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Context 

With approximately 525 million cases, of which 220 million have occurred in Europe as of 

the end of May 2022 (https://covid19.who.int/), COVID-19 is a global disease. To date, 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has significantly 

impacted the activity of nuclear medicine departments because of the large number of patients 

infected, including staff caregivers [1], and because of the necessary reorganization of 

medical procedures and hospital circuits [2]. Moreover, new disease entities have emerged 

with long COVID [3]. The definition of long COVID has evolved over time with increasing 

knowledge and the updating of national and international recommendations, particularly 

aspects concerning the type and duration of symptoms, the time from symptom onset, and the 

necessity of biological COVID confirmation. Finally, in October 2021, the World Health 

Organization (WHO) defined long COVID as a condition that occurs in individuals with a 

history of probable or biologically confirmed SARS-CoV-2 infection (to not medically 

exclude patients without access to tests), initially symptomatic at the acute phase, with 

numerous symptoms lasting for at least 2 months, usually 3 months from the onset of 

COVID-19, that cannot be explained by an alternative diagnosis 

(https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-

Clinical_case_definition-2021.1). By affecting approximately 10-15% of patients [3], long 

COVID represents a serious global public health issue. These patients are mostly rather 

young, previously active, and a majority of women; they potentially present chronic forms 

with a disability leading to significant medico-economic costs [4]. 

While long COVID is viewed as a multisystemic disease due to the ubiquitous distribution of 

ACE2 receptors as a virus entry pathway into cells, cerebral impairment has received special 

attention because of symptoms of possible brain origin: loss of smell and taste, cognitive 

complaints of brain “fog”, impairment in attentional and memory functions, sleep 

https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1
https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1
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disturbances, pain, emotion disorders [5], and other symptoms that might be related to 

dysautonomia, such as breathlessness, tachycardia and orthostatic intolerance, including 

orthostatic hypotension [6]. These heterogeneous long COVID symptoms, which also 

potentially fluctuate over time, are not exclusively specific to genuine brain involvement, and 

may also correspond in some cases to another disease potentially unmasked by the infection. 

For example, extracerebral explanations might be assigned to a loss of smell in individuals 

with a nasal obstruction, to dyspnoea in individuals with lung sequelae, and even in 

individuals with cognitive complaints presenting severe asthenia. On the other hand, several 

hypotheses have been proposed to anticipate potential cerebral damage related to the infection 

[5,6]. Indeed, acute neurological complications associated with COVID-19 [7,8], such as 

stroke or encephalopathy/encephalitis, suggest the possible effect of SARS-CoV-2 on the 

brain. Moreover, other SARS viruses were similarly associated with neuropsychiatric 

presentations [9]. Consistent with these findings, a recent meta-analysis showed that the post 

illness stage of previous infections with SARS viruses was characterized by memory 

impairment in 19% of patients, irritability in 13%, insomnia and anxiety in 12% and a 

depressed mood in 10% of patients [9]. These associations with neuropsychiatric symptoms 

were even observed in patients infected with other respiratory viruses, such as the “Spanish” 

pandemic flu virus in adults and children [10]. Some authors consequently argued for possible 

direct viral brain invasion [11], while others proposed that cerebral damage might be related 

to an extensive inflammatory/immune response related to the infection [12]. The two 

hypotheses may also be linked and should suggest a possible brain pathway. A trans-

ethmoidal propagation from the olfactory bulbs though the lamina cribrosa to connected 

cerebral regions, namely, from the nose to the brain, has been proposed, while alternative or 

complementary pathways might involve pulmonary innervation or the vascular compartment 

[13]. Notably, an impairment of olfactory brain areas and their projections to the 
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limbic/paralimbic system, brainstem nuclei and cerebellum might indeed explain several 

symptoms of long COVID in sensorial, cognitive, motor, and dysautonomia dimensions, as 

well as potentially those in the emotion spectrum. Patients indeed also present psychological 

and psychiatric symptoms, which are potentially related to the stress associated with the 

pandemic context, carelessness, chronic evolution, disability, but also might related to brain 

damages in emotion networks [14]. Overall, neurological and psychiatric symptoms presented 

by patients during long COVID could at least partially be related to the impairment of the 

same brain network [15]: the olfactory symptoms with the impairment of the olfactory bulbs; 

the memory/attention deficits with those of the hippocampus and cingulum; the psychological 

and psychiatric disorders such as irritability, depression or anxiety with changes in 

amygdalae; tachycardia, orthostatic intolerance or breathlessness as a dysfunction of the 

autonomic nervous system (dysautonomia); and motor symptoms with the impairment of the 

cerebellum. Consistent with this hypothesis, the olfactory bulbs have indeed been proposed as 

a possible pathway in this implicated brain network, as all involved regions are anatomically 

linked to these olfactory structures [16]. 

Given the subtle clinical presentations and the heterogeneity of individual profiles, a 

diagnostic flow chart for a positive diagnosis of a long COVID is currently difficult to define. 

In the future, this positive diagnosis might be based on a composite definition of clinical, 

biological and imaging signatures. At present, biomarkers should first be considered to 

exclude other underlying aetiologies with respect to the current WHO definition. These 

biomarkers may also specify the extent of the disease, especially the possible impairment of 

the brain, which may correspond to both a specific prognosis and management. Nuclear 

medicine using brain 2-[18F]-FDG (FDG) PET imaging potentially fills these medical needs; 

however, the observation of cortical metabolic abnormalities and their interpretation at the 

single-patient level should also be carefully considered based on the patient’s clinical history 
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and potential confounders. The EANM Neuroimaging Committee hereby aims to summarize 

and discuss potential applications, pitfalls, and prospects of the use of FDG PET to image 

brain involvement in patients with long COVID. 

 

Brain FDG PET imaging of patients with long COVID in the literature 

Brain FDG PET was first employed in patients with post-COVID-19 syndrome at the 

individual and group levels in monocentric semiquantitative studies [17–20] including 

relatively small cohorts of patients [21 for a review]. A hypometabolic long COVID pattern 

was reported in the study including a larger number of 35 patients with persistent functional 

complaints at an average of 14 weeks after the initial infection compared to healthy subjects. 

This hypometabolic profile involves the fronto-orbital and olfactory regions, other 

limbic/paralimbic regions, the brainstem and the cerebellum [18]. At this relatively early time 

from symptom onset, this metabolic pattern was observed in all patients at the individual 

level. The included patients presented functional complaints associated with the possible brain 

origin, but were free from any neuropsychiatric antecedent and had normal morphological 

imaging data. Interestingly, a statistical association was observed between anosmia and 

memory impairment, as well as between the number of symptoms and the severity of 

hypometabolism. Similarly in this study, patients who had nasal irrigations in the acute phase 

presented less-pronounced olfactory hypometabolism, whereas those treated with ACE drugs 

had more-pronounced olfactory hypometabolism. Without prejudging the mechanism (viral, 

inflammation or immune) and its potential reversibility, all these results reinforced the 

hypothesis of a "connected” impairment related to olfactory propagation from ACE2 

receptors. The two other PET studies of a series of adult patients included 13 and 14 patients 

at 19 and 28 weeks on average from symptom onset, respectively [19,20]. The first study 

showed a decrease in metabolism in the right parahippocampal gyrus and thalamus compared 
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to control patients without long COVID and associations between decreased metabolism in 

parahippocampal and orbitofrontal areas and persistent anosmia and between decreased 

metabolism in the parahippocampal gyrus, brainstem and thalamus and persistent fatigue [19]. 

The second study performed at a later time from symptom onset did not observe any 

metabolic decrease in patients with subjective complaints at the group or at the individual 

levels. In this last study (and interestingly not in the previously mentioned studies), 

comparisons were performed by normalizing the brain metabolism on the white matter [20]. 

The hypometabolic long COVID pattern was finally described in 7 paediatric patients who 

presented symptoms with a possible brain origin several weeks after COVID compared to 

control paediatric patients presenting functional complaints before the pandemic, with a 

similar brain impairment as those found in adults, involving the right olfactory gyrus, bilateral 

medial temporal lobes, the brainstem and cerebellum [22]. 

It is worth noting that the comparability of the results provided by these studies is limited by 

differences both in their included populations and in the technical parameters used. The 

studied populations were heterogeneous as they included in- or outpatients, presenting 

complaints or deficits, with or without structural brain lesions. On the other hand, the choice 

of the population to compare the brain metabolism of patients may have also interfered with 

the different results obtained across these studies. Healthy subjects or normal controls 

(patients with apparent normal metabolism) served as references, and PET images were 

obtained with or without the same PET camera as the one used for patients with long COVID, 

along with the same or a distinct protocol of acquisition and reconstruction. Notably, brain 

analyses were also performed across these studies using different methodological strategies, 

especially the aforementioned activity normalization methods. Finally, the time from 

symptom onset is certainly the major factor interfering with symptoms and PET results, 

considering possible brain recovery [23]. All these points are in favour of future larger 
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multicentre studies with harmonized and standardized protocols for inclusion, data 

acquisition, and image processing. 

Nevertheless, a similar pattern of long COVID-19-affected brain areas was observed in a 

large-scale MRI morphometric longitudinal study of 401 patients who underwent two 

morphological MRIs before the pandemic and after diagnosis with COVID-19 at an average 

time from symptom onset of 141 days and compared 384 longitudinal noninfected controls 

[24]. The authors reported a global reduction in brain size after SARS-CoV-2 infection, with 

greater tissue damage in areas that are functionally connected to the primary olfactory cortex 

and a more marked reduction in grey matter thickness in the orbitofrontal cortex and 

parahippocampal gyrus [24]. This study confirms that the observed abnormalities did not 

result from a predisposing condition before COVID. Taken together, the results of the 

metabolic PET studies, the results of the large-scale longitudinal MRI study and a systematic 

review integrating neuroimaging and neuropathological findings of 90 previous studies in 

patients with COVID-19 [25] suggest the involvement of a common brain network and a 

possible olfactory pathway, without speculating on the exact mechanism and its reversibility. 

 

What is the significance of the proposed long COVID hypometabolic pattern in FDG 

PET images? 

The described hypometabolic changes in long COVID brain are non-specific and observed 

with other virus infections before the COVID-19 outbreak. There remains unclear whether 

these abnormalities might be the consequences of the symptoms and not the causes. 

We believe that this last question may mostly result from a possible misunderstanding or 

confusion between the pathological process associated with individual metabolic PET 

findings in the resting state and the functional consequence of symptoms and deficits 

associated with the multiple scan activation paradigm using MRI. The functional dimension 
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that is mainly investigated in neuroscience with fMRI is undoubtedly captured using various 

methods, including morphological and molecular imaging [26], but always on a multiple 

image scale because of low contrast. In contrast, and in clinical settings, brain FDG PET is an 

individual biomarker of high contrast recommended to explore pathological processes [27]. 

Therefore, the identification of individual PET hypometabolism should more correspond to a 

genuine brain impairment, again without prejudging its reversibility, than a simple 

consequence of the symptoms. Recently, at an individual level and using a visual 

interpretation, a French multicentre study conducted in 143 patients diagnosed in accordance 

with the current WHO definition of post-COVID syndrome reported that a hypometabolic 

long COVID pattern was observed in 47% of patients presenting persistent symptoms at an 

average of 10.9 months after COVID-19 [28]. Interestingly, the fact that at the individual 

level, approximately half of patients with symptoms had no brain metabolic abnormalities at 

this time [28], an incomplete hypometabolic pattern [19] or no metabolic abnormalities [20] 

in other studies at the group or individual levels in small cohorts of patients with suspicious 

long COVID indicates that this hypometabolic pattern is not simply a functional consequence 

of symptoms, i.e., a deafferentation from the olfactory bulbs [16], but again more likely the 

signature of a genuine brain impairment. 

 

We can also argue that no or few abnormalities have been reported at the individual level 

upon a visual interpretation of images from patients with psychiatric disorders, and especially 

no individual abnormalities in the brainstem and cerebellum [29]. In addition to psychiatric 

explanations, some authors have linked long COVID symptoms with a similar functional 

explanation to possible deconditioning related to the lockdown. Interestingly, the reported 

hypometabolic long COVID pattern differs from that of the deconditioning state reported in 
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the COVID-19 lockdown in a study including approximately 500 patients, with less than 9% 

concordance between the two conditions [30]. 

 

Brain FDG PET imaging of long COVID: clinical implications 

In addition to being an efficient tool in the framework of European recommendations for the 

differential diagnosis of a neurodegenerative disorder, encephalitis/encephalopathy (including 

post infective) [27], brain FDG PET might thus be a promising biomarker to objectively 

assess brain involvement at the individual level in patients with a suspicion of long COVID 

[28]. However, several red flags should be known by nuclear physicians for the correct 

interpretation of brain FDG PET scans at the individual level in this context.  

-  Nuclear physicians should be aware of specific brain areas involved in the hypometabolic long 

COVID pattern that are sometimes difficult to individualize anatomically and require experienced 

readers. We should cautiously interpret findings from the fronto-basal regions, especially the olfactory 

bulbs and their nervous extension from the gyrus rectus, at best on coronal slices but also the 

brainstem and the cerebellum by searching for hypometabolism with adapted contrast on colour scales, 

as well as the medial temporal lobe (see Figures 1 and 2 for details). Subtle changes in metabolism and 

fortiori partial hypometabolism in one of these brain structures, especially in less specific limbic 

regions, should not systematically be reported as related to long COVID [28].  

-  , a careful interpretation is needed in children; Although the hypometabolic long COVID pattern has 

been described [22], the relative hypometabolism with brain FDG PET, commonly present in internal 

temporal areas, pons and cerebellum (and significantly varies with the age of the child) may be 

misleading, thus requiring a high level of expertise [31].  

-  Importantly, intensity normalization should preferably be obtained at the global cortical level or 

centred on the maximal cortical voxel since other references, such as white matter in MRI studies [32] 

and pons or cerebellum in MRI and PET studies [17,22,24,28], may be involved in the long COVID 

hypometabolic pattern [33]. In addition to the previously mentioned impairment of the brainstem and 

cerebellum in imaging studies [17,24,28], post autopsy studies documented microglial activation in 
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white matter of patients with COVID [12,34], limiting the interest in normalizing the signal at this 

location.  

-  Semiquantitative analyses should be a helpful complement to visual analysis, especially for non-

experienced readers; considering the nature of the control database, which must be age-matched to the 

patient and obtained with a PET system with similar physical performances [35]. An excessively 

restrictive inclusive mask should not be used for this purpose, as it will potentially limit the 

interpretation of the gyrus rectus and olfactory nerve projections. 

 

Notably, in this potentially large population with a suspicion of long COVID, the discovery of 

a pre-existing neurodegenerative or psychiatric disorder may not be infrequent. Nuclear 

physicians should be aware of the risk of overdiagnosis with another pathology or pre-existing 

pathology falsely attributed to COVID. Indeed, in many patients, including those with 

Alzheimer’s disease, the hypometabolic pattern is expected to differ from the hypometabolic 

profile described for long COVID [27]. If a more inclusive or partially overlapping pattern is 

observed, a tight correlation with the clinical presentation (including first symptom onset) 

must be needed. Clinical and, in more complex cases, imaging follow-ups might be 

considered for the final diagnosis. Although measurable residuals have been reported, some 

significant recovery of regional neuronal dysfunction and cognition has been reported in 

patients who have recovered from COVID [7,8]. In contrast, a risk of underdiagnosis also 

exists because of the high prevalence of the long COVID pathology (from 10 to 15% of 

patients having presented COVID, [3]). This risk is noted for patients who are referred to a 

brain FDG PET scan for a suspicion of another pathology in whom a long COVID pattern is 

fortuitously discovered. 

 

Finally, brain FDG PET might be used to exclude a different diagnosis, especially in 

individuals with atypical presentations, and in positive cases, identify a brain extension. This 
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result could contribute to the social and medical recognition of the patient’s disability by the 

health care system, especially when all other medical examinations fail to show abnormality. 

Multiple rehabilitation procedures would be available for these patients, who are often young 

and socially active, focusing on cerebral networks observed to be affected in neurological 

long COVID, i.e., the olfactory pathway, as well as the limbic, cognitive and motor pathways 

[15]. More broadly, brain FDG PET might be an additional tool to monitor these 

rehabilitation procedures [27]. 

 

Perspectives 

Large-scale prospective studies, ideally including comparisons with post-mortem 

histopathology, should be encouraged. Novel PET radiotracers should also be employed in 

research to assess neurological long COVID. As neuroinflammation is one of the main 

hypotheses to explain brain damage in patients with long COVID [12], neuroinflammation 

PET targeting, for instance, the translocator protein 18 kDa (TSPO) might be a good 

candidate [36]. In addition to the current burden of long COVID on our patients, society 

might even experience a larger issue in the near future, as neuroinflammation is a commonly 

accepted risk factor for neurodegenerative diseases [37]. Significantly increased plasma levels 

of neuronal biomarkers, including amyloid beta, neurofilament light chain, neurogranin, total 

tau, and p-T181-tau, were detected in patients 1 to 3 months after recovery from COVID-19 

infection compared to historic controls [38]. The presence of increased levels of neuronal 

biomarkers associated with COVID-19 infection requires further investigation with amyloid 

and tau PET imaging. In addition, a nigrostriatal dopaminergic deficit was suspected in 

patients 2 to 8 weeks after COVID-19 with 123I-FPCIT SPECT [39,40] and 18F-FDOPA PET 

[41]. The association of neurological long COVID and neurodegenerative disorders clearly 

deserves further study using longitudinal follow-ups. Additionally, an exploration of the 
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potential reversibility of brain involvement using follow-up FDG PET is necessary [8,42] to 

specify the possible transition from inflammatory hypermetabolism to hypometabolic 

dysfunctions [42]. Researchers have not determined whether patients with long COVID 

evolve and at which frequency neurological sequelae are observed [43]. However, due to the 

large number of patients with COVID, the numbers of individuals with neurological sequelae 

might be high. 

Regarding the hypothesis of brain entry through the olfactory bulbs, intranasal therapy for 

long COVID is also under investigation [44], and exploring the effect of this treatment on the 

olfactory network using PET imaging is a line of future research. 

Finally, brain FDG PET imaging might also be a biomarker of neuronal dysfunction in 

individuals with other infections for which cerebral involvement is suspected through similar 

mechanisms, as in other SARS viruses [9]. 

 

Conclusions and recommendations 

Using brain FDG PET, a hypometabolic profile has been observed in a relevant portion of 

patients with long COVID, suggesting network-based involvement. Brain FDG PET might 

therefore be a promising approach to objectify brain involvement in individuals with long 

COVID, which should correspond to distinct prognoses and management strategies. In 

addition, brain FDG PET potentially provides a differential diagnosis for clinical symptoms 

related to neurodegenerative diseases, encephalitis/encephalopathy or psychiatric disorders. In 

our opinion, and as previously proposed by Meyer et al. [21], this examination should be 

proposed after a dedicated clinical evaluation and after a significant delay (3 to 6 months) 

from the initial infection, or in case of worsening [19]. Clinicians should remember that 

cerebral symptoms of long COVID are not limited to cognitive complaints, and consequently, 

a broader evaluation should be considered beyond the neuropsychometric assessment for 
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these PET indications, especially considering dysautonomia. A multicentre international 

collaboration among clinicians and patients is expected to improve the brain FDG PET 

imaging evaluation of long COVID. 
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Figure 1. 

Hypometabolic pattern in a patient with long COVID-19 presenting normal MRI, (A) and 

normal brain FDG PET scans of an age-matched control subject (B). The hypometabolic long 

COVID pattern involves the fronto-orbital and olfactory regions and other limbic/paralimbic 

regions visualized in coronal slices and the brainstem and the cerebellum in sagittal slices 

(white arrows in A). 
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Figure 2. 

Axial slices of a brain FDG PET scan of a patient with a hypometabolic long COVID pattern 

(A) and in a patient with a normal brain scan (B). A discontinuous colour scale (left column)) 

is better suited than a continuous scale (right column) to indicate hypometabolism in the pons 

(white arrow). 

 

 


