tricked by the experimenter (Henkel

and Mather, 2007; Pärnamets et al., 2015). This suggests that misattribution

errors occur during retrieval, rather than encoding.

Participants may also falsely remember attributes of their choices in ways

that are supportive of their decision. For example, choice-supportive attributes

2The distortion of facts after a decision are distinct from subjective distortion of the
attractiveness of options during the decision-making process. These are better characterised
by processing bottlenecks during decision-making, rather than any influence of memory per
se, and thus are discussed elsewhere (Svenson and Benthorn, 1992; Holyoak and Simon,
1999; Russo et al., 1996)
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may be recognised, despite having never been presented before (Mather et al.,

2000). In some cases, false memories of a choice may elicit evaluations and be-

haviour that are supportive of that false memory. For example, false memories

of loving asparagus as a child can lead to higher appreciation of that food and

a higher willingness to pay (Laney et al., 2008). False memories of becoming

ill after eating a food can diminish their liking for it (Bernstein and Loftus,

2009). In sum, these findings show how choice-supportive biases may distort

recollection of past choices and their attributes.

1.7.2 Choice-induced preference change

Choosing freely between options — in the absence of extrinsic feedback — may

also shape subjective valuation of options so as to increase their favourability

in subsequent ratings. In a classic demonstration of this, Brehm (1956) asked

participants to rate food items by their desirability and — in a subsequent

phase — choose freely between pairs, before rating them again. Results showed

that ratings in the final phase increased towards chosen options and decreased

towards nonchosen options, particularly when options were rated more closely

in the initial phase.

The original design of the free-choice paradigm has been criticised, in

that ratings may have been noisy and thus not reflective of participants’ true

preference (Chen and Risen, 2010; Izuma and Murayama, 2013). However,

follow-up studies — such as an experiment in which participants chose between

anonymous boxes only to have the contents revealed after the choice — revealed

that choice-induced preference change does occur (Sharot et al., 2010; Alos-

Ferrer and Shi, 2012; Koster et al., 2015; Schonberg et al., 2014; Miyagi et al.,

2017; Akaishi et al., 2014; Nakao et al., 2016; Vinckier et al., 2019) and can

be long-lasting (Sharot et al., 2009). Some have proposed moderating factors.

For example, preference change may depend on whether one remembers the

choice, suggesting a dependence on episodic memory (Salti et al., 2014, though

see Lieberman et al. 2001).
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Explanations for this post-choice spread of alternatives have varied. One

explanation is that choosing between equally rated options causes cognitive

dissonance (Festinger, 1957), which can be reduced by making the chosen

alternative more desirable and the eschewed alternative less desirable. An

alternative — self-perception theory (Brehm, 1956) — states that people ret-

rospectively infer their preferences by observing their choices. Indeed, Brehm

(1956) showed that post-choice ratings changed most for alternatives that were

more comparable prior to the choice, which is consistent with both accounts.

However, subsequent studies found evidence of asymmetric preference change

for chosen and nonchosen options, which was particularly pronounced in de-

pressive patients (Miyagi et al., 2017). More recent accounts have therefore

proposed that option values are self-reinforced by choices (Akaishi et al., 2014;

Hornsby et al., 2020; Chammat et al., 2017), which allows for asymmetric

updating of option values for chosen and non-chosen options (Miyagi et al.,

2017).

Summary: Following a preferential choice, memory may be updated so

as to be supportive. This can distort one’s recollection for the features of that

choice, such as wrongly attributing negative attributes to nonchosen options.

Preferences may correspondingly change following a choice, such that a forced-

choice between two equally-rated options can spread subjective value in favour

of the choice. It is unclear whether preferences also increase towards novel but

related options; this is a core focus in Chapter 4, where I propose an account

of preference learning and decision making in multi-attribute space.

1.8 Research question

Laboratory studies of preferential choice have made considerable progress in

describing how decision makers navigate fixed sets of options. However, there is

arguably a disconnect between preferential choices made in the lab and those

made in everyday life. In particular, we often have declarative knowledge,
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gained through related prior experience, that helps to guide our inferences

about the attributes and subjective value of different options when we make

decisions in everyday life. How does prior experience — particularly repre-

sented across long-term, declarative memory — influence preferential choices?

How does it help us to make sense of environments where there are innumerable

options to choose from? These are the main overarching questions addressed

in my thesis.

The interaction between declarative memory and preferential choice is

unpacked more precisely over the following chapters. In Chapter 2, I address

how abstract semantic knowledge may be learnt through direct experience of

options, helping us to ascribe meaning and infer properties of options. In

Chapter 3, I evaluate the contribution of episodic and semantic knowledge

when making sequential, memory-based choices; here choices depend on the

retrieval of options from memory and are therefore influenced by associations

across declarative systems. In Chapter 4, I ask how subjective preferences

for options are gained through direct experience, particularly how they are

inferred and updated in option spaces that are large, multidimensional and

overlapping. Throughout the thesis, I predominantly study consumer choices

whilst drawing inspiration from literature on learning and memory. To do

this, I use a mixture of behavioural experiments, computational models and

analyses of large datasets of real-world consumer choices.

1.9 Dissertation outline

How do consumers conceptualise the countless products available to them?

In Chapter 2 (Hornsby and Love, 2020), I gain insights about this semantic

organisation by examining the choices of real British supermarket consumers.

Using a topic model to abstract high-level topics from consumer purchases, I

find that learnt topics are meaningful and centre primarily around goals (such

as “stir fry” and “food for tonight”). The psychological validity of the topic
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labels and the topics themselves are confirmed in two large-scale behavioural

experiments conducted with retail industry experts and real consumers, re-

spectively. The goal-oriented nature of these topics suggests that consumers

abstract meaning from products through their experience to support future

action. Moreover, I find that individual differences in consumers’ topics pre-

dicted demographic information, such as age and gender. This suggests that

choice trajectories reveal conceptual organisation and may also give rise to it.

How are declarative systems leveraged when making choices in large op-

tion spaces? In Chapter 3 (Hornsby and Love, 2022), I explore how conceptual

representations influence the decision of what to choose next, when the deci-

sion depends on options first being retrieved from memory. When shopping

for groceries online, consumers could feasibly search for products in any order.

Yet, using a large dataset of over 100,000 online grocery shops, we find that

choices can be predicted by their similarity with the prior purchase, suggesting

that choices cue the retrieval of subsequent options in memory. Importantly,

we develop representations of episodic, semantic and hierarchical semantic

knowledge and find that a combination of all three explain choices and their

response times. This suggests that consumers use their past choice to cue

multiple sources of declarative knowledge when deciding what to choose next.

Finally, we find that the type of knowledge people relied on predicted the type

of errors they made; as hypothesised, more episodic retrievals predicted fewer

items being forgotten and more semantic retrievals predicted more items being

added to one’s basket that they didn’t otherwise need. Thus, when choices de-

pend on the retrieval of options, much depends on how options are associated

in memory.

If people represent options within large conceptual spaces, how are pref-

erences and represented within them? In Chapter 4 (Hornsby et al., 2020),

I explore how subjective preferences may be learned and used in real-world

domains, where there are countless options and no extrinsic reinforcements to

learn from. Building on previous findings showing that supermarket consumers
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tend to explore less the more they exploit the same product, we propose that

people use their past choices as the basis by which to update their subjective

preferences. I propose a computational model of this process and simulate it

to show how it could give rise to strong subjective preferences in the absence

of extrinsic reinforcement. Because it represents preferences over attributes of

choices, it is able to infer the subjective value of any option by virtue of its sim-

ilarity to the current preference. In two large-scale behavioural experiments,

I validate several key predictions of our model; that people prefer unseen op-

tions by virtue of their similarity with the prior choice and that this extends to

domains where people have strong prior preferences (e.g., political candidates).

Preferential choice is therefore cast as a learning process that seeks to align

choices and preferences within attribute space in order to maintain coherency.
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Chapter 2

Conceptual organisation of large option

spaces

2.1 Introduction

“You shall know a word by the

company it keeps”

John Rupert Firth

A synopsis of linguistic theory

Our everyday experiences shape the way we conceptualize and act in the

world. Following this intuition, previous work using text corpora has proved

useful in understanding the nature of language and human concepts (Andrews

et al., 2009; Deerwester et al., 1990). One appeal of this work is that text, such

as from newspaper articles, reflects human behavior outside the laboratory.

However, this text primarily serves a communicative role and is often scraped

from curated sources, making it less reflective of real human activity.

In this chapter, I aim to build upon previous work from the text domain

by analyzing real-world behavior from a broad section of the general popu-

lation as they go about an everyday activity in relative anonymity, namely

supermarket shopping. We apply techniques developed in computational lin-

guistics to shopping data from nearly 1.3 million trips. Instead of words and
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documents, our analyses are over products and shopping baskets. These anal-

yses reveal that conceptualisations of products are organized around goals and

interactions (e.g. tomatoes go well with vegetables in a salad), rather than

their internal features (e.g. defining a tomato by the fact that it has seeds and

is fleshy).

This work speaks to the relative importance of intrinsic and extrinsic

features in concept representation. One way that people may reason about

categories is to decompose them into intrinsic features or parts (Plato, 1973).

On this view, a bird is an animal that typically has wings, feathers, a beak, and

so on (Rosch and Mervis, 1975). However, extrinsic features are also critical

for how humans organize concepts and come to understand the world, to the

extent that some concepts may be solely defined by them (Barr and Caplan,

1987). For example, Wittgenstein (1967) asserted that the concept of game

is undefinable. One might suggest that games are fun, but Russian Roulette

is not fun and other activities that are fun are not games. Likewise, not all

games are competitive (e.g., Ring Around the Rosie). Instead of defining game

in terms of intrinsic features, one solution is to define game relationally – a

game is simply something that is played (Markman and Stilwell, 2001). Human

categories are therefore additionally sensitive to relationships and interactions

with other concepts (Markman and Stilwell, 2001).

The importance of relations and interactions extends beyond abstract

concepts. Many features of concrete concepts are extrinsic (Jones and Love,

2007). For example, whilst knowing that tomatoes are taxonomically related

to fruits, people commonly associate them with other vegetables. Even for

natural kinds, people commonly list extrinsic features for concepts (Jones and

Love, 2007), such as noting that birds eat worms. Meanings appear to update

in light of extrinsic relationships. For example, people are more likely to judge

a polar bear and a dog as similar after reading vignettes in which both played

the same role in a relation, such as chasing some other animal (Jones and Love,

2007). Likewise, merely sharing a thematic relationship, such as a man and a
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tie (e.g., wears), makes the linked concepts more similar (Schank and Abelson,

1977; Wisniewski and Bassok, 1999; Jones and Love, 2007).

When concepts are defined in terms of other concepts, what moors or

grounds our concepts to the physical world we inhabit (Harnad, 1990)? One

proposed solution is that some concepts are embodied (Barsalou, 2008). For

example, the action of hammering may be grounded to related motor pro-

grams and associated perceptions, linking the body, mind, and physical world.

Indeed, neuroscientific evidence has shown that comprehension of language is

tightly coupled with the neural regions associated with action and perception

(Pickering and Garrod, 2013). A computational model developed by Mitchell

et al. (2008) was able to accurately predict the neural activity elicited by a

noun by considering the co-occurrence of that noun with action verbs in a

large-text corpus. In effect, the action verbs, for which elicited neural activity

was known, provided a grounding or bases for representing associated nouns.

These corpus models, such as Latent Semantic Analysis, use the co-

occurence of words within some context (e.g., a document) to learn lower

dimensional, vector representations of word concepts (Deerwester et al., 1990).

Like the reviewed psychological research (Jones and Love, 2007), words need

not directly co-occur with one another to become more similar, but need only

occur in similar contexts. Although LSA has enjoyed numerous successes,

cases in which its representations diverge with those of humans has prompted

further model development (Wandmacher et al., 2008).

One subsequent proposal, Latent Dirichlet Allocation (LDA), is a prob-

abilistic approach in which documents are generated according to a mixture

of probabilities over latent themes or topics (Blei et al., 2003). For example,

LDA may find that the words ‘Parliament’ and ‘Prime Minister’ have a high

probability of belonging to the same topic (e.g., ‘politics’). A passage about

the Prime Minister visiting the Houses of Parliament would make this politics

topic highly probable, though other topics would also be somewhat likely, such

as a topic related to tourism (Big Ben is part of the Houses of Parliament).



2.1. Introduction 80

The representations learned by topic models appear similar to the con-

cepts that people use (Griffiths et al., 2007; Andrews et al., 2009). For example,

topic modeling can predict subsequent words in a sentence, disambiguate word

meanings, and extract the gist of a sentence (Griffiths et al., 2007). Related

techniques find that word meanings extracted for text corpora reflect back

that society’s gender stereotypes (Bolukbasi et al., 2016). These successes

emphasize the importance of extrinsic roles and relationships.

People learn thematic relations by observing co-occurence in events or

situations (Estes et al., 2011). In corpus analysis, word co-occurence in lan-

guage is assumed to be a proxy for co-occurence in the wild. However, this

assumption may not always hold. For example, words can co-occur in language

without being semantically related (e.g., iceburg → lettuce). More generally,

most spoken language is concerned with effective communication of relevant

information (Grice, 1975), rather than providing a faithful record of object in-

teractions. For example, in waiting to cross the street with a companion, one

would never verbalize that the passing car drives on the road. Written language

also tends to be curated. For example, journalists adhere to particular guide-

lines and aim to report on stories of interest to their readership. Whether

it’s from natural language or otherwise, data that captures co-occurence of

events in-the-wild is best suited to evaluate the structure of people’s thematic

representations.

An alternative dataset that may help to further evaluate the influence of

extrinsic features on people’s representations is consumer retail data. Retail

data are collected from consumers as they purchase products together in the

same basket, analogous to how words group together in the same document

(see Figure 2.1). While a person may be conscious not to voice every item

they bought in their supermarket shop, one’s grocery receipt provides a faith-

ful record of what they purchased in a supermarket visit. Importantly, this

data is traceable to an individual, which contrasts with most corpora analyses,

which tends to be based on language in newspapers and books (e.g., Griffiths
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NEWS

MAN BITES DOG

RECEIPT
*************

APPLE

BANANA

BEAN SPROUTS

CHILI

CHILI

LIME

APPLE

BANANA

BEAN SPROUTS

CHILI

CHILI

LIME

*************

*************

...

Item Count

Dog 1

Cat 0

Man 1

Bites 1

... ...

Item Count

Chili 2

Lime 1

Milk 0

Banana 1

...

Figure 2.1: The input in a corpus analysis is typically item counts (i.e., word
counts) within some context (e.g., a sentence or document). Anal-
ogously, products (akin to words) are organized into baskets (akin
to sentences). One advantage of applying these analysis techniques to
baskets is that, unlike natural language, meaning is unaffected by item
order.

et al., 2007). Large scale analyses of grocery retail data is therefore well placed

to evaluate the claim that individual differences in people’s experience of the

world leads them to possess different thematic representations. In particular,

it may help to supplement existing research investigating how people cross-

classify food (Murphy and Ross, 1999; Ross and Murphy, 1999; Lawson et al.,

2017; Blake, 2008), such as elucidating how regional and generational differ-

ences affect people’s thematic representations.

An additional benefit of using consumer purchasing data is that it suits

the mathematical assumptions of topic models particularly well. For example,

natural language researchers typically use their domain expertise to remove

function or ‘stop’ words that have little semantic meaning (such as the, of,

and). They may also ‘stem’ words to remove prefixes and suffixes of words

that have similar semantic meaning (e.g., eat vs. eating). Moreover, the order

of words in sentences can also make a big difference to sentence meaning (e.g.,

“dog bites man” vs. “man bites dog”). However, most standard implemen-

tations of topic models (based on the original algorithm by Blei et al., 2003)

typically ignore word order, instead preferring to consider language as a “bag-
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of-words” (for an alternative, see Huang and Wu, 2015). In contrast, for retail

data captured in-store, there is no inherent order for products within a basket,

nor a need to remove stop words or perform stemming.

If people’s thematic organization of concepts arises through their interac-

tion with the environment, then it should be possible for a topic model to re-

cover relevant representations of these through consumer purchasing patterns,

as shown in Figure 2.2. Whilst earlier research has indicated that this is possi-

ble, none (to this author’s knowledge) have explicitly measured the likeness of

learned topics to consumer’s mental representations (Iwata and Sawada, 2013;

Iwata et al., 2009; Hruschka, 2014). Although people have been shown to de-

fault to a taxonomic organization (e.g., tomato → fruit) when asked to freely

sort food items in the lab, the presence of a goal can lead to a thematic or-

ganization (e.g., tomato → salad) during decision-making (Murphy and Ross,

1999; Ross and Murphy, 1999). Because shopping is highly goal-directed, we

hypothesized that the topics recovered by a topic model would reflect thematic

organization. We tested these predictions using a large, anonymized dataset of

1,252,963 shopping baskets and 5,753 unique products, supplied by one of the

UK’s largest supermarket retailers. After optimizing an LDA solution using

fit statistics and checking for convergence1, we labelled the 25 topics recovered

by the model.

To foreshadow, we found that LDA recovered meaningful topics that were

primarily goal-directed and thematic in nature. We confirmed the psychologi-

cal reality of these topics in two human studies, one with judgments from retail

experts and another involving typical consumers. Further support came from

analyses showing that topics tied to a season varied sensibly in their preva-

lence over the calendar year (e.g., the Christmas topic was most prevalent in

December). Overall, these results suggest that — contrary to early research

on cross-classification of food (Murphy and Ross, 1999; Ross and Murphy,

1999) — thematic relations dominate representations of food. This is in line

1More detail about the model fitting procedure can be found in the methods section
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Figure 2.2: Latent Dirichlet Allocation (LDA) uncovers the higher-level product
topics that can be viewed as generating the observed baskets pur-
chased by consumers. LDA’s fit is driven by the co-occurrence pattern
of products within baskets. In the solution, each product has a proba-
bility of occurring within each topic (shown on the left for apple). The
colours illustrate which topic each product would have been labelled
with if using the maximum product topic probability. Each basket is
generated by a mixture of probabilities over the topics (shown on the
right for this basket).

with more recent claims that thematic relations may be more numerous than

taxonomic associations in people’s stored semantic network and may be more

easily revealed when examined at scale (Estes et al., 2011; Lawson et al., 2017).

Final analyses tested whether an individual’s shopping experience shaped their

conceptual organization of the products. In support of this assertion, the rate

at which an individual sampled topics (based on recent shopping history) pre-

dicted the individual’s age, gender, and geographic region. This suggests that

individual differences in people’s experience can lead them to possess notably

different thematic representations from each other. This is important, be-

cause it suggests that food-related themes discussed in the literature are likely

a function of the participants’ individual experiences and culture.
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2.2 Training a topic model with retail data

2.2.1 Method

Data

The topic model was developed on a random 0.1% sample of all grocery trans-

actions that occurred in 2014 in one the UK’s largest supermarket chains. The

transactions were filtered such that only relatively popular products selling

> 50,000 units annually were kept. Moreover, data was filtered such that only

large baskets containing ≥ 20 items were kept. Filtering was performed to

ensure that LDA would have enough observations to learn meaningful top-

ics. This is typical in LDA modelling (Yan et al., 2013) and is performed by

the original LDA authors (Blei et al., 2003). After filtering, the final dataset

contained 1,253,183 unique baskets and 5,753 unique products.

Items were modelled at the product code level. Concretely, there is a

different product code for each distinct product in the supermarket. Small

variations in that product (i.e., different sizes of the same t shirt) are not

given separate codes however.

Note that — unlike traditional uses of LDA in NLP — we did not remove

commonly occurring items from documents (i.e., ‘stop words’). Whilst natural

language may contain ‘stop words’ (i.e., common words with little semantic

meaning such as ‘the’), we did not believe grocery transactions to suffer from

the same problem. In the retail case, purchasing popular products, such as

milk, bananas and bread, may be informative, perhaps indicating that the

consumer is stocking essential items. The basket data was fully anonymised

for general research purposes so as to not be personally identifiable.

Model fit

In our experiments we applied Latent Dirichlet Allocation (LDA) to the data,

using the machine learning library in Spark 1.6.0 (Apache Software Founda-
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tion, 2016). We conducted a range of experiments to identify the optimal set

of hyperparameters (including the number of topics k) and in each case mon-

itored the training and test log-perplexity to ensure model convergence and

generalization, respectively (see supplemental for further details).

The LDA solution with the lowest log-perplexity on held out data (i.e.,

best generalization) had 25 topics. Models were trained for a maximum of

500 epochs, used the Online Variational Bayes optimization algorithm with an

α = 0.1. The remaining hyperparameters were set to the package defaults.

2.2.2 Results and discussion

The topics recovered by LDA were coherent and readily labeled by the authors.

Table 2.1 shows the top 5 products within each of 10 randomly selected topics,

according to the relevancy metric. Topics tended to be organized along activity

patterns and goals, ranging from specific (e.g., Stir Fry) to general in scope

(e.g., Cooking from scratch). This therefore provides early support for the

hypothesis that consumers primarily recruit thematic representations when

conducting their grocery shop.

When proposing labels for the topics, the authors had access to the full

item-topic relevancy matrix. In some cases, products outside of the top five

were instrumental in determining the topic label. For example, mince pies (a

popular dessert consumed during Christmas in the UK) were the seventh most

relevant item within the Christmas topic and chicken korma was eighth most

relevant within the food for now topic.

2.3 Evaluating topic labels with retail experts

To evaluate the appropriateness of the topic labels, we conducted a more de-

tailed study. Specifically, a group of industry experts were asked to look

through a sample of highly-ranking products from within 10 randomly-selected

topics and confirm that the proposed labels were indeed representative of the
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Table 2.1: Retailer-supplied product descriptions for the 5 most relevant prod-
ucts within each of the 10 surveyed topics. Note that the authors
had access to the full product-topic relevancy matrix (see https:
//osf.io/tsymx/) when they labeled the topics. Brand names have
been removed from this table for publication.

Topic Description

Food for now

ITALIAN BEEF LASAGNE 450G
ITAL CHICKEN & BACON PASTA BAKE 450G
ITALIAN MACARONI CHEESE PASTA 450G
ITAL SPAGHETTI CARBONARA 450G
ITAL HAM & MUSHROOM TAGLIATELLE 450G

Summer salad

BUNCHED SPRING ONIONS 100G
ICEBERG LETTUCE EACH
WHOLE CUCUMBER EACH
SALAD TOMATOES 6 PACK
GROWING SALAD CRESS EACH

Stir fry

FRESH EGG NOODLES 375G
VEGETABLE & BEANSPROUSTIR FRY 333G
CHINESE STIR FRY BOWL 300G
UNCLE BENS EXPRESS GOLDEN VEG RICE 250G
BEANSPROUTS 370G

Afternoon tea

2 EGG CUSTARD TARTS 2X90G
BRS/SKIMMED MLK 1.136L/2PINTS
DANISH SLICED WHITE BREAD 400G
MINHUMBUGS 200G
BANANAS LOOSE

Loose fruit and veg

CARROTS LOOSE
BANANAS LOOSE
PARSNIPS LOOSE
CONFERENCE PEARS LOOSE
BROCCOLI LOOSE

Low calorie options

LIGHFRUITS YOGUR6X175G
BRSKIMMED MILK 2.272L/4 PINTS
LIGHYELLOW FRUIYOGUR6X175
LIGHTOFFEE YOGUR175G
LIGHLIMITED EDITION YOGHURT 165G

Cheapest option

EDAY VALUEBAKED BEANS IN TOMSAUCE 420G
EVERYDAY VALUE HAM 364G
EDAY VALUE MILK CHOCOLATE DIGESTIVES 300G
EDAY VALUEPENNE 500G
EVERYDAY VALUELOW FAFRUIYOG 4X125G

Cooking from scratch

COURGETTES LOOSE
LOOSE BROWN ONIONS
RED ONIONS LOOSE
CARROTS LOOSE
GARLIC EACH

Christmas

ORIGINAL CRISPS 190G
SOUR CREAM & ONION CRISPS 190G
BRUSSELS SPROUTS 500G
PARSNIPS PACK 500G
SAL& VINEGAR CRISPS 190G

Low maintenance cooking

PREPARED BABY SPROUTS 180G
PREPARED CARROCAULIFLOWER & BROCCOLI 370G
PREPARED TRAD SLICED RUNNER BEANS 185G
PREPARED BROCCOLI FLORETS 240G
TOPSIDE OF ROASTBEEF 85G

https://osf.io/tsymx/
https://osf.io/tsymx/
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grouped products2.

2.3.1 Method

Participants

Participants were recruited internally within the UK headquarters of

dunnhumby (www.dunnhumby.com), a customer marketing company with over

29 years of experience working with grocery retailers and fast moving con-

sumer goods (FMCG) brands. Employees were asked to participate via the

company intranet and were not remunerated. Fifty-one participated in the

study. Participants had a wide range of roles within the business, including

data analysts, category experts, company directors and client leads. Of these,

56.86% were male. Participants were surveyed in early December 2016 and

were blind to the purposes of this study. The Ethics Committee at the UCL

Experimental Psychology department approved the methodology and all par-

ticipants consented to participation through an online consent form at the

beginning of the survey.

Materials

The study was hosted on an internal company server. Participants accessed

the study via their web browsers and answered questions by clicking on the

appropriate radio button with their cursor. The study was 1700 x 1300 pixels

within the browser.

In each trial, participants were shown 10 product images (2 rows of 5)

and accompanying product descriptions from a single topic. Images were 540

x 540 pixels each. Descriptions appeared below each image in size 12 font.

The displayed products were the 10 with the highest relevance3. Product
2This same subset of 10 topics was considered in the empirical studies of retail experts

(described in section 2.3) and typical consumers (described in section 2.5). Analyses was
limited to a random subset of topics to reduce the overall survey time and thereby maximize
the number of people that could take the respective surveys.

3See supplementary for more information about how relevance was calculated

www.dunnhumby.com
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descriptions and images were downloaded from the retailer’s website in late

November 2016.

Design

All participants were asked to label the same 10 topics in a random order.

The dependent measure was the proportion of times that participants selected

the topic label originally proposed during the model development phase. This

proportion was then compared against a random baseline, to check whether

participants were responding non-randomly.

It was not feasible to survey participants about all 25 topics in the final

LDA solution given constraints on employee time. Therefore, 10 topics were

chosen from the original 25 to include in the survey.

Procedure

Participants were first briefed about the purpose of the experiment. After

agreeing, they were then asked to label a group of products for 10 separate

topics. Four possible labels were suggested using radio buttons. The order of

the presented topics was randomized. One of the four labels was the ‘target’

label proposed by the authors whereas the other three were randomly selected

from the remaining nine topics. After selecting a topic label, participants then

confirmed their choice with a “Continue” button, before seeing the next set of

products from a randomly-selected remaining topic. At the end of the study,

participants were debriefed.

2.3.2 Results and discussion

When asked to select the appropriate topic label for a group of products from a

list of four possible labels, 92.8% (SE = 0.015) of the 51 retail industry experts

selected the same topic label as was originally proposed by the authors. A

two-sided binomial test showed this to be significantly above chance (p< .001).
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Figure 2.3: Proportion correct with standard error bars for the study on label
agreement involving retail experts and the intruder study involv-
ing typical consumers. All proportions were significantly different
(p < .001) than chance levels, 25.00% (1 of 4) and 16.67% (1 of 6),
respectively.

Figure 2.3 shows the proportion of times participants agreed with the originally

proposed topic label for each topic.

This high-level of accuracy from a group of experts, who were naive to our

research program, indicates that the topics recovered from consumer activity

patterns are meaningful. Disagreement regarding topic labels was primarily

driven by conceptually similar topics (further details of this are available in the

supplemental). For example, the most common error in labeling the summer

salad topic was cooking from scratch. These errors are reasonable and are also

consistent with the notion that baskets are generated by a mix of topics, as

opposed to a single topic (see Figure 2.2).
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2.4 Seasonal trends in topics

The results of the expert study discussed in section 2.3 suggested that the

names given to the topics were reasonable. As further confirmation of this,

we attempted to evaluate the appropriateness of names pertaining to seasonal

events using historic data. Specifically, we identified 4 topics that were likely

to have a highly seasonal popularity (summer fruits, summer salad, Christmas

and low calorie options) and 4 ‘staple-food’ topics that we believed unlikely

to vary as much over the year (loose fruit and veg, Northern Ireland, quick to

prepare meals and food for now).

2.4.1 Method

Data

To evaluate seasonal trends in topic prevalence, the same data used in section

2.2.1 was used.

Analyses

To calculate the monthly prevalence of each topic, we hard-assigned each bas-

ket to belong to one topic, using the maximum topic probability. We then

calculated an index indicating the relative popularity of a topic in a given

month by calculating the proportion of baskets belonging to a given topic in

a month and dividing it by the average topic probability for a given month

across all topics.

2.4.2 Results

Figure 2.4 shows the popularity of several topics in each month of 2014 in one

of the UK’s largest retailers. In line with our hypotheses, summer fruits and

summer salad peaked in popularity during the summer months. Contrasting,

baskets labelled with the Christmas topic peaked in popularity during Decem-
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Figure 2.4: Topic prevalence varies by season. The proportion of baskets with
a given topic label in each month of 2014, divided by the monthly
mean average across all topics (i.e., index), is shown. a) Topics that
should be seasonal peak at the expected time, such December for the
Christmas topic. b) In contrast, topics for staple products vary less in
prevalence over time.

ber and the surrounding winter months. Low calorie options appeared to peak

in January and steadily decline to its lowest level of popularity in December.

The ‘staple’ topics shown in Figure 2.4b appeared to vary considerably less

over the year compared to the more seasonal topics. These results give further

credence to the proposed topic labels and illuminate some seasonal variations

in behavioural patterns that likely reflect time-dependent characteristics of

people’s thematic representations. Similarly intuitive patterns were shown to

occur during different days of the week, which are reported in more detail in

the supplemental.

Results from the survey of retail experts (in section 2.3) and these seasonal

analyses support the validity of the topic labels assigned by the experimenters.

This therefore provides further credence to the hypothesis that people’s repre-
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sentations are dominated by thematic categories during shopping. It is partic-

ularly exciting that this can be inferred using data collected from consumers

activity patterns in-the-wild. By combining big behavioural datasets with

computational modelling in this way, we are able to inferences about people’s

semantic representations on a far greater scale than would be possible using

standard experimental tasks (e.g., card-sorting or free association tasks) (e.g.,

Murphy and Ross, 1999). However, these analyses alone do not confirm the

psychological reality of the representations found by this topic model alone.

Specifically, there is still an open possibility that the topics recovered by LDA

are only meaningful to commercial retail experts, and thus not real consumers.

2.5 Evaluating topic coherency with typical

consumers

To understand whether the product representations identified by the topic

model were meaningful to real consumers, we conducted a controlled experi-

ment. Specifically, a large sample of British supermarket shoppers were shown

a set of products; 5 of which were highly-ranked from within a topic and one

that was an “intruder” product, randomly selected from one of the other top-

ics. Participants were asked to select the intruding product. This paradigm is

often used when evaluating the fit of computational models to human seman-

tic memory (De Deyne et al., 2016). It was hypothesized that if topics were

representative of the mental categories held by consumers, participants would

be able to identify the intruding products significantly above chance levels.

2.5.1 Method

Participants

Participants were recruited using dunnhumby’s consumer survey panel; Shop-

per Thoughts (https://shopperthoughts.com/). Participants completed the

https://shopperthoughts.com/
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survey as part of a larger, monthly survey for 50 card loyalty points. The fi-

nal sample consisted of 3,840 participants, of which 59.47% were female. The

modal age group was 55-59 (n = 501) and 724 participants did not disclose

their age. All participants were from England, Scotland or Wales with the ma-

jority of respondents based in central England (n = 946). Participants were

surveyed during March 2017. The Ethics Committee at the UCL Experimental

Psychology department approved the methodology and all participants con-

sented to participation through an online consent form at the beginning of the

survey.

Materials

The study was accessible via the web, after logging in to the survey platform.

The study screen was 960 x 455 pixels. Product images and descriptions were

the same as as those described in section 2.3. Participants responded to the

survey by clicking on a radio button next to the picture and product description

of the item they believed to be the intruder.

Procedure

Participants were first informed that the purpose of the study was to help

retailers group together products found in the supermarket. They were then

informed about the study’s procedure. After agreeing to participate, the sole

trial started.

Participants were shown six images of products (two rows of three) along-

side product descriptions. Five were the most relevant from within a topic and

the other ‘intruder’ was the most relevant product from a randomly selected

alternative topic 4. Participants were asked to “spot the one that does not

belong in the group” by clicking on the appropriate radio button underneath

the image. Following their choice, participants were thanked, debriefed about

the purpose of the research and remunerated immediately.
4More information about the ranking procedure used is available in the supplemental
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Design

The dependent variable was the proportion of times that participants iden-

tified the intruder product. This proportion was then compared against a

random baseline to assess whether participants were able to identify intruders

significantly above chance levels.

Participants each completed one trial in which they were asked to identify

the intruding product. Participants were randomly selected to see one of the

10 topics also used in the retail experts study. This ensured that comparisons

between the two related studies were consistent.

2.5.2 Results and discussion

Of the 3840 British consumers surveyed, 74.1% (SE = 0.007) were able to

correctly identify the intruder product. A two-sided binomial test showed this

to be significantly above chance (p < .001). Figure 2.3 shows accuracy by

topic.

One topic stands out for its below chance level of performance, afternoon

tea. Participants were most likely (51.7% of the time) to incorrectly suggest

that ‘mint humbugs’ was the intruder. One possibility for this poor classifi-

cation accuracy is that participants did not have enough context to interpret

them correctly. In the afternoon tea topic, the top 5 items were predominantly

fresh and ‘staple’ foods (e.g., Milk, Bananas, Danish sliced white bread). Thus,

seeing a packet of sweets (i.e., ‘humbugs’) among this fresh food may have ap-

peared unusual. An analogous issue arises with the low maintenance cooking

topic. Each topic is a probability distribution over thousands of products, so

perhaps it is not surprising that a small sample of products could be ambigu-

ous.

Another possibility that is more core to our theory is that individual dif-

ferences in experience may help explain some of these confusions. For example,

the poor classification of the afternoon tea topic may have been driven by the
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fact that most British people no longer regularly engage in this ritualistic ac-

tivity. If experience shapes people’s mental concepts, then we would expect

representations of certain products to vary between demographics. Support-

ing this view, consumers from Northern Ireland had an average probability for

the Northern Ireland topic 7.5× higher than the average across all regions.

The fact that the model was able to recover such strong regional differences in

consumers suggests that it should be sensitive to other individual differences

in people’s experience of the world.

2.6 Classifying individual consumers by their

experienced topics

If the topic model proposed in this paper is representative of people’s semantic

categories, then it should also be able to uncover individual differences in their

representations. To test this assertion, we used logistic regression to predict (5-

fold cross-validation) self-reported age 5, region 6 and gender using consumers’

mean LDA probabilities over baskets as the predictors.

2.6.1 Method

Data

The feature set for the supervised models comprised of the training-set topic

probabilities output by LDA, averaged at the customer level. These features

were then used to predict customers’ self-reported age (discretized into 18-

29, 30-44, 45-59 and 60+), region (binarized into England vs. regional (i.e.,

Scotland, Wales and Northern Ireland) and gender. These self-reported values

had been gathered by the marketing panel described in section 2.5 during the

last 3 years. The final modelling set contained data from 28,122 customers.

5Discretized into 18-29, 30-44, 45-59 and 60+
6Binarized into England vs. regional (i.e., Scotland, Wales and Northern Ireland)
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Model

To find the best performing model, we performed a grid-search between λ

values of 0.1 to 1.0. Model selection was performed using the average predic-

tive performance over 5 cross-validation folds. Baselines were calculated by

predicting the majority class in each fold.

The age model was evaluated according to the average classification ac-

curacy across the four classes. The gender and region models were binary

classification problems, and thus evaluated in terms of the Area Under the

ROC curve (AUC).

2.6.2 Results

Results showed that the models were able to predict age with an accuracy of

48.51%, region with an accuracy of 58.34% and gender with an accuracy of

57.17%, considerably higher than the guessing baselines of 36.85%, 50.00%,

and 50.00%, respectively.

2.7 General Discussion

Rather than being solely defined by intrinsic features (Plato, 1973), concepts

gain meaning through their interaction in the real world. Support for this no-

tion comes from laboratory studies demonstrating that object interactions alter

how people conceptualize objects (Jones and Love, 2007) and from large-scale

corpora analysis of text (e.g., newspaper articles) that extract meaning from

word co-occurrence patterns. However, none of these previous investigations

involve individuals engaging in unfiltered, goal-driven, real-world interactions

with objects. Under such conditions, can meaningful conceptual organization

be recovered from human activity patterns?

We tested this possibility by considering the shopping patterns of thou-

sands of UK consumers. Using LDA, we found that the pattern of consumer

purchases was highly revealing of people’s conceptual organization of these
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products. Topics ranged from specific and goal-driven (e.g., ingredients for a

stir-fry) to very general (e.g., cooking from scratch). Interestingly, the topics

tended to be goal-directed and situational, which is consistent with the notion

that much of human conceptual knowledge is defined relationally and tailored

to support action (Murphy and Ross, 1999; Ross and Murphy, 1999; Schank

and Abelson, 1977). The situational nature of certain topics was reflected

in their increasing prevalence during certain times of the year, such as the

Christmas topic in December and the Summer salad topic in the Summer.

The psychological reality of the 25 LDA topics we found was confirmed by

two studies, one involving retail experts and one involving everyday consumers.

The experts, who were blind to the purposes of this research, agreed with our

labeling of the topics. The novices were able to identify an intruder product

among an array of products from the same topic. These results indicate that

the topics uncovered by human activity patterns are both comprehensible and

coherent.

If concepts gain meaning through the actions we take, then individual dif-

ferences in experiences should be reflected in differences in conceptual organi-

zation. In support of this conjecture, topic prevalence varied across geographic

regions. In our study of everyday consumers, poor performance for the topic

afternoon tea may reflect that today’s typical British consumer differs from

past caricatures. Consistent with the idea that different types of people will

have different topic experiences, we were able to predict basic demographic

information about consumers from their topics mix (i.e., which topics best

characterized their purchasing behavior). One avenue for future research is to

develop, apply, and evaluate topic models in which individuals organize into

higher-level groups that can vary in terms of topic prevalence or even topic

composition.

Taxonomic and thematic cross-classifications of food are typically mea-

sured in free-sorting tasks, where participants must sort food items into groups

(Ross and Murphy, 1999; Murphy, 2001). While originally suggesting that peo-
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ple have a bias towards sorting food taxonomically, more recent, larger-scale

sorting tasks have suggested that people have a thematic bias (Lawson et al.,

2017), suggesting that taxonomic bias is an artifact of a small initial set size.

The large-scale analyses presented here give further credence to this claim,

which is notable, given that supermarkets tend to arrange food taxonomically.

Another likely cause of thematic bias is that grocery retail data reflects more

goal-directed behavior. For example, people may visit solely in order to pur-

chase “food for now”, which emerged as a topic in our model. An outstanding

question however is how people recruit these different representations over

the course of a large shopping trip, as they complete several sub-goals. One

possibility is that people recruit taxonomic and thematic representations hi-

erarchically, using thematic representations to identify which ingredients to

combine (e.g. for a salad) and taxonomic representations to identify the most

suitable version of a given ingredient (e.g., best variety of tomato). Future

research may wish to investigate this interaction in more detail.

What is clear is that conceptual organization is deeply tied to extrinsic

relationships and that meaning can be seen as a byproduct of an element’s role

within a larger system or web. Indeed, the insight behind Google’s PageRank

algorithm is that web pages should be prioritized to the extent that they are

central within a link graph (Page et al., 1998). Prior to PageRank, the exact

same algorithm was developed in Psychology to explain why certain features

of concepts are more central than others within a concept web (Love and Slo-

man, 1995). Whether the system is human or artificial or the domain involves

natural language or shopping behavior, meaning can be inferred, and perhaps

arises, from relations among elements embedded within a larger system.
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Chapter 3

Option retrieval in sequential, open-

ended tasks

“I know what I like,

And I like what I know”

Genesis, I Know What I Like

3.1 Introduction

Many studies of preferential choice have examined how people choose be-

tween a fixed menu of options (Glimcher and Rustichini, 2004; Busemeyer

and Rieskamp, 2014; Rangel et al., 2008). Yet, in real-world tasks like online

grocery shopping, the space of possible options is too large to be considered

at once. Choices therefore depend on how options are retrieved from long-

term memory (Keller and Ho, 1988; Kalis et al., 2013; Zhang et al., 2021;

Bhatia, 2019). The task itself can provide the context to retrieve associated

choice options. Here, we consider how a previous choice influences subsequent

consumer choices in a goal-directed sequential decision task. Using computa-

tional models, we evaluate how different sources of knowledge influence choice,

by decomposing associative memory into its constituent components.

Once items are retrieved from memory, they may cue subsequent re-

103
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trievals, leading to complex sequential dynamics like semantic clustering. For

example, when asked to name as many animals as possible, sequential retrievals

tend to be semantically similar and faster when they are so (e.g., dog → cat)

(Bousfield and Sedgewick, 1944; Troyer et al., 1997; Gruenewald and Lockhead,

1980; Hills et al., 2012; Abbott et al., 2015). This sequential cuing of memory

means that retrievals tend to cluster over time. Sequential consumer choices

may also semantically cluster if they depend on the same retrieval mechanisms;

we test this hypothesis here.

Retrieval is said to depend on the strength of associations in memory,

although association is somewhat nebulous given that items can relate in dif-

ferent ways. For example, choosing tea could trigger childhood memories of

enjoying it with cake, as it did for Proust (1913). Options that occur in the

same episode could have a high probability of being retrieved; this was shown

in the early experiments of memory (Ebbinghaus, 1913) and has since become

a core prediction in models of memory search (Kahana, 2020).

Sequential choices could also be influenced by semantic similarity between

items, such as their conceptual overlap. For example, whilst they may not

be consumed in the same episode, purchasing chocolate could prompt the

search for other chocolate bars, due to their shared features. Semantic space

models have been shown to predict sequential retrievals in fluency tasks (Jones

and Mewhort, 2007; Hills et al., 2012) and options generated to open-ended

questions (Bhatia, 2019). Online shoppers may similarly retrieve products

that are nearby in conceptual space when making sequential choices, given

that they are not constrained by the physical layout of products in stores.

An often-cited feature of semantic memory is that people are sensitive to

hierarchical relations between items. For example, responses tend to be slower

when judging the correctness of statements like “apples are fruit” compared

to “apples are produce” (Collins and Quillian, 1969). One might therefore

expect online shoppers to retrieve items that are nearby within a structured

hierarchy, such as purchasing fruit then vegetables. This seems particularly
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likely during grocery shopping, given that stores tend to arrange products

taxonomically in order to make them easier to locate (questions concerning

whether hierarchical, semantic, and episodic knowledge are strictly separate

systems from neurobiological or computational perspectives is orthogonal to

our aims and claims).

We hypothesise that retrieval of options in sequential choice tasks depends

on their similarity with the prior choice across different knowledge formats (vi-

sualised in Figure 3.1c). We test this by developing associative representations

of these knowledge sources (using techniques inspired by those of Chapter 2),

before evaluating whether sequential choices are better explained by one or

a combination of these representations. We also hypothesise that individual

differences may drive shoppers to attend to certain sources of knowledge more

than others. For example, a shopper driven by episodic memories of break-

fast might retrieve butter then bread, whereas those relying on hierarchical

knowledge may retrieve butter with other dairy products, as they would in the

supermarket. We operationalise these processes of associative retrieval and

attention in a computational cognitive model and show that it can predict

sequential consumer choices. After each retrieval, we suggest that consumers

accept or reject possibilities according to their goals. For example, shoppers

may consider whether retrieved options are suitable for breakfast. However,

goals are not modelled or enumerated here, as we focus on the contribution of

different knowledge systems during sequential option retrieval.

During online grocery shopping, consumers could feasibly search for prod-

ucts in any order. Yet, if options are retrieved according to their similarity with

the prior choice, purchases should be non-random and predicted by their se-

quential similarity. We test this using a new dataset of over 5 million consumer

choices. To foreshadow, results supported this hypothesis. Interestingly, rep-

resentations of episodic, semantic and hierarchical knowledge explained unique

variance when predicting sequential choices and their response times, support-

ing the idea that shoppers query multiple sources of long-term knowledge.
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Figure 3.1: Deciding what to choose next when shopping for groceries online de-
pends on cued retrieval from multiple knowledge sources. a., We used
4.3m unordered, in-store receipts to build representations of episodic,
semantic and hierarchical knowledge. b., To model retrieval, we col-
lected data from 135,000 shoppers as they sequentially searched for
products on the website of one of the UK’s largest supermarket retail-
ers. c., Prior choices predict future ones, by virtue of their similarity
according to different representational formats. Once an item is added
to their basket, shoppers use this to cue matches from long-term mem-
ory. The stronger the match with this cue, the higher the probability
an item will be retrieved (this may be attenuated by increased atten-
tion towards a particular representation). Retrieved items are checked
against one’s internal goals. If the retrieval is goal-relevant, the shop-
per adds an appropriate item from the website and uses that item to
cue associations. If not, a new option is retrieved and checked for goal
relevance until one is accepted. Similar heuristic strategies have been
used in models of option generation for single choices (Johnson and
Raab, 2003; Klein et al., 1995). Once all goals are satisfied, the user
checks out. Note that the goals and the goal-checking process is not
modelled here.
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Consumers retrieving options from episodic memory appeared less prone to

subsequently forget products, whereas those attending to semantic knowledge

were less likely to add items to their basket that they didn’t otherwise need.

Thus, individuals may recruit these systems to different extents, which may

affect affect their ability to complete the task effectively.

3.2 Data

3.2.1 Clickstream data

Data capturing a sequence of clicks during a given shopping session is known

as clickstream data. In this study, we used clickstream data collected by a

large British retailer between 1st January 2015 and 31st March 2016. We used

a random sample of visits resulting in a checkout during that period and only

kept observations where a product was added to a shopper’s basket. The data

contained 5,238,469 choices from 132,146 unique visitors across 42,837 unique

products (more information in Materials and Methods). By shopping online,

all customers were required to participate in the loyalty scheme of the retailer

and therefore consented to having their data used for research. In order to

preserve user privacy, we removed all customer identifiers from the data and

kept only a cryptographic hash of each visit ID. All analyses were in compliance

with UCL’s code of ethics

Shoppers were required to search sequentially for groceries to add to their

virtual basket (the website is depicted in Figure C1). On average, they made

39.64 choices (95%CI = [39.49,39.79]). The landing page displayed a generic

selection of “special offers” (e.g., discounted products), which was used rela-

tively infrequently to purchase products (µo f f ers = 1.55,95%CI = [1.53,1.58]).

Shoppers tended to search for products using a search bar, which was lo-

cated at the top of every page (µsearches = 23.36,95%CI = [23.26,23.46]). They

could also use a category drop-down by hovering the mouse over a hyper-

link saying “Groceries” at the top of every page. This menu required users
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Figure 3.2: Consecutive purchases tend to be close episodic, semantic and hier-
archical relations. a., Choices are predicted by their similarity with
the prior choice across each representation. Histograms show that the
similarity between consecutive purchases (averaged for each visit) was
higher compared to when the order of purchases was randomly per-
muted. (with 95% confidence intervals). b., Sequential retrieval is
like a ripple in semantic memory. Mean episodic similarity (with 95%
confidence intervals) between the current product and those purchased
recently is higher compared with products purchased later c., Visitors
slowed as they approached the end of their shopping trip. Mean re-
sponse times (with 95% confidence intervals) as a function of timestep
quantile (Small = 10 - 30 items, Medium = 31 - 49 items, Large = 50+
items)). d., Consumers make more between-category transitions (i.e.,
taxonomy level five) towards the end of their visit. Stacked density
plots denoting the proportion of switches according to each level of
the taxonomy as a function of the relative timestep. e., Transitions
between product groups at the fourth level of the hierarchy clustered
into intuitive higher-order groupings that appear similar to those in
the product taxonomy, suggesting that the taxonomy closely resem-
bles how shoppers represent products during sequential choice. The
Li f t −1 of each transition is depicted in purple, with values less than
0 shown in grey. Boxes represent clusters identified by the optimal
spectral clustering solution (more information in section 1.7. and 2.6
of the appendix).
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to navigate to the lowest level of three subcategories before viewing prod-

ucts (e.g., Cupboard → Cereals → Healthy cereals). It was used relatively

infrequently (µcategory = 3.02,95%CI = [2.98,3.05]). After navigating with the

search bar or the category drop-down, shoppers would be shown a list of asso-

ciated products, where they could purchase products or click on products for

more information. Before checkout, they could also add products from a per-

sonalised recommender system that suggested products that might have been

forgotten before checkout (µ f orgotten = 0.322,95%CI = [0.3199,0.327]). Visi-

tors removed an average of 3.23 products from their basket before checking

out (95%CI = [3.20,3.27]).

3.2.2 In-store data

To prevent information leaking into our analysis of online shopping behaviour,

we used a distinct dataset of in-store shopping behaviour to develop knowledge

representations. In-store grocery receipts are unordered, making it particularly

useful for this study. The final dataset contained purchase information from

4,336,917 distinct baskets. We followed the same procedure of encryption as

with the clickstream data in order to preserve the privacy of customers.

We developed representations of episodic, semantic and hierarchical

knowledge.

3.2.2.1 Episodic knowledge

The long-term episodic retrieval structure used in the Search of Associative

Memory (SAM) model (Raaijmakers and Shiffrin, 1980) associates items more

strongly to the extent that they co-occur during encoding. Whilst we cannot

know the exact context in which consumers encoded products, we assume

that products purchased together more frequently in the same basket must be

stronger episodic associates. Episodic associations are therefore represented

using the pairwise co-occurrence between products observed in the in-store

dataset.
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Episodic similarities S(a,b) were determined using the probability of co-

occurrence between products a and b, which is given by:

S(a,b) =
f rq(a,b)
f rq(a)

Where f rq(a,b) is the total number of number of times that product a

co-occurred with b in the same basket across the dataset.

3.2.2.2 Semantic knowledge

In addition to episodic memory, shoppers likely also rely on semantic memory

to guide their retrievals. A common feature of modern semantic memory mod-

els is that they represent knowledge within a connected representational space,

allowing people to generalise their knowledge to observations they haven’t di-

rectly experienced (Jones et al., 2015). Unlike episodic co-occurrence, two

items that have never co-occurred together may still be considered semanti-

cally similar, so long as they co-occur in similar contexts. We followed recent

research (Hornsby et al., 2019) by training a 200-dimensional distributed se-

mantic model using the in-store data.

For this project, we chose to learn 200-dimensional vector representations

for products with word2vec Mikolov et al. (2013). This is because word2vec

tends to scale better when trained on large datasets, because it can be trained

stochastically. Rather than encoding words (e.g., as they might appear in the

product descriptions), word2vec was trained to represent supermarket product

codes, as they might appear in till receipts. Concretely, there is a different

product code for each distinct product in the supermarket. Small variations

in that product (i.e. different sizes of the same t shirt) are not given separate

codes however. Each product code was thus represented as a one-hot encoded

vector before being embedded, which resulted in a 42,837×200 matrix. During

training, the model learns to associate product codes that often co-occur in

baskets, which is analogous (but not the same) to how word vector models

learn similarity between word tokens that often co-occur in sentences.
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Associations S between any two vectors v1 and v2 was calculated using

the cosine similarity cos(v1,v2):

S(v1,v2) = cos(v1,v2) =
v1 · v2

||v1|| · ||v2||

Conventionally, word2vec is trained using one of two network architec-

tures. In this case, we used Continuous Bag of Words (CBOW) with nega-

tive sampling. CBOW assumes that items within baskets are un-ordered (i.e.,

known in natural language processing as the “bag of words” assumption). This

assumption is true of in-store supermarket data, where product codes within

baskets are unordered once they reach the database. Using CBOW, the train-

ing objective O is to maximise the likelihood of a target item i j given a window

of c surrounding context items:

O =
1
T

T

∑
j=1

logp(i j|i j−c, ..., i j+c)

Where T is the corpus size (e.g., number of baskets) and p(i j|i j−c, ..., i j+c)

is the probability of a target item i j given average or summation of a set of

context words (i j−c, ..., i j+c). In this case, word2vec used a context window

size of 15.

Whilst this probability could be determined using a softmax, it is not

practical when called over large vocabulary sizes. Negative sampling mitigates

this by randomly sampling a set of k “negative” items (in our case, 20) that did

not appear in the present basket. The model then learns from these negative

samples by treating them as false labels in multiple binary classification tasks,

evaluated using a logistic loss and then updated using gradient descent. In

this project, this training process was repeated for 15 epochs.

We determined these aforementioned hyperparameters by monitoring the

loss on the training set and visually inspecting the nearest products in terms

of cosine similarity for a set of randomly-chosen products. During model fits,

negative cosine similarities were clipped to 0.
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3.2.2.3 Hierarchical knowledge

A strict organisation of products is imposed on consumers by way of a product

taxonomy, which groups products from small subgroups (e.g., apples) to large

departments (e.g., produce). Amongst other things, this taxonomy determines

the proximity of products on the shelves and aisles of a supermarket store. The

product taxonomy used here contained five levels. Each product had a unique

taxonomisation.

If products a and b shared the same low-level category within the taxon-

omy, then they were said to be perfectly associated S(a,b) = 1. Products with

entirely different taxonomic classifications had S(a,b) = 0.2. The remainder

increased in increments of 0.2.

Uniquely, this hierarchy describes a taxonomy of is-of relations, which we

used to define a measure of similarity as opposed to distance in a continuous

semantic space.

3.3 Past choices cue subsequent retrievals

I begin by evaluating the first major claim of our model; that past choices cue

the retrieval of subsequent options. If this is the case, then one would expect

sequential purchases to be closely related in memory. One might also expect

choices to become more dissimilar over time, as goals become increasingly

satisfied.

3.3.1 Method

3.3.1.1 Permutation tests

To assess whether adjacent retrievals were more related than would be ex-

pected at random, we performed a permutation test. Each product within the

clickstream data was encoded with each of the three representations described

above. We then calculated the per-visit mean similarity between consecu-
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tively added products. These were compared to the per-visit mean similari-

ties determined by 100 random permutations of the product order, permuted

within each visit. Thus, for significance tests reported; Ntrue = 132,146 and

Npermuted = 13,214,600.

3.3.1.2 Response times

Response times (RTs) were compared for transitions of varying distances.

These were capped at 60 seconds to minimise the leverage of outliers.

In the multiple linear regression comparing each similarity measure, RTs

were monotonically transformed using a log function, RTlog = ln(RT +1), due

to positive skewness.

3.3.1.3 Trajectory analyses

Correlational analyses were conducted to assess how behaviour changed over

time. Because visits contained differing numbers of products, basket adds

within each visit were binned into equally-sized deciles based on their proximity

to checkout. Subsequently, 13,901 (10.52%) visits were dropped because they

purchased fewer than 10 products, leaving 5,174,018 choices.

3.3.2 Results

If shoppers cue retrievals from a given long-term store, then one would ex-

pect the similarity between consecutive purchases to be higher than when

compared with random permutations, where the order of products has been

randomly permuted within each shopping trip. For example, given that but-

ter and bread are episodically linked (e.g., purchased in the same baskets),

this should increase the probability of them being chosen consecutively. As

shown in Figure 3.2a, the average trip-wise similarity between consecutively

purchased items was significantly higher for the true order of purchases com-

pared to the permuted order for episodic (Mediantrue = 0.0756, IQRtrue =

0.1465 & Medianpermuted = 0.0154, IQRpermuted = 0.0193) (Mann-Whitney U
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= 2.95 × 1011, p < .0001, CLE = 0.8312), semantic (Mediantrue = 0.2507,

IQRtrue = 0.1495 & Medianpermuted = 0.0770, IQRpermuted = 0.0669) (Mann-

Whitney U = 1.5× 1011, p < .0001, CLE = 0.9141) and hierarchical repre-

sentations (Mediantrue = 0.5169, IQRtrue = 0.1433 & Medianpermuted = 0.2620,

IQRpermuted = 0.0504) (Mann-Whitney U = 1.07 × 1011, p < .0001, CLE =

0.9390). This suggests that choices were nonrandom and were cued by their

similarity with the prior choice.

Sequential cued-retrieval can be viewed as a ripple through memory, in

that more recently retrieved items tend to be more similar (Hills et al., 2012).

As shown in Figure 3.2b, choices were most similar to the prior choice according

to their episodic similarity (Figure C2 shows similar patterns for semantic and

hierarchical knowledge). To confirm this, we calculated the average similarity

of each choice for lags ranging from -10 to -1. Regressing lag onto the standard-

ised average similarity for each user revealed a positive average relationship

across each representation, indicating that more recent choices tend to be more

similar (µepisodic = 0.1357 95%CI = [0.1331,0.1383],Zsign = 56229.0, p < .0001,

µsemantic = 0.1837,95%CI = [0.1816,0.1859],

Zsign = 59170.5, p< .0001, µhierarchical = 0.2263,95%CI = [0.2247,0.228], Zsign =

61651.5, p < .0001).

The retrieval model described in Figure 3.1 selects options according

to the similarity with the previous option. As this process repeats, the

chance that a high similarity option has already been purchased increases,

meaning that choices should become more dissimilar over time. Grouping

choices into deciles based on their timestep (and thus adjusting for differ-

ent trip sizes), we regressed each similarity measure onto timestep decile

and included dummy coded representations of each transition type as con-

founding variables within each regression. Results showed that average

similarity between sequential choices decreased over time across episodic

(bepisodic = −0.058, 95%CI[−0.061,−0.055], p < .0001), semantic (bsemantic =

−0.010, 95%CI[0.013,−0.007], p < .0001) and hierarchical representations
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(bhierarchy = −0.247, 95%CI[−0.250,−0.243].p < .0001) (full regression equa-

tions in Table C3-C5). The increase in hierarchical similarity over time is

visualised in Figure 3.2d.

One might correspondingly expect choices to become slower over time, as

more dissimilar options are slower to retrieve. Regression analyses of inter-

response intervals (IRIs) conformed to this expectation. Firstly, the stan-

dardised coefficients for episodic (bepisodic = -0.137, 95% CI = [-0.138 -0.136],

p<.0001), semantic (bsemantic = -0.086, 95% CI = [-0.087 -0.085], p<.0001), hi-

erarchical knowledge (bhierarchy = -0.273, 95% CI = [-0.274 -0.271], p<0.0001)

were all negative predictors of IRI, indicating that more dissimilar options

were slower to retrieve. Moreover, average IRIs appeared to slow over the du-

ration of the trip (btimestep = 0.130, 95%CI[0.129,0.130], p < .0001). This slow-

down is shown in Figure 3.2c. Including variables representing the navigation

method (e.g., keyword search) and the similarity across each representation

confirmed this slow-down as a general trend (full regression equation in Table

C2) and this echoes similar patterns of slowing observed in category fluency

tasks (Gruenewald and Lockhead, 1980; Hills et al., 2012; Abbott et al., 2015).

3.4 Episodic, semantic and hierarchical knowl-

edge explain choice

We next evaluated whether consumers’ sequential choices were best explained

by one or multiple sources of knowledge, using the retrieval equation of a

popular memory retrieval model, Search of Associative Memory (SAM) (Raai-

jmakers and Shiffrin, 1980). This equation formalizes how options may be

retrieved based on their similarity with the current cue (illustrated in Fig-

ure 3.1c, with full equation in Section 1.3 of the appendix). Importantly,

we evaluated its fit when including representations of episodic, semantic and

hierarchical knowledge.



3.4. Episodic, semantic and hierarchical knowledge explain choice 116

3.4.1 Method

3.4.1.1 Retrieval model

Broadly, our retrieval model is based on the retrieval equation from Search

of Associative Memory (SAM) (Raaijmakers and Shiffrin, 1980). It assumes

that retrieval and thus the decision of what to choose next is achieved by

querying associative structures in memory with a memory probe. We follow

previous models of semantic fluency by using the most recently chosen option

Oi to probe associative memory structures (Hills et al., 2012; Abbott et al.,

2015). Whilst other possibilities exist — such as a decaying influence of all

previous retrievals — we focus on the role of the prior choice in order to simplify

analyses (for a review of other approaches, see Kahana, 2020). The retrieval

strength of the subsequently chosen option Oi+1 is given by the product of

the M associations between the present choice and itself, S(Oi,Oi+1) j. For

example, in the full model, we used episodic, semantic and hierarchy-based

associations between products, meaning that M = 3. This is then divided by

the sum of that same function applied to all of the N options that remain to be

added for that trip. This then gives rise to an overall probability of retrieval

for each choice:

P(Oi+1|S1,S2, ...,S j,Oi) =

M

∏
j=1

S(Oi,Oi+1)
β j
j

N

∑
k=1

M

∏
j=1

S(Oi,Ok)
β j
j

(3.1)

We compared the inclusion of episodic, semantic and hierarchy-based as-

sociations. β values represent attention weights for each of these knowledge

representations and were estimated as free parameters for each visit.

Each model was compared with a random baseline model, which predicted

an equal probability of 1
N for every transition using a single representation.

Thus, each of the products remaining to be purchased by each visitor is as-

sumed to have an equal probability of being chosen at each timestep according
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Table 3.1: The % BIC improvement over the random baseline and the mean atten-
tion weights (with 95% confidence intervals) for each of the candidate
models. Results show that including representations of multiple knowl-
edge formats provides the best fit to the data (shown in bold)

∆ BIC (%) Episodic Semantic Hierarchy
Episodic 9.13 0.29 (0.001)
Semantic 4.80 0.091 (0.001)
Hierarchy 26.28 2.217 (0.016)
Episodic & Semantic 12.30 0.258 (0.001) 0.068 (0.001)
Semantic & Hierarchy 29.10 0.055 (0.001) 2.105 (0.017)
Episodic & Hierarchy 31.79 0.174 (0.001) 2.004 (0.017)
Multiple 33.78 0.160 (0.001) 0.044 (0.001) 1.939 (0.018)

to the baseline model.

Fit procedure: Each measure of association j was raised to its own

respective attention weight β j; these were treated as free parameters and fit

to individual visitors using maximum likelihood estimation (attention weights

were forced to have a lower bound of 0, in order to prevent individual retrieval

probabilities from exceeding 1). These free parameters were solved separately

for each visit using the SLSQP solver within SciPy.

Model input: Models were fit to the retrieval sequences in the click-

stream data. In addition to non-computable similarities, observations were

dropped from the clickstream data if they occurred during or after the use

of a recommender system, which prompted users about items they may have

forgotten before checkout. Finally, to ensure that parameter estimates were

robust, visits were dropped if they contained fewer than 10 items. This left

117,337 distinct visits.

Because of the probabilistic and multiplicative nature of the model, neg-

ative or zero similarities were replaced with a very small but positive number

1e−7.
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3.4.2 Results

Results are presented as the mean improvement in the Bayesian Information

Criterion (BIC) relative to a random model, for which the probability of each

transition was equal across all remaining products (see Section 1.3 of the ap-

pendix for further details about the model fitting procedure).

As shown in Table 3.1, the best fitting model contained multiple memory

representations, even after penalising for multiple parameters. This suggests

that online grocery shoppers query multiple knowledge formats when decid-

ing what to choose next. A model parameter recovery study revealed that

each parameter could be recovered accurately, with correlations between ac-

tual and estimated parameters > 0.6 in all cases (reported in Section 2.8 of the

appendix). This indicates that parameter estimates were uniquely identifiable

and could therefore be interpreted.

Inspecting the average attention weights of the best fitting model, one can

gauge the relative importance of each representation. Hierarchical knowledge

received the largest weight, followed by episodic, then semantic knowledge.

Further analyses (presented in Section 2.6 of the appendix), revealed that

transitions between product groups tended to overlap with superordinate clas-

sifications in the product taxonomy (clusters of transitions between products

groups at the third taxonomic level are visualised in Figure 3.2e). Together,

this suggests that shoppers rely heavily on hierarchical knowledge about how

products relate, which aligns closely with the taxonomy used to arrange prod-

ucts in stores.

We next evaluated whether response times were best explained by one or a

combination of knowledge sources. A multiple linear regression was performed,

predicting the IRIs between each choice, using each of the three similarity

measures as predictors. We also included the number of products remaining to

be purchased and dummy coded variables representing each of the navigation

methods (e.g., keyword search); these served as confounding variables (full

model equation in Table C6). Model comparisons that penalised for more
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variables revealed that IRIs were best explained by this full model, rather

than one containing a subset of similarity measures (model comparisons in

Table C7).

Importantly, these results support our key claim that sequential choice in

open-ended tasks depends on retrieval of options from multiple sources of long-

term memory. It is perhaps surprising that episodic and semantic knowledge

explain unique variance in consumer choices, given that the latter may derive

from the former (Mack et al., 2020). However, episodic knowledge provides

a more direct link between experiences than semantic knowledge, which may

play a unique role during goal-directed choice. Most of all, shoppers appeared

to depend on hierarchical knowledge about products, which emphasises the

influence of taxonomic organisations during navigation of large option spaces.

These model fits demonstrate the complementary role of different knowl-

edge systems during everyday sequential choice tasks, but should not be limited

to such settings. For example, they should extend to more well-known exper-

imental tasks, such as semantic fluency. To test this, we fit the same retrieval

model to a separate dataset of sequential food retrievals collected in a con-

trolled experiment (originally collected by Zemla et al., 2020a, and shared via

Zemla et al. 2020b). In this task, 50 participants were given three minutes to

retrieve as many food words as possible. Much like keyword searches, each re-

trieval was typed into a text box. For each word retrieved (e.g., “hamburger”),

we found a corresponding product from the retailer, allowing us to measure

the episodic, semantic and hierarchical similarity between sequential retrievals

as before (more details of the method and results can be found in Section 3 of

the appendix). After performing the same set of model comparisons, results

showed that the best fitting model contained all three representations, even

after penalising for the additional parameters. Moreover — much like shoppers

— participants appeared to rely most on hierarchical knowledge when sequen-

tially retrieving food items from memory. This suggests that these knowledge

systems also influence sequential retrievals in controlled experimental tasks
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and that our model fits are representative of memory retrieval and not merely

the design of the website.

3.5 Relying on certain knowledge formats pre-

dicts retrieval errors

If shoppers rely on certain knowledge formats during retrieval, this may in-

crease their propensity to make certain errors such as forgetting or falsely

retrieving products. Forgetting indicates the failure to retrieve a relevant item

(i.e., a miss) whereas removing items indicates the failure to suppress irrelevant

retrievals (i.e., a false-alarm). Indeed, forgetting is often viewed as a failure of

retrieval (Shiffrin, 1970; Anderson et al., 1994) and could simply result from

“searching the wrong part of memory” (Bettman, 1979, page 40).

The retrieval model used here (Raaijmakers and Shiffrin, 1980) assumes

that items will be activated according to a process of spreading activation

(Anderson, 1983; Collins and Loftus, 1975). When operating on an episodic

representation, this would tend to chain together products found together in

the same basket (e.g., purchasing a Thai pepper may cue coconut milk, bam-

boo shoots and other complementary ingredients). Thus, we hypothesised

that shoppers relying on episodic knowledge — as measured by the attention

weights from the best fitting retrieval model — would be less likely to forget

products, as they would tend to co-activate items often combined in pursuit

of a goal. Forgotten items were measured through the use of recommender

system, which displayed products the shopper had purchased recently and fre-

quently in prior visits before checkout.

When operating on a semantic network, a spreading activation process

would tend to co-activate products that are substitutable, or conceptually

similar but not necessarily purchased together (e.g., purchasing a Thai pep-

per may co-activate other forms of pepper). We therefore hypothesised that

shoppers relying more on semantic knowledge would be more prone to remove
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products from their basket, indicating that they didn’t actually need them.

This shares a kindred spirit with theories of confabulation in memory retrieval

(Deese, 1959; Roediger and McDermott, 1995), where high semantic similarity

between studied items causes related items to be erroneously retrieved.

3.5.1 Method

3.5.1.1 Forgotten items

Forgotten items were flagged through use of a personalised recommender sys-

tem, which prompted users about items they may have forgotten at the end

of their visit, before they checked-out. The exact products shown to each cus-

tomer were determined according to the recency and frequency of purchase in

previous shops (online or in-store), de-duplicated against products that had

been purchased in the present visit. This page was displayed to users prior to

payment.

3.5.1.2 Removed items

Shoppers could also remove products from their basket at any time during the

shop. The total number of removed items were counted for each user.

3.5.1.3 Predictive modelling

We explored whether the attention weights (β ) from the best-fitting retrieval

model would predict the number of forgotten or removed items. These weights

reflect the extent to which each visitor recruited each of the three represen-

tations to guide choice. Importantly, models were estimated using choices

that preceded use of the recommender system. Outlying attention weights

(three standard deviations above the mean) were clipped for this analysis for

numerical stability.

Attention weights were regressed onto the number of forgotten and re-

moved items using linear regression. We also included the proportion of times
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Figure 3.3: Mean number of forgotten items (with 95% confidence intervals) for
each model attention weight (β ). Results show that relying on episodic
or hierarchical knowledge predicted fewer forgotten items, whereas at-
tending to semantic knowledge predicted more forgotten items, as mea-
sured by use of a recommender system displayed before checkout.

that each shopper transitioned using each transition type (e.g., search arrival)

as confounding variables.

3.5.2 Results

3.5.2.1 Forgetting products

As shown in Figure 3.3, results supported the prediction that shop-

pers with increased episodic retrieval forgot fewer items on average (rs =

−0.0811, 95% CI [−0.0868, −0.0754], p < .0001). In addition, attending

to hierarchical knowledge predicted fewer forgotten items (rs = −0.0088,

95%CI[−0.0145, −0.0031], p ≤ .003). In contrast, the more shoppers at-

tended to semantic knowledge, the more likely they were to forget items

(rs = 0.0152, 95% CI [0.0095,0.0209], p = 0.0001).

To gauge their relative usefulness, we scaled each attention weight and

entered them into a multiple linear regression, regressing onto the number of

forgotten items. We also included the number of choices and the proportion

of choices made using each search context as confounding variables. The re-

gression was significant (F8,117328 = 178.7, p < 0.0001, R2=.012). Importantly,

higher attendance to episodic knowledge (bepisodic = -0.053, 95% CI = [-0.059,
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-0.048], p < .0001) or hierarchical knowledge (bhierarchy = -0.041, 95% CI =

[-0.046, -0.035], p < 0.0001) negatively predicted forgetting, whereas attending

more closely to semantic knowledge (bsemantic = 0.015, 95% CI = [0.009, 0.021],

p <=0.0001) positively predicted forgetting (full regression equation reported

in Table C9).

Relying on episodic knowledge could indicate a greater episodic mem-

ory capacity or more experience with products and their relationships. Both

possibilities could explain the general trend of forgetting fewer items as one

increases attendance to episodic knowledge. The formalisation of episodic

knowledge predicts that shoppers will transition to products that frequently

co-occur with the past choice. Thus, another possibility is that the recom-

mended products were less relevant to those that used episodic knowledge to

guide their search, because the recommended products were ones that had

been purchased by that shopper with a high frequency in the past. More work

— perhaps through a cognitive battery — is required to understand the rela-

tionship between retrieval from different knowledge systems and forgetfulness.

3.5.2.2 Removing products

We next examined whether shoppers attending to certain knowledge sources re-

moved more items from their basket. In line with our predictions, shoppers who

attended more closely to the semantic similarity between items removed more

items from the basket (rs = 0.0992, 95% CI[0.0935, 0.1049], p < .0001). Con-

versely, those attending to episodic knowledge (rs =−0.014, 95% CI [−0.0197,

−0.0083], p< .0001) or hierarchical knowledge (rs =−0.084, 95% CI [−0.0897,

−0.0783], p < .0001) removed fewer items on average.

One explanation for these results is that attending to semantic knowl-

edge increases one’s propensity to suppress irrelevant retrievals and thus add

products to one’s basket that they don’t otherwise need. Further analyses

(presented in Section 2.10.1 of the appendix) revealed that the removed items

tended to have above average similarity with the chosen options across each
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knowledge representation, which is supportive of this idea. Another possibility

is that shoppers attending to episodic knowledge were more experienced with

products and their associations and thus were less prone to mistakes. We leave

these possibilities for future analyses.

Most importantly, these results provide further support for the main claim

that shoppers query multiple knowledge formats when deciding what to choose

next and that individuals may differ in the extent to which they rely on these

systems. Future experimental work may wish to test these findings using

explicit measures and thus causally evaluate the precise relationship between

attention to representations and errors. Such studies would complement our

claim that knowledge formats may be recruited by individuals to different

extents.

3.6 Discussion

In open-ended choice tasks like grocery shopping, how do we decide what to

choose next? Many factors could influence what is chosen, but we propose

that much depends on the similarity with the preceding choice across mul-

tiple knowledge formats. This view makes a number of predictions that we

confirmed. First, choices and their response times were predicted by their

similarity with the last choice, suggesting that choices cue the retrieval of

subsequent options. Second, this behaviour was best explained by a mixture

of episodic, semantic, and hierarchical knowledge, suggesting that consumers

reason about associations between products in different ways by querying dif-

ferent sources of knowledge. Thirdly, how prone consumers were to different

types of memory errors was predicted by their reliance on different types of

memory, as assessed by model fits.

As our model describes, retrieved options may be cued by prior choices.

This likely explains why the sequential choices of online grocery shoppers clus-

tered over time, as they do in fluency tasks (Bousfield and Sedgewick, 1944;
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Gruenewald and Lockhead, 1980; Hills et al., 2012; Abbott et al., 2015; Avery

and Jones, 2018). We build upon past research (Bhatia, 2019; Zhang et al.,

2021; Kaiser et al., 2013; Keller and Ho, 1988; Kalis et al., 2013) by show-

ing how memory retrieval mechanisms influence the generation of options in

sequential decision-making tasks. These results would not be predicted by

many classical models of preferential choice, which consider option-retrieval

to be out-of-scope (Glimcher and Rustichini, 2004; Busemeyer and Rieskamp,

2014; Rangel et al., 2008). Our results demonstrate how choice options can

be dynamically constructed in the moment depending on the context supplied

by the previous choice. Future work could explore the influence of other past

retrievals, which have been shown to influence list recall (for a review, see

Kahana, 2020).

Choices may follow different trajectories depending on which sources of

knowledge are queried. Overall, choices and their response times were best ex-

plained by the sequential similarity across episodic, semantic, and hierarchical

representations. In addition, individual differences in the extent to which each

representation was recruited predicted how many products would be forgotten

or removed. This would not be predicted by many existing models of semantic

memory retrieval (Abbott et al., 2015; Hills et al., 2012) and option generation

(Bhatia, 2019; Zhang et al., 2021), which rely on a single measure of associa-

tion. Associative knowledge likely takes several forms (e.g., see Mirman et al.,

2017), which is consistent with our modelling approach and results. Future

experimental work may wish to explore the role of different associations in

memory retrieval tasks and whether such systems are cognitively or neurally

distinct.

Although we focused on sequential retrieval of choice options, determining

whether an option is goal relevant could also be key to choice (see Figure 3.1c).

Whilst modelling goals was out of the scope of this study, we hope studying

the interaction between goals and retrievals will be addressed in future work.

A person’s subjective preferences may also affect which retrieved options are
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chosen (Zhang et al., 2021; Levy and Glimcher, 2011; Hornsby and Love, 2020).

Choice itself can affect preferences (Hornsby and Love, 2020), which in turn

may affect memory retrieval. For example, new episodic memories could be

formed after purchasing a preferred pairing of balsamic vinegar and bitter

salad. One exciting direction for future research is to consider how different

shopping experiences for individuals lead to different memory representations,

which in turn affect future purchasing decisions.

The results of this chapter build on those of Chapter 2. Previously, I

showed that the semantic organisation of options used by consumers could be

approximated by their episodic co-occurrences within shopping baskets. We

build on those results here to demonstrate that both episodic co-occurrences

and the associated semantic embeddings are useful in predicting sequential

consumer choices. The semantic embeddings used in this chapter were trained

using a slightly different algorithm (known as word2vec, Mikolov et al., 2013).

This algorithm scales better to large datasets such as the one used here. How-

ever, the product embeddings generated by LDA could theoretically be used

as an alternative measure of semantic similarity and would likely be similar to

the semantic embeddings used in this chapter, given that they are trained in

similar ways. The generative algorithm of LDA should not be seen as a rival to

the retrieval model of this chapter; whilst both can feasibly generate a basket,

the order in which LDA draws products does not depend on previous draws,

in contrast to SAM. Both chapters emphasise the contribution of episodic and

semantic knowledge to preferential choice and uniquely show how it can be

inferred and then used to predict the real-world choices of consumers.

One possible confound is that sequential choices were biased by the design

of the website. For example, adding different brands of cola from the same page

could cause retrievals to appear more hierarchical, as they belong to the same

sub-category. To test this, we re-ran all analyses on a filtered dataset of product

transitions that occurred through use of the search bar (detailed in Section 2.11

of the appendix). All results were consistent with those reported here, which
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is reassuring given that these transitions were perhaps best representative of

memory-based search. In addition, the model that best explained sequential

grocery choices also provided the best fit to sequential retrievals of foods,

which were observed in a controlled laboratory task (detailed in Section 3 of

the appendix). Thus, whilst design features may help shoppers to retrieve

certain brands (e.g., brands of cola), shoppers still seem to depend on cued

retrieval from multiple knowledge formats to determine what they look for

next.

Analyses of large field data such as these complement findings from the

lab, allowing theories of memory and cognition to be evaluated at an unprece-

dented scale with high ecological validity. In this case, we’ve shown that the

sequential purchases of grocery shoppers are well explained by a model of

memory retrieval that was originally developed to explain behaviour in lab

tasks (Raaijmakers and Shiffrin, 1980; Hills et al., 2012). A large driver of this

model’s success in this task is that it makes use of three relevant embedding

spaces that relate to knowledge systems proposed in studies of memory (Tul-

ving, 1985). We hope these findings stimulate further work in the lab, where

one typically has a higher degree of control for assessing questions of cause and

effect. For example, an additional explanation for choices becoming slower and

more dissimilar over time is that retrieved options are increasingly rejected as

they become less goal relevant (e.g., goals become increasingly satisfied). Fu-

ture lab studies could assess this claim by asking participants to choose options

in the presence of more or fewer goals. Others could enquire about the content

of people’s goals and examine how they interact with choices over time.

Our approach may make it possible to use shopping behavior to detect cog-

nitive impairments. Longitudinal studies link performance in retrieval tasks to

memory decline in pre-clinical Alzheimer’s populations (Mueller et al., 2015).

While many people shop, relatively few people participate in such clinical tests

until they experience serious memory impairment, thereby foregoing the ad-

vantages of an early diagnosis (Rasmussen and Langerman, 2019). Although
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more work would be needed to establish efficacy and suitable ethical guide-

lines, model fits (e.g., changes in attendance to episodic memory cues) may in

the future predict the onset of cognitive impairment. Such a system operating

at scale with informed consent could improve outcomes for individuals and

society.

Online shoppers may be more or less responsive to certain recommen-

dations depending on their navigational strategy. Results showed that shop-

pers relying on episodic memory were less likely to purchase products from

a recommender system that reminded shoppers of previous purchases before

checkout. This may be of practical significance to marketers designing per-

sonalised recommender systems, who could adapt recommendations to suit

the retrieval strategies of shoppers as estimated by our cognitive model. For

example, shoppers relying on hierarchical knowledge could benefit from recom-

mendations promoting episodically related products (e.g., “goes well with...”)

whereas those relying on episodic knowledge could benefit from seeing seman-

tically similar products (e.g., “people also viewed...”) Such insights would com-

plement traditional machine learning systems, which do not typically consider

variations in human cognition (Griffiths, 2015).

To conclude, we find that choice sequences in an open-ended task depend

strongly on the sequential cuing of long-term knowledge. Shoppers appear to

use their previous choice to probe similarities in memory to determine what to

purchase next. Depending on which sources of knowledge are queried, shoppers

may choose products in different orders or exhibit an increased propensity to

forget. Working with models and memory formats originally developed in lab-

oratory settings, we were able to verify and extend these ideas in a real-world

setting. In doing so, we strengthen the case for the complementary nature of

laboratory and large-scale, real-world studies (Goldstone and Lupyan, 2016;

Hornsby et al., 2019) with linkages enhanced through common modelling ap-

proaches.
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Chapter 4

Learning preferences from past choices

4.1 Introduction

“We are, in a very real sense,

characters of our own creation”

Nick Chater

The Mind is Flat

“Things just happen in life, and

pretty much after the fact, we

make up a story to make it all

seem rational”

Michael Gazzaniga

Tales from Both Sides of the

Brain

Every day, people are confronted with countless choices for which there

is no objectively correct answer. These tend to be either preference judgments

or moral decisions (Nakao et al., 2012). Rather than being guided by extrinsic

feedback, people choose these options freely for themselves, using their sub-

jective preferences. We therefore refer to these choices as free choices. But

134
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how do people acquire these subjective preferences in the first place? The aim

of this chapter is to understand how people learn subjective preferences over

time and use these to make inferences about untried options.

We might learn about our own preferences in the same way we learn

about others’; by observing and then rationalizing behavior (Bem, 1967, 1972;

Cushman, 2019). This is because we tend to lack introspective access to the

mechanisms driving our behavior, meaning that we have to post-rationalize

in order to make sense of it (Bem, 1967, 1972; Miller and Buckhout, 1973;

Mandler, 1975; Nisbett and Wilson, 1977). In a dramatic demonstration of

this, people have been tricked by mischievous experimenters into justifying

choices that they did not actually make (Hall et al., 2010; Sauerland et al., 2016;

Strandberg et al., 2018). For example, after choosing their favourite flavour

of jam in a taste test, participants were tricked into then justifying a different

choice by experimenters, who covertly switched them mid-way through the

experiment (Hall et al., 2010). Thus, rather than accessing the reasons for

their choices directly, people seem to retrospectively infer them using evidence

of their historic choices, even when that evidence is not valid.

As well as facilitating the inference of preferences, past choices also shape

them. This has been demonstrated in studies of free choice, which show that

after freely choosing an option, people tend to increase their subjective prefer-

ence for it (Brehm, 1956; Sharot et al., 2009; Alos-Ferrer and Shi, 2012; Ariely

and Norton, 2008; Schonberg et al., 2014; Koster et al., 2015; Miyagi et al.,

2017; Voigt et al., 2017; Akaishi et al., 2014; Nakao et al., 2016; Vinckier et al.,

2019; Chammat et al., 2017; Cockburn et al., 2014; Riefer et al., 2017). In the

original free-choice paradigm, Brehm (1956) asked participants to rate a set of

items (e.g. snack products), choose between two similarly rated options and

finally to rate the full set again. Results showed that after making the forced

choice, they had an increased preference for the chosen item on the final rating

and a decreased preference for the rejected item. This is surprising, because it

suggests that merely choosing or rejecting an option causes a person to update
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their subjective preference for it.

Although there has been some debate as to the validity of the free-choice

paradigm in its original format, more recent studies have suggested that choice-

based learning is real. For example, one particular concern about the original

paradigm was that the first rating phase was noisy and therefore an imperfect

measure of people’s true preferences (Chen and Risen, 2010; Izuma and Mu-

rayama, 2013). However, researchers have since overcome this concern using

various methodological adaptations, demonstrating choice-induced preference

change does occur (Sharot et al., 2010; Alos-Ferrer and Shi, 2012; Koster et al.,

2015; Schonberg et al., 2014; Miyagi et al., 2017; Akaishi et al., 2014; Nakao

et al., 2016; Vinckier et al., 2019) and can be long-lasting (Sharot et al., 2009).

For example, Sharot et al. (2010) asked participants to blindly choose between

masked holiday destinations, which were only revealed to participants after

one of two keys had been pressed. Subsequent ratings of those destinations

were consistent with choice-induced preference change, even though choices

had been randomly assigned to participants. More recent analyses of data

collected from supermarket shoppers in-the-wild gives further credence to the

claim that choices are self-reinforcing. In particular, a recent study of 283,000

British consumers found that their tendency to repeat a choice (i.e., exploit)

strengthened as a function of the number of previous repetitions (Riefer et al.,

2017). The consensus from studies inside and outside the laboratory is that

free choices appear to be self-reinforcing, such that people come to prefer the

options they choose.

Studies of free choice imply that people refer to past acceptances and

rejections to infer what they like and dislike (Akaishi et al., 2014; Cockburn

et al., 2014; Miyagi et al., 2017; Izuma et al., 2010; Chammat et al., 2017; Riefer

et al., 2017). Yet, we know that people can also infer the value of things they’ve

never tried. For example, one could infer that they would not enjoy sky diving,

despite having never tried it. How do people do this? Rather than caching

the value of individual options (e.g. beer varieties), people likely represent
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options and preferences within a shared, continuous, multidimensional space

(e.g., varieties of hop, brand and brewing style). As depicted in Figure 4.1,

representing options and preferences in this way is beneficial, in that it provides

a lower-dimensional learning problem and allows one to infer the relative value

of any option in their environment, irrespective of whether it has been tried.

Making free choices may therefore serve a considerably broader function

than first thought, helping us to learn more deeply about ourselves and the

world around us. Specifically, if options are represented within the same at-

tribute space, then free choices may help to determine where one’s preferences

lie within that space. In this paper, we propose that the position of one’s

preferences is determined by a general, error-driven learning process, where

the error term seeks to make the last choice more likely to repeat. As well as

increasing the likelihood of past choices being repeated — as has been shown

in real supermarket consumers (Riefer et al., 2017) — one should also increase

their preferences for other options to the extent that they are similar to those

previously chosen. While surprising, striving for internal coherency in this way

may make sense in a world where choices can be evaluated across a multitude

of different criteria.

We begin by demonstrating how the intrinsic desire to maximize coherency

between past choices and present preferences can elicit strong subjective pref-

erences in the absence of extrinsic reinforcement. In accordance with our

proposed theory, we develop a computational cognitive model that learns pref-

erences over choice attributes and uses past choices as the basis for updating

them. We call it the Coherency Driven Choice (CDC) model. CDC is similar

to models in the field of human category learning, which are primarily con-

cerned with classification of items into a set of mutually exclusive categories

via their attributes (e.g., using wings, beaks and feathers to describe birds)

(Kruschke, 1992; Nosofsky, 2011; Love et al., 2004). However, rather than

updating based on corrective feedback, our model self-supervises using its past

choices, thereby making them and similar options more likely to be sampled.
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Figure 4.1: Many popular models of decision-making cannot easily explain how
people form strong subjective preferences for free choices made in the
wild. a, In standard decision theory, it is assumed that preferences
remain stable over time (von Neumann et al., 1944; Glimcher, 2009).
Indeed, for many researchers, the challenge is often learning what peo-
ple’s preferences are (e.g., by asking them to choose between options),
rather than understanding how they became. b, Reinforcement Learn-
ing (RL) models contrast in that they assume preferences change over
time. Specifically, RL agents learn to prefer actions with a higher
expected reward, which they learn as they monitor extrinsic feedback
from their environment (Sutton and Barto, 1998). While RL has been
shown to account for many aspects of human learning well (for a re-
view, see Daw and Tobler 2013), these investigations have been largely
confined to objective tasks, where there is a clear extrinsic signal steer-
ing the decision-maker. c, Studies of free choice — where there is no
objectively correct answer — have shown that merely choosing an item
increases one’s preference for it. This has often been taken to imply
that free-choices are self-reinforcing, so as to increase preferences to-
ward the chosen option. Yet, caching values in this way would arguably
not scale well, as it would require people to keep track of every item
they’d ever tried. d, In this paper, we propose a novel theory of sub-
jective preference formation and decision making that arguably scales
better to free choices made in the real world. According to this theory,
people encode preferences over attributes of free choices, such as the
hop content in beer. After making a decision, they then update their
preferences in the direction of the attributes that defined their prior
choice, thereby increasing their preference for it, as well as for other
options that have similar attributes.
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Moreover, we use these mechanisms to make decisions that do not involve any

fixed set of classes; the model chooses a set of items, which is not of fixed

size. Through simulation, we show how this mechanism can drive complex,

multidimensional preferences from free choices alone. Thus, error-driven, self-

supervision helps the agent to maximize coherency between its preferences and

choices over time. As a result, CDC can achieve a sense of order in environ-

ments where there are innumerable possible options and dimensions by which

to score them.

After presenting this formal demonstration of our theory, we validate its

predictions using a large-scale experiment of human participants. Chiefly, the

error-driven nature by which CDC learns means that it will update its pref-

erences in order to maximize the perceived contrast between accepted and

rejected options. This is analogous to contrastive learning effects documented

within the field of category learning, where the experience of contrasting cate-

gory exemplars causes perceived category averages to drift apart and become

idealized (Davis and Love, 2010). Results from Experiment 1 demonstrated

that people update their preferences in a similar way following a choice. Specif-

ically, participants were shown to prefer never-before-seen patterns if they

happened to be on the back of a toy robot they had just designed. The more

discriminating the pattern was to the initial robot, the more likely they were

to prefer it.

Whereas Experiment 1 concerned preference formation in a novel and

well-controlled domain, Experiment 2 evaluated the model’s predictions in a

domain in which people hold strong, preexisting preferences. In particular,

Experiment 2 evaluated whether participants would retrospectively update

their political beliefs following a vote. Results revealed that after choosing

between two electoral candidates based on trivial grounds (e.g., whether they

liked cats or dogs), participants were more likely to agree with a political

belief later revealed by their chosen candidate, irrespective of whether that

belief was traditionally left or right wing (e.g., pro-choice vs. pro-life abortion
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rights). Thus, these results support the key claims of our proposed theory,

in that they suggest that people retrospectively update their preferences to

be coherent with their past choices. Significantly, this even occurs in domains

where people possess strong prior preferences that likely have strong subjective

significance.

4.2 The Coherency Driven Choice (CDC)

Model

We begin by formally describing our model of subjective preference learning

and decision making.

Broadly speaking, the model works by maintaining an internal set of pref-

erences and attention weights for attributes across choices. For example, all

products in a supermarket can be described in terms of nutritional attributes

such as salt, sugar and saturated fat content. Individuals will possess differ-

ent preferences for those attributes, and pay differing levels of attention to

them. These preferences and attention weights are used to determine how

favourable a choice is at a given timepoint. In particular, the higher the

attention-weighted similarity, the more likely it will be to choose that option.

Our model can be thought of as an agent interacting with its environment.

Much like a reinforcement learning agent, the model takes an action, observes

its environment, updates its internal state and then repeats the process.

Here we introduce some important notation relevant to the model’s deci-

sion making process. Note that vectors will now be denoted in bold lowercase

letters and matrices in bold uppercase letters. We denote the observation of

choices in the environment using the matrix O, which has a shape of N ×M.

Here, N denotes the number of choices available O = [o1,o2, ...,oN ]
T at a given

timestep. For simplicity of notation, we assume that the model must choose

between two items at any one time (i.e. N=2). However — in principle —

the model is not constrained to this. M denotes the number of attributes for
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each option. Thus, each column oi (i ∈ {1, ...N}) is a vector of M attributes

oi = [oi1,oi2, ...,oiM]. Therefore, the element oi j corresponds to the jth attribute

( j ∈ {1, ...M}) of the ith item.

Preference similarity

In order to determine the most appropriate choice, the model first calculates a

probability over the available options observed in O using the preference vector

p= [p1, p2, ..., pM]T and the attention weight vector w= [w1,w2, ...,wM]T . Each

element of the preference and attention weight vectors p j and w j maps to an

attribute j in the attribute vector oi j.

After sampling an option from the environment, the agent must update

the preference and attention weight vectors. We now discuss the process of

computing probabilities, selecting actions and updating vectors in more detail.

Choice probabilities

In order to determine the probability of an action, the model calculates an

attention-weighted similarity between the preference vector and each of the N

= 2 item vectors oi within the observation matrix O. We denote the attention-

weighted similarity as a(oi)

a(oi)≡−γ

(
M

∑
j=1

w j(oi j − p j)
2

)1/2

(4.1)

Where γ is a scaling hyperparameter. Note that this weighted Euclidean

similarity term is very similar to the one used in the ALCOVE model of human

category learning (Kruschke, 1992).

In order to determine the probability of selecting an option i, the

attention-weighted similarity a(oi) is then fed into a softmax function

f(oi)≡ P(Ii|O)≡ so f tmax(a(O))i =
expa(oi)

∑N
k=1 expa(ok)

(4.2)

Thus, the preference a(oi) for an option is a function of three things:
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1. The similarity (i.e. Euclidean distance) between the preference vector p

and the choice attribute vector oi — The more similar the attributes and

corresponding preference values, the more the model prefers that option

2. The attention weight vector w — A higher degree of attention towards

a similarity leads to a greater impact on the overall preference

3. The scaling hyperparameter γ — The higher the γ , the higher the prob-

ability for selecting the preferred option (when using softmax action

selection)

Similar to more traditional models, preferences are represented as ideal-

points within a multidimensional space (Greenhoff and MacFie, 1994). How-

ever, unlike many of those methods, the model can have varying levels of

attention to those according to the attention weights and — crucially — de-

scribes how preferences update over time as a consequence of decision making.

Action selection

Choices can be selected using one of the many popular strategies used in RL,

such as ε-greedy, softmax action selection (Sutton and Barto, 1998) or more

sophisticated directed-exploration strategies (e.g., uncertainty minimization).

In each case, higher probabilities for choices (i.e. stronger preferences) in-

crease the likelihood of exploiting that known favourite, rather than exploring

disfavoured options. When using softmax selection specifically, the λ param-

eter can be thought of as determining the “fussiness” of the agent’s choices,

such that higher λ equates to a higher likelihood of choosing the favorite. We

denote the choice made by the agent as c.

Updating preference and attention-weight vectors

Following an action, the agent must then update its preference and attention

weight vectors. As discussed in the main text, a battery of psychological

research has shown that — in subjective choice domains where there is no
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explicit feedback — preferences tend to follow choices. We therefore update

the preference and attention weight vectors so as to maximize the likelihood of

the previous choice. This contrasts sharply with traditional preference models,

which seldom specify how preferences may change over time (Greenhoff and

MacFie, 1994; DeSarbo and Kim, 2012).

The exact learning procedure used to update the preference and attention

weight vectors is gradient descent on the cross-entropy loss, similar to that used

during backpropagation and in the neural network literature generally (Hinton

et al., 1986; Goodfellow et al., 2016). During the learning procedure, an action

is determined probabilistically using the softmax choice rule. After the action,

the cross-entropy loss is calculated between the preference probabilities output

by the model f(oi) and the actual choice c that was made.

l(f(O),c)≡−
N

∑
i=1

1{c=i}log( f (oi)) (4.3)

After making an action, the preference and attention weights are updated

so as to minimize the cross-entropy error. Concretely, they are updated pro-

portionally to the negative of the error gradient.

We therefore use the following calculation to find the partial derivative of

the preference vector p with respect to the cross-entropy loss:

∂ l(f(O),c)
∂ p j

≡ γ2w j

N

∑
i=1

(
1{c=i}− f (oi)

) 1
a(oi)

(oi j − p j) (4.4)

And the following calculation to find the partial derivative of the attention

weight vector w with respect to the cross-entropy loss:

∂ l(f(O),c)
∂w j

≡−γ2

2

N

∑
i=1

(
1{c=i}− f (oi)

) 1
a(oi)

(oi j − p j)
2 (4.5)

We then use these partial derivatives to update the existing preference

and attention weight vectors using gradient descent. Concretely, we define the

following update rules for the vectors p and w, respectively:
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p := p−ηp
∂ l(f(O),c)

∂ p j
(4.6)

w := w−ηw
∂ l(f(O),c)

∂w j
(4.7)

Where ηp and ηw represent the learning rates for the preference and at-

tention weight vectors, respectively. As is standard during gradient descent,

these learning rates scale the updated vectors and thus determine the magni-

tude of the update at a given time step.

4.3 Learning strong preferences over time

To illustrate how one could learn strong subjective preferences by virtue of their

choice trajectory, we simulated the CDC model. In the simulated environment,

there were two choice types that did not vary on the first dimension but varied

significantly on the second dimension. This is analogous to choosing between

two beer brands that are similar in taste but contrast in the color of branding.

4.3.1 Method

4.3.1.1 Simulation

Observations in the environment were randomly sampled from distributions of

two clusters. Choice type a had a cluster centroid of (0.2,0.8) whilst choice type

b had a cluster centroid of (0.2,0.2). The standard deviation of each cluster

was determined apriori to be 0.05; thereby making the two choice types linearly

separable. A total of 500 observations were simulated.

The agent was initialised with middling preferences and attention weights

across the two attributes of (0.5,0.5). It was also set to have a learning rate

of 0.01, ε = 0.05 and λ = 1. Choices were simulated for 10,000 timesteps. At

each timestep, the agent was forced to choose between two randomly-selected

options from each choice type using an ε-greedy action selection strategy.
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Figure 4.2: To illustrate how this theory can materialize in strong subjective pref-
erences, we formalize it in a computational cognitive model, known as
Coherency Driven Choice (CDC). a, CDC possesses a preference and
attention-weight vector. When evaluating options, the model evalu-
ates the similarity between its own attention-weighted preference and
the attributes of the available options. The closer an option’s at-
tributes are to the model’s attention-weighted preferences, the more
likely the model is to select it. b, Following a choice, CDC updates its
preference vector to make the past choice most likely using gradient
descent, thereby moving toward the prior choice in attribute space.
c, CDC also adjusts its attention weights to make prior choice more
likely, effectively warping the preference space so that it becomes more
sensitive to the attended attribute. d, As the model grows to prefer
the options it initially chose, it tends to repeat the same choice type
more over time. e, The model was simulated for 10,000 timesteps in
a simple environment in which there were two choice types. Due to
happenstance in the initial choices, the model began to prefer choice
type a, adjusting its preferences and attention weights in favor of the
attributes that make it unique. The preference history is coloured by
attention weight ratio, such that blacker colors indicate a greater deal
of attention paid towards attribute 2.
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Choosing these parameters over a large number of timesteps helped the

learning process to be smooth and stable across the agent’s lifespan. This

is therefore more representative of what might happen over a timescale of

several years. However, it should be noted that the same learning trajectory

documented below could be found using a larger learning rate over a shorter

number of timesteps, though many such situations would not involve complete

movement towards a goal.

4.3.2 Results

A visualization of this model and the results of this simulation are shown in

Figure 4.2.

After simulating 10,000 forced-choices, CDC eventually came to posses

preferences resembling the first choice type (i.e., type a). After an initial

sequence of random actions, CDC began to quickly develop a preference in

retrospect of them, and thus select choices consistent with this new-found

preference. This process was then self-reinforcing, further strengthening pref-

erences and therefore the likelihood for choice type a over time. Thus, when

consumers become less likely to explore new products the more they exploit

the same, it may be because their preferences are being self-reinforced by their

past choices, as shown in this simulation (Riefer et al., 2017).

Uniquely, as CDC chose more of choice type a, the preferences and atten-

tion of the model moved most in favour of the attributes of the choice that

made it unique. This is a known consequence of discrimination learning, but

uniquely demonstrated here within the context of subjective preference change

(Davis and Love, 2010; Rescorla and Wagner, 1972; Ramscar et al., 2010). Ex-

aggerating preferences in this way helped the model to maximize the perceived

contrast between the accepted and rejected choices. This increases the likeli-

hood of the past choice type being sampled again and reduces the likelihood of

the rejected option being selected. Continuing the example introduced above,

this suggests that a person will have an over-exaggerated preference toward
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the unique branding of their preferred beer, helping to retrospectively justify

their apparent preference.

Of course, when formalizing a cognitive theory, one must make some as-

sumptions about the world. For example, in the case presented here, one could

argue that people do not always have complete knowledge of the attributes de-

scribing each option at the time of decision. Indeed, one may need to taste

a product to know how salty it is, or they may vote for a political candidate

before learning of their stance on free-trade. In this case, our model would sim-

ply use a placeholder for their preference on that particular attribute. Upon

revelation of the attribute value for their prior choice (e.g., discovering how

salty a snack was), they would then move their preference toward the attribute

point in question.

In reality, people are unlikely to develop preferences as exaggerated as

the ones learned in this simulation. This is because choices in real life are

often more innumerate, multidimensional and overlapping. The high degree of

similarity between options in the real world would cause our agent to explore

more, and thereby develop a less exttreme set of preferences. The environment

may also provide additional sources of noise during decision making that elicit

exploration and thus movement of preferences in new directions. For example,

a preferred product may be out-of-stock in a store, a person may develop a

new allergy or travel to a new country. Rather than attempt to account for the

multitude of ways in which preferences change as a function of choices in-the-

wild, the aim of this simulation was to highlight a important consequence of

the coherency maximizing mechanism proposed here; namely, that preferences

are updated in order to discriminate the choice just made.
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4.4 People prefer novel patterns associated

with their prior choice

The new account proposed in this paper suggests that by learning preferences

over attributes of choices, people can generalize their preferences to novel op-

tions that are associated with ones previously chosen. Moreover, similar to

error-driven models developed in the field of category learning (Davis and

Love, 2010), it predicts that people will update their preferences in the direc-

tion of the most discriminative elements of their choice, in order to maximize

the likelihood it being repeated.

Experiment 1 aimed to validate these predictions. Here, participants were

asked to design a robot (the trial flow is depicted in Figure 4.3a). They were

then introduced to a second robot, before both turned around revealing previ-

ously unseen, randomly assigned patterns on their backs. Finally, participants

were asked to choose between three patterns; one that was unique to the back

of the robot they had previously designed (i.e. chosen unique), another that

was shared across the backs of the two robots and a final pattern that was

unique to the back of the robot they had not designed (i.e. non-chosen). It

was hypothesized that — consistent with a discriminative account of learning

— participants would prefer those novel patterns to the extent that they were

uniquely associated with the robot they had just designed.

4.4.1 Method

4.4.1.1 Participants

One thousand and three participants were recruited from Amazon Mechani-

cal Turk (mturk). Mturk (www.mturk.com) is generally known for being an

inexpensive source of reliable human data (Crump et al. (2013), though see

McDuffie (2019) for a discussion on the possible limitations). Participants were

required to have completed >1000 tasks (or HITs) and have an acceptance rate
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greater than 95%. Participants had to be based in the US or Canada. Data

from 37 participants were removed due to having an average response time two

standard deviations greater than the mean (>17.64s). The mean age of the

participants was 37.0 (SD=11.4) and 50.2% were male. Participants were paid

50¢ for participating, which is typical for mturk (Horton and Chilton, 2010).

Overall, the experiment took about 10 minutes1.

4.4.1.2 Design

The experiment used a between-groups design with 10 trials. Participants

either chose a pattern that belonged to the back of the robot they previously

designed (i.e., chosen-unique), the one they did not design (i.e., non-chosen)

or was shared across both. The dependent variable was therefore the sum of

the preferences over each of the choice types across each of the 10 trials.

4.4.1.3 Apparatus & Stimuli

The study was designed using JavaScript and was accessed in a web browser.

The task was presented in a 700 x 700 pixel screen. During the design phase

of the experiment, participants responded by choosing attributes from a drop-

down box. When stating their design preferences in the final phase, partici-

pants were asked to click each robot in order of their preference (from highest

to lowest).

Each robot was designed using the Support Vector Graphics (SVG) for-

mat. These robots had a front — which could be designed by participants —

and a back, which contained randomly-assigned patterns.

During the design phase, participants could design three aspects of the

front of their robot; the stomach texture, the visor border colour and the eye

colour. In each trial, participants could choose between two randomly-selected

options for each design aspect.

In the final phase of each trial, participants were shown multicoloured
1Both experiments presented here were in compliance with UCL’s code of ethics
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geometric patterns. In total, there were three patterns per trial, randomly

selected from one of 50 possible triplets. One pattern appeared on one random

half of the back of the robot they had previously designed. Another pattern

appeared on one random half of the back of the robot they had not designed.

The final design was shared such that it appeared on both remaining halves

of the two turned robots.

4.4.1.4 Procedure

Participants were initially briefed about the experiment in order to get their

informed consent and asked to supply their age and gender. They were told

that the task would take about 10 minutes and would require them to design

robots and make choices. On each trial, participants were shown a robot with a

randomly selected name and asked to design it. The hope was that by designing

the robot, they would become more motivated about their choice, increasing

ecological validity. They could choose between one of two randomly selected

options for each of the three design aspects. After completing the design,

participants were then introduced to a new, frowning anti-robot. This anti-

robot was designed using all the attributes that the participant had previously

eschewed. In addition, participants were warned that the anti-robot did not

like the participants’ design. They were then asked to reassure their own robot

by clicking on it. Henceforth, we refer to this anti-robot as the non-chosen

option. This is because it was uniquely designed using elements that had been

explicitly rejected during the previous phase of the trial. After clicking on their

own robot, both robots then turned around revealing randomized patterns on

their backs (described above). The two robots then moved to the back of the

screen. Three patterns — either shared across both or unique to one of the

robots at the back of the screen — then appeared at the front of the screen

and participants were asked to choose their favourite in order of preference.

Participants completed 10 such trials with patterns, robot names, and other

trial details randomized for each trial, they were debriefed, thanked for their
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Figure 4.3: a, The trial sequence observed by participants. First, participants were
introduced to a robot and asked to design aspects of it. They were
then introduced to a new robot, which was designed differently. These
robots then turned around, revealing random patterns on their backs.
One pattern was unique to the robot participants’ had previously de-
signed (i.e., chosen-unique), one was shared across both robots (i.e.,
shared) and the other was unique to the robot they had previously
eschewed (i.e., non-chosen). Participants were then asked to rank the
patterns in order of preference. b, This chart depicts the proportion
that each image type was chosen as a first, second and third prefer-
ence (with standard error bars). These results are consistent with the
theory presented here, which predicts that choice-based learning gen-
eralizes most strongly to the unique, most-discriminating feature of the
original choice (i.e., chosen unique), followed by the shared feature.

participation and paid immediately.

4.4.2 Results

A repository for all data described in this paper is available on OSF ([dataset]

Hornsby and Love, 2019).

The proportion of times each image type was selected as a first, second and

third preference is pictured in Figure 4.3b. As hypothesised, participants most

preferred the unique chosen pattern, followed by the shared pattern and finally,

the non-chosen pattern (omnibus non-parametric Friedman test of differences

among repeated-measures χ2 = 137.48, p < 0.001). Specifically, summed pref-

erences for the chosen-unique patterns (Median = 9, IQR = 4.0) were stronger

than that for the shared items (Median = 9, IQR = 3.0) (Wilcoxon signed-
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rank Z =−2.91, p < 0.005,r = 0.09) and the non-chosen items (Median = 11,

IQR = 5.0) (Z = −12.08, p < 0.001,r = 0.39). A final test also revealed that

preferences for the shared items were stronger than that for non-chosen items

(Z =−11.70, p < 0.001,r = 0.38)2.

These results supported our two key hypotheses and therefore the key

claims of our theory. Firstly, participants exhibited an increased preference

for the chosen-unique and shared patterns, demonstrating that they general-

ized their preference learned from the initial choice to the novel patterns by

virtue of their association. Consistent with the behaviour of our model for-

malization, people appear to generalize their preferences to novel items that

share attributes with choices just made.

Secondly, participants demonstrated an increased preference for the

chosen-unique pattern over the shared pattern and a reduced preference for

the pattern unique to the rejected option. This is consistent with discrimina-

tive accounts of learning, in that it suggests that people update their preference

towards attributes that discriminate their prior choices. Studies of human cate-

gorization have shown that experiencing contrasting category exemplars causes

their perceived difference to drift apart and become idealized. For example,

because people are used to contrasting diet foods with high calorie foods, they

are more likely to suggest celery as a prototypical diet food, even though it

is extreme for its category (Davis and Love, 2010). Choosing freely between

options appears to have similar effects during preference learning, in that pref-

erences update to maximize the perceived contrast between the accepted and

rejected options. This functions to maintain coherence between past choices

and present preferences.

2All Wilcoxon-signed rank tests were evaluated against a Holm-Bonferroni corrected al-
pha value for multiple comparisons
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4.5 Political beliefs become consistent with a

prior vote

The experimental results presented so far have provided controlled, experimen-

tal support for our error-driven account of subjective preference formation and

decision making. Outside the lab however, people usually have strong prior

preferences for options, which likely interacts with their intrinsic tendency to

coherency maximize.

The aim of Experiment 2 was therefore to explore the extent to which

people retrospectively update their existing preferences following a free choice.

Specifically, we evaluated whether people would modify their political beliefs

after a vote. Participants from the U.S. were shown two political candidates

and asked to vote for one, based on some trivial attributes (e.g., whether they

liked cats or dogs)3. This experimental procedure is depicted in Figure 4.4a.

Following the vote, these chosen and non-chosen political candidates revealed

randomly assigned, opposing controversial beliefs on a particular topic. These

beliefs were either traditionally left or right-wing. For example, if randomly

assigned to the abortion issue, the chosen candidate would either show “Abor-

tion: Pro-choice” or “Abortion: Pro-life”. Participants were then asked to

state the extent to which they agreed with their chosen candidate’s newly re-

vealed belief using a slider. Finally, they were asked to state their preferred

party out of the Democrats or Republicans.

Our primary hypothesis was that people would show higher levels of agree-

ment for the right-wing view (e.g., pro-choice abortion rights) if their chosen

candidate revealed support for that view, compared to the left-wing view. This

would provide support for the theory presented here and suggest that, follow-

ing a vote, people are prone to adjust their political beliefs to be coherent with

their chosen candidate.

3More information about the experimental design and stimuli is available in the methods
section
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While expecting that people would feel inclined to agree with their chosen

candidate’s newly revealed opinion, we also secondarily hypothesized that this

would vary depending on individual differences. Specifically, we expected that

different individuals would be more or less prone to updating their preferences

retrospectively, due to differences in their longstanding political beliefs. Due

to its simplicity, we used people’s preferred political party affiliation as an

indirect measure of these beliefs and subsequently predicted that Republican-

identifying participants would be more likely to update their beliefs to be

coherent with their initial vote. This was for two main reasons. Firstly, due to

the broad and unpredictable nature of being in power, voters in support most

likely have to accept more compromises and adjust their beliefs on occasion in

order to remain coherent. Secondly, results from self-reported surveys suggest

that conservatives value coherency comparatively more when making political

decisions (e.g. they have been shown to value loyalty to the in-group and

to authority comparatively more Mendez (2017); Haidt and Graham (2007);

Jost et al. (2003)). While this is a somewhat secondary prediction that does

not directly flow from our core theory, we used Experiment 2 as an initial

exploration of group differences across domains.

4.5.1 Method

4.5.1.1 Participants

One thousand participants were recruited using mturk. All participants were

required to have had at least 1000 of their previous tasks accepted on mturk,

have a 95% mturk task acceptance rate and be based in the United States.

All participants were paid 50¢ for participating. Of the participants, 47 were

removed due to a lack of apparent concentration or understanding of the task.

Specifically, 45 participants were removed for having response times more than

two standard deviations from the mean for the vote response (n= 26, > 38.68s)

and the slider response (n = 19, > 55.38s). A further 2 participants were
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removed for clicking more than 50 times during the whole experiment. Of

the final 953 participants, 50.26% were male, 49.53% were female and the

remainder specified as ‘other’. The mean age was 37.44 (SD = 11.67). Of the

participants, 64.53% said they affiliated more closely with Democrats, whereas

the remainder said they affiliate more closely with Republicans. Data was

collected in late July 2018.

4.5.1.2 Design

The experiment used a 2 x 2 between-groups design. The experiment in-

volved one trial. Participants either chose a candidate that — previously

unbeknownst to them — revealed a more left-wing view or a more right-wing

view. Furthermore, participants either affiliated more closely with Democrats

or Republicans. The dependent variable was the slider value of the participant,

normalized by political direction. Specifically, these values ranged from 1 to

100, where higher values indicated more agreement with the right-wing view

and lower values indicated more agreement with the more left-wing view. Note

that the initial vertical location of the candidates, the allocation of neutral and

controversial attributes, and the final horizontal locations of the candidates

were all fully randomized.

4.5.1.3 Apparatus & Stimuli

The study was designed using JavaScript and was accessed in a web browser.

The task was presented in a 1000 pixel wide screen. Participants were shown

two of a possible four faces taken from the Chicago Face Database (Ma et al.,

2015) 4. To control for noise emerging from other, well-documented biases,

all faces were controlled to be male, Caucasian and ranging between the ages

of 37 and 43. Faces were randomly assigned one of four names. These were

either James Smith, Michael Johnson, John Williams, Graham Brown. These

4These faces can be identified in the Chicago Face Database using the target codes WM-
023, WM-221, WM-223 and WM-248
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names were sourced from a list of the most popular first and second Caucasian

names in the United States.

Table 4.1: A summary of the neutral statements shown to participants

Topic Statements

Pets ”I like cats”
”I like dogs”

Sport ”I’m a baseball fan”
”I’m a basketball fan”

Food ”My favorite Italian food is pizza”
”My favorite Italian food is spaghetti”

Table 4.2: A summary of the controversial statements revealed by candidates fol-
lowing a vote

Topic Left-wing Right-wing
Abortion ”Abortion:

Pro-
choice”

”Abortion:
Pro-life”

Immigration ”I support
policies
that would
increase
immigra-
tion”

”I support
policies
that would
decrease im-
migration”

Trade ”I support
tariffs on
imports”

”I support
free trade”

The neutral opinions of participants are shown in Table 4.1. The contro-

versial political opinions of participants are shown in Table 4.2.

4.5.1.4 Procedure

Participants were initially briefed about the purpose of the experiment in order

to get their informed consent. They were told that the task would take about

5 minutes to complete and would require them to vote for political candidates.

After the briefing, participants began the trial. To first ensure that the partic-

ipants were alert, they were told to read a short experimental briefing. Within
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this briefing was the instruction to click on the name of the university (which

was displayed at the top of the screen). After clicking this, a new panel was

revealed displaying some text (”It’s time to vote for a candidate! Please click

on a candidate to vote”) and two political candidates in gray cards; one above

the other. Within each card and underneath the candidate’s photographs was

their name and then a list of “My opinions”. These lists initially displayed

opposing neutral opinions selected from the same neutral topic, as shown in

Table 4.1. The assignments of photographs, names, neutral topics and vertical

alignment were all randomized. Participants were asked to vote for a candi-

date using this neutral information by clicking on their card. After voting, the

cards then moved to a left or right position on the screen, aligning horizon-

tally with each other. This horizontal allocation was also randomized. The

voted and non-voted candidates then immediately revealed opposing political

opinions from the same topic in their list of opinions. A blue “New” button

drew attention to this newly-revealed belief. The window then moved down

to reveal a new section, containing some text and a slider. The text informed

participants in bold lettering that “Your candidate has revealed a new opinion

above! How much do you agree with your candidate’s newly revealed opinion?”

Participants were prompted to use the new slider to state the extent to which

they agreed with the candidates’ newly revealed opinions. Small avatars of the

candidate’s faces were shown on either side of the slider, with a gray tick or

white cross below the ones that were previously chosen, respectively. There

were also prompts below each avatar reminding participants of the newly re-

vealed controversial opinion of the candidate. Note that the slider was not

initialized with any starting value. Sliding closer towards the chosen candi-

dates indicated higher levels of agreement with that candidate. The slider had

100 possible positions. The photographs, names, neutral and political opin-

ions and left/right direction of movement were all randomly assigned between

participants.

After confirming the slider position, participants were asked to state which
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party they most affiliated with (Democrat or Republican), their gender and

their age. Following task completion, they were thanked for their participation

and paid immediately.

4.5.2 Results

In support of the primary hypotheses, results revealed that participants’ stated

degree of belief was significantly influenced by the randomly-assigned belief re-

vealed by their chosen candidate (non-parametric two-way analysis of variance

(ANOVA) (F (1, 952) = 28.89, p < 0.001, CL=0.563). In particular, those

that voted for a candidate that later revealed a right-wing opinion (Median

= 56.0, IQR = 76.00) agreed an average of 43.59% more with the right-wing

view compared to if the candidate later revealed a left-wing view (Median =

39.0, IQR = 69.75). This suggests that choosing a political candidate based

on initially trivial characteristics made participants more likely to agree with

that candidate’s later-revealed controversial opinion, irrespective of whether

the person self-identified as a Democrat or Republican.

In support of the secondary hypothesis, there was also a significant inter-

action between party affiliation and the degree of agreement with the right-

wing view (F(1, 952) = 11.77, p < 0.001). A first Mann-Whitney U test

looking at the responses of self-identifying Democrats revealed that they only

slightly increased their level of agreement for the right-wing view if their can-

didate revealed a right-wing view (Median = 40.0, IQR = 78.00) compared to

if it revealed a left-wing view (Median = 31.5, IQR = 65.75); this difference

was not significant (U = 43584.5, p=0.054), and had a very low effect size

(CL = 0.518). In contrast, the second test looking at Republican-identifying

participants revealed a larger effect, in that — if one’s candidate later revealed

a more right-wing opinion — they were 65.66% more in agreement with the

the right-wing view (Median = 82.0, IQR = 59.75) compared to when the

candidate revealed a more left-wing view (Median = 49.50, IQR = 70.25) (U
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Figure 4.4: a, Participants were initially asked to vote for a candidate based on
trivial characteristics. Both candidates then revealed opposing beliefs
on a more controversial belief. Participants were then asked to rate
how much they agreed with their candidate’s newly revealed opinion.
b, If voting for the candidate affects the extent to which participants
agree with the later-revealed political belief, then one would expect
participants to show different levels of agreement between groups, de-
pending on whether their candidate revealed a traditionally left-wing
view or a right-wing view. c, The results of the experiment are shown
in kernel density plots (with rugplots below to depict the individual
data points). These reveal that Republican-identifying participants
were particularly prone to adjusting their preference to be in accor-
dance with that revealed by their chosen candidate. d, Plotting effect
sizes for each per-topic comparison shows that Republican-identifying
participants were particularly prone to adjusting their preferences.
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= 10131.5, p<0.001, CL = 0.629) 5. Thus, Republican-identifying participants

appeared to be particularly prone to adjusting their beliefs so as to be consis-

tent with their last choice, even when this choice was based on trivial grounds

(e.g., the fact that their candidate liked cats).

It is notable that self-identified Republicans were particularly willing to

adjust their preferences to be coherent with their prior choices. For example,

their median support for pro-life abortion policies was 60% higher when their

chosen candidate later expressed support for pro-life policies (Median=96.0,

IQR=61.50) compared to pro-choice policies (Median=60.0, IQR=88.00) (the

remaining within-topic comparisons are depicted in Figure 4.4c and 4.4d,

and described in the appendixal). One possibility is that only Republican-

identifying participants adjust their preferences to be consistent with a choice,

across all domains. To confirm that this was not the case, we replicated the

first experiment, asking about party affiliation at the end of the study. Results

revealed that both self-identifying Democrat and Republican participants ex-

hibited preferences for the final pattern in ways consistent with the reported

findings above (see the appendixal for details). Thus, a more likely expla-

nation of our results is that there are group and domain differences guiding

the extent to which people learn from their past choices. For example — as

discussed in the introduction to this section — differences in people’s belief

systems may give rise to different propensities to adjust preferences following

a choice. Clearly these topics are deserving of future investigation in light of

the results presented here.

4.6 General Discussion

In this chapter, we proposed a novel account of subjective preference formation

and decision making. In our model, choice options and preferences are repre-

sented in a common continuous, multi-dimensional space. When people choose
5For all multiple comparisons reported in this paper, significance values were compared

against a Holm-Bonferroni corrected α value
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options within this space, their preferences are updated to increase the likeli-

hood of their previous choices. The objective of decision making is therefore to

reduce the error between one’s past choices and present preferences; we refer

to this general mechanism as coherency maximization. Consistent with pat-

terns of repeat-purchasing observed in supermarket consumers (Riefer et al.,

2017) and studies of choice-induced preference change (Brehm, 1956; Sharot

et al., 2009; Alos-Ferrer and Shi, 2012; Ariely and Norton, 2008; Schonberg

et al., 2014; Koster et al., 2015; Miyagi et al., 2017; Voigt et al., 2017; Akaishi

et al., 2014; Nakao et al., 2016; Vinckier et al., 2019; Chammat et al., 2017;

Cockburn et al., 2014), coherency maximization boosts the likelihood of past

choices being repeated by shifting preferences towards the chosen item and

away from rejected alternatives. As was shown in a simple simulation, this

mechanism can drive strong subjective preferences in the absence of extrinsic

feedback. Thus, our model is well-suited to navigating the complex choices

encountered in everyday life.

Following from this account, one would expect preferences to be exagger-

ated towards attributes that favored the past choice and diminished towards

attributes associated with rejected choices. Results from the first experiment

showed that preferences are updated in accordance with these predictions.

Concretely, the more uniquely associated a novel pattern was to the back of

a toy robot they had previously designed, the more likely participants were

to prefer it. Given that we tend to lack direct introspective access to the

mechanisms driving our behaviour, post-rationalizing choices may be a rea-

sonable way to make sense of ourselves and the world around us (Bem, 1967,

1972; Miller and Buckhout, 1973; Mandler, 1975; Nisbett and Wilson, 1977;

Cushman, 2019). Our model shows that simple learning processes can achieve

similar ends by updating underlying preferences to align with a choice.

These learning rules can be seen as reflecting an internal drive for inter-

nal consistency, which is pivotal to rational models of decision making (Sav-

age, 1954).For example, it is often assumed that subjective choices should be
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stochastically transitive (Schultz et al., 1997). When preferences are not transi-

tive, people can become liable to manipulation (or “dutch booking”) (Davidson

et al., 1955). For example, if out of three beers, a person prefers beer A over

B, beer B over C but would rather have C than A, their preferences are cycli-

cal. This person could be tricked into paying for a series of costly trades in

which the drinker ended with his original beer. In subjective domains, internal

consistency may be at times the only rational strategy that is feasible.

The second experiment explored how the tendency to maximize coherency

interacted with people’s prior preferences. The results indicated that after

voting for a political candidate based on trivial criteria (e.g., the candidate

likes cats), participants were more likely to agree with a controversial opinion

later revealed by the candidate, such as their stance on abortion rights. This

held up as a main effect, supporting our claim that people retrospectively

update their preferences over attributes of their past choices to make them

more likely. The fact that this was particularly pronounced for Republican-

identifying participants supported our secondary hypothesis that this mecha-

nism can vary between groups, consistent with previous studies demonstrating

individual differences in choice-induced preference change (Cockburn et al.,

2014). However, while individual differences may partly explain our results,

it is likely that other variables outside the scope of our theory also influence

decisions, such as how important affiliation is to different groups. Specifically,

while Republican-identifying participants adjusted their preferences more than

their Democrat-identifying counterparts in the second experiment, a replica-

tion of the first experiment (see appendix) revealed no difference between the

groups when choosing between novel options. In future research, the promi-

nence of choice-induced preference change within certain groups or domains

could be estimated by fitting the CDC model to different decision tasks.

If people update their preferences to be coherent with their past choices,

then why might they also feel motivated to explore? A recent analysis of

consumers’ take-away purchases suggested that they were more likely to try
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a different restaurant after a positive experience rather than repeat it again

(Schulz et al., 2019), suggesting that people may also explore to reduce un-

certainty about their environment. In the simulation, we used a stochastic,

undirected exploration policy (i.e. e-greedy). However, CDC could be adapted

to use a more sophisticated, directed exploration strategy, such as uncertainty

minimization. This is because CDC considers exploration and coherency max-

imization as theoretically and mechanistically independent. Understanding

where and when people explore is an open question in the literature (for a

review, see Hills et al. 2015), meaning that such adaptations would need to

be evaluated with scrutiny. In the future, we hope to further understand how

people trade-off this need to explore with the desire to coherency maximize.

In this chapter, we have assumed that preferences are adjusted following

a choice. However, preference change has also been shown to occur “online”

during a choice (Schonberg et al., 2014; Niv et al., 2015; Akaishi et al., 2016;

Voigt et al., 2019). A recent study by Voigt et al. (2019) found that choice-

induced preference changes only occurred for choices that were remembered.

Both online and post-choice induced preference change mechanisms could co-

exist. Though this would highlight a future area of development for the CDC

model. One such modification would be to adapt the role of the attention

weights during a choice. For example, their influence could be magnified in

cases where the model was more familiar with or remembered the attributes of

the choice. The preference vectors and attention weights would then account

for both online and post-decisional effects of preference change, respectively.

A core idea formalised within CDC is that preferences should update to

discriminate the past choice. Concretely, preferences should move towards

attributes associated with chosen option and away from attributes associated

with the rejected option. Results from Experiment 1 supported this hypothe-

sis, with participants preferring patterns to the extent that they were uniquely

associated with their previous choice. Whilst results in Experiment 2 were sug-

gestive of this effect, one cannot be certain of the extent to which preferences
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within individuals changed as a result of the choice. For example, one possi-

bility is that participants only moved significantly towards the beliefs of their

chosen candidate’s when they aligned with the participants’ prior ideology.

Future studies could consider taking a baseline measurement of participants’

affiliation within individuals to compare before and after a choice. However,

one would need to be careful that initial ratings were measured reliably and

did not suffer from the same confounds identified by Chen and Risen (2010).

Although our studies involved brief decision-making episodes, the basic

mechanisms considered here may also apply at longer timescales. Indeed, this

work was partially motivated by Riefer et al.’s 2017 discovery of self-reinforcing

purchasing patterns in supermarket consumers, which extended over several

months. If CDC’s predictions for how preferences change held over extended

periods of time, the practical consequences and possibilities for behavioural

change would be substantial.

For instance, CDC predicts that purchasing the same type of food should

increase preference for associated attributes. This can be problematic in cases

where the food is unhealthy (e.g., high in sodium or saturated fat). For ex-

ample, studies of nutrition have shown that repeated exposure to a particular

ingredient (e.g., sodium) increases one’s desire and lowers their sensitivity to

it, making it difficult for them to adjust when they go on a diet (Bertino et al.,

1982; Mattes, 1993; Liem and de Graaf, 2004). The advent of targeted recom-

mender systems means that these cyclical effects may be being perpetuated

further. While recommender systems often reduce diversity of alternatives in

the environment (Pariser, 2011), coherency maximization causes preferences

to become less diverse, thereby perpetuating the problem. Rather than blindly

targeting people based on their previous consumption, marketers could incor-

porate external objectives to their targeting algorithms. For example, our

theory predicts that recommending healthy alternatives that are similar to

people’s existing preferences could lead to long-term improvements in their

choices.
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The modeling approach presented here is readily extended to account for

the richness of people’s preferences. Unlike how CDC was formalized here,

people are unlikely to have a single preference across each respective attribute.

For example, while a foodie might prefer expensive, locally produced foods,

they may also be happy to watch affordable, mass produced television. People

may have different preferences for the same attribute (e.g., cost) depending

on context. Fortunately, it would be straightforward to extend CDC to have

multiple preference vectors to capture this context dependence, similar to how

models of human category learning possess multiple clusters in which only

the most contextually relevant one is updated during a learning episode (Love

et al., 2004). Such a model would cast coherency maximization as a process

that occurs within a domain (e.g., food, entertainment, etc.) as opposed to

globally.

The model presented here may also be extended to account for some well-

known decision biases. For example, CDC predicts that people will prefer

novel options when they are similar to options that have repeatedly tried in

the past. Thus, it may be able to account for the mere-exposure effect, where

people have been shown to prefer options by virtue of their familiarity (Zajonc,

1968). Similarly — though only distantly related to the free choices described

here — it is possible that CDC could be adapted to account for anchoring

effects. For example, forcing CDC to update its preferences towards a given

anchor would cause it to become more favorable towards related options (see

attitudinal change accounts of anchoring for related arguments, e.g., Wegener

et al. 2001). While such relationships are speculative at this stage, they in-

dicate a general, coherency-driven learning mechanism may underpin several,

well-known sequential choice biases.

In conclusion, preferences and choices can be characterized as existing

within a common space. While we prefer options that match our preferences,

we also appear to engage in error-driven learning to update our preferences to

accommodate our past choices. Because preference and choice representation
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lie in a shared multidimensional space, the choices we make have consequences

(i.e., spillover effects) for related future choices. For example, people may be

prone to agree with a controversial opinion held by a political candidate, by

virtue of the fact that they voted for them. Although this behavior may ap-

pear irrational, being internally coherent may be the best we can hope for in

complex, subjective domains. Being aware of these coherency maximizing dy-

namics may make it possible for people to ameliorate some of the potentially

harmful consequences. For example, if a voter chooses a candidate based on

tax policy, perhaps being mindful of that fact will make the voter less likely

to reflexively adopt their candidate’s positions on unrelated issues. Likewise,

these same coherency maximizing principles could be incorporated into recom-

mender systems to help consumers achieve some positive goal, such as eating

more healthily.
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Chapter 5

General Conclusions

This thesis tells a story about long-term memory before, during and after a

preferential choice. Prior to a choice, our prior experience shapes perceptions

of option similarity and guides inferences about the properties of novel options.

I uncover this relational structure from consumer choice history in Chapter 2.

Abstracting knowledge in this way allows us to achieve common tasks that

precede preferential choices, such as reasoning about the complementarity of

options (e.g., goes well in a salad). During decision-making, the proximity of

options within these relational spaces may guide memory retrieval and thus

manifestly influence open-ended decisions. In Chapter 3, I showed how the

proximity of options across episodic and semantic memory influenced the or-

der in which items were chosen in an open-ended task. Following a preferential

choice, we do not benefit from a clear extrinsic reward signal, leaving them open

to subjective interpretation. In Chapter 4, I discussed how an internal desire

to maximise coherency between ones past choices and present preferences can

drive preferences for novel options, by virtue of their similarity with the prior

choice. Whilst charting the journey of a preferential choice, this thesis has dis-

cussed several0 important topics, such as; how we navigate large option spaces,

how prior experience is leveraged during preferential choice, how preferences

are learned in the absence of extrinsic reward and how choices differ between

the lab and more naturalistic settings.

173
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5.1 Preferential choice in large option spaces

A major aim of this thesis has been to understand how decision-makers nav-

igate large option spaces. In environments like the supermarket, consumers

must decide between tens of thousands of products. In these cases, it would

be intractable to represent each option separately, as they might be in tradi-

tional models of stimulus-response learning (Thorndike, 1927; Schultz et al.,

1997; Schultz, 2006; Rangel et al., 2008) or free-choice (Brehm, 1956; Akaishi

et al., 2014; Nakao et al., 2012). A solution proposed here is to learn lower-

dimensional representations of options; casting them into a connected, mul-

tidimensional attribute space. By representing options in this way, decision

makers reduce the dimensionality of large option spaces, helping them to gen-

eralise properties to novel options that they’ve never tried.

Much is known about how explicitly presented attributes influence prefer-

ential choices (Glimcher and Rustichini, 2004; Busemeyer and Rieskamp, 2014;

Rangel et al., 2008) but relatively little is known about how options are men-

tally represented in their absence. In Chapter 2, I proposed a method for esti-

mating conceptual representations of consumers through observations of their

preferential choices. A distributed model of semantic memory trained to pre-

dict co-occurrences of products in shopping baskets recovered representations

that closely resembled those used by shoppers. Interestingly, this uncovered

representations that centered around goals (e.g., stir-fry). Dimensionality re-

duction inevitably leads to a loss of information, so centering representations

around goals ensures that they are maximally useful for making actions in

large option spaces.

In Chapter 3, I showed how representations of similarity are leveraged by

consumers in open-ended tasks, where the scale of the option space is so large

that it would be impossible to consider all options at once. In open-ended

tasks like online grocery shopping, consumers must first retrieve options from

memory and our results showed that sequential purchases could be predicted by
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their similarity with the prior purchase across multiple memory systems. This

builds on classical findings from memory retrieval literature (see Kahana, 2020,

for a review) and related findings showing that retrieval of options for open-

ended questions can be predicted by their similarity across semantic memory

(Aka and Bhatia, 2021; Zhao et al., 2022). The findings in this thesis uniquely

describe how memory retrieval dynamics unfold when making sequential, open-

ended choices in a real-world task.

In Chapter 4, I presented a theory describing how subjective preferences

may be learnt and used when making decisions in large option spaces. In

particular, by learning preferences over attributes of choices, people are able

to generalise preferences to new options by virtue of their similarity to those

tried previously. This builds on past findings showing that preferences increase

towards previously chosen options (Brehm, 1956; Akaishi et al., 2014; Riefer

et al., 2017; Sharot et al., 2009, 2010) and explains the novel experimental

finding that this can generalise to untried options. Namely, because preferences

are updated over attributes to make the past choice most likely, preferences

spill over to options that are similar to the previous option. Results from two

laboratory experiments confirmed that people indeed prefer novel options by

virtue of their association with a prior choice. Making decisions and updating

preferences across choice attributes helps when inferring the subjective value

of untried options, which is an important skill in large option spaces.

Together, these findings demonstrate how multidimensional representa-

tions of options held in the minds of consumers facilitate naturalistic preferen-

tial choice. Representing options in a similarity space reduces the dimension-

ality of large option spaces, helping decision-makers to generalise properties to

novel options that they’ve never tried. Because the space of possible options

and attributes is often infinite in everyday tasks, conceptual representations

play an important role in memory-based preferential choice, influencing both

which options and attributes are retrieved and thus considered during decision-

making. The content and use of these representations may differ between



5.2. Long-term memory and preferential choice 176

individuals, perhaps due to differences in past choice trajectories and these

differences may lead to noticeable variations in behaviour, such as increasing

one’s propensity to forget products.

5.2 Long-term memory and preferential choice

A related aim of this thesis was to understand how long-term knowledge is ex-

ploited when making preferential decisions in large option spaces. In Chapter

1, I reviewed how lab paradigms commonly used to study preferential choice

— such as decisions-by-description and stimulus-based choices — tend to di-

minish the influence of prior knowledge. I then reviewed how prior knowledge

may influence choices when attributes or options are not presented explicitly;

namely, how attributes, options and prior experience are retrieved and how

retrospective memory may be biased in favour of prior choices.

Semantic knowledge appears to guide consumers when making preferen-

tial choices in large option spaces. For example, in Chapter 2, I demonstrated

how semantic properties of options could be learnt by observing their relation-

ships with other options; casting options into a distributed semantic space. In

Chapter 3, I showed how relationships within this space could influence the se-

quential choices of consumers when shopping for groceries online. Consumers

often chose products that were nearby within this semantic space, as if they

were mentally traversing it. Shoppers that relied strongly on semantic memory

were more prone to add items to their basket that they didn’t otherwise need,

which relates to patterns of confabulation demonstrated in studies of list learn-

ing (Deese, 1959; Roediger and McDermott, 1995). These results suggest that

shoppers learn semantic representations from interactions between options in

the wild and exploit these in open-ended tasks.

Episodic knowledge can also influence consumer choice, which was high-

lighted in Chapter 3. Episodic and semantic representations explained unique

variance when predicting sequential choices and their response times, indicat-
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ing that multiple systems of long-term memory jointly contributed towards

the retrieval of options. Options that are close episodic associates tend to be

more complementary, in that they are more likely to be combined in pursuit

of a goal. This may explain why shoppers relying more on episodic associa-

tions forgot fewer products on average. These findings highlight the unique

but complementary nature of long-term memory systems in open-ended pref-

erential choice tasks. It remains to be seen how many associative spaces are

necessary to explain choices and how they map to regions in the brain; I hope

future work will explore this question.

Models originally developed to describe properties of long-term memory

and retrieval can be adapted to predict memory-based choices. In Chapter 2

and 3, we used models originally intended to estimate semantic representations

from language to estimate conceptual representations of grocery products (Blei

et al., 2003; Griffiths et al., 2007). In Chapter 3, we combined a semantic rep-

resentation of option associations with a model of memory retrieval originally

developed to explain list recall (Raaijmakers and Shiffrin, 1980); pairing these

systems allowed us to predict open-ended, sequential consumer choices. In

Chapter 4, we developed a model of preference learning and decision-making

that was strongly influenced by models of human category learning (Kruschke,

1992; Nosofsky, 2011), with representations updating to discriminate between

the chosen and rejected options, as they might during category learning (Davis

and Love, 2010). This work demonstrates how models of learning and mem-

ory can be used to make explicit predictions about memory-based preferential

choices and I am excited to see more of such investigations in the future.

5.3 Learning from decisions in the absence of

extrinsic reward

Perhaps the best known framework for modelling memory-based decision-

making is reinforcement learning (RL) (Sutton and Barto, 1998). Yet — to
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date — few RL models have formalized this process in the context of sub-

jective decisions. In Chapter 4, we proposed a new computational cognitive

model which characterizes how people make subjective decisions and update

their preferences over time. The probability of a choice is determined by how

similar choice options (e.g., pizza) are to the agent’s preference vector, where

similarity is a function of attention-weighted distance such that some attributes

(e.g., taste) can be weighted more than others (e.g., calories). Preferences are

updated by gradient-descent learning rules that make repeating related choices

(e.g., pizza over salad) more likely in the future by adjusting attention weights

and the position of the preference vector. These learning rules maximize co-

herency by aligning preferences to match choices, a well-documented finding

within the psychological literature of free choice (Brehm, 1956; Sharot et al.,

2009, 2010; Alos-Ferrer and Shi, 2012; Akaishi et al., 2014). This is validated

by simulation and behavioral experiments with humans. People updated their

preferences and generalized to similar choices in a manner consistent with the

model.

In many ways, the CDC model proposed in Chapter 4 is comparable to

an RL agent. It calculates a value function of different actions (using func-

tion approximation), uses this to determine which action to take, updates

its preferences subsequent to a choice and repeats this process over multiple

timesteps. In standard models of RL, the reward signal is objective and drives

learning; this is known as the reward hypothesis. However, CDC contrasts in

that it does not assume a reward is emitted by an ”oracle” in the environment

Sutton and Barto (1998). Whilst this may be present in computer games,

rewards outside of such artificial environments are not specified. For exam-

ple, no objective rewards are associated with choosing to eat a pizza. Thus,

CDC’s reward function is generated intrinsically to align with whatever was

last chosen. As a result, CDC updates its preferences in the absence of an

environmental reward, which in turn may alter future valuations of choices.

The desire to maximise coherency between one’s preferences and past
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choices may co-exist alongside a host of other intrinsic motivations. Most

primitively, species are motivated to preserve homeostasis; seeking food when

they’re hungry and rest when they’re tired. Thus, other intrinsic reward func-

tions may exist to motivate self-regulation (Singh et al., 2010; Keramati and

Gutkin, 2014). Coherency maximisation could be viewed as a form of self-

regulation over time, albeit at a higher cognitive level. However, this motiva-

tion may not fully account for all subjective decision making. For example,

a large part of learning in childhood is driven by play, suggesting that peo-

ple are also driven by higher-level drives, such as curiosity (Oudeyer, 2018;

Kidd and Hayden, 2015; Gruber et al., 2014; Schmidhuber, 2007; Burda et al.,

2018). These motivations may influence the exploration policies of individuals

or may be used as a basis for learning; many fields would benefit from a deeper

understanding of these interactions in the future.

5.4 Bidirectional influences between choices

and representations

Throughout this thesis, I have discussed the bidirectional influence between

choices and prior knowledge. Preferential choices appear to shape conceptual

knowledge and preferences and appear to influence how representations are

queried subsequently. This can lead to complex behavioural dynamics that

unfold over time, such as semantic clustering of sequential choices or alignment

of preferences towards past choices.

For instance, one interesting question raised by Chapter 2 is whether

shopping activity changes conceptual organization or conceptual organization

drives shopping behaviour. Our results cannot definitely answer this question,

but the likely answer is that the influence is bidirectional. For example, having

a concept like stir-fry should cause certain items to be purchased together to

fulfill the common goal. Likewise, ingredients in the same dish may come to

be viewed as more similar over time, consistent with laboratory studies that
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find that linking objects makes them more similar (Jones and Mewhort, 2007).

In Chapter 4 our model of preference learning and decision-making cap-

tured the bidirectional relationship between preferences and past choices.

Because decision-makers adjust their preferences to discriminate their past

choices, this can drive strong subjective preferences over time in the absence

of any extrinsic feedback, particularly towards attributes that discriminate in

the choices made. This was demonstrated in the model simulation, lab exper-

iments and elsewhere in the reduced product explorations described by Riefer

et al. (2017).

Relatedly, Chapter 3 highlighted a form of serial dependence in memory-

based choice, where behaviour appears to drift towards the recent past. Model

fits revealed that choices were best predicted by their similarity with the prior

choice in memory. This aligns with disparate research demonstrating serial de-

pendence in human cognition, such as visual processing (Fischer and Whitney,

2014; Cicchini et al., 2017), perceptual decisions (Braun et al., 2018), memory

(Kiyonaga et al., 2017) and decision making (Tversky and Kahneman, 1974;

Ariely et al., 2003). For example, visual perception of grating orientations tend

to be biased towards those most recently experienced (Fischer and Whitney,

2014). This bias has been exploited in visual illusions where — for example

— changes to a slowly ageing face tend to go unnoticed (Manassi and Whit-

ney, 2022). The physical world is largely stable and continuous, making the

recent past a good predictor of the present (Dong and Atick, 1995). A rea-

sonable strategy in noisy domains that require repeated choices — such as the

supermarket — may be to choose similarly to before.

5.5 Studying choices outside of the lab

This thesis builds on a growing trend of using large, naturally occurring

datasets of human behaviour to enhance our understanding of human cogni-

tion (Paxton and Griffiths, 2017). For example, in Chapter 2, we used nearly
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1.3m real shopping transactions to infer the semantic representations of su-

permarket shoppers. In Chapter 3, we predicted nearly 5m sequential online

grocery purchases using representations trained on a separate dataset of 4.3m

shopping transactions. In Chapter 4, we developed a theory of preference

learning inspired by the longitudinal exploration patterns of over 280,000 real

supermarket shoppers (Riefer et al., 2017). In addition to the high ecological

validity afforded by these datasets, they have helped us to make important

theoretical and practical advances.

For example, studying naturalistic choices has allowed us to challenge sta-

tus quos established in laboratory studies. In Chapter 2, the representations of

food recovered from consumer’s choices were thematic and goal-directed, which

contrasted with the more taxonomic organisations recovered from lab stud-

ies that used free-sorting (Murphy and Ross, 1999; Ross and Murphy, 1999).

Instead of defaulting to taxonomic organisation when representing food (as

suggested by Murphy and Ross, 1999), this may instead be an artifact of tasks

that use a small initial set size (Lawson et al., 2017). In Chapter 3, I discussed

how choices made in the absence of an extrinsic reward signal may exhibit a

reduced tendency to explore over time. This is the opposite of what would be

expected of a rational agent making decisions in a nonstationary environment

and contrasts with human behaviour observed in laboratory studies of rein-

forcement learning (Sutton and Barto, 1998; Knox et al., 2012; Blanco et al.,

2013). By combining laboratory studies, computational cognitive modelling

and analyses of naturalistic behaviour, we arguably form a more complete

understanding of human decision-making.

Practically, we have demonstrated a new way to estimate semantic rep-

resentations of options. Notably, in Chapters 2 and 3 we trained distributed

representations of grocery products from the co-occurrences of products in till

receipts and validated these using controlled experiments and out-of-sample

predictions. This may offer a way forward for researchers wishing to use nat-

uralistic semantic representations of choice options (Aka and Bhatia, 2021;
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Bhatia and Stewart, 2018), particularly those wanting to avoid learning rep-

resentations from corpora of natural language. In contrast to natural lan-

guage, grocery data does not require heavy pre-processing, does not require

any domain-expertise to prepare and may suit the assumptions of certain al-

gorithms better (e.g., in-store transactional data is unordered). In addition,

choices are arguably more representative of human activity compared to the

curated language often captured in text datasets (e.g., newspapers and web-

sites). Choices may be more variable between individuals, meaning that they

may be better suited for evaluating questions about individual differences, such

as predicting endogenous demographics or memory decline. By making this

data and the associated representations available online, I hope to stimulate

more of such discoveries (Hornsby and Love, 2022).

5.6 General limitations

5.6.1 Asymmetric similarity

Throughout this thesis I have argued that consumers represent options in a

large, connected, multidimensional space. For example, in Chapter 3, I used

word2vec to develop a metric space of options, where each option is embedded

within a multidimensional space. A challenge with this spatial view is that

it can be seen to make restrictive assumptions about how people perceive

relationships between options (Tversky, 1977). For example, metric spaces

assume that people think symmetrically about the similarity between options.

Yet human judgments (Tversky and Gati, 1982) and free associations (Griffiths

et al., 2007) routinely violate metric axioms such as symmetry. Being cued with

one word in a pair may give rise to asymmetric responses (e.g., cream may be

retrieved after strawberries but not vice versa), so it may be unreasonable to

expect that consumers think this way.

Despite first appearances, the models used in Chapter 2 and Chapter 3

actually do not assume a symmetrical relationship between options. Firstly,
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the Topic model used in Chapter 2 represents each option as a probability

distribution and computes the association between options as the probability

of one word given another. This allows it to make different predictions de-

pending on the option that it is being conditioned on (Griffiths et al., 2007).

In addition, the semantic memory representation used in Chapter 3 (more

precisely represented as a symmetric cosine similarity matrix) is not supposed

to be a model of sequential retrieval; rather, it is a memorial representation

that is operated on by a retrieval model. As originally shown by Jones et al.

(2018), such a model operating on a similarity space can produce asymmetries.

Concretely, whilst the distance between two points is obviously equal in either

direction of a metric space, the density of the landscape is not; if one ranks the

similarities of products to strawberries, cream will presumably appear high in

that ranking, whereas strawberries could be low in the rank of items considered

most similar to cream. In the retrieval model, the similarities of options in the

denominator vary depending on the ratio of similarity to other competitors.

Thus a simple choice rule operating on a symmetric similarity space can give

rise to asymmetric relationships when they are not encoded within the space

to begin with. Whilst I do not wish to make any strong claims about the

relative plausibility of topic models or metric spaces, I hope to emphasise that

neither study presupposes a symmetric relationship between options.

5.6.2 Separating memory representations from process

Another well known challenge when modelling memory retrieval is that it can

be difficult to separate a representation from the process that operates on it,

particularly when the representation is estimated using human behaviour (An-

derson, 1990). For example, the same behavioural characteristics of semantic

fluency have been explained by a random walk over a network graph (Abbott

et al., 2015) and a strategic switching process reminiscent of optimal foraging

(Hills et al., 2012). Whilst the random walk model would seem more par-

simonious, it has been argued that the free association norms used to build
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the semantic network also embedded information about the retrieval process

(Jones et al., 2015). The representations used in Chapter 2 were developed on

a separate dataset of in-store transactions in order to be sufficiently different

from online shopping (e.g., in-store receipts are unordered). Moreover, explain-

ing sequential choices through different information sources arguably provides

clearer resolution than free-associations, allowing for the prediction of individ-

ual differences, such as the propensity to forget. Nevertheless, future research

may wish to explore different techniques for estimating representations, such

as via choice sequences directly (e.g., Zemla et al., 2016). Whichever technique

is used, these results make clear the importance of capturing different sources

of knowledge when explaining sequential choice.

5.6.3 Causal limitations of observational studies

Throughout this thesis, I have drawn inspiration from large datasets of con-

sumer choices to motivate an improved understanding of how people make

decisions outside of the lab. Generally however, it can be difficult to draw

causal inferences from large observational datasets due to a lack of experimen-

tal control (Shiffrin, 2016). Unless one is careful, this can be compounded by

an increase risk of discovering significant, spurious correlations (Calude and

Longo, 2017). One must therefore be cautious when analysing and drawing

inferences from large datasets alone.

It is important to perform analyses with clear apriori hypotheses, rather

than going “fishing” for results. Importantly, hypotheses in this thesis were

informed using past psychological theory and our analyses sought to evalu-

ate these predictions. Some were inspired by past lab studies, where there

is usually more experimental control, such as the prediction that sequential

consumer choices would semantically cluster (in Chapter 3). Other hypothe-

ses were generated by computational cognitive models, which make explicit,

testable and interpretable predictions about human behaviour. For example,

the models used in Chapter 3 and 4 were used to generate predictions about
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preferential choices of consumers and laboratory participants, respectively, and

were subsequently confirmed.

During the analyses itself, one can account for obvious confounds or co-

variates by isolating their effects. For example, in Chapter 3, an alternative

explanation for shoppers purchasing similar products is that they were some-

how biased by the design of the website. We therefore included variables that

represented each navigation method (e.g., using the search bar or the drop

down) in regressions predicting choices and their response times. We also re-

produced all analyses on a filtered version of the shopping dataset capturing

transitions that occurred exclusively via the search bar. By accounting for

confounding variables in this way, one can isolate variance explained by the

core variables of interest, such as semantic similarity between products.

Analyses of observational data can also be used to generate hypotheses

for future experiments, which helps to ensure that findings are reliable and

generalisable. For example, we confirmed that our retrieval model elicited

a similar pattern of model fits and attention weights when estimated on a

separate dataset of food fluency retrievals (in Chapter 3). Discoveries from

observational data can also motivate behavioural experiments, like in Chapter

2 — where the categories discovered by a Topic model were confirmed using

an odd-one-out experiment undertaken by real consumers — and Chapter 4 —

where consumers’ increasing propensity to exploit their favourite product was

demonstrated in an analogous lab task. When follow-up experiments were not

in scope, I was cautious to flag possible limitations in drawing causal inference,

such as in Chapter 3, where we discussed a relationship between reliance on

episodic memory and forgetting.

The approaches described above are examples of good scientific practise

and are certainly not limited to the analyses of big data. Other approaches

have been proposed more recently with a specific focus on minimising false

discovery during investigation of big datasets. For example, Agrawal et al.

(2020) proposed Scientific Regret Minimisation, where cognitive models are
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adjusted so as to minimise residuals between their predictions and those of a

powerful, unconstrained predictive model. This ensures that cognitive models

only seek to explain cases that were known to be predictable as opposed to

unexplainable noise. This seems like an appropriate approach in cases where

machine learning models can be scaled to make accurate predictions about

behaviour. However, it could struggle otherwise, such as in the modelling

problem described in Chapter 3, where the number of available options (i.e.,

output classes) exceeded 40,000. More work is required to understand how

best to leverage big data and “big” (i.e., highly parameterised) models for

scientific discovery (Hofman et al., 2021) and I believe that cognitive science

will benefit substantially from these advances.

5.6.4 Beyond the supermarket

A core aim of this thesis was to understand how people choose options in large

option spaces and I believe that the supermarket is an excellent domain to

study this. Shoppers must choose between tens of thousands of products, and

yet navigate these environments on a regular basis with relative ease. However,

supermarkets have several unique characteristics that may not be shared by

other preferential choice domains. In particular, supermarkets mostly sell fast

moving consumer goods (FMCG). These goods sell quickly, are often repeat-

purchased and are often purchased in combination with others. This contrasts

with slower moving domains such as electronics, clothing or movies, where

products are purchased with a lower frequency, rarely repeat-purchased and

rarely combined.

The approaches used to predict preferential choices in this thesis may

be particularly well-suited to the goal of modelling choices in fast-moving do-

mains. The topic model used in Chapter 2 learned representations of simi-

larity from co-occurences of products in shopping baskets. For slower moving

domains, the slow rate of sale may mean leave less opportunity for meaningful

representations to be abstracted from co-occurrences in shopping baskets. A
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practical remedy is to use more inclusive definition of “documents”, such as

modelling the items consumed by customers; this is the essence of collabora-

tive filtering models that are used to determine novel movie recommendations

(Koren, 2009). For these to be plausible cognitive models, one must assume

that people also infer representations through other people’s choices; an inter-

esting hypothesis that has recently been explored (Analytis et al., 2018) and

is worthy of further investigation.

A related issue is that choices in FMCG domains are often repeat pur-

chases (i.e., exploitation), whereas choices in other domains — such as movies

— are typically novel (i.e., exploration). Predicting product discovery is a

unique enterprise that requires a different class of models. For example, movie

recommender systems are often censored to ensure that past choices are not

recommended (Koren, 2009). As a result, these systems typically recommend

options that are similar to those previously experienced, although it remains

unclear whether this this is the best approach in the long term (Qin and Zhu,

2013). As we have seen from large-scale studies of consumers in the super-

market (Riefer et al., 2017) or on fast-food delivery apps (Schulz et al., 2019),

consumers go through intermittent phases of product exploration. Future work

could examine these phases of exploration in more detail.

An extreme position could be that grocery shopping is entirely unique, in

that it is relatively unusual to make frequent, repetitive choices. One could

therefore argue that the ideas proposed in this thesis do not generalise beyond

grocery shopping. I would argue that this is far from being the case. Firstly,

many choices made outside of the supermarket are repetitive and frequent. For

example, decisions about where and what to eat for lunch or where to order

takeaway. Non-food purchases such of cosmetics or medicines may occur some-

what less regularly, but will likely be repetitive. In all cases one could imagine

deriving a reasonable model of semantic memory from the choice bundles of

consumers, as we do in Chapter 2.

Importantly, whilst the ideas discussed in these chapters are often framed
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within the context of grocery shopping, they often speak to more general prin-

ciples about memory and cognition. Thus, they could be readily extended to

explain choices elsewhere. Firstly, results from Chapters 2 and 3 are support-

ive of the general claim that rich semantic representations can be inferred from

co-occurrence statistics in the environment and may even be learnt in this way.

Co-occurrence statistics can be derived from many seemingly unique domains

and yet the same basic idea of deriving low dimensional representations from

co-occurrences within these domains has proven to be useful in the study of

semantic memory.

In addition, the retrieval model proposed in Chapter 3 can more gener-

ally be used to explain how options are sequentially retrieved from memory.

Comparable models have been proposed to explain the process of choice set

generation during open-ended decision making (e.g., “where would you like

to go on holiday?”) (Zhang et al., 2021; Aka and Bhatia, 2021). More re-

cently, semantic congruence has been shown to bias search behaviour in an

open-ended active learning task, where participants must learn about proper-

ties of a category by sequentially searching terms in a search bar (He et al.,

2022). Thus, across the many domains in which choice sets are not presented

explicitly, similar ideas about associative memory retrieval manifest to explain

choice behaviour.

5.7 Future directions

5.7.1 A combined model of option retrieval and prefer-

ential choice

To understand decision-making, psychologists often “divide and conquer… de-

compose a complex problem into simpler problems… paste these analyses to-

gether with a logical glue” (Raiffa, 1968, p. 271). My thesis has broadly

followed this approach, as I have addressed the problem of option representa-
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tion, generation and preference learning across separate chapters. A natural

next-step could be to combine ideas from multiple chapters. For example, one

could develop a computational model of option retrieval and preference learn-

ing by combining the model of option retrieval proposed in Chapter 3 with the

model of preference learning proposed in Chapter 4. I have often wondered

whether coherency maximisation is moderated by the extent to which choices

are memory-based (e.g., rely on options being retrieved from memory) and

would be excited to see this addressed as part of future work.

It would also be exciting to see how the ideas proposed in this thesis could

be combined with more conventional models of preferential choice elaborated

elsewhere. For example, when modelling online grocery purchases, our model

ignored the fact that consumers were presented with choice sets after they had

decided what to search for next (e.g., after deciding to look for cereals, they

would enter this into the search bar and then be presented with an explicit

list of possible options). Choices amongst the presented options could be

predicted using models of multi-alternative, multi-attribute choice (such as

process models) (Trueblood, 2021). I would be particularly interested to see

the extent to which model predictions improved with the inclusion of such

models and thus get a sense of their relative importance in everyday decision-

making.

5.7.2 Interactions with other choice attributes

There are many variables known to influence preferential choice that have not

been included here. Whilst I have primarily investigated the contiguous rela-

tionships between options, consumers are also sensitive to intrinsic properties

of options. For example, consumers are sensitive to changes in price, with

demand for goods typically increasing as the price decreases (Marshall, 1890).

Consumers are also influenced by the perceptual properties of options, such as

their nutritional properties and associated taste (Sullivan and Huettel, 2021) or

their visual appearance (Milosavljevic et al., 2012; Iigaya et al., 2021). Future
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work could explore how such intrinsic properties interact with the mechanisms

of memory-based choice discussed here. For example, some consumers may ex-

clusively choose the cheapest alternative; in which case the CDC model would

need to be adapted correspondingly, rather than represent preferences for all

attributes as ideal points.

Uncertainty in a decision can also affect what is chosen. Uncertainty

can be expected, such as when a favourite product is only in stock on half of

our trips to the supermarket or when products belonging to a certain brand

are only good half of the time. Uncertainty can also be unexpected, such as

when the burgers offered by a new local restaurant are substantially worse

than those offered by your usual favourite (Yu and Dayan, 2005). Future work

could investigate how such sources of uncertainty interact with the properties

of memory-guided choice described here. For example, perhaps environments

with high unexpected uncertainty or volatility elicit more coherency maximi-

sation (i.e., higher learning rate in CDC), as they do in studies of RL (Behrens

et al., 2007; Nassar et al., 2010).

5.7.3 Leveraging different types of conceptual similarity

I remain fascinated by the apparent flexibility in which consumers consider op-

tions to be similar. For example, when deciding what to purchase for tonight’s

dinner, one may consider which options complement each other in a recipe

whilst simultaneously deciding which of a set of substitutable ingredients are

best. Broadly, substitutability and complementarity (often used in economics,

Samuelson 1974 and computer science, Han et al. 2000) align to the psycholog-

ical constructs of taxonomic and thematic similarity, respectively. There has

been substantial interest in understanding the relative contribution of taxo-

nomic and thematic relations towards judgments of similarity; between tasks

(Wisniewski and Bassok, 1999; Murphy and Ross, 1999), individuals (Gentner

and Brem, 2020) and brain regions (Estes et al., 2011) (for a review see, Mir-

man et al., 2017). I presented some work in Chapter 3 discussing how these
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may map on to episodic and semantic memory systems. However, I would like

to see more work acknowledge and investigate their role during preferential

choice. There may also be opportunities to elaborate our definitions of these

constructs. For example, taxonomic relations are said to share intrinsic fea-

tures, but many options considered to be substitutable bear little conceptual

overlap (e.g., tofu is a vegan substitute for chicken but they share few intrin-

sic relations). Future research could investigate how these relationships are

learnt, inferred and utilised in the service of preferential choice. This would

contribute to a small existing literature on the subject (Guest et al., 2016;

Estes et al., 2012; Felcher et al., 2001)

5.7.4 Adjusting subjective preferences to support

healthier choices

In the absence of extrinsic feedback, memory and preferences may be adjusted

to suit prior choices. For example, choosing between two options drives an

increase in preference for the chosen option and decrease for the nonchosen

option (Brehm, 1956; Sharot et al., 2010). In this thesis, I have shown that

this is not limited to options directly experienced in the past (e.g., in Chapter

4). Instead, people generalise their preferences across attributes of choices,

meaning that they also come to prefer options that are similar to ones they

previously chose. The consequences of this choice-induced preference change

may be more widespread than first thought.

For example, when decisions are facilitated by recommender systems,

post-decisional choice biases may exacerbate the propensity to choose within

filter bubbles (Pariser, 2011). As people choose more and more recommended

options by recommender systems (e.g. YouTube videos, Facebook news ar-

ticles, offers for grocery products), they end up consuming more and more

similar content. This is because recommender systems prioritise content that

is similar to content they have consumed in the past (Koren, 2009). User

consumption is determined by these algorithms and their preferences corre-
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spondingly adjust to suit their choices, leading to a virtuous circle. Narrowing

people’s preferences is most-likely an unintended consequence of algorithms

that are trained to optimise observable metrics, such as session length or the

number of clicks. For people wanting to develop new consumption habits,

such as those wishing to eat more healthily, they may feel unduly pressured

by personalised offers encouraging them to eat more unhealthy food.

Rather than recommending options that are deliberately similar to one’s

previous choices, an algorithm could recommend options to promote positive

change in people’s preferences. For example, we could theoretically induce

healthier preferences by determining a personalised sequence of recommenda-

tions that shifts people’s preferences towards progressively healthier options

over time, whilst still being close to people’s original preferences. According

to the model proposed in Chapter 4, preferences could be “garden pathed” by

leading consumers to choose between options that are similar to their existing

preferences but increasingly more similar to a target product. This is some-

thing we intend to study in the future. This idea builds on recent studies of

choice engineering (Dan and Loewenstein, 2019; Dezfouli et al., 2020), where

adversarial algorithms learn to exploit decision biases and thus shape human

decisions.

5.8 Looking ahead

The next ten years will likely bring greater clarity about the role of memory

in preferential choice, in much the same way that it has with reinforcement

learning. For the field to make comparable progress with RL, we will need to

develop a better understanding of the intrinsic motivations driving learning

and decision-making, such as coherency maximisation, so that we can capture

dynamics of learning and decision-making over time.

Modelling and predicting preferential choices is a lucrative industry that

will undoubtedly improve as more historical data is collected. This is the
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dawn of a new era for computational cognitive science, in which theory can

be evaluated at an unprecedented scale. Developing recommender systems

is too-often treated as a “black-box” engineering problem, meaning that they

may inadvertently exploit human biases to maximize a company-defined metric

(e.g., session length, click-through rate). A challenge for cognitive scientists

will be to develop a deeper understanding of this relationship, allowing for the

development of systems that optimise human goals, with their consent, such

as becoming more healthy or sustainable.

5.9 Conclusion

Long-term memory plays a vital role in supporting everyday preferential

decision-making; helping decision-makers to mentally organise the plethora

of options available, infer their properties when making decisions and justify

them following a choice. Whilst prior knowledge may be considered a nuisance

variable in laboratory tasks, I’ve shown that it has a critical function during

everyday decision-making, where the option space is large, multidimensional

and overlapping and choices are sequentially dependent. Many of these find-

ings were prompted by a desire to explain behaviour outside of lab settings.

Large datasets of real-world decisions offer cognitive scientists a way to do this

and test their ideas at an unprecedented scale. The growth in such datasets

will present unique perspectives in the future and I hope that my work serves

as inspiration for some of them.
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Appendix A

Probabilistic utility models

To understand why preferential choices may be difficult to predict, it’s im-

portant to first specify what we expect. Probabilistic utility models provide

a normative account of preferential choices and therefore describe what we

expect. I briefly highlight an example of such a model, in order to highlight

its main assumptions. The reader should consult Busemeyer and Rieskamp

(2014) for more detail.

Assume there exists a complete set of options X = {A1, . . . ,An}, of which

only a subset is presented, Y = {B1, . . . ,Bm} ⊆ X ,m ≤ n. The probability that

an individual chooses option Bi from the set Y is denoted by p(Bi|Y ).

According to the fixed utility model of Luce and Suppes (Luce, 1959), a

utility u(Ai) can be assigned to each option in X , such that — when presented

with a subset of options Y — the probability of choosing Bi equals:

p(Bi|Y ) = f (u(Bi),u(Bi+1), . . . ,u(Bn)) (A.1)

Options are therefore chosen stochastically according to this probability

distribution. Central to these choice models is the idea that people choose

stochastically, which acknowledges the noisy and unpredictable nature of

choice (Mosteller and Nogee, 1951). For instance, Hey (2001) showed that,

when asked to choose between the same gambles across five sessions, none of

53 participants made the same choices across each session.
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In the case of this model, the function f could be — for example — given

by Luce’s ratio of strength model (Luce, 1959):

P(Bi|Y ) =
eu(Bi)

∑Y
j=1 eu(B j)

(A.2)

In addition to choices being taken stochastically, this model makes several

more contentious simplifying assumptions. For example, utilities assigned to

choice options are assumed to be stable, in that they do not change as a result of

the choice set Y . Moreover, utilities are assumed to be complete, in that utilities

are known for each option and integrated at the time of decision. As discussed

in this thesis, extensive behavioural research has shown that preferences are

neither stable nor complete, leading to several adaptations that allow utility

models to account for preferential choices observed inside and outside of the

laboratory.
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Chapter 2 Appendix

B.1 Latent Dirichlet Allocation

For this project, we used a topic model known as Latent Dirichlet Allocation

(LDA) (Blei et al., 2003). LDA is a generative probabilistic model that groups

data into K unobserved topics. In the case of this project, baskets are repre-

sented as random mixtures over unobservable topics. Topics are then charac-

terized as a mixture over N distinct products and D baskets. The generative

process used by LDA can be described as follows:

1. For each topic k ∈ {1, ...,K}:

• Choose a distribution over products ϕk ∼ Dir(β ).

2. For each basket d ∈ {1, ...,D} in the collection c:

• Generate a vector of topic probabilities: θd ∼ Dir(α)

• For each product wd,n in basket d:

– Generate a topic assignment: zd,n ∼ Multinomial(θd)

– Draw a product wd,n ∼ Multinomial(ϕzd,n)

Where β and α are hyperparameters that determine the concentration of

the Dirichlet prior placed on the topics’ distribution over products ϕ and the

baskets’ distribution over topics θ , respectively. The latent variables ϕk and θd
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can then be inferred using an iterative learning algorithm, such as expectation

maximization (Blei et al., 2003).

B.1.1 Topic inspection and labelling

Table B.1: The labels given to each of the 25 topics. Size is defined as the number
of products that had the highest probability of belonging to the respec-
tive topic over the total number of products in the corpus. Asterisks
indicate that they were surveyed in studies A and B.

Topic label Size
Loose fruit and veg * 18.8%
Young children’s shop 18.0%
Own brand shop 17.5%
Cooking from scratch * 16.9%
Snacks 16.4%
Cheapest option * 15.4%
Home baking 14.9%
Exotic cooking from scratch 14.5%
Afternoon tea * 14.5%
Quick to prepare meals 13.9%
Branded store cupboard 13.9%
Summer salad * 13.2%
Summer fruits 12.6%
Low maintenance cooking * 12.5%
Low calorie options * 11.3%
Party snacks 9.3%
Christmas * 7.3%
Northern Ireland 6.3%
Delisted Products 5.8%
Cat lover 1.3%
Stir fry * 1.1%
Own brand family party 1.0%
Food for now * 1.0%
Eating from tins 0.5%
Desserts 0.2%

For each experiment, we calculated model perplexity on the training set

and a held out test set. The perplexity of a model on that collection is defined

as:
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Perplexity(c) = exp
{
−∑d log p(wd)

∑d Nd

}
Where p(wd) is the probability of a product w in a basket d and Nd is the

number of products in a basket. Perplexity can be useful to monitor during

model training to ensure that the algorithm is converging on the training set

and generalizing to unseen data. However, some have argued that perplex-

ity and human interpretation are uncorrelated or even negatively correlated

(Chang et al., 2009).

Given that interpretability is a fundamental goal of this research, we de-

cided to test it more directly. In particular, we tested to see whether the

topics were interpretable to humans and could identify known patterns in his-

toric purchasing data. We now discuss this in more detail.

B.1.2 Calculating product relevancy for a topic

One conventional approach to interpreting topic models is to rank items (i.e.

products) within a topic and manually inspect those with the highest proba-

bilities. One can look for similarities between items with high probabilities to

understand whether there is a key theme that binds them together.

A major issue with the traditional approach to interpreting topic models

is that the probability of an item given a topic ϕkw can be biased positively

in favour of more frequently occurring items within the corpus (Taddy, 2012).

The validity of this traditional approach was therefore significantly limited,

particularly given that we did not filter high-frequency products (i.e. stop

items) from our dataset.

To overcome issues with biased item probabilities, we explored two addi-

tional measures for determining the pertinence of items within a topic; lift and

relevance.

The lift measure (Taddy, 2012) is defined as:

Lift is therefore a ratio of an item w’s probability within a topic k (i.e.,

p(wk)) to its marginal probability across the corpus pw. Whilst this helps to
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diminish the impact of overall token frequency, some have argued that the

measure is noisy (Sievert and Shirley, 2014). In particular, it can give overly

high rankings to items that occur very rarely within the corpus. Indeed —

during our manual inspection of the topics — we found this to be the case,

limiting our ability to interpret the topics’ meanings.

To overcome this problem, Sievert and Shirley (2014) proposed the rele-

vance metric, which is defined as:

r(w,k|λ ) = λ log p(wk)+(1−λ ) log
(

p(wk)

pw

)
where λ is a free parameter that determines the weight given to the

item w’s probability within a topic k relative to its lift (measured on a log

scale). If one sets λ = 1 then r(w,k|λ ) = log p(wk). Alternatively, if λ = 0 then

r(w,k|λ ) = log(li f t(w,k)). Thus, the benefit of this metric over lift is that it’s

possible to blend the probability of an item given a topic with lift. The met-

ric’s authors recommend using λ = 0.6 to maximize human interpretability,

which is the value that we kept throughout all analyses (Sievert and Shirley,

2014).

Figure B.1: The relationship between item frequency within the corpus and a)
item-topic probability, b) lift and c) relevancy

The data displayed in Figure B.1 plot the relationship between item corpus

frequency and each respective metric. As discussed, results indicate a strong

correlation between item probabilities and frequency (r = 0.8862). The lift

metric (r = 0.2193) and relevance metric (r = 0.2934) considerably reduce this

correlation.

After manually inspecting the topics with each of the three measures, we
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agreed that relevance provided the best measure of item salience within a topic.

We therefore used this to help determine topic names.

B.1.3 Initial topic labelling

When labelling the topics, the authors inspected the relevancy scores of each

item within each topic, considered the most relevant items. Table B.1 shows

the topic labels along with the relative size of each topic within the corpus.

0 50000 100000 150000 200000 250000 300000 350000
Basket Frequency

WHOLE CUCUMBER EACH
BRITISH SEMI SKIMMED MLK2.272L4 PINTS

MIXED PEPPERS 3 PACK 500G
BROCCOLI 335G
CARROLOOSE

T.CLOSED CUP MUSHROOMS 300G
ICEBERG LETTUCE EACH

CARRO1KG
LOOSE BROWN ONIONS

BRS/SKIMMED MLK 1.136L/2PINTS
RED SEEDLESS GRAPES 500G

RIPE BANANAS
STRAWBERRIES 300G

BUNCHED SPRING ONIONS 100G
CHERRY TOMATOES 330G

BABY PLUM TOMATOES 325G
SALAD TOMATOES 6 PACK

BRWHOLE MILK 2.272L/4 PINTS
GRANULATED SUGAR 1KG

BLUEBERRIES 150G
CAULIFLOWER EACH

MARIS PIPER POTATOES 2.5KG
WHIPOTATOES 2.5KG
BROCCOLI LOOSE

CLEMENTINEOR SWEEEASY PEELER PK 600G
BRSKIMMED MILK 2.272L/4 PINTS

LEMONS EACH
GREEN SEEDLESS GRAPES PACK 500G

BRS/SKIMMED MLK 3.480L/6PINTS
BAKING POTATOES LOOSE

EDAY VALUECHOPPED TOMATOES400G
RED PEPPERS EACH
CUCUMBER PORTION
BABY POTATOES 1KG

SOFWHIMEDIUM BREAD 800G
GREEN BEANS 220G

FREE RANGEEGGS MEDIUM BOX OF 6
RED ONIONS LOOSE

GALA APPLES MIN 5 PACK
PARSNIPS LOOSE

BROWN ONIONS 1KG
CELERY 450G

EDAY VAL EGGSMINIMUM WEIGHBOX OF 15
EVERDAY VALUE KITCHEN TOWEL 2 ROLL

BROWN ONIONS 485G
STRAWBERRIES 227G

CIMATURE CHEDDAR 350G
RIPEN AHOMENECTARINES MIN 4 PACK

COURGETTES LOOSE
SATSUMAS 600G

Figure B.2: The top 50 most frequently occurring items across baskets within the
corpus. Note that brand names have been removed.

Figure B.2 depicts the most popular products within the corpus. As is

with most retailers (and word usage in language), the data is highly right

skewed. This suggests that there are a small number of products that are

purchased across many baskets and a long tail of products that are less popular.
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Table B.2: A summary of mislabelling errors made by retail experts during the
topic labelling task (*** indicates a proportion significantly different
(p < .001) from the random baseline of 25.00% (1 of 4))

Topic label Proportion correct Most confused topic Most confused frequency
Cheapest option 0.98 *** 0
Food for now 0.961 *** Low maintenance cooking 2
Stir fry 0.961 *** 0
Low calorie options 0.961 *** 0
Christmas 0.961 *** Food for now 2
Afternoon tea 0.961 *** Cheapest option 2
Loose fruit and veg 0.922 *** Cooking from scratch 3
Summer salad 0.882 *** Cooking from scratch 3
Cooking from scratch 0.784 *** Loose fruit and veg 8
Low maintenance cooking 0.725 *** Food for now 7

B.2 Label confusion by retail experts

In the retail expert study, errors in labeling appeared sensible. Namely, the

most popular alternative labels tended to be related to the original topic (see

Table B.2). For example, the most popular alternative label to the cooking from

scratch table was loose fruit and veg; both topic labels pertain to ingredients

that need to be prepared before consumption.

B.3 Topics by day of week

In addition to monthly trends, the proposed topic labels are also indicative of

different weekly trends in purchasing habits. In particular, we hypothesized

that topics indicative of longer preparation times (e.g. loose fruit and veg)

or a special weekend occasion (e.g. afternoon tea) would be more likely to

occur on or just before the weekend. Contrasting, we hypothesized that topics

indicative of impulse purchasing (e.g. food for now) or stocking up for the

long-term (e.g. branded store cupboard) would not vary much across the week.
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Figure B.3: The proportion of baskets with a given topic label on each day of the
week, divided by the weekly mean average across all topics. Plot a)
shows that food requiring longer preparation times (i.e. loose fruit and
veg) or eaten specifically during weekend occasions (i.e. afternoon tea)
are more likely to be bought on Thursday or Friday. Plot b) indicates
that impulse purchases (i.e. food for now) or food that tends to be
stored away (i.e. branded store cupboard) does not vary in popularity
over the week.
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Chapter 3 Appendix

C.1 Method

C.1.1 Data

C.1.1.1 Clickstream data

A sample of the total visits was used at the request of the retailer. Visits were

then filtered such that only those resulting in a purchase were kept. We then

filtered the observations to instances where the visitor added an item to their

basket, rather than — for example — viewed without adding. If products were

later removed from a basket, they were not removed from the dataset, as we

wanted the order to reflect the original retrieval process of the shopper. Unlike

standard fluency tasks, repeated retrievals cannot be considered erroneous and

thus were included in the analyses. Each visit was from a unique visitor to

ensure that visits were independent.

Note that 12,520 (0.23%) basket adds in the clickstream data were for

products sold exclusively online. Pairwise similarities were therefore not com-

putable for these observations. For any analyses that included pairwise sim-

ilarities, these non-computable pairwise similarities were dropped. This left

5,238,469 basket adds from 132,146 unique visitors.

Visitors could navigate between products using different features of the

212
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Figure C.1: Shoppers could transition between products using different design fea-
tures of the website. a., Most transitions occurred through use of a
search bar, which was located at the top of the page. After entering
a keyword, shoppers were presented with a list of relevant products
associated with the keyword. Shoppers could add products to their
basket from this search results page directly or click on the product to
view a dedicated page containing more information (e.g., nutritional
data). b., Fewer transitions occurred through use of a category drop-
down, which appeared when hovering the mouse over the Groceries
hyperlink at the top of the page. Three levels of subcategories could
be revealed by hovering one’s mouse over the respective department
names. In the example pictured, the shopper has hovered their mouse
over the “Cupboard” department and then the “Cereals” category.
The products in each subcategory were displayed in the same way as
the search results.

website, which are visualised in Figure C.1. Most choices were located using

the search bar located at the top of the page, either immediately after its use

(i.e., search arrival) or after a previous purchase in this context (i.e., search

stay). Less often, visitors located products using the category drop-down (i.e.,

category arrival) or after a prior purchase in this context (i.e., category stay).

Products could also be located using a generic special offers page, which was

located on the landing page and could also be located using the ribbon at the

top of the page. Finally, before checkout, visitors were suggested products that

they may have forgotten.
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C.1.1.2 In-store data

We used a sample of baskets purchased in-store during the same dates as the

online dataset. Baskets were filtered so that they contained at least one of the

products purchased in the clickstream dataset and contained a minimum of 5

products overall (a similar strategy was used by (20) to ensure that there was

enough co-occurrence within each basket to learn reasonable representations

of similarity).

C.1.2 Representations of associative knowledge

As explained in the introduction, we evaluated the relative contributions of

three knowledge sources during sequential retrieval.

C.1.2.1 Episodic knowledge

The long-term episodic retrieval structure used in the Search of Associative

Memory (SAM) model (?) associates items more strongly to the extent that

they co-occur during encoding. Whilst we cannot know the exact context

in which consumers encoded products, we assume that products purchased

together more frequently in the same basket must be stronger episodic as-

sociates. Episodic associations are therefore represented using the pairwise

co-occurrence between products observed in the in-store dataset.

Episodic similarities S(a,b) were determined using the probability of co-

occurrence between products a and b, which is given by:

S(a,b) =
f rq(a,b)
f rq(a)

Where f rq(a,b) is the total number of number of times that product a

co-occurred with b in the same basket across the dataset.
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C.1.2.2 Semantic knowledge

In addition to episodic memory, shoppers likely also rely on semantic memory

to guide their retrievals. A common feature of modern semantic memory mod-

els is that they represent knowledge within a connected representational space,

allowing people to generalise their knowledge to observations they haven’t di-

rectly experienced (43). Unlike episodic co-occurrence, two items that have

never co-occurred together may still be considered semantically similar, so

long as they co-occur in similar contexts. We followed recent research (20) by

training a 200-dimensional distributed semantic model using the in-store data.

For this project, we chose to learn 200-dimensional vector representations

for products with word2vec (Mikolov et al., 2013). This is because word2vec

tends to scale better when trained on large datasets, because it can be trained

stochastically. Rather than encoding words (e.g., as they might appear in the

product descriptions), word2vec was trained to represent supermarket product

codes, as they might appear in till receipts. Concretely, there is a different

product code for each distinct product in the supermarket. Small variations

in that product (i.e. different sizes of the same t shirt) are not given separate

codes however. Each product code was thus represented as a one-hot encoded

vector before being embedded, which resulted in a 42,837×200 matrix. During

training, the model learns to associate product codes that often co-occur in

baskets, which is analogous (but not the same) to how word vector models

learn similarity between word tokens that often co-occur in sentences.

Associations S between any two vectors v1 and v2 was calculated using

the cosine similarity cos(v1,v2):

S(v1,v2) = cos(v1,v2) =
v1 · v2

||v1|| · ||v2||

Conventionally, word2vec is trained using one of two network architec-

tures. In this case, we used Continuous Bag of Words (CBOW) with nega-

tive sampling. CBOW assumes that items within baskets are un-ordered (i.e.,
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known in natural language processing as the “bag of words” assumption). This

assumption is true of in-store supermarket data, where product codes within

baskets are unordered once they reach the database. Using CBOW, the train-

ing objective O is to maximise the likelihood of a target item i j given a window

of c surrounding context items:

O =
1
T

T

∑
j=1

logp(i j|i j−c, ..., i j+c)

Where T is the corpus size (e.g., number of baskets) and p(i j|i j−c, ..., i j+c)

is the probability of a target item i j given average or summation of a set of

context words (i j−c, ..., i j+c). In this case, word2vec used a context window

size of 15.

Whilst this probability could be determined using a softmax, it is not

practical when called over large vocabulary sizes. Negative sampling mitigates

this by randomly sampling a set of k “negative” items (in our case, 20) that did

not appear in the present basket. The model then learns from these negative

samples by treating them as false labels in multiple binary classification tasks,

evaluated using a logistic loss and then updated using gradient descent. In

this project, this training process was repeated for 15 epochs.

We determined these aforementioned hyperparameters by monitoring the

loss on the training set and visually inspecting the nearest products in terms

of cosine similarity for a set of randomly-chosen products. During model fits,

negative cosine similarities were clipped to 0.

C.1.2.3 Structured hierarchical knowledge

A strict organisation of products is imposed on consumers by way of a product

taxonomy, which groups products from small subgroups (e.g., apples) to large

departments (e.g., produce). Amongst other things, this taxonomy determines

the proximity of products on the shelves and aisles of a supermarket store. The

product taxonomy used here contained five levels. Each product had a unique

taxonomisation.
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If products a and b shared the same low-level category within the taxon-

omy, then they were said to be perfectly associated S(a,b) = 1. Products with

entirely different taxonomic classifications had S(a,b) = 0.2. The remainder

increased in increments of 0.2.

C.1.3 Retrieval model

Broadly, our retrieval model is based on the retrieval equation from Search

of Associative Memory (SAM) (Raaijmakers and Shiffrin, 1980). It assumes

that retrieval and thus the decision of what to choose next is achieved by

querying associative structures in memory with a memory probe. We follow

previous models of semantic fluency by using the most recently chosen option

Oi to probe associative memory structures (Hills et al., 2012; Abbott et al.,

2015). Whilst other possibilities exist — such as a decaying influence of all

previous retrievals — we focus on the role of the prior choice in order to simplify

analyses (for a review of other approaches, see Kahana 2020). The retrieval

strength of the subsequently chosen option Oi+1 is given by the product of

the M associations between the present choice and itself, S(Oi,Oi+1) j. For

example, in the full model, we used episodic, semantic and hierarchy-based

associations between products, meaning that M = 3. This is then divided by

the sum of that same function applied to all of the N options that remain to be

added for that trip. This then gives rise to an overall probability of retrieval

for each choice:

P(Oi+1|S1,S2, ...,S j,Oi) =

M

∏
j=1

S(Oi,Oi+1)
β j
j

N

∑
k=1

M

∏
j=1

S(Oi,Ok)
β j
j

(C.1)

We compared the inclusion of episodic, semantic and hierarchy-based as-

sociations. β values represent attention weights for each of these knowledge

representations and were estimated as free parameters for each visit.

Each model was compared with a random baseline model, which predicted
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an equal probability of 1
N for every transition using a single representation.

Thus, each of the products remaining to be purchased by each visitor is as-

sumed to have an equal probability of being chosen at each timestep according

to the baseline model.

C.1.3.1 Fit procedure

Each measure of association j was raised to its own respective attention weight

β j; these were treated as free parameters and fit to individual visitors using

maximum likelihood estimation (attention weights were forced to have a lower

bound of 0, in order to prevent individual retrieval probabilities from exceed-

ing 1). These free parameters were solved separately for each visit using the

SLSQP solver within SciPy.

C.1.3.2 Model input

Models were fit to the retrieval sequences in the clickstream data. In addi-

tion to non-computable similarities, observations were dropped from the click-

stream data if they occurred during or after the use of a recommender system,

which prompted users about items they may have forgotten before checkout.

Finally, to ensure that parameter estimates were robust, visits were dropped

if they contained fewer than 10 items. This left 117,337 distinct visits.

Because of the probabilistic and multiplicative nature of the model, neg-

ative or zero similarities were replaced with a very small but positive number

1e−7.

C.1.4 Permutation tests

To assess whether subsequent retrievals were more related than would be ex-

pected at random, we performed a permutation test. Each product within the

clickstream data was encoded with each of the three representations described

above. We then calculated the per-visit mean similarity between consecu-

tively added products. These were compared to the per-visit mean similari-



C.1. Method 219

ties determined by 100 random permutations of the product order, permuted

within each visit. Thus, for significance tests reported; Ntrue = 132,146 and

Npermuted = 13,214,600.

C.1.5 Response times

Response times (RTs) were compared for transitions of varying distances.

These were capped at 60 seconds to minimise the leverage of outliers.

In the multiple linear regression comparing each similarity measure, RTs

were monotonically transformed using a log function, RTlog = ln(RT +1), due

to positive skewness.

C.1.6 Trajectory analyses

Correlational analyses were conducted to assess how behaviour changed over

time. Because visits contained differing numbers of products, basket adds

within each visit were binned into equally-sized deciles based on their proximity

to checkout. Subsequently, 13,901 (10.52%) visits were dropped because they

purchased fewer than 10 products, leaving 5,174,018 choices.

C.1.7 Transition clustering

Spectral clustering was used to determine the extent to which transitions be-

tween categories within the taxonomy were clustered and thus could be pre-

dicted based on features of the current choice.

For each level of the product taxonomy, we calculated a transition matrix,

counting the number of one-step transitions from each category i to every other

category j (e.g., apples → pears). Because product sales tend to be Pareto

distributed (e.g., products such as milk and bananas are considerably more

popular), we found that the odds of transitioning to more popular products

were disproportionately skewed. To adjust for this, we used the Lift association

score, which is used in Market Basket Analysis (44). Lift is defined as
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Li f t(i, j) =
Support(i, j)

Support(i) Support( j)
,

where

Support(i, j) =
Frq(i, j)

N

is the probability of the i to j transition out the N transitions observed.

The denominator in the lift calculation Support(i) Support( j) therefore

describes an expected probability of a particular transition being made, given

the overall popularity of the two respective categories. Thus, lift values above 1

for a given transition suggest that shoppers transition between these categories

more than one would expect. Because only higher-than-expected transitions

were of interest for these analyses, we subtracted 1 from the lift matrix and

set the lower bound to 0:

Li f t(i, j) =

 0 Li f t(i, j)−1 ≤ 0

Li f t(i, j)−1 otherwise
(C.2)

This lift association matrix of the transitions can be thought of as the

adjacency matrix of a directed graph. In this context, spectral clustering is a

natural candidate for our problem, as it is commonly used in network science

to identify k clusters (or communities) within a graph. The algorithm works

by first calculating the normalized Laplacian of the graph’s adjacency matrix

and then applying a standard clustering algorithm (such as k-means) to the

relevant eigenvectors of that new space. Similar approaches have been used in

reinforcement learning to abstract high-level sub-goals from transition matrices

and in recent neuroscientific literature to understand how the hippocampus

represents actions to facilitate spatial navigation (Stachenfeld et al., 2017).

These problems are analagous to the one faced by shoppers here, hinting that

there may be a deeper connection between these clusters and the planning

processes of shoppers; we leave this possibility open for future work.
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C.1.8 Predictive modelling

We explored whether the attention weights (β ) from the best-fitting retrieval

model would predict the number of forgotten or removed items.

Attention weights (β ) were taken from the best-fitting retrieval model,

and reflect the extent to which each visitor recruited each of the three repre-

sentations to guide choice. Importantly, these weights were estimated using

behaviour prior to the use of the recommender system. Outlying attention

weights (three standard deviations above the mean) were clipped for this anal-

ysis for numerical stability.

C.2 Additional analyses of clickstream data

C.2.1 Correlations between representations

Table C.1: Spearman correlations between each of the similarity measures (95%
confidence intervals shown in parentheses)

Episodic Semantic Structured
Episodic 0.585 [0.585, 0.586] 0.526 [0.525, 0.527]
Semantic 0.654 [0.654, 0.655]
Structured

A key claim in this article is that people flexibly recruit multiple rep-

resentations when deciding what to retrieve next. For this to be the case,

each similarity measure would need to be related but not perfectly correlated.

Looking at the sequential choices observed in the clickstream data, Spearman

correlations revealed a moderate to strong relationship between each measure

(coefficients shown in Table C.1. All were significant p < .001). Thus whilst

these similarity measures are directionally similar, each likely captures unique

information relevant to retrieval.
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C.2.2 Similarity ripples

(a) Mean semantic similarity (with
95% confidence intervals)
between the current product
those purchased most recently is
higher compared with products
purchased later

(b) Mean hierarchical similarity
(with 95% confidence intervals)
between the current product
those purchased most recently is
higher compared with products
purchased later

Figure C.2: Lagged average similarity between choices indicates how choices be-
come less similar over time

The results shown in Figure C.2 show that option retrievals can also be

viewed as a ripple through semantic and hierarchical knowledge, in addition

to episodic memory.

C.2.3 Timestep and IRI regression

To evaluate whether responses slowed down over time, we regressed timestep

onto IRI using a linear mixed-effects regression. We included the visit iden-

tifier as a random effect and included dummy coded representations of each

navigation method as confounding variables. This was to confirm that any

slow-down was not simply a result of the website’s design. We also included

each measure of similarity, to ensure that — holding the similarity between

transitions constant — choices because slower over time. The multiple linear

regression converged (ll = −5979127.00). As shown in Table C.2, the partial

regression coefficient for timestep was positive, indicating that choices became

slower over time, irrespective of how choices were navigated and the similarity

between choices in memory.
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Table C.2: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the mixed-effects linear regression
predicting IRI using timestep, transition similarity and transition type

b p ≤ 95% LB 95% UB
Intercept 2.857 0.0001 2.854 2.859
Timestep 0.130 0.0001 0.129 0.130
Episodic similarity -0.137 0.0001 -0.138 -0.136
Semantic similarity -0.086 0.0001 -0.087 -0.085
Hierarchical similarity -0.273 0.0001 -0.274 -0.271
Category arrival 0.157 0.0001 0.136 0.177
Category stay -0.004 0.680 -0.021 0.014
Offers 0.069 0.0001 0.054 0.084
Search arrival 0.010 0.614 -0.028 0.048
Search stay -0.135 0.0001 -0.168 -0.103
Suggestions -0.028 0.0001 -0.035 -0.022
Visit ID 0.162

C.2.4 Similarity and timestep regression

Table C.3: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the mixed-effects linear regression
predicting timestep using episodic similarity and transition type

b p ≤ 95% LB 95% UB
Intercept 5.583 0.0001 5.581 5.585
Episodic similarity -0.058 0.0001 -0.061 -0.055
Category arrival 0.932 0.0001 0.867 0.997
Category stay 0.758 0.0001 0.702 0.813
Search arrival 1.547 0.0001 1.426 1.668
Search stay 1.346 0.0001 1.242 1.449
Offers 0.448 0.0001 0.400 0.496
Suggestions 0.605 0.0001 0.584 0.626
Visit ID 0.000

To evaluate whether choices became less similar over time, we regressed

each similarity measure onto timestep using linear mixed-effects regressions.

In each regression we included the visit identifier as a random intercept and

included dummy coded representations of each navigation method as con-
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Table C.4: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the mixed-effects linear regression
predicting timestep using semantic similarity and transition type

b p ≤ 95% LB 95% UB
Intercept 5.583 0.0001 5.581 5.585
Semantic similarity -0.010 0.0001 -0.013 -0.007
Category arrival 0.948 0.0001 0.883 1.013
Category stay 0.754 0.0001 0.698 0.810
Search arrival 1.577 0.0001 1.456 1.698
Search stay 1.350 0.0001 1.246 1.454
Offers 0.458 0.0001 0.410 0.506
Suggestions 0.609 0.0001 0.587 0.630
Visit ID 0.000

Table C.5: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the mixed-effects linear regression
predicting timestep using hierarchical similarity and transition type

b p ≤ 95% LB 95% UB
Intercept 5.583 0.0001 5.581 5.585
Hierarchical similarity -0.247 0.0001 -0.250 -0.243
Category arrival 0.882 0.0001 0.817 0.947
Category stay 0.784 0.0001 0.728 0.840
Search arrival 1.445 0.0001 1.325 1.566
Search stay 1.403 0.0001 1.299 1.507
Offers 0.422 0.0001 0.374 0.470
Suggestions 0.582 0.0001 0.561 0.603
Visit ID 0.000

founding variables. The regression predicting timestep using episodic simi-

larity converged (ll = −12751137.48) and the coefficients are shown in Ta-

ble C.3. The regression predicting timestep using semantic similarity also

converged (ll = −12751890.27) and the full equation is shown in Table C.4.

The regression predicting timestep using hierarchical similarity also converged

(ll =−12743140.39) and the full equation is shown in Table C.5. Each regres-

sion revealed a negative relationship between similarity and timestep, indicat-

ing that — irrespective of the navigation method — sequential choices became
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more dissimilar over time.

C.2.5 Representation and IRI regression

Table C.6: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the mixed-effects linear regression
model predicting IRI using each similarity measure and confounding
variables

b p ≤ 95% LB 95% UB
Intercept 2.834 0.0001 2.831 2.836
Episodic -0.138 0.0001 -0.139 -0.137
Semantic -0.083 0.0001 -0.084 -0.082
Hierarchy -0.278 0.0001 -0.279 -0.277
Category arrival 0.193 0.0001 0.174 0.212
Category stay 0.027 0.0010 0.011 0.044
Search arrival 0.070 0.0001 0.034 0.106
Search stay -0.081 0.0001 -0.112 -0.050
Offers 0.091 0.0001 0.077 0.105
Suggestions -0.010 0.0020 -0.017 -0.004
Choices remaining -0.138 0.0001 -0.139 -0.137
Visit ID 0.161

A mixed-effects multiple linear regression was performed, regressing each

similarity measure onto the IRIs between each choice. We included a random

intercept for each visit. We also — as above — included dummy coded rep-

resentations for each navigation method and counts of the number of choices

remaining as confounding variables.

The coefficients are presented in Table C.6. They reveal that — taking

account of different navigation contexts — retrieval from hierarchical knowl-

edge uniquely explains the most variance in response times of the knowledge

types, followed by episodic knowledge and then semantic knowledge.

C.2.5.1 Model comparison

We performed feature selection for the inter-response interval (IRI) mixed-

effects linear regressions, to confirm that response times were best explained by
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multiple knowledge systems. Similarity measures were removed using stepwise-

elimination. All models contained the confounding variables described above.

We compare models based on their Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC).

Table C.7: Nested model comparisons (using AIC and BIC) for linear-mixed ef-
fects regressions predicting IRI. Models were chosen using backward
elimination.

Variables AIC BIC
Episodic, Semantic, Hierarchical and Confounds 12185903.95 12186079.08
Episodic, Hierarchical and Confounds 12204652.31 12204813.97
Hierarchical and Confounds 12367250.26 12367398.45

Table C.7 indicates that each measure of similarity contributed significant

explanatory power to the model, with full model having the lowest AIC and

BIC overall. This indicates that choice IRIs are best explained by a combina-

tion of knowledge sources.

C.2.6 Transitions between categories reveal hierarchical

knowledge

To gain further insight about the structure of shopper’s hierarchical knowledge,

we evaluated whether sequential transitions clustered into meaningful groups.

In particular, we clustered transitions between product groups at each level of

the product taxonomy. Transitions between categories appeared clustered —

at least to some extent — across all levels of the product taxonomy. All of the

best-fitting clustering solutions exhibited a positive silhouette score (Level 3:

Silhouette = .503 Nclusters = 23, Level 4: Silhouette = .614 Nclusters = 11, Level 5:

Silhouette = .33 Nclusters = 4). For example, transitions between categories de-

fined at the fourth level of the product taxonomy, depicted in Figure 2e in the

main manuscript, appeared highly clustered. Moreover, the clusters revealed

intuitive groupings that often overlapped with super-ordinate classifications
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in the product taxonomy (e.g., clustering separate beers, wines and spirits

categories). One possibility is that these clusters emerge because shoppers

transition between them with a clear plan in mind, which is executed across

multiple transitions. However, a simpler explanation could be that these clus-

ters emerge as a consequence of cued-retrieval from a hierarchical associative

knowledge structure.

Although shoppers could feasibly transition between any pair of products

for a comparable physical cost, it’s intriguing that they instead prefer to adhere

closely to the product taxonomy. One possibility is that shoppers use a mental

model of a physical store layout to guide their search online, indicating a

close correspondence between spatial and non-spatial navigation. Another

related possibility is that this product taxonomy has been developed to closely

resemble the knowledge structures of consumers.

C.2.7 Correlation between attention weights

Table C.8: Spearman correlations between each of the attention weights

Episodic Semantic Hierarchy
Episodic - 0.0216 [0.0159, 0.0273] -0.2733 [-0.2786, -0.268]
Semantic - - -0.2627 [-0.268, -0.2574]
Hierarchy - - -

Table C.8 shows the correlations between each of the learned attention

weights across all visits (all were significant p < .0001). Despite reasonably

high correlations between representations, it is perhaps reassuring that corre-

lations between attention weights do not far exceed |0.28|.

C.2.8 Retrieval model parameter recovery

To ensure that each knowledge representation was identifiable, we performed

a parameter recovery study. We took a random 10% sample of visits and
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attempted to recover the attention weights that had been learnt during esti-

mation of the multiple parameter model on the clickstream data. For each

set of attention weights, we generated 100 synthetic purchase sequences, by

selecting a random product as the first choice and then sampling subsequent

choices according to the retrieval model. Choices were selected from the prod-

uct universe observed in the clickstream dataset and product repetitions were

permitted. Each generated trip contained 40 products, which is equal to the

average purchase length observed in the true data.

Results showed that each parameter could be recovered accurately. In par-

ticular, Spearman correlations between estimated and actual β weights were

high across episodic (rs = 0.6829, p <= .0001), semantic (rs = 0.6034, p <=

.0001) and hierarchical knowledge (rs = 0.9883, p <= .0001). That each sys-

tem can be uniquely identified supports our interpretations of these knowledge

sources as distinct cognitive processes.

C.2.9 Forgotten items regression

Table C.9: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the regression model predicting
number of forgotten items using the model attention weights, total
number of choices and proportion of each transition type

b p ≤ 95% LB 95% UB
Intercept 0.3044 0.0001 0.299 0.310
Episodic -0.0534 0.0001 -0.059 -0.048
Semantic 0.0150 0.0001 0.009 0.021
Hierarchy -0.0407 0.0001 -0.046 -0.035
Category arrival -0.0065 0.1660 -0.016 0.003
Category stay -0.0187 0.0001 -0.028 -0.010
Offers 0.0454 0.0001 0.039 0.052
Search arrival -0.0406 0.0001 -0.052 -0.029
Total choices -0.0414 0.0001 -0.047 -0.036

As reported in the main text, we regressed attention weights from the

best fitting model onto the number of forgotten items using multiple linear
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regression. We also included the total number of choices and the proportion

of each transition as confounding variables. The full model equation is shown

in Table C.9. These results show that the model attention weights explained

unique variance when predicting the number of forgotten items. This suggests

that — irrespective of how one navigates the website — the proximity between

sequential choices in memory predicts one’s propensity to forget products.

C.2.10 Removed items regression

Table C.10: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the regression model predicting
number of products removed using the model attention weights, total
number of choices and proportion of each transition type

b p ≤ 95% LB 95% UB
Intercept 3.3836 0.0001 3.347 3.420
Episodic -0.3585 0.0001 -0.398 -0.319
Semantic 0.0506 0.0090 0.012 0.089
Hierarchy -0.8702 0.0001 -0.909 -0.831
Category arrival 0.2135 0.0001 0.151 0.277
Category stay -0.2850 0.0001 -0.345 -0.225
Offers 0.3090 0.0001 0.264 0.354
Search arrival -0.0507 0.1990 -0.128 0.027
Total choices 2.3466 0.0001 2.309 2.385

Similarly, we regressed attention weights from the best fitting model onto

the number of products removed from each basket. We also included the

total number of choices and the proportion of each transition as confounding

variables. The full model equation is shown in Table C.10. These results show

that the model attention weights explained unique variance when predicting

the number of products removed. Similarly, this suggests that — irrespective

of how one navigates the website — sequentially purchasing products that are

close semantic relations may increase one’s propensity to add items to their

basket that they don’t otherwise need.
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C.2.10.1 Similarity between removed and purchased products

An alternative explanation for removing products could be that they were

random products added accidentally or that they ended up not complementing

the rest of a shopper’s basket and thus being very distinct. To evaluate these

possibilities, we evaluated the similarity between removed products with those

purchased in each visit. To do this, we calculated the similarities between all

products purchased in the main visit. We then calculated the mean similarity

between each forgotten product and those purchased in the main shop. For

each product removed, we then calculated the percentile of that mean average

relative to the distribution of similarities observed between each purchased

product.

Results showed that removed products had above average similarity with

the purchased products across each knowledge representation. Removed prod-

ucts were, on average, in the 77th percentile (95%CI = 0.043) of episodic sim-

ilarities, the 62nd percentile (95%CI = 0.028) of semantic similarities and the

79th percentile (95%CI = 0.053) of hierarchical similarities observed between

purchased products. This further suggests that products are removed because

they are similar to other purchased products (i.e., analogous to confabulations)

and not because they are distinct and thus irrelevant to one’s goals.

C.2.11 Search arrival transitions

One concern may be that the design of the website biased shoppers towards

retrieving products that were similar to each other. For example, shoppers

could be biased towards retrieving hierarchically similar products by the cate-

gory navigation or by the display of similar products in the search results. We

therefore filtered the data so that it only contained transitions between choices

before and after the use of a search bar (i.e., search arrivals) and re-ran the

analyses reported in the main text. These transitions are perhaps most char-

acteristic of memory-based search. To foreshadow, these analyses reproduce
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the results presented in the main text, suggesting that they are not an artifact

of the website’s design.

C.2.11.1 Permutation tests

Permutation tests were consistent with the results described in the main

manuscript. The average trip-wise similarity between consecutively pur-

chased items was significantly higher for the true order of purchases com-

pared to the permuted order for episodic (Mediantrue = 0.0421, IQRtrue =

0.0751 & Medianpermuted = 0.0136, IQRpermuted = 0.0141) (Mann-Whitney

U = 379028331647.5, p < .0001, CLE = 0.7653), semantic (Mediantrue =

0.1974, IQRtrue = 0.1020 & Medianpermuted = 0.0737, IQRpermuted = 0.0685)

(Mann-Whitney U = 221679814301.5, p < .0001, CLE = 0.8627) and hierar-

chical similarities (Mediantrue = 0.4556, IQRtrue = 0.1248 & Medianpermuted =

0.2545, IQRpermuted = 0.0483) (Mann-Whitney U = 150787174769.0, p< .0001,

CLE = 0.9077).

C.2.11.2 Correlations between representations

Table C.11: Spearman correlations between each of the similarity measures in the
search-arrival dataset (N = 3086716)

Episodic Semantic Hierarchy
Episodic - 0.3254 [0.3244, 0.3264] 0.2192 [0.2181, 0.2203]
Semantic - - 0.3217 [0.3207, 0.3227]
Hierarchy - - -

As shown in Table C.11, there was a small to moderate relationship be-

tween each representation of the sequential choices observed in the filtered

search-arrival dataset (all significant p < .0001). This is consistent with the

results shown above.
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Table C.12: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the mixed-effects linear regres-
sion predicting IRI using timestep, fit to the search-arrival dataset
(N = 2959878)

b p ≤ 95% LB 95% UB
Timestep 0.161 0.0001 0.160 0.162
Episodic similarity -0.050 0.0001 -0.051 -0.049
Semantic similarity -0.036 0.0001 -0.036 -0.035
Hierarchical similarity -0.169 0.0001 -0.170 -0.168
Group Var 0.228

C.2.11.3 Timestep regressions

Looking at behaviour over time, the pattern of results was consistent with

that described in the main text. The mixed-efects regression converged (ll =

−3345165.74). Importantly, average response times increased significantly

over the duration of the trip (btimestep = 0.161), even after accounting for differ-

ent similarity measures (full regression equation shown in Table C.12). Sequen-

tial transitions also became increasingly dissimilar over time across represen-

tations of episodic (rs =−0.2596, 95% CI [−0.2607, −0.2585], p <= 0.0001),

semantic (rs = −0.0485, 95% CI [−0.0496, −0.0474], p <= 0.0001) and hier-

archical knowledge (rs =−0.1104, 95% CI [−0.1115, −0.1093], p <= 0.0001).

C.2.11.4 Representation and IRI regression

We also reproduced the regression analyses of response times using each of the

representations as predictors. The mixed-effects linear regression converged

(ll = −3523084.66) and the full equation is shown in Table C.13. As in the

main text, the partial regression coefficients for episodic (β = -0.057), semantic

(β = -0.034), hierarchical similarity (β = -0.173) were all negatively related to

response time. These results are therefore consistent with those shown in the

main analyses. As before, hierarchical knowledge explained the most amount

of variance in IRIs, even when filtering to memory-based choice transitions

that occurred before and after searches.
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Table C.13: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in the mixed-effects linear regres-
sion model predicting IRI using each similarity measure, fit to the
search-arrival dataset

b p ≤ 95% LB 95% UB
Intercept 3.092 0.0001 3.089 3.095
Episodic -0.057 0.0001 -0.058 -0.056
Semantic -0.034 0.0001 -0.035 -0.033
Hierarchy -0.173 0.0001 -0.174 -0.172
Choices remaining -0.172 0.0001 -0.173 -0.171
Visit ID 0.238

Table C.14: Nested model comparisons (using AIC and BIC) for regressions pre-
dicting IRI using each similarity measure, fit to the search-arrival
dataset. Models were chosen using backward elimination.

Variables AIC BIC
Episodic, Semantic, Hierarchical and Choices rem. 7046183.33 7046273.93
Episodic, Hierarchical and Choices rem. 7051248.70 7051326.35
Hierarchical and Choices rem. 7071024.10 7071088.81

We also performed feature selection with mixed-effects regressions predict-

ing IRI with each similarity measure. This was to confirm that — as before

— IRIs were best explained by a combination of three knowledge represen-

tations. As shown in Table C.14, fits were best for the model containing all

representations.

C.2.11.5 Retrieval model comparison

We also re-fit the SAM retrieval models to the search only dataset. As shown

in Table C.15, a model containing multiple representations provided the best

fit to the data. As before, hierarchical knowledge received the highest atten-

tion weight, further emphasising its importance when retrieving options from

memory.
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Table C.15: The % BIC improvement over the random baseline and the mean
attention weights (with 95% confidence intervals) for each of the can-
didate retrieval models, fit to the search-arrival dataset. Results show
that including representations of all knowledge formats provides the
best fit to the data (shown in bold)

∆ BIC (%) Episodic Semantic Hierarchy
Episodic 8.28 0.309 (0.001)
Semantic 4.37 0.093 (0.001)
Hierarchy 27.80 2.398 (0.021)
Episodic & Semantic 11.20 0.276 (0.001) 0.068 (0.001)
Semantic & Hierarchy 30.47 0.057 (0.001) 2.306 (0.024)
Episodic & Hierarchy 32.63 0.187 (0.001) 2.193 (0.022)
Multiple 34.59 0.172 (0.001) 0.046 (0.001) 2.144 (0.025)

C.2.11.6 Forgotten and removed item regressions

Table C.16: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in a multiple linear regression pre-
dicting the number of forgotten items, fit to the search-arrival dataset

b p ≤ 95% LB 95% UB
Intercept 0.2904 0.0001 0.285 0.296
Episodic -0.0467 0.0001 -0.052 -0.041
Semantic 0.0065 0.0190 0.001 0.012
Hierarchy -0.0565 0.0001 -0.062 -0.051
Choices remaining -0.0486 0.0001 -0.054 -0.043

Table C.17: Standardised coefficients, significance values, upper (UB) and lower
bounds (LB) for variables included in a multiple linear regression pre-
dicting the number of removed items, fit to the search-arrival dataset

b p ≤ 95% LB 95% UB
Intercept 3.4484 0.0001 3.407 3.490
Episodic -0.0048 0.8230 -0.047 0.037
Semantic 0.2305 0.0001 0.189 0.272
Hierarchy -0.9995 0.0001 -1.042 -0.957
Total choices 2.2511 0.0001 2.209 2.293

Finally, we predicted the number of forgotten items and removed prod-



C.3. Analyses of food fluency data 235

ucts using the attention weights estimated from the SAM model fit to the

filtered dataset. The regression predicting the number of forgotten items was

significant (F4,98478 = 237.2, p < 0.0001, R2=.010) and — as shown in Table

C.16 — the coefficients for episodic, semantic and hierarchy attention weights

followed the directions reported in the main text. The regression predicting

the number of removed items was also significant (F4,98478 = 3133, p < 0.0001,

R2=.113) and — as shown in Table C.17 — the coefficients followed the direc-

tions reported in the main text, with higher attention to semantic knowledge

positively predicting removals and higher attention hierarchical knowledge neg-

atively predicting removals. Note that the coefficient for episodic knowledge

was not significant in this regression, although we had no apriori hypothe-

ses about its relationship with removals. This further reinforces the assertion

that these results are a product of memory retrieval and not an artifact of the

website’s design.

As a whole, these results are consistent with the major findings presented

in the main text. This supports the claim that these findings reflect memory

retrieval processes used by shoppers as they searched for products, given that

using the search-bar is perhaps most representative of memory-based search.

Despite this, it is important to clarify that other navigation strategies likely

reflect memory processes too. For example, shoppers may use their past choice

as the basis for determining which category to select next on the drop-down

menu. Or choosing a special offer may trigger ideas about related products

that are required. This is supported by the fact that results are so similar

between the full dataset (reported in the main text) and the search-arrival

dataset (reported in this section).

C.3 Analyses of food fluency data

We further tested the key claims of this article by fitting our retrieval model

to data from a controlled experiment that explicitly tested memory retrieval
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for food (Zemla et al., 2020a). In this experiment — originally conducted

by Zemla et al. (2020a) — fifty participants were asked to list as many food

items that they could think of within three minutes. Much like searches in

a search-bar, each retrieval was typed into a text box (further details can be

found in the original article, Zemla et al. 2020a). This experiment therefore

makes an excellent testbed for evaluating our model, in that it assesses the role

of long-term memory and retrieval in a preferential domain but with a high-

degree of experimental control. We evaluated the fit of our model to sequential

retrievals from this experiment and— as before — hypothesised that sequential

retrievals would be best explained by combining representations of episodic,

semantic and hierarchical knowledge.

C.3.1 Method

C.3.1.1 Procedure

In the experiment, fifty participants located in the United States were recruited

via Amazon Mechanical Turk. Participants completed three separate fluency

tasks (animals, tools and foods). Each category was repeated three times and

the order of the categories was pseudo-randomised, whilst ensuring that no

category was repeated twice. Participants were told not to repeat items within

lists but that they could repeat items between lists. Participants had three

minutes to complete each list. Each response was typed into a text box one at

a time. We restricted our analyses to retrievals from the food category so that

we could use the aforementioned embedding spaces, mirroring our analyses of

the shopping data.

C.3.1.2 Data

Data was retrieved from the Github repository (Zemla et al., 2020b) associated

with the original article (Zemla et al., 2020a). For each of the retrievals made

in the experiment, we found a matching supermarket product by searching for
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product descriptions that contained the word and prioritising matches with

higher frequency of occurrence in the in-store dataset. A sample of the 40 most-

frequently occurring retrievals with their corresponding products is available in

Table C.18. We were unable to find matching products for a small proportion

of the total retrievals (4.64%). Thus, transitions to and from retrievals with

no matching products were dropped.

As with the clickstream data, we did not remove repetitions of words, as

we believed these repetitions to be informative about one’s retrieval process.

The final dataset contained 3357 retrievals from 50 participants. Partici-

pants retrieved an average of 43.92 unique words (95%CI = 4.71) over all lists

and 22.27 unique words (95%CI = 1.85) within each list.

C.3.1.3 Model

We used the same retrieval model used to explain consumer choices to estimate

the probability of each retrieval. As before, we included similarities between

the current and all remaining retrievals in the model denominator.

We also used the same fitting procedure as with the consumer choices and

compared models containing one, two and three knowledge representations.

These were compared with a random baseline, which predicted an equal prob-

ability 1
n for each choice at each timestep, where n represents the number of

retrievals remaining. We therefore report the % BIC improvement over the

random baseline for each model.

Due the hierarchical nature of the data (i.e., multiple lists per participant),

we estimated parameters for each list separately, for each participant separately

(by concatenating each list per participant) and for the first list only. We report

separate model comparisons for each of these three estimation procedures.

C.3.2 Results and discussion

We compared nested models containing different numbers of knowledge rep-

resentations using three estimating procedures; namely, treating each list sep-



BIBLIOGRAPHY 238

arately (results shown in Table C.19), each participant separately (collapsing

over lists, results shown in Table C.20) and to the first list for each partici-

pant (results shown in Table C.21). As shown in Tables C.19, C.20 and C.21,

the pattern of results were consistent between estimation procedures and with

those reported in the main text. Namely, models containing multiple knowl-

edge representations provided the best fit to the semantic fluency data (e.g.,

9.92% BIC improvement over the random baseline when models were esti-

mated for each list separately). In addition, hierarchical knowledge received

the highest attention weight in the multiple representation model, followed

by semantic then episodic knowledge. Hierarchical knowledge also drove the

highest improvement in BIC when fit as a single representation. All of these

findings are consistent with those reported in the main text.

Thus — across all estimation procedures — we observed a general pattern

of results that is strikingly consistent with our major findings. It is reassur-

ing that these results can be recovered from memory retrievals observed in

experimental conditions for which there is a high degree of control. This con-

sistency suggests that the online shoppers described in the clickstream dataset

depended on similar memory retrieval processes when deciding what to choose

next. Moreover, these results support our general claims that past retrievals

serve as cues to query multiple sources of long-term knowledge, which combine

to determine subsequent retrievals in preferential domains.
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Table C.18: Matching retailer products for the 40 most frequently occurring re-
trievals reported by Zemla et al. (2020a). Note that brand names
have been redacted.

item Product No. occurrences
apple GALA APPLE MINIMUM 5 PACK 101
pizza MARGHERITA PIZZA 245G 95
chicken FREE RANGE WHOLE CHICKEN 1KG-2.3KG 90
banana BANANAS LOOSE 80
bread SLICED WHITE BREAD 800G 76
cheese MATURE CHEDDAR CHEESE 350 G 76
carrot CARROTS LOOSE 74
orange PURE ORANGE JUICE SMOOTH 1 LTR 70
steak ABERDEEN ANGUS STEAK MINCE 500G 64
icecream SOFT SCOOPVANILLA 2 LITRES 63
grape SEEDLESS GRAPES 500G 62
potato MARIS PIPER POTATOES 2.5KG 61
tomato SALAD TOMATOES 6 PACK 61
hamburger 4 BRITISH BEEF STEAK BURGERS 454G 61
spaghetti SHORT SPAGHETTI PASTA 500G 58
cake CHOCOLATE CAKE ROLL 10 PACK 58
rice M/WAVE BASMATI RICE 250G 58
broccoli BROCCOLI LOOSE 57
lettuce ICEBERG LETTUCE EACH 56
corn CORN ON THE COB TWINPACK 52
strawberry STRAWBERRIES 400G 52
onion BROWN ONIONS LOOSE 51
egg MEDIUM FREE RANGE EGGS 6 PACK 49
turkey BRITISH ROAST TURKEY SLICES 125 G 49
frenchfry CRISPY FRENCH FRIES 900G 46
taco CRNCHY TACO SHELLS X12 156G 44
beans BEANS IN TOMTO SAUCE 415G 43
hotdog CLASSIC FRANKFURTER HOT DOGS 10 PK 350G 43
pasta FUSILLI PASTA TWISTS 1KG 43
spinach ORGANIC SPINACH 200G 42
cereal VARIETY PACK CEREAL 8 PACK 42
ham HAM SLICES 125 G 42
soup CREAM OF TOMATO SOUP 400G 41
yogurt GREEK STYLE YOGHURT 500G 41
pear CONFERENCE PEARS PACK 610G 41
bacon UNSMOKED BACK BACON RASHERS 300G 40
sushi SUSHI NORI 11G 40
beef LEAN BEEF STEAK MINCE 5% FAT 250G 39
pie TEAK & ALE PUFFPASTRY PIE 500G 39
pineapple PINEAPPLE LOOSE 39



BIBLIOGRAPHY 241

Table C.19: The % BIC improvement over the random baseline and the mean at-
tention weights (with 95% confidence intervals) for each of the candi-
date retrieval models, fit to each retrieval list separately. Results show
that including representations of all knowledge formats provides the
best fit to the data (shown in bold)

∆ BIC (%) Episodic Semantic Hierarchy
Semantic 1.496 0.089 (0.073)
Episodic 2.176 0.207 (0.06)
Hierarchy 7.818 2.071 (0.874)
Episodic & Semantic 3.247 0.922 (1.087) 1.702 (2.62)
Semantic & Hierarchy 8.750 0.055 (0.041) 1.894 (0.724)
Episodic & Hierarchy 9.153 0.223 (0.149) 2.347 (1.461)
Multiple 9.917 0.669 (0.753) 0.282 (0.474) 3.777 (3.082)

Table C.20: The % BIC improvement over the random baseline and the mean at-
tention weights (with 95% confidence intervals) for each of the candi-
date retrieval models, fit to each participant and collapsing over multi-
ple lists. Results show that including representations of all knowledge
formats provides the best fit to the data (shown in bold)

∆ BIC (%) Episodic Semantic Hierarchy
Semantic 0.910 0.031 (0.007)
Episodic 1.120 0.104 (0.033)
Hierarchy 6.879 1.212 (0.156)
Episodic & Semantic 1.798 0.092 (0.032) 0.026 (0.007)
Episodic & Hierarchy 7.359 0.067 (0.028) 1.166 (0.156)
Semantic & Hierarchy 7.364 0.021 (0.007) 1.166 (0.159)
Multiple 7.760 0.06 (0.028) 0.018 (0.007) 1.129 (0.158)
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Table C.21: The % BIC improvement over the random baseline and the mean at-
tention weights (with 95% confidence intervals) for each of the candi-
date retrieval models, fit to the first retrieval list from each participant.
Results show that including representations of all knowledge formats
provides the best fit to the data (shown in bold)

∆ BIC (%) Episodic Semantic Hierarchy
Semantic 0.722 0.028 (0.01)
Episodic 1.194 0.133 (0.05)
Hierarchy 5.998 1.307 (0.57)
Episodic & Semantic 1.746 0.135 (0.058) 0.025 (0.01)
Semantic & Hierarchy 6.500 0.022 (0.01) 1.279 (0.577)
Episodic & Hierarchy 6.693 0.095 (0.046) 1.254 (0.568)
Multiple 7.175 0.174 (0.191) 0.032 (0.029) 1.323 (0.743)
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Chapter 4 Appendix

D.1 Experiment 1

D.1.1 Preferences did not change over time

One possible confound in the robot experiment is that participants became

more likely to select a particular image as their first preference over trials.

In order to evaluate this claim, preferences for each choice type were broken

down by trial. Three post-hoc linear regressions conducted on each choice type

showed non-significant effects of trial when predicting the number of selections

(p > 0.05), suggesting that participants did not become biased in their choices

over time.

D.1.2 Preference change doesn’t vary as a function of

political affiliation

One possible explanation for the results discovered in experiment two (i.e., the

study of political opinions) is that only self-identifying Republicans adjust their

preferences to be coherent with their past choices. To test this claim, the first

study was re-run, this time asking participants to state their preferred political

party of the Democrats and the Republicans at the end of the experiment.

The re-run used the same participant selection criteria as the first itera-
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tion, except that participants were required to be from the United States only.

Of the remaining 953 participants, 54.77% were female. The mean age of par-

ticipants was 38.80 (SD = 12.18). This time, the experiment was conducted

in May 2019.

Firstly, results showed a direct replication of the overall effect. The ini-

tial omnibus test proved significant (non-parametric Friedman test of differ-

ences among repeated-measures χ2 = 104.75, p < 0.0001). As before, summed

preferences for the chosen-unique patterns (Median = 9, IQR = 4.0) were

stronger than that for the shared items (Median = 10, IQR = 3.0) (Z =

−4.10, p < 0.0001,r = 0.133) and the non-chosen items (Median = 11, IQR

= 5.0) (Z =−10.99, p < 0.0001,r = 0.36). A final test also revealed that pref-

erences for the shared items were stronger than that for non-chosen items

(Z =−9.77, p < 0.001,r = 0.32)1.

Looking at self-identifying Democrat participants alone (N = 625), results

showed the same pattern of results as described above, suggesting that they

update their preferences to be in line with their prior choices (non-parametric

Friedman test of differences among repeated-measures χ2 = 81.05, p < 0.0001).

As before, summed preferences for the chosen-unique patterns (Median = 9,

IQR = 4.0) were stronger than that for the shared items (Median = 10, IQR

= 3.0) (Z =−3.42, p = 0.0006,r = 0.14) and the non-chosen items (Median =

11, IQR = 5.0) (Z = −9.40, p < 0.0001,r = 0.376). A final test also revealed

that preferences for the shared items were stronger than that for non-chosen

items (Z =−8.36, p < 0.0001,r = 0.33).

Similarly for Republican-identifying participants alone (N = 328), results

showed the same pattern of results as described above (non-parametric Fried-

man test of differences among repeated-measures χ2 = 25.45, p < 0.0001). As

before, summed preferences for the chosen-unique patterns (Median = 9, IQR

= 4.0) were stronger than that for the shared items (Median = 10, IQR =

3.25) (Z = −2.25, p = 0.0245,r = 0.12) and the non-chosen items (Median =

1All Wilcoxon-signed rank tests were evaluated against a Holm-Bonferroni corrected al-
pha value for multiple comparisons
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11, IQR = 5.0) (Z = −5.74, p < 0.0001,r = 0.32). A final test also revealed

that preferences for the shared items were stronger than that for non-chosen

items (Z =−5.11, p < 0.0001,r = 0.28).

Thus, there is no evidence to suggest that only self-identifying Republicans

update their preferences to be maximally coherent with their past choices.

D.2 Experiment 2

D.2.1 Preference change varies within political topic

Further experimental results from the study of people’s political preferences are

now reported. First, additional results from the main ANOVA are reported.

Then, analyses are broken down by political topic.

As the slider response is an ordinal variable, the data was analyzed using

a non-parametric two-way analysis of variance (ANOVA) (Hocking, 1985) 2.

This ANOVA compared the influence of two between-groups independent vari-

ables (selected candidate opinion and political affiliation) on the participants’

normalized slider values. Political affiliation contained two levels (Democrat

or Republican identifying), as did the selected candidate opinion (left-wing or

right-wing).

In addition to the results presented in the main text, the ANOVA revealed

a main effect of political affiliation. This yielded an F-ratio of F(1, 952) =

83.72, p < 0.001, CL = 0.6403, indicating that the average slider values of

self-identifying Democrats (Median = 34.0, IQR = 73.00) were significantly

lower than that of Republicans (Median = 67.0, IQR = 70.75).

Going further, we now evaluate how peoples levels of agreement varied

depending on both their party affiliation and the topic that participants were

being asked to decide on. Breaking down by individual topic allows us to gain
2We are grateful to the creators of the RFit package for implementing this for the R

programming language
3For all main effects and Mann-Whitney U tests, we report the common language (CL)

effect size (Mcgraw and C. P. Wong, 1992)
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further insight about the malleability of certain beliefs held by self-identifying

Democrats and Republicans. For example, one possibility is that participants

only adjusted their slider values to be consistent with their chosen candidate’s

opinion in cases where that opinion was consistent with their chosen political

affiliation. By analysing participants within political affiliations and topics, we

can see whether participants move towards beliefs that run counter to what

would be expected by their party affiliation. A further set of six Mann-Whitney

U tests were therefore run, comparing the extent to which the normalized

slider values (i.e., levels of right-wing agreement) changed depending on the

revelation of the chosen candidates left and right-wing opinions, for each of

the three topics across each of the two party affiliations.

For Democrat-identifying participants, participants appeared to be af-

fected by the revelation of their chosen candidate’s beliefs if it pertained

to trade or abortion. Results showed that normalized slider values of self-

identifying Democrats were significantly lower on average if their candidate

later revealed a left-wing opinion about trade (Median=73.0, IQR = 47.00)

compared to a right-wing opinion about trade (Median=82.0, IQR=29.00)

(U = 4688.5, p<0.01, CL = 0.579). Similarly, results showed that re-

sponses of Democrat-identifying participants were significantly different if

their candidate later revealed a left-wing opinion about abortion (Median

= 1.0, IQR=13.00) compared to a right-wing opinion about abortion (Me-

dian = 3.0, IQR=27.50) (U = 4311.5, p<0.02, CL = 0.512). However, re-

sponses of Democrat-identifying participants were not significantly different

if their candidate later revealed a left-wing opinion about immigration (Me-

dian=29.5, IQR=38.25) compared to a right-wing opinion about immigration

(Median=24.0, IQR=44.25) (U = 4352.5, p>0.05, CL = 0.442).

For Republican participants, the average normalized slider values were

significantly different across all topics depending on the revealed opinion of

the chosen candidate. Results showed that normalized slider values of Repub-

licans were significantly lower on average if their candidate later revealed a
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left-wing opinion about trade (Median=31.0, IQR = 43.5) compared to a right-

wing opinion about trade (Median=67.0, IQR=51.50) (U = 1023.5, p<0.001),

CL = 0.699). In addition, results showed that responses of Republican par-

ticipants were significantly lower if their candidate later revealed a left-wing

opinion about abortion (Median = 60.0, IQR=88.00) compared to right-wing

opinion about abortion (Median = 96.0, IQR=61.5) (U = 1136.0, p<0.01,

CL = 0.593). Finally, responses of Republican participants were significantly

lower on average if their candidate later revealed a left-wing opinion about im-

migration (Median=65.5, IQR=61.25) compared to a right-wing opinion about

immigration (Median=84.5, IQR=55.5) (U = 1080.0, p<0.015, CL = 0.610).

These results therefore indicate that across nearly all topics, people of

both major political affiliations adjusted their preferences to be consistent

with the views of their chosen candidate. In all but one case (Democrats on

the immigration topic), participants appeared willing to shift their apparent

beliefs in directions that ran counter to their party affiliation. This likely would

not have been enough to change participants’ stated, binary preference for a

given topic (assuming that binary preferences change when the normalized

slider crosses the midpoint of 50). However, these results are supportive of the

general idea proposed in this paper that preferences over choice attributes are

updated to make past choices more likely.

D.2.2 Responses were not biased in favour of a partic-

ular party affiliation or slider response

Post-hoc analyses were conducted to test whether there were any biases in

responses or whether the neutral topics elicited any differences in slider re-

sponses. A 2x2 chi-square was conducted to ensure that the process of voting

did not alter participant’s political affiliation. Results showed that voting for

a candidate that later revealed a left or right-wing opinion did not affect par-

ticipants’ subsequent self-reported party affiliation (X2(1)=1.583, p>0.05). In

addition, a one-sample Wilcoxon signed-rank test was conducted to ensure
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that participants did not have a bias towards responding in any particular

direction (e.g. clicking more towards the left). Results revealed that partici-

pants’ average, unnormalized slider values (Median = 50, IQR = 76.00) were

not significantly different from 50 (W = 218707.5, p > 0.05).
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