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Abstract

Arcade processes are a class of continuous stochastic processes that interpolate in
a strong-sense, i.e., omega by omega, between zeros at fixed pre-specified times. Their
additive randomization allows one to match any given random variable at the given dates
on the whole probability space, and can be interpreted as a generalization of anticipative
stochastic bridges. The filtrations generated by randomized arcade processes are utilized
to construct a class of interpolating martingales between the same target random variables,
the filtered arcade martingales (FAMs), which provide an extension to the paradigm
of information-based asset pricing. FAMs are strong solutions of the martingale fitting
problem, and can be connected to martingale optimal transport (MOT) by considering
optimally-coupled target random variables. Another connection to optimal transport can
be established by using FAMs to cast the information-based martingale optimal transport
problem, a new problem that allows the introduction of noise in MOT, similar to how
Schrödinger’s problem introduces noise in optimal transport.

Keywords: Stochastic interpolation, martingale interpolation, martingale fitting, stochastic
bridge, optimal transport, nonlinear stochastic filtering, information-based asset pricing.

1 Introduction
The problem of constructing martingales which match given marginales has been the subject of
many works in probability theory and applications thereof. The origin of the problem dates
back to Strassen [20]. He showed that a discrete-time martingale (Mn)n∈N can match a sequence
of real probability measures (µn)n∈N if and only if the measures (µn)n∈N are convexly ordered,
i.e., Mn ∼ µn is possible for all n ∈ N if and only if

∫
f(x) dµn(x) is an increasing sequence in n

for any positive convex function f . This result also extends to the continuous-time setting, see
Kellerer’s theorem [12].

Strassen’s and Kellerer’s theorems do not provide a method for constructing the matching
martingales. Many techniques are dedicated to Kellerer’s setting, where one is looking to
construct a martingale that matches a given peacock [10]: Skorokhod’s embedding problem,
Brownian random time changes, local volatility models, scaling peacocks method, etc., see [14].
Since the target is a dynamical measure, the matching is necessarily weak, and the martingale
is in continuous time. On the other hand, the matching in Strassen’s setting can be weak or
almost sure, depending on the nature of the targets (measures or random variables), and the
martingale is in discrete time. A popular tool dedicated to this task is martingale optimal
transport (MOT, [2], [3]). Inspired by Kantorovich’s optimal transport theory ([11], [21], [4]),
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it provides a framework for selecting a meaningful martingale coupling by minimizing a cost
functional over the set of all martingale couplings.

Our interest lies at the intersection of Strassen’s and Kellerer’s settings: how to construct a
continuous martingale that matches, in law or almost surely, a given finite set of convexly
ordered random variables, at pre-specified given dates? For example, this is of interest in a
financial setting, where knowledge of the prices of vanilla call and put options provides an
implied distribution for the underlying asset price at future dates under no arbitrage. This
is what we call the martingale interpolation problem, since we are interpolation between the
components of a discrete-time martingale without breaking the martingality condition. The
latter is the tricky part of the problem. If we forget about the martingality condition, then
bridging the gap between a coupling and an interpolating measure does not usually cost much.
For instance, in Kantorovich’s optimal transport theory, it is well known that there is a one-to-one
correspondence between optimal couplings and optimal interpolating measures in Wasserstein
spaces, called McCann’s interpolations, under mild conditions. However, this property is not
present in the martingale counterpart of optimal transport.
Solutions to the martingale interpolation problem exist. For example, the martingale Benamou-
Brenier problem (MBBP) [1] aims to solve the optimization problem

sup
Mt(µ,ν,B)

E

[∫ 1

0

σt dt

]
over the set

Mt(µ, ν, B) =

{
(σt)t⩾0 ∈ L1(Bt) |Mt = M0 +

∫ t

0

σs dBs =⇒

M0 ∼ µ,M1 ∼ ν, (Mt) is a martingale

}
, (1.1)

where (Bt)t⩾0 is a standard Brownian motion and (µ, ν) are convexly ordered probability
measures with finite second moments. If (µ, ν) is irreducible in the sense of [2], Appendix A.1,
the solutions to the MBBP are called (µ, ν)-stretched Brownian motions, and have the form
E[F (B1 + Y0) | Ft], where (Ft) is the filtration generated by (Bt + Y0). The function F : R → R
and the random variable Y0 must be selected such that F (B1 + Y0) ∼ ν, E[F (B1 + Y0) |Y0] ∼ µ
and Y0 ⊥⊥ (Bt). In the case where (µ, ν) have irreducible components, the solution to the MBBP
is a stretched Brownian motion on each irreducible component, see Theorem 3.1 in [1]. Stretched
Brownian motions are interpolating martingales between the given measures µ and ν. Another
weak solution to the martingale interpolation problem is given by Schrödinger’s volatility models
(SVMs) [9]. Inspired by the entropic relaxation of optimal transport ([13], [17]), also known as
Schrödinger’s problem in particular cases [19], SVMs rely on a measure change. Consider two,
possibly correlated, Brownian motions, (Bt)t⩾0 and (B̃t)t⩾0, under a measure P, and the system
of SDEs

dMt = atMt dB̃t,

dat = b(at) + c (at) dBt, (1.2)

where the real functions b and c are given, and are such that at is an Itô process. The goal is to
change the measure P by an equivalent one, such that the process (Mt)0⩽t⩽1 matches the given
measures µ and ν at times zero and one respectively, while being a true martingale. If several
equivalent measures that satisfy these constraints exist, one must select the one that is closest
to P in terms of the Kullback-Leibler divergence. By Girsanov’s theorem, changing P by an
equivalent measure Q transforms the system of SDEs as follows:

dMt = atMt( dB̃t + λ̃t dt),

dat = b(at) + c (at) ( dBt + λt dt). (1.3)

2



One must then select the drifts (λ̃t) and (λt), generated by the same measure change, that

minimize the functional EQ

[∫ T1

T0

λ̃2
s + λ2

s ds

]
while satisfying the constraints M0 ∼ µ, M1 ∼ ν

and (Mt) is a martingale.

In this paper, we construct a class of martingales that can match, almost surely, any set of
convexly ordered random variables, at an arbitrary set of fixed times, inspired by the information-
based asset pricing approach ([6],[7]). These interpolating martingales, called filtered arcade
martingales (FAMs), need two main ingredients: a discrete-time martingale (for example, a
solution to an MOT problem) and another type of interpolating process that we call arcade
process (AP).

The second section is dedicated to APs. Defined as a functional of a given stochastic process
called the driver, APs are sample-continuous stochastic processes that interpolate between zeros
on the whole probability space, i.e., omega by omega. To execute the interpolation, they rely on
deterministic functions called interpolating coefficients. APs may be viewed as multi-period
anticipative stochastic bridges. We study their properties and focus on Gaussian APs, which
will play an important role in the definition of FAMs. Starting from a Gauss-Markov driver, we
show that it is always possible to construct a Markovian AP by utilizing the covariance structure
of the driver. The resulting AP from this procedure is called standard AP, but is not unique,
since there are infinitely many Markovian APs driven by the same Gauss-Markov process.

The third section treats the additive randomization of APs, that is, the sum of a stochastic
process that is interpolates deterministically between random points, and an AP. Such processes
are called randomized arcade processes (RAPs), and can be thought as a sum between a signal
function and a noise process. By construction, a RAP can match any random variables on the
whole probability space at any given time, i.e, it is a stochastic interpolator between target
random variables in the strong sense. The notion of Markovianity does not suit RAPs in
general, since their filtrations contain the σ-algebras generated by each previously matched
target random variable. For that reason, we introduce a counterpart notion, the nearly Markov
processes, and show under which conditions a RAP is nearly Markov.

In the fourth and final section, we introduce the FAMs. A FAM is defined as the conditional
expectation of the final target random variable, given the information generated by a RAP
and, hence, inherits the filtering framework from information-based asset pricing: the signal
is the final target and it can only be observed through a noisy version, the RAP. FAMs are
tractable thanks to the nearly-Markov property of the underlying RAPs, and can be simulated
using Bayes formula. Applying Itô’s lemma, we derive the stochastic differential equations
satisfied by FAMs. Finally, we introduce the information-based martingale optimal transport
(IBMOT) problem, a similar problem to martingale optimal transport, that incorporates noise
in the optimization process, inspired by the entropic regularization of optimal transport and
Schrödinger’s problem. IBMOT selects the martingale coupling that maximizes the expectation
of the weighted squared error between a target random variable and its associated FAM for a
given RAP.

In what follows, we consider the collection of fixed dates {Ti ∈ R |n ∈ N0 and i = 0, 1, . . . , n}
such that 0 ⩽ T0 < T1 < T2 < . . . < Tn < ∞. We introduce the ordered sets {T0, Tn}∗ =

{T0, T1, . . . , Tn} and (T0, Tn)∗ =
n−1⋃
i=0

(Ti, Ti+1). Let (Ω,F ,P) be a probability space, (Dt)t∈[T0,Tn]

a sample-continuous stochastic process such that P[Dt = 0] < 1 whenever t ∈ (T0, Tn)∗, and an
Rn+1-valued random vector X independent of (Dt).
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2 Arcade processes
We construct stochastic processes on [T0, Tn], as a functional of (Dt), which match exactly 0 (for
all ω ∈ Ω) at the given times {T0, Tn}∗. The first step is to introduce deterministic functions
called interpolating coefficients.

Definition 2.1. The functions f0, f1, . . . , fn are interpolating coefficients on {T0, Tn}∗ if f0,
f1, . . . , fn ∈ C0

(
[T0, Tn],R

)
, fi(Ti) = 1, and fi(Tj) = 0 for i, j = 0, . . . , n, i ̸= j.

We can now give the definition of what we call an arcade process.

Definition 2.2. An arcade process (AP), denoted (A
(n)
t )t∈[T0,Tn], on the partition {T0, Tn}∗ is a

stochastic process of the form

A
(n)
t := Dt −

n∑
i=0

fi(t)DTi
, (2.1)

where f0, . . . , fn are interpolating coefficients on {T0, Tn}∗. The process (Dt)t∈[T0,Tn] is the driver
of the AP. We denote by (FA

t )t∈[T0,Tn] the filtration generated by (A
(n)
t )t∈[T0,Tn].

We observe that A
(n)
T0

= A
(n)
T1

= . . . = A
(n)
Tn

= 0 by construction, for all ω ∈ Ω.

Example 2.3. For n = 1, f0(t) =
t− T1

T0 − T1

, f1(t) =
t− T0

T1 − T0

, the AP driven by a standard

Brownian motion (Bt)t⩾0 is the anticipative Brownian bridge on [T0, T1],

A
(1)
t = Bt −

T1 − t

T1 − T0

BT0 −
t− T0

T1 − T0

BT1 . (2.2)

Example 2.4. For n > 1, we can generalize the anticipative Brownian bridge by taking

f0(t) =
T1 − t

T1 − T0

1[T0,T1](t), fn(t) =
t− Tn−1

Tn − Tn−1

1(Tn−1,Tn](t), (2.3)

and

fi(t) =
t− Ti−1

Ti − Ti−1

1(Ti−1,Ti](t) +
Ti+1 − t

Ti+1 − Ti

1(Ti,Ti+1](t), for i = 1, . . . , n− 1. (2.4)

We call this AP the stitched Brownian AP for it can be written as

A
(n)
t =



Bt − T1−t
T1−T0

BT0 − t−T0

T1−T0
BT1 , if t ∈ [T0, T1),

Bt − T2−t
T2−T1

BT1 − t−T1

T2−T1
BT2 , if t ∈ [T1, T2),

...
Bt − Tn−t

Tn−Tn−1
BTn−1 −

t−Tn−1

Tn−Tn−1
BTn , if t ∈ [Tn−1, Tn].

(2.5)
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Figure 1: Paths simulation of a stitched Brownian AP with n = 5, using the equidistant partition
{Ti = 2i | i = 0, 1, . . . , 5}.

Another way of generalizing the anticipative Brownian bridge to obtain an AP driven by Brownian
motion is by using Lagrange’s polynomial interpolation, that is

fi(t) =
n∏

k=0,k ̸=i

Tk − t

Tk − Ti

for i = 0, . . . , n. (2.6)

We may call the resulting AP the Lagrange-Brownian AP, which has the form

A
(n)
t = Bt −

n∑
i=0

n∏
k=0,k ̸=i

Tk − t

Tk − Ti

BTi
. (2.7)

More generally, the Lagrange AP driven by a stochastic process (Dt) has the form

A
(n)
t = Dt −

n∑
i=0

n∏
k=0,k ̸=i

Tk − t

Tk − Ti

DTi
. (2.8)

Figure 2: Paths simulation of a Lagrange-Brownian AP with n = 5, using the equidistant
partition {Ti = 2i | i = 0, 1, . . . , 5}.
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The Lagrange APs inherit Runge’s phenomenon from their interpolation coefficients: when n is
big, the AP oscillates around the edges of the interval.

Figure 3: Paths simulation of a Lagrange-Brownian AP with n = 10, using the equidistant
partition {Ti = i | i = 0, 1, . . . , 10}, illustrating Runge’s phenomenon.

One can negate this effect by applying a transformation to the interpolating coefficients. For

instance, the map x 7→ |x|2(1−|x|) applied to each interpolating coefficients fi(t) =
n∏

k=0,k ̸=i

Tk − t

Tk − Ti

for i = 0, . . . , n, yields another set of interpolating coefficients f̃0, . . . , f̃n that do no suffer from
Runge’s phenomenon.

Figure 4: Paths simulation of a Brownian AP with n = 10 and interpolating coefficients
f̃0, . . . , f̃10, using the equidistant partition {Ti = i | i = 0, 1, . . . , 10}.

Example 2.5. Elliptic APs have interpolating coefficients given by

f0(t) =

√
1−

(
t− T0

T1 − T0

)2

1[T0,T1](t), fn(t) =

√
1−

(
t− Tn

Tn − Tn−1

)2

1(Tn−1,Tn](t), (2.9)
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fi(t) =

√
1−

(
t− Ti

Ti − Ti−1

)2

1(Ti−1,Ti](t) +

√
1−

(
t− Ti

Ti+1 − Ti

)2

1(Ti,Ti+1](t) for i = 1, . . . , n− 1.

(2.10)

Figure 5: Paths simulation of an elliptic-Brownian AP with n = 5, using the equidistant partition
{Ti = 2i | i = 0, 1, . . . , 5}.

The expectation and the covariance of an AP, when they exist, are fully characterised by the
driver and the interpolating coefficients.

Proposition 2.6. If the driver (Dt) has a mean function µD, a variance function σ2
D, and an

covariance function KD, we have:

µA(t) := E[A(n)
t ] = µD(t)−

n∑
i=0

fi(t)µD(Ti), (2.11)

σ2
A(t) := Var[A

(n)
t ] = σ2

D(t) +
n∑

i=0

f 2
i (t)σ

2
D(Ti)− 2fi(t)KD(t, Ti)

+ 2
n∑

i=0

n∑
j=i+1

fi(t)fj(t)KD(Ti, Tj), (2.12)

KA(s, t) := Cov[A(n)
s , A

(n)
t ] = KD(s, t)−

n∑
i=0

fi(t)KD(s, Ti) + fi(s)KD(t, Ti)

+
n∑

i=0

n∑
j=0

fi(s)fj(t)KD(Ti, Tj). (2.13)

Proof. Eq. 2.11 follows from the linearity of the expectation and Eq. 2.12 follows from Eq. 2.13.
Hence, it is enough to show Eq. 2.13.
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Cov[A(n)
s , A

(n)
t ] = Cov

Ds −
n∑

i=0

fi(s)DTi
, Dt −

n∑
i=0

fi(t)DTi

 (2.14)

= KD(s, t)− Cov

Ds,
n∑

i=0

fi(t)DTi

− Cov

 n∑
i=0

fi(s)DTi
, Dt


+ Cov

 n∑
i=0

fi(s)DTi
,

n∑
i=0

fi(t)DTi

 (2.15)

= KD(s, t)−
n∑

i=0

fi(t)KD(s, Ti)−
n∑

i=0

fi(s)KD(Ti, t)

+
n∑

i=0

n∑
j=0

fi(s)fj(t)KD(Ti, Tj) (2.16)

= KD(s, t)−
n∑

i=0

fi(t)KD(s, Ti) + fi(s)KD(t, Ti)

+
n∑

i=0

n∑
j=0

fi(s)fj(t)KD(Ti, Tj). (2.17)

Markov APs will play a crucial role in the construction of FAMs. An immediate property of
these processes is the following:

Proposition 2.7. Let (A
(n)
t )t∈[T0,Tn] be an AP on {T0, Tn}∗ that is Markov with respect to

(FA
t )t∈[T0,Tn]. If t > Ti for Ti ∈ {T0, Tn}∗, then A

(n)
t ⊥⊥ FA

Ti
.

In particular, if (A
(n)
t ) is Markov and has a covariance function, then Cov(A

(n)
s , A

(n)
t ) = 0

whenever s ∈ [Ti, Ti+1], t ∈ [Tj, Tj+1] and j ̸= i.

If we think about APs as noise processes, the most natural subclass to study is the Gaussian
subclass. But instead of looking at all APs that are also Gaussian processes, we restrict to APs
driven by Gaussian processes.

Definition 2.8. An AP (A
(n)
t )t∈[T0,Tn] is said to be a Gaussian AP if its driver (Dt) is a Gaussian

stochastic process.

Notice that not all APs that are Gaussian processes are Gaussian APs. But all Gaussian APs are
Gaussian processes: Take Dt = Bt+ tY , where (Bt) is a Gaussian process and Y a non-Gaussian
random variable, and At = Dt − (1− t)D0 − tD1. The driver is not Gaussian while the AP is a
Gaussian process.

We give a first result about the Markov property of Gaussian APs.

Theorem 2.9. Let (A(n)
t )t∈[T0,Tn] be a Gaussian AP on {T0, Tn}∗ with covariance function KA.

Then (A
(n)
t ) is Markov with respect to its own filtration if and only if ∀ (r, s, t) ∈ (T0, Tn)

3
∗ such

that r ⩽ s < t, there exists a(s, t) ∈ R0 such that

KA(r, t) =


0, if t ∈ [Ti, Ti+1], r ∈ [Tj, Tj+1], i ̸= j,

KA(r, s)a(s, t), otherwise.
(2.18)
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Proof. Suppose KA is of the form 2.18, we shall show that (A
(n)
t ) is Markov. Let k > 1 and

(s1, s2, . . . , sk, t) ∈ [T0, Tn]
k+1 such that s1 < s2 < . . . < sk < t. Then, (A(n)

t ) is Markov if and
only if

P
[
A

(n)
t ∈ · | A(n)

s1
, . . . , A(n)

sk

]
= P

[
A

(n)
t ∈ · | A(n)

sk

]
. (2.19)

Since KA(s, t) = 0 unless s and t are in the same sub-interval, we can assume without loss of
generality that (s1, s2, . . . , sk, t) ∈ (Tm, Tm+1)

k+1 for a fixed m ∈ {0, . . . , n− 1}. Define

∆q =
k∑

i=1

ci,qA
(n)
si

, q = 1, . . . , k − 1, (2.20)

where the coefficients (ci,q) are chosen such that

k∑
i=1

ci,qKA(si, t) = 0 and det

 c1,1 . . . c1,k−1
...

...
ck−1,1 . . . ck−1,k−1

 ̸= 0. (2.21)

We notice that

σ(A(n)
s1

, . . . , A(n)
sk

) = σ(∆1, . . . ,∆k−1, A
(n)
sk

) ⇐⇒ det

 c1,1 . . . c1,k−1
...

...
ck−1,1 . . . ck−1,k−1

 ̸= 0. (2.22)

It remains to be shown that

A
(n)
t ⊥⊥ (∆1, . . . ,∆k−1) and A(n)

sk
⊥⊥ (∆1, . . . ,∆k−1). (2.23)

Equivalently, because we are treating the Gaussian case, we shall show that

Cov(A
(n)
t ,∆q) = 0 and Cov(A(n)

sk
,∆q) = 0 ∀q = 1, . . . , k − 1. (2.24)

Expanding these covariances, we get

Cov(A
(n)
t ,∆q) =

k∑
i=1

ci,qKA(si, t) = 0, (2.25)

which is guaranteed by the choice of the coefficients (ci,q), and

Cov(A(n)
sk

,∆q) =
k∑

i=1

ci,qKA(sk, si) = 0. (2.26)

The first equation implies the second because KA(si, t) = 0 =⇒ KA(sk, si) = 0 by 2.18, and,
when KA(si, t) ̸= 0, we have KA(si, t) = a(sk, t)KA(sk, si), which means

k∑
i=1

ci,qKA(si, t) = 0 =⇒
k∑

i=1

ci,qa(sk, t)KA(sk, si) = 0 =⇒
k∑

i=1

ci,qKA(sk, si) = 0. (2.27)

This concludes one implication.

For the converse, suppose without lose of generality that the driver has mean 0. We observe that
KA(x, y) = 0 if x ∈ [Ti, Ti+1], y ∈ [Tj, Tj+1], i ̸= j. Let (r, s, t) ∈ (Ti, Ti+1)

3 such that r ⩽ s < t.
Since (A

(n)
t ) is Gaussian, we have

9



E[A(n)
t |A(n)

s ] =
KA(s, t)

KA(s, s)
A(n)

s . (2.28)

Using the Markov property of (A(n)
t ), we get

KA(r, t) = E[A(n)
r A

(n)
t ] = E[E[A(n)

r A
(n)
t |A(n)

s ]] = E[E[A(n)
r |A(n)

s ]E[A(n)
t |A(n)

s ]], (2.29)

which implies

KA(r, t) = E
[
KA(s, t)

KA(s, s)
A(n)

s

KA(r, s)

KA(s, s)
A(n)

s

]
=

KA(s, t)KA(r, s)

KA(s, s)
. (2.30)

Hence a(s, t) =
KA(s, t)

KA(s, s)
.

We can simplify the statement of Theorem 2.9 in the following way.

Corollary 2.10. A Gaussian AP (A
(n)
t )t∈[T0,Tn] is Markov with respect to its own filtration if

and only if there exist real functions A1 : [T0, Tn] → R, and A2 : [T0, Tn] → R, such that

KA(s, t) =
n−1∑
i=0

A1(min(s, t))A2(max(s, t))1(Ti,Ti+1)(s, t). (2.31)

Proof. If

KA(s, t) =
n−1∑
i=0

A1(min(s, t))A2(max(s, t))1(Ti,Ti+1)(s, t), (2.32)

then ∀ (r, s, t) ∈ (T0, Tn)
3
∗ such that r ⩽ s < t,

KA(r, t) =


0, if t ∈ [Ti, Ti+1], r ∈ [Tj, Tj+1], i ̸= j,

KA(r, s)
A2(t)
A2(s)

, otherwise.
(2.33)

Hence, (A(n)
t ) is Markov.

For the converse, suppose that (A
(n)
t ) is Markov. Let Tm ∈ {T0, Tn−1}∗. Then,

KA(r, t)

KA

(
r, Tm+Tm+1

2

) =
KA

(
Tm+Tm+1

2
, t
)

KA

(
Tm+Tm+1

2
, Tm+Tm+1

2

) (2.34)

for any (r, t) ∈ (Tm, Tm+1)
2 such that r < Tm+Tm+1

2
< t by Theorem 2.9. Hence, if

A1(x) =
n−1∑
i=0

KA

(
x,

Ti + Ti+1

2

)
1(Ti,Ti+1)(x), (2.35)

and

A2(x) =
n−1∑
i=0

KA

(
Ti+Ti+1

2
, x
)

KA

(
Ti+Ti+1

2
, Ti+Ti+1

2

)1(Ti,Ti+1)(x), (2.36)

we have
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KA(s, t) =
n−1∑
i=0

A1(min(s, t))A2(max(s, t))1(Ti,Ti+1)(s, t). (2.37)

If Ti ∈ {T0, Tn−1}∗ and (s, t) ∈ (Ti, Ti+1)
2 such that s < t, then lim

s→Ti

A1(s) = 0 or lim
t→Ti+1

A2(t) = 0

by continuity of KA, and
A1

A2

(t) is positive and non-decreasing on each interval (Ti, Ti+1), since

KA is a covariance function.

Starting from a Gauss-Markov driver (Dt), it is always possible to construct a Markovian (A
(n)
t )

by applying the following procedure.

Theorem 2.11. For any Gauss-Markov driver (Dt), there exists an AP (A
(n)
t )t∈[T0,Tn], driven

by (Dt), that is Markovian.

Proof. Let Tm ∈ {T0, Tn−1}∗ and (s, t) ∈ (Tm, Tm+1)
2 such that s < t. Choose the interpolating

coefficients f0, . . . , fn according toKD(T0, T0) . . . KD(T0, Tn)
... . . . ...

KD(Tn, T0) . . . KD(Tn, Tn)


f0(·)

...
fn(·)

 =

KD(·, T0)
...

KD(·, Tn)

 . (2.38)

Then,

n∑
j=0

fj(·)KD(Ti, Tj)−KD(·, Ti) = 0, ∀i = 0, . . . , n, (2.39)

which implies

KA(x, y) = KD(x, y)−
n∑

i=0

fi(x)KD(y, Ti) = KD(x, y)−
n∑

i=0

fi(y)KD(x, Ti), ∀(x, y) ∈ [T0, Tn]
2.

(2.40)
Let Tm ∈ {T0, Tn−1}∗ and (s, t) ∈ (Tm, Tm+1)

2 such that s < t. Recalling that (Dt) is Gauss-
Markov, there exists two functions, H1 : (Tm, Tm+1) → R and H2 : (Tm, Tm+1) → R, such that
KD(s, t) = H1(s)H2(t). Using this fact, we can write

KA(s, t) = H1(s)H2(t)−
m∑
i=0

fi(s)H1(Ti)H2(t)−
n∑

i=m+1

fi(s)H1(t)H2(Ti) (2.41)

= H2(t)

H1(s)−
m∑
i=0

fi(s)H1(Ti)

−H1(t)
n∑

i=m+1

fi(s)H2(Ti) (2.42)

=

 n∑
i=m+1

fi(s)H2(Ti)

(λH2(t)−H1(t)
)

(2.43)

for some λ ∈ R, where we used Eq. 2.39 with i = m. Hence,

A1(x)1(Tm,Tm+1)(x) =

 n∑
i=m+1

fi(x)H2(Ti)

1(Tm,Tm+1)(x), (2.44)

A2(x)1(Tm,Tm+1)(x) =
(
λH2(x)−H1(x)

)
1(Tm,Tm+1)(x). (2.45)

(A
(n)
t ) is Markov by Corollary 2.10.
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Recall that we imposed on all drivers (Dt) of APs the property that P[Dt = 0] < 1 whenever
t ∈ (T0, Tn)∗. If we extend this property to [T0, Tn] instead, then the above construction of a
Markovian AP becomes explicit.

Corollary 2.12. If (Dt) is a Gauss-Markov process such that P[Dt = 0] < 1 whenever
t ∈ [T0, Tn], with KD(s, t) = H1(min(s, t))H2(max(s, t)) for all (s, t) ∈ [T0, Tn]

2 and for some
real functions H1 and H2, then the solution to Eq. 2.39 is given by

f0(x) =
H1(T1)H2(x)−H1(x)H2(T1)

H1(T1)H2(T0)−H1(T0)H2(T1)
1[T0,T1](x), (2.46)

fi(x) =
H1(x)H2(Ti−1)−H1(Ti−1)H2(x)

H1(Ti)H2(Ti−1)−H1(Ti−1)H2(Ti)
1[Ti−1,Ti](x) (2.47)

+
H1(Ti+1)H2(x)−H1(x)H2(Ti+1)

H1(Ti+1)H2(Ti)−H1(Ti)H2(Ti+1)
1(Ti,Ti+1](x), for i = 1, . . . , n− 1,

fn(x) =
H1(x)H2(Tn−1)−H1(Tn−1)H2(x)

H1(Tn)H2(Tn−1)−H1(Tn−1)H2(Tn)
1(Tn−1,Tn](x). (2.48)

Proof. Let (Tm− , Tm, Tm+) ∈ {T0, Tn−1}3∗ such that Tm− ⩽ Tm < Tm+ , and x ∈ (Tm, Tm+1).
Then,

n∑
j=0

fj(x)KD(Tm− , Tj) = fm(x)H1(Tm−)H2(Tm) + fm+1(x)H1(Tm−)H2(Tm) (2.49)

=
H1(Tm+1)H2(x)−H1(x)H2(Tm+1)

H1(Tm+1)H2(Tm)−H1(Tm)H2(Tm+1)
H1(Tm−)H2(Tm)

+
H1(x)H2(Tm)−H1(Tm)H2(x)

H1(Tm+1)H2(Tm)−H1(Tm)H2(Tm+1)
H1(Tm−)H2(Tm+1)

(2.50)

=
H1(x)(H1(Tm−)H2(Tm)H2(Tm+1)−H1(Tm−)H2(Tm)H2(Tm+1))

H1(Tm+1)H2(Tm)−H1(Tm)H2(Tm+1)

+
H2(x)(H1(Tm+1)H1(Tm−)H2(Tm)−H1(Tm)H1(Tm−)H2(Tm+1))

H1(Tm+1)H2(Tm)−H1(Tm)H2(Tm+1)
(2.51)

= H1(Tm−)H2(x) = KD(Tm− , x) (2.52)

The same argument applies to show
n∑

j=0

fj(x)KD(Tm+ , Tj) = KD(x, Tm+). Hence,KD(T0, T0) . . . KD(T0, Tn)
... . . . ...

KD(Tn, T0) . . . KD(Tn, Tn)


f0(·)

...
fn(·)

 =

KD(·, T0)
...

KD(·, Tn)

 . (2.53)

Remark 2.13. Notice that if (Dt) does not satisfy P[Dt = 0] < 1 for some t ∈ {T0, Tn}∗, it is
still straightforward to construct the above AP by removing all the rows and columns of zeros in
the matrix KD(T0, T0) . . . KD(T0, Tn)

... . . . ...
KD(Tn, T0) . . . KD(Tn, Tn)

 . (2.54)
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Since the driver already matches 0 at t ∈ {T0, Tn}∗, we will not need to find the corresponding
interpolating coefficients because they will not appear in the AP expression. This is illustrated
by taking the Brownian motion as a driver with T0 = 0. Then f0 does not matter since it is
multiplied by 0 in the AP expression.

Remark 2.14. For the choice of coefficients in Corollary 2.12, we can simplify Eqs. 2.44 and
2.45:

A1(x)1(Tm,Tm+1)(x) = fm+1(x)H2(Tm+1)1(Tm,Tm+1)(x), (2.55)

A2(x)1(Tm,Tm+1)(x) =

(
H1(Tm+1)

H2(Tm+1)
H2(x)−H1(x)

)
1(Tm,Tm+1)(x). (2.56)

This method of producing Markovian APs is not unique, but certainly feels natural. The
resulting APs are called standard.

Definition 2.15. A standard AP (A
(n)
t )t∈[T0,Tn] is an AP driven by of a Gauss-Markov process

(Dt), with KD(s, t) = H1(min(s, t))H2(max(s, t))∀s, t ∈ [T0, Tn] for some real functions H1 and
H2, of the form

A
(n)
t =



Dt − H1(T1)H2(t)−H1(t)H2(T1)
H1(T1)H2(T0)−H1(T0)H2(T1)

DT0 −
H1(t)H2(T0)−H1(T0)H2(t)

H1(T1)H2(T0)−H1(T0)H2(T1)
DT1 if t ∈ [T0, T1),

Dt − H1(T2)H2(t)−H1(t)H2(T2)
H1(T2)H2(T1)−H1(T1)H2(T2)

DT1 −
H1(t)H2(T1)−H1(T1)H2(t)

H1(T2)H2(T1)−H1(T1)H2(T2)
DT2 if t ∈ [T1, T2),

...
Dt − H1(Tn)H2(t)−H1(t)H2(Tn)

H1(Tn)H2(Tn−1)−H1(Tn−1)H2(Tn)
DTn−1

− H1(t)H2(Tn−1)−H1(Tn−1)H2(t)
H1(Tn)H2(Tn−1)−H1(Tn−1)H2(Tn)

DTn if t ∈ [Tn−1, Tn].

(2.57)

Example 2.16. If (Dt) is an Ornstein-Uhlenbeck process with parameters θ > 0, σ > 0, µ ∈ R
and starting value d0 ∈ R, that is, the solution to

dDt = θ (µ−Dt) dt+ σ dWt, D0 = d0, (2.58)

then KD(s, t) =
σ2

2θ
eθmin(s,t)e−θmax(s,t). The standard AP driven by (Dt) is

A
(n)
t =



Dt − eθ(T1−t)−e−θ(T1−t)

eθ(T1−T0)−e−θ(T1−T0)
DT0 − eθ(t−T0)−e−θ(t−T0)

eθ(T1−T0)−e−θ(T1−T0)
DT1 if t ∈ [T0, T1),

Dt − eθ(T2−t)−e−θ(T2−t)

eθ(T2−T1)−e−θ(T2−T1)
DT1 − eθ(t−T1)−e−θ(t−T1)

eθ(T2−T1)−e−θ(T2−T1)
DT2 if t ∈ [T1, T2),

...
Dt − eθ(Tn−t)−e−θ(Tn−t)

eθ(Tn−Tn−1)−e−θ(Tn−Tn−1)
DTn−1 − eθ(t−Tn−1)−e−θ(t−Tn−1)

eθ(Tn−Tn−1)−e−θ(Tn−Tn−1)
DTn if t ∈ [Tn−1, Tn].

(2.59)

There are infinitely many Markovian APs driven by the same Gauss-Markov driver. In general,
when Tm ∈ {T0, Tn−1}∗ and (s, t) ∈ (Tm, Tm+1)

2 with s < t, we have
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KA(s, t) =

H1(s)−
m∑
i=0

fi(s)H1(Ti)

H2(t)−
n∑

i=m+1

fi(t)H2(Ti)


−

 n∑
i=m+1

fi(s)H2(Ti)

H1(t)−
m+1∑
i=0

fi(t)H1(Ti)


+

 n∑
i=m+1

fi(s)H1(Ti)

 n∑
i=m+2

fi(t)H2(Ti)

−

H2(s)−
m∑
i=0

fi(s)H2(Ti)

 m∑
i=0

fi(t)H1(Ti), (2.60)

where we use the convention that an empty sum is equal to zero. There are as many Markovian
APs driven by (Dt) as there are ways to separate the variable of the above expression of KA.

Example 2.17. If (Dt) is a standard Brownian motion, applying Eq. 2.39 to find appropriate
interpolating coefficients yields the stitched Brownian AP. But there are other Markovian APs
driven by standard Brownian motion. For instance, in the two-period case, we may choose

f0(t) =
T1 − t

T1 − T0

1[
T0,

T1+T2
2

](t)− T2 − t

T1 − T0

1(
T1+T2

2
,T2

](t), (2.61)

f1(t) =
t− T0

T1 − T0

1[T0,T1](t) +
T2 − t

T2 − T1

1(T1,T2](t), (2.62)

f2(t) =
t− T1

T2 − T1

1[T1,T2](t). (2.63)

It is straightforward to verify that these are interpolating coefficients. Let (A(2)
t )t∈[T0,T2] be the

AP with these interpolating coefficients driven by a standard Brownian motion. Then,

KA(s, t)

=
(min(s, t)− T0)(T1 −max(s, t))

T1 − T0

1(T0,T1)(s, t)

+ (min(s, t)− T1)

(
T0(max(s, t) + T0)− 3T0T1 + T 2

1

(T1 − T0)2
+

T1 −max(s, t)

T2 − T1

)
1(

T1,
T1+T2

2

](s, t)

+
(min(s, t)− T1)(T2 −max(s, t))

T2 − T1

T 2
0 + T 2

1 + T0(T2 − 3T1)

(T1 − T0)2

× 1(
T1,

T1+T2
2

](min(s, t))1(
T1+T2

2
,T2

](max(s, t))

+
min(s, t)(T 2

0 + T 2
1 − T0(T1 + T2))− (T1 − T0)

2T1 + T0T2(T2 − T1)

(T1 − T0)2
T2 −max(s, t)

T2 − T1

× 1(
T1+T2

2
,T2

](s, t). (2.64)

Thus,
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A1(x) = (x− T0)1[T0,T1](x) + (x− T1)1(
T1,

T1+T2
2

](x) (2.65)

+
x(T 2

0 + T 2
1 − T0(T1 + T2))− (T1 − T0)

2T1 + T0T2(T2 − T1)

T 2
0 + T 2

1 + T0(T2 − 3T1)
1(

T1+T2
2

,T2

](x),

A2(x) =
T1 − x

T1 − T0

1[T0,T1](x) +

(
T0(x+ T0)− 3T0T1 + T 2

1

(T1 − T0)2
+

T1 − x

T2 − T1

)
1(

T1,
T1+T2

2

](x) (2.66)

+
(T2 − x)

T2 − T1

T 2
0 + T 2

1 + T0(T2 − 3T1)

(T1 − T0)2
1(

T1+T2
2

,T2

](x).
Hence, recalling Theorem 3.8, this AP is Markovian. This AP is a slight modification of the
stitched Brownian AP, where f0 is not 0 on (T1, T2). Hence, BT0 still has an influence (a
negative one since f0 is negative on (T1, T2)) on the paths of the AP on (T1, T2). Similarly, we
can modify the stitched Brownian arcade by making f2 not 0 on (T0, T1):

f0(t) =
T1 − t

T1 − T0

1[T0,T1](t), (2.67)

f1(t) =
t− T0

T1 − T0

1[T0,T1](t) +
T2 − t

T2 − T1

1(T1,T2](t), (2.68)

f2(t) =
T0 − t

T2 − T1

1[
T0,

T0+T1
2

](t) + t− T1

T2 − T1

1(
T0+T1

2
,T2

](t). (2.69)

For this choice of interpolating coefficients, BT2 has an influence on the paths of the AP on
(T0, T1). Combining the interpolating coefficients f0 from Eq. 2.61 and f2 from Eq. 2.69, we can
find an interpolating coefficient f1, such that a Brownian AP with these interpolating coefficients
is Markovian:

f0(t) =
T1 − t

T1 − T0

1[
T0,

T1+T2
2

](t) + t− T2

T1 − T0

1(
T1+T2

2
,T2

](t), (2.70)

f1(t) =
(t− T0)(T2 − T0)

(T2 − T1)(T1 − T0)
1[

T0,
T0+T1

2

](t) + T 2
1 − T0T2 + t(T0 − 2T1 + T2)

(T1 − T0)(T2 − T1)
1(

T0+T1
2

,T1

](t)

+
T1(T0(T1 − 2T2) + T1T2) + t(T0T2 − T 2

1 )

(T2 − T1)(T1 − T0)T1

1(
T1,

T1+T2
2

](t)

+
(T2 − t)(T 2

1 + T0(T2 − 2T1))

(T2 − T1)(T1 − T0)T1

1(
T1+T2

2
,T2

](t), (2.71)

f2(t) =
T0 − t

T2 − T1

1[
T0,

T0+T1
2

](t) + t− T1

T2 − T1

1(
T0+T1

2
,T2

](t). (2.72)

The key to building non-standard APs is to break each sub-interval into several pieces, and to
define the interpolating coefficients by parts on these pieces while making sure that they remain
continuous, and that the expression of KA in Eq. 2.60 has separable variables.
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3 Randomized arcade processes
We extend the idea of arcade processes to interpolate between the components of the random
vector X instead of interpolating between zeros. Two sets {f0, . . . , fn} and {g0, . . . , gn} of
interpolating coefficients (see Def. 2.1) are needed to ensure the matching of the target random
variables. We recall that the Rn+1-valued random vector X = (X0, . . . , Xn) is independent of
the stochastic driver (Dt), while the random variables X0, . . . , Xn may be mutually dependent.

Definition 3.1. An X-randomized arcade process (X-RAP) (I
(n)
t )t∈[T0,Tn] on the partition

{T0, Tn}∗ is a stochastic process of the form

I
(n)
t := S

(n)
t + A

(n)
t = Dt −

n∑
i=0

(
fi(t)DTi

− gi(t)Xi

)
, (3.1)

where f0, . . . , fn and g0, . . . , gn are interpolating coefficients on {T0, Tn}∗. We refer to

S
(n)
t =

n∑
i=0

gi(t)Xi (3.2)

as the signal function of I(n)t and to

A
(n)
t = Dt −

n∑
i=0

fi(t)DTi
(3.3)

as the noise process of I(n)t . We denote by (F I
t )t∈[T0,Tn] the filtration generated by (I

(n)
t ).

We notice that I
(n)
T0

= X0, . . . , I
(n)
Tn

= Xn, so (I
(n)
t ) is a stochastic interpolator between the

random variables X0, . . . , Xn. We have that (S
(n)
t ) ⊥⊥ (A

(n)
t ) since X ⊥⊥ (Dt).

Remark 3.2. A related class of processes, introduced in [15], are known as the random n-bridges.
These processes, defined weakly, match given probability measures instead, and are designed in
the same way as a randomized stochastic bridge: by conditioning a stochastic process to match
certain probability measures at given times. In particular cases, the law of a RAP satisfies the
conditions for the RAP to be a random n-bridge. For instance, the RAP obtained by randomizing
the stitched Brownian AP, using the same interpolating coefficients for the signal function as
the ones used in the noise process, has a law that satisfies the conditions for the RAP to be a
random n-bridge. But any other RAP driven by Brownian motion is not a random n-bridge.
Similarly, certain random n-bridges cannot have the same law as a RAP. In this paper, we did
not allow the driver to be have jumps, such as a non-continuous Lévy process, by choice. But
if we did just for the sack of comparison, a random n-bridge built using a gamma process will
never match the law of a RAP driven by a gamma process, since APs are sums, not products.

The paths of an X-RAP will depend on the coupling of X, not only on its marginal distributions.
This property is illustrated in the following example.

Example 3.3. Let X = (X0, . . . , X5) be a vector of independent Unif({−1, 1}) random variables,
and Y = (Y0, . . . , Y5) be another vector of random variables such that Y0 ∼ Unif({−1, 1}),
Yi = −Yi−1 for i = 1, . . . , 5. Let A(5)

t be an AP with elliptic interpolation coefficients driven by
Brownian motion multiplied by 0.2, gi = fi for i = 0, . . . , 5, and I

(5)
t , Ĩ(5)t its associated X-RAP

and Y -RAP respectively. Although we are using the same driver and interpolating coefficients
for both RAPs, and that the vectors X and Y have the same marginal distributions, the paths
of I(5)t and Ĩ

(5)
t , shown below, are very different.
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Figure 6: Paths simulation of I
(5)
t on [0, 10]

using the equidistant partition {Ti = 2i | i =
0, 1, . . . , 5}.

Figure 7: Paths simulation of Ĩ
(5)
t on [0, 10]

using the equidistant partition {Ti = 2i | i =
0, 1, . . . , 5}.

Besides its main purpose of interpolating in the strong sense, a RAP can also be used to mimic
another stochastic process. Let (Yt)t∈[T0,Tn] be a sample-continuous stochastic process. For
instance, if {T0, Tn}∗ is the equidistant partition of an interval [a, b], X = (YT0 , . . . , YTn), and
{f0, . . . , fn} = {g0, . . . , gn} are the piecewise linear interpolating coefficients, then for nearly all
ω ∈ Ω, sup

t∈[a,b]
A

(n)
t (ω) → 0, and sup

t∈[a,b]
S
(n)
t (ω) → Yt(ω) as n → ∞. Hence, in that case,

sup
t∈[a,b]

∣∣∣I(n)t − Yt

∣∣∣ = sup
t∈[a,b]

∣∣∣S(n)
t + A

(n)
t − Yt

∣∣∣→ 0, (3.4)

with probability one.

Example 3.4. Let [a, b] = [0, 10], and {T0, Tn}∗ its equidistant partition. If (Yt) is a fractional
Brownian motion and X = (YT0 , . . . , YTn), then the paths of an X-randomized stitched Brownian
arcade will be similar to the one of (Yt) when n is large enough.

Figure 8: Path of the fractional Brownian mo-
tion (Yt).

Figure 9: Path of an X-RAP mimicking the
same fractional Brownian motion (Yt).

Proposition 3.5. Let (S(n)
t ) and (A

(n)
t ) have mean functions µS, µA, variance functions σ2

S, σ
2
A

and covariance functions KS, KA, respectively. Then

µI(t) := E[I(n)t ] = µS(t) + µA(t), (3.5)

σ2
I (t) := Var[I

(n)
t ] = σ2

S(t) + σ2
A(t), (3.6)
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KI(s, t) := Cov[I(n)s , I
(n)
t ] = KS(s, t) +KA(s, t) (3.7)

=
n∑

i=0

n∑
j=0

gi(t)gj(s)Cov(Xi, Xj) +KA(s, t). (3.8)

We introduce terminologies similar to the ones from the previous section.

Definition 3.6. Let (I(n)t ) be a RAP.

1. (I
(n)
t ) is said to be a Gaussian RAP if its stochastic driver (Dt) is a Gaussian process.

2. (I
(n)
t ) is said to be a standard RAP if its noise process (A(n)

t ) is a standard AP, gj(x)1[Tj−1,Tj ](x) =
fj(x)1[Tj−1,Tj ](x), and gj(x)1[T0,Tj−1](x) = 0, for all x ∈ [T0, Tn] and j = 1, . . . , n.

We give a similar Markovianity result for Gaussian RAPs to the one of AP.

Definition 3.7. Let I ⊆ R+ be a real interval, and τ0 < τ1 < . . . < ∞ such that τ =
{τ0, τ1, . . .} ⊂ I. The set τ may be finite, i.e., there exists a maximal element τn ∈ τ , or contain
infinitely many elements. A stochastic process (Yt)t∈I is called τ -nearly Markov if

P
[
Yt ∈ · | FY

s

]
= P

[
Yt ∈ · | Yτ0 , . . . , Yτm(s)

, Ys

]
(3.9)

for any (s, t) ∈ I2 such that s ⩽ t, and τm(s) = max
i∈N

{τi | τi ⩽ s}.

Theorem 3.8. Let (I(n)t )t∈[T0,Tn] = (S
(n)
t + A

(n)
t )t∈[T0,Tn] be a Gaussian X-RAP on {T0, Tn}∗.

Then (I
(n)
t ) is {T0, Tn}∗-nearly Markov if the following conditions are all satisfied:

1. The AP (A
(n)
t ) is Markov, i.e., KA(s, t) =

n−1∑
i=0

A1(min(s, t))A2(max(s, t))1(Ti,Ti+1)(s, t).

2. For all j = 1, . . . , n, and for all x ∈ [T0, Tn],

gj(x)1[T0,Tj−1](x) = 0, (3.10)

gj(x)A1(Tj)1[Tj−1,Tj ](x) = A1(x)1[Tj−1,Tj ](x). (3.11)

Proof. Let k > 1 and (s1, s2, . . . , sk, t) ∈ [T0, Tn]
k+1 such that s1 < s2 < . . . < sk < t. Then,

(I
(n)
t ) is {T0, Tn}∗-nearly Markov if and only if

P
[
I
(n)
t ∈ · | X0, . . . , Xm(sk), I

(n)
s1

, . . . , I(n)sk

]
= P

[
I
(n)
t ∈ · | X0, . . . , Xm(sk), I

(n)
sk

]
. (3.12)

where m(sk) := max{i ∈ N |Ti ⩽ sk}. In the following, we will refer to m(sk) by m since sk is
fixed.

We first show that s1, . . . , sk can be picked to all be in the sub-interval (Tm, Tm+1). To see this,
assume there is an integer j ∈ {1, . . . , k} such that sj < Tm and Tm < sj+1. Then

σ(X0, . . . , Xm, I
(n)
s1

, . . . , I(n)sk
) = σ(X0, . . . , Xm, A

(n)
s1

, . . . , A(n)
sj

, I(n)sj+1
, . . . , I(n)sk

) (3.13)

by Eq. 3.10. We also know that (A
(n)
s1 , . . . , A

(n)
sj ) ⊥⊥ (X0, . . . , Xm) by the definition of the

X-RAP, and (A
(n)
s1 , . . . , A

(n)
sj ) ⊥⊥ (I

(n)
sj+1 , . . . , I

(n)
sk , I

(n)
t ) since (A

(n)
t ) is Markov. We conclude that

P
[
I
(n)
t ∈ · | X0, . . . , Xm, I

(n)
s1

, . . . , I(n)sk

]
= P

[
I
(n)
t ∈ · | X0, . . . , Xm, I

(n)
sj+1

, . . . , I(n)sk

]
, (3.14)
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which means we can assume that s1, . . . , sk are all in the same sub-interval (Tm, Tm+1).

Let us define am(·) :=
m∑
i=0

gi(·)Xi, and

∆q :=
k∑

i=1

ci,qI
(n)
si

=
k∑

i=1

ci,qam(si) +
k∑

i=1

ci,qgm+1(si)Xm+1 +
k∑

i=1

ci,qA
(n)
si

, q = 1, . . . , k − 1,

(3.15)
where the coefficients (ci,q) are chosen such that

k∑
i=1

ci,qKA(si, t) = 0 and det

 c1,1 . . . c1,k−1
...

...
ck−1,1 . . . ck−1,k−1

 ̸= 0. (3.16)

This guarantees the following (where the notation " | (X0, . . . , Xm)" means conditionally on
(X0, . . . , Xm)):

1. P
[
I
(n)
t ∈ · | X0, . . . , Xm, I

(n)
s1 , . . . , I

(n)
sk

]
= P

[
I
(n)
t ∈ · | X0, . . . , Xm,∆1, . . . ,∆k−1, I

(n)
sk

]
.

2. (∆1, . . . ,∆k−1) | (X0, . . . , Xm) is a Gaussian vector. To see this, we observe that ∀q =
1, . . . k − 1,

k∑
i=1

ci,qKA(si, t) = 0 =⇒
k∑

i=1

ci,qgm+1(si) = 0, (3.17)

where we used Eq. 3.11. Hence, ∆q =
k∑

i=1

ci,qI
(n)
si =

k∑
i=1

ci,qam(si) +
k∑

i=1

ci,qA
(n)
si for all

q = 1, . . . , k − 1, which implies that (∆1, . . . ,∆k−1) | (X0, . . . , Xm) is a Gaussian vector.

3. A
(n)
t ⊥⊥ (∆1, . . . ,∆k−1) | (X0, . . . , Xm), since

k∑
i=1

ci,qKA(si, t) = 0.

4. A
(n)
sk ⊥⊥ (∆1, . . . ,∆k−1) | (X0, . . . , Xm), since (A

(n)
t ) is Markov.

To conclude, we need to show

I
(n)
t ⊥⊥ (∆1, . . . ,∆k−1) | (X0, . . . , Xm) and I(n)sk

⊥⊥ (∆1, . . . ,∆k−1) | (X0, . . . , Xm). (3.18)

Since (I
(n)
t ) = (S

(n)
t + A

(n)
t ), and (S

(n)
t ) ⊥⊥ (A

(n)
t ), we have 3.18 if

A
(n)
t ⊥⊥ (∆1, . . . ,∆k−1) | (X0, . . . , Xm) and A(n)

sk
⊥⊥ (∆1, . . . ,∆k−1) | (X0, . . . , Xm), (3.19)

which is guaranteed by conditions 3.16.

Remark 3.9. If (A(n)
t ) is standard (see Def. 2.15), then Eq. 3.11 is equivalent to

gj(x)1[Tj−1,Tj ](x) = fj(x)1[Tj−1,Tj ](x). (3.20)

This makes standard RAPs automatically nearly-Markov.

Remark 3.10. Depending on the coupling of the vector X, P
[
I
(n)
t ∈ · | X0, . . . , Xm(s), I

(n)
s

]
might simplify further. For instance, if X has continuous marginals and is distributed according
to Kantorovich’s coupling, then

P
[
I
(n)
t ∈ · | X0, . . . , Xm(s), I

(n)
s

]
= P

[
I
(n)
t ∈ · | X0, I

(n)
s

]
(3.21)

because X1, . . . , Xm(s) are all deterministic functions of X0.
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Remark 3.11. It is important to notice that the nearly-Markov property is not symmetric in
time. Define GI

t = σ(I
(n)
u | t ⩽ u ⩽ Tn). Let s < t in [T0, Tn]. Then, to get

P
[
I(n)s ∈ · | GI

t

]
= P

[
I(n)s ∈ · | I(n)t , Xk(t), Xk(t)+1, . . . , Xn

]
(3.22)

where k(t) = min{i ∈ N |Ti ⩾ t}, one needs to replace Cond. 3.10 by

gj(x)1[Tj+1,Tn](x) = 0. (3.23)

Example 3.12. We give an example of a non-standard X-RAP on [T0, T2] that is {T0, T2}∗-
nearly Markov, where X0

L
= X1

L
= X2

L
= Unif({−1, 1}) are pairwise independent. Consider the

interpolating coefficients

f0(t) =
T1 − t

T1 − T0

1[
T0,

T1+T2
2

](t)− T2 − t

T1 − T0

1(
T1+T2

2
,T2

](t), (3.24)

f1(t) =
t− T0

T1 − T0

1[T0,T1](t) +
T2 − t

T2 − T1

1(T1,T2](t), (3.25)

f2(t) =
t− T1

T2 − T1

1[T1,T2](t). (3.26)

Let (A(2)
t )t∈[T0,T2] be the arcade process with these interpolating coefficients driven by a standard

Brownian motion. As shown in Ex. 2.17, (A(2)
t ) is Markov. For Eq. 3.10 to be fulfilled, one

only need to impose g2(t)1[T0,T1](t) = 0. For Eq. 3.11 to be fulfilled, one requires that

g1(t)1[T0,T1](t) =
t− T0

T1 − T0

1[T0,T1](t), (3.27)

g2(t)1[
T1,

T1+T2
2

](t) =
(

t− T1

T2 − T1

+
(t− T1)T0

(T1 − T0)2

)
1[

T1,
T1+T2

2

](t), (3.28)

g2(t)1(
T1+T2

2
,T2

](t) =
(

t− T1

T2 − T1

+
(T2 − t)T0

(T1 − T0)2

)
1(

T1+T2
2

,T2

](t). (3.29)

Outside of the considered intervals, the functions gi can take any values as long as they remain
interpolating coefficients. Notice that the theorem does not impose a condition on g0. For
example, we could choose gi = fi outside the above intervals. Hence, all three conditions are
fulfilled and this X-RAP is {T0, T2}∗-nearly Markov. As we can see from the paths simulation
below, this process is visually different from a randomized stitched Brownian arcade on the
second arc (the noise has been diminished to make the paths more informative). Simulating the
signal function by itself highlights the following: X0 will determine the fate of the signal function
on [T1, T2] since this RAP is not forgetting about previously matched random variables when
changing arc. On the first arc, where the process is simply a randomized Brownian bridge: to go
from X0 = −1 to X1 = −1 for instance, there is only one way, a straight line. On the second
arc, to go from X1 = −1 to X2 = −1, there are two ways. The signal function will choose which
way to use based on the value of X0. This is illustrated by the paths of the signal function below:
the blue path and the green path both take value −1 at T1 and value 1 at T2, but have different
values in T0. Hence they differ on [T1, T2], as observed.
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Figure 10: Paths simulation of the signal
function of a non-standard X-RAP, where
{T0, T2}∗ = {0, 5, 10}.

Figure 11: Paths simulation of a non-standard
X-RAP, where the noise process was rescaled
by 0.3, and {T0, T2}∗ = {0, 5, 10}.

4 Filtered arcade martingales
In this section, we construct martingales with respect to the filtration generated by an X-RAP,
which interpolate between the components of X = (X0, . . . , Xn). These martingales solve an
underlying stochastic filtering problem, and extend the martingale class constructed within the
infomation-based theory of BHM. We call such martingales filtered arcade martingales (FAMs).

4.1 The one-arc FAM

Given a random vector X = (X0, X1) with integrable, convexly ordered components X0 ⩽cx X1,
distributed according to the real probability measures µ0 and µ1, respectively, and an X-RAP
(I

(1)
t )t∈[T0,T1] on the partition {T0, T1}∗, we would like to construct a martingale (Mt)t∈[T0,T1] with

respect to (F I
t ) such that MT0

a.s.
= X0 and MT1

a.s.
= X1. An equivalent claim to X0 ⩽cx X1 is

that their joint distribution πX is in the set of martingale couplings, that is M(µ0, µ1) = {π ∈
Π(µ0, µ1) ∩ P1(R2) | (X0, X1) ∼ π =⇒ E[X1 |X0]

a.s.
= X0}. The BHM framework developed in

[6] is recovered when X0
a.s.
= E[X1].

Definition 4.1. Given an X-RAP (I
(1)
t ) and a martingale coupling πX , a one-arc FAM for X

on [T0, T1] is a stochastic process of the form Mt = E[X1 | F I
t ].

Proposition 4.2. The FAM (Mt)t∈[T0,T1] is an (F I
t )-martingale that interpolates between X0

and X1.

Proof. 1. E[|Mt|] < +∞ for all t ∈ [T0, T1] by Jensen inequality, since E[|X1|] < +∞.

2. For s < t, E[Mt | F I
s ]

a.s.
= Ms by the tower property of the conditional expectation.

3. MT0 = E[X1 |X0]
a.s.
= X0, since πX ∈ M(µ0, µ1) and I

(1)
T0

= X0.

4. MT1 = E[X1 | F I
T1
]
a.s.
= X1 by construction of (I(1)t ).

Hence, this (Mt) is a martingale with respect to (F I
t ) that interpolates between X0 and X1 on

[T0, T1].

Remark 4.3. The process (Mt) is also a martingale with regard to its own filtration, denoted
(FM

t ): for s < t,

E[Mt | FM
s ] = E[E[Mt | FM

s ] | F I
s ] = E[E[Mt | F I

s ] | FM
s ] = E[Ms | FM

s ] = Ms. (4.1)
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A notable relationship between the RAP (I
(1)
t ), its noise process (A(1)

t ), and the associated FAM
(Mt) is the following:

Proposition 4.4. If I(1)t = g0(t)X0 + g1(t)X1 + A
(1)
t and Mt = E[X1 | F I

t ], then

E[I(1)t | F I
s ] = g0(t)X0 + g1(t)Ms + E[E[A(1)

t | FA
s ] | F I

s ] (4.2)

for any pair (s, t) ∈ [T0, T1]
2 such that s ⩽ t. Furthermore, if (A(1)

t ) is Gauss-Markov with
KA(x, y) = A1(min(x, y))A2(max(x, y)) (see Coro. 2.10), then

E[I(1)t | F I
s ] =

(
g0(t)−

A2(t)

A2(s)
g0(s)

)
X0 +

(
g1(t)−

A2(t)

A2(s)
g1(s)

)
Ms

+
A2(t)

A2(s)
Is + µA(t) +

A2(t)

A2(s)
µA(s) (4.3)

for any (s, t) ∈ [T0, T1]
2 such that s ⩽ t.

Proof. Let (s, t) ∈ [T0, T1]
2 such that s ⩽ t. Notice that

E[I(1)t | F I
s ] = g0(t)X0 + g1(t)Ms + E[A(1)

t | F I
s ], (4.4)

= g0(t)X0 + g1(t)Ms + E[E[A(1)
t | FA

s ] | F I
s ], (4.5)

since E[A(1)
t | F I

s ] = E[E[A(1)
t |X0, X1,FA

s ] | F I
s ] = E[E[A(1)

t | FA
s ] | F I

s ], where we used the fact
that (A

(1)
t ) ⊥⊥ (X0, X1), see Def. 3.1. If (A(1)

t ) is Gauss-Markov, then

E[A(1)
t | FA

s ] = E[A(1)
t |A(1)

s ] = µA(t) +
KA(s, t)

σ2
A(s)

(
A(1)

s − µA(s)
)
. (4.6)

Hence, by linearity of conditional expectation,

E[E[A(1)
t | FA

s ] | F I
s ] = µA(t) +

KA(s, t)

σ2
A(s)

(
E[A(1)

s | F I
s ]− µA(s)

)
. (4.7)

Notice that

I
(1)
t = E[I(1)t | F I

t ] = E[A(1)
t | F I

t ] + g0(t)X0 + g1(t)Mt, (4.8)

which implies

E[A(1)
t | F I

t ] = I
(1)
t − g0(t)X0 − g1(t)Mt. (4.9)

Then, plugging Eq. 4.9 in Eq. 4.7 and recalling that KA(s, t) = A1(s)A2(t) yields

E[I(1)t | F I
s ] =

(
g0(t)−

A2(t)

A2(s)
g0(s)

)
X0 +

(
g1(t)−

A2(t)

A2(s)
g1(s)

)
Ms

+
A2(t)

A2(s)
Is + µA(t) +

A2(t)

A2(s)
µA(s). (4.10)

If (I(1)t ) is {T0, T1}-nearly Markov, then Mt = E[X1 |X0, I
(1)
t ]. We can then derive the dynamics

of (Mt) using Bayes’ rule and Itô’s lemma under mild assumptions. In what follows, we assume
that the driver of (I(1)t ) has a density function.
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Proposition 4.5. Let Mt = E[X1 |X0, I
(1)
t ] be a one-arc FAM restricted to t ∈ (T0, T1). Then

Mt =

∫
R yf

I
(1)
t |X0,X1=y(I

(1)
t ) dFX1 |X0(y)∫

R f
I
(1)
t |X0,X1=y(I

(1)
t ) dFX1 |X0(y)

, (4.11)

where FX1 |X0 is the distribution function of X1 given X0. In particular,

1. If (X0, X1) is a continuous random vector, then

Mt =

∫
R yf

I
(1)
t |X0,X1=y(I

(1)
t )fX1 |X0(y) dy∫

R f
I
(1)
t |X0,X1=y(I

(1)
t )fX1 |X0(y) dy

=

∫
R yf

I
(1)
t |X0,X1=y(I

(1)
t )f (X0,X1)(X0, y) dy∫

R f
I
(1)
t |X0,X1=y(I

(1)
t )f (X0,X1)(X0, y) dy

.

(4.12)

2. If (X0, X1) is a discrete random vector, then

Mt =

∑
y

yf I
(1)
t |X0,X1=y(I

(1)
t )P[X1 = y |X0]∑

y

f I
(1)
t |X0,X1=y(I

(1)
t )P[X1 = y |X0]

. (4.13)

Proof. By Bayes rule,

P[X1 ⩽ y |X0, z ⩽ I
(1)
t ⩽ z + ϵ] =

P[z ⩽ I
(1)
t ⩽ z + ϵ |X0, X1 ⩽ y]P[X1 ⩽ y |X0]

P[z ⩽ I
(1)
t ⩽ z + ϵ |X0]

, (4.14)

=
P[z ⩽ I

(1)
t ⩽ z + ϵ |X0, X1 ⩽ y]P[X1 ⩽ y |X0]∫

R P[z ⩽ I
(1)
t ⩽ z + ϵ |X0, X1 = y] dFX1 |X0(y)

(4.15)

=
P[z ⩽ I

(1)
t ⩽ z + ϵ,X1 ⩽ y |X0]∫

R P[z ⩽ I
(1)
t ⩽ z + ϵ |X0, X1 = y] dFX1 |X0(y)

. (4.16)

This means that, by taking the limit when ϵ → 0,

FX1 |X0,I
(1)
t =z(y) =

d
dz
P[I(1)t ⩽ z |X0, X1 ⩽ y]FX1 |X0(y)∫
R f

I
(1)
t |X0,X1=y(z) dFX1 |X0(y)

, (4.17)

which implies

dFX1 |X0,I
(1)
t =z(y) =

f I
(1)
t |X0,X1=y(z) dFX1 |X0(y)∫

R f
I
(1)
t |X0,X1=y(z) dFX1 |X0(y)

. (4.18)

Inserting the expression for dFX1 |X0,I
(1)
t =z(y) into Mt, we obtain

Mt =

∫
R
y dFX1 |X0,I

(1)
t (y) =

∫
R yf

I
(1)
t |X0,X1=y(I

(1)
t ) dFX1 |X0(y)∫

R f
I
(1)
t |X0,X1=y(I

(1)
t ) dFX1 |X0(y)

(4.19)

Example 4.6. Let X0 ∼ U([−1, 1]), and X1 ∼ U([−2, 2]). These random variables are convexly
ordered, i.e., X0 ⩽cx X1, hence there exists at least one martingale coupling for (X0, X1). We
choose the coupling defined by

X1 |X0 =


3
2
X0 +

1
2

with probability 3
4
,

−1
2
X0 − 3

2
with probability 1

4
.

(4.20)
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This is a martingale coupling since E[X1 |X0]
a.s.
= X0. In fact, it can be shown that this coupling

is the solution to a martingale optimal transport problem, see [18]. For any {T0, T1}-nearly
Markov X-RAP (I

(1)
t ), we have

Mt = E[X1 |X0, I
(1)
t ] =

(9X0 + 3)f I
(1)
t |X0,X1=

3
2
X0+

1
2 (I

(1)
t )− (X0 + 3)f I

(1)
t |X0,X1=− 1

2
X0− 3

2 (I
(1)
t )

6f I
(1)
t |X0,X1=

3
2
X0+

1
2 (I

(1)
t ) + 2f I

(1)
t |X0,X1=− 1

2
X0− 3

2 (I
(1)
t )

.

(4.21)

Example 4.7. Let X0 ∼ N (0, 1), and X1 ∼ N (0, 2), where X1 |X0 ∼ N (X0, 1). For any
{T0, T1}-nearly Markov X-RAP (I

(1)
t ), we have

Mt = E[X1 |X0, I
(1)
t ] =

∫
R yf

I
(1)
t |X0,X1=y(I

(1)
t )e

−(y−X0)
2

2 dy∫
R f

I
(1)
t |X0,X1=y(I

(1)
t )e

−(y−X0)
2

2 dy
. (4.22)

To simplify expressions, we introduce the following notation:

1. u(t, z,X0, y) = f I
(1)
t |X0,X1=y(z),

2. ut(t, z,X0, y) =
∂u
∂t
(t, z,X0, y),

3. uz(t, z,X0, y) =
∂u
∂z
(t, z,X0, y),

4. uzz(t, z,X0, y) =
∂2u
∂z2

(t, z,X0, y),

5. K·(t, z,X0) =
∫
R u·(t, z,X0, y) dF

X1 |X0(y),

6. V·(t, z,X0) =
∫
R yu·(t, z,X0, y) dF

X1 |X0(y).

Thus, under the conditions in Prop. 4.5, we may write Eq. 4.11 as

Mt =
V (t, I

(1)
t , X0)

K(t, I
(1)
t , X0)

. (4.23)

Proposition 4.8. If (I(1)t ) is a semimartingale such that (t, x) → V (t,x,X0)
K(t,x,X0)

is C2(((T0, T1) \
N)× Im(I(1))) where N ⊂ (T0, T1) contains finitely many elements, and Mt = E[X1 |X0, I

(1)
t ]

is a one-arc FAM, then

dMt =
Vt(t, I

(1)
t , X0)−MtKt(t, I

(1)
t , X0)

K(t, I
(1)
t , X0)

dt+
Vz(t, I

(1)
t , X0)−MtKz(t, I

(1)
t , X0)

K(t, I
(1)
t , X0)

dI
(1)
t

+

(
MtK

2
z (t, I

(1)
t , X0)−Kz(t, I

(1)
t , X0)Vz(t, I

(1)
t , X0)

K2(t, I
(1)
t , X0)

+
Vzz(t, I

(1)
t , X0)−MtKzz(t, I

(1)
t , X0)

2K(t, I
(1)
t , X0)

)
d[I(1)]t. (4.24)

for t ∈ (T0, T1).

Proof. This is verified by a straightforward application of Itô’s lemma.

Remark 4.9. The Itô condition, i.e., (t, x) → V (t,x,X0)
K(t,x,X0)

is C2(((T0, T1) \N)× Im(I(1)))) where
N ⊂ (T0, T1) contains finitely many elements, imposes implicit integrability conditions on
(X0, X1).
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Since we studied in detail Gaussian RAPs, we can specialize Prop. 4.8 to this particular subclass.

Corollary 4.10. Under the conditions in Prop. 4.8, if the conditional probability distribution
of (I(1)t ) given (X0, X1) is N (g0(t)X0 + g1(t)X1 + µA(t), σ

2
A(t)), we have

Vt(t, I
(1)
t , X0)−MtKt(t, I

(1)
t , X0)

K(t, I
(1)
t , X0)

= −
(E[X3

1 |X0, I
(1)
t ]−M3

t )g1(t)
(

g1(t)
σA(t)

)′
σA(t)

+

(Mtg1(t)
(

g1(t)
σA(t)

)′
+ (I

(1)
t − g0(t)X0 − µA(t))

((
g1(t)
σA(t)

)′
+ g1(t)

(
1

σA(t)

)′)
σA(t)

− (X0g
′
0(t) + µ′

A(t))g1(t)

σ2
A(t)

)
× Var[X1 |X0, I

(1)
t ], (4.25)

Vz(t, I
(1)
t , X0)−MtKz(t, I

(1)
t , X0)

K(t, I
(1)
t , X0)

=
g1(t)

σ2
A(t)

Var[X1 |X0, I
(1)
t ], (4.26)

MtK
2
z (t, I

(1)
t , X0)−Kz(t, I

(1)
t , X0)Vz(t, I

(1)
t , X0)

K2(t, I
(1)
t , X0)

=
I
(1)
t − g0(t)X0 − µA(t)− g1(t)Mt

σ4
A(t)

g1(t)

× Var[X1 |X0, I
(1)
t ],

(4.27)

Vzz(t, I
(1)
t , X0)−MtKzz(t, I

(1)
t , X0)

2K(t, I
(1)
t , X0)

=
E[X3

1 |X0, It]−M3
t

2σ4
A(t)

g21(t)

− 2(I
(1)
t − g0(t)X0 − µA(t)) + g1(t)Mt

2σ4
A(t)

g1(t)Var[X1 |X0, I
(1)
t ].

(4.28)

Proof. Denoting Zt = I
(1)
t − g0(t)X0 − µA(t), and Jt = X0g

′
0(t) + µ′

A(t), the result follows from
the following computations:

1.

Vt(t, I
(1)
t , X0) =

g1(t)σ
′
A(t)− g′1(t)σA(t)

σ3
A(t)

g1(t)K(t, I
(1)
t , X0)E[X3

1 |X0, I
(1)
t ]

+
ZtJtσA(t) + σ′

A(t)(Z
2
t − σ2

A(t))

σ3
A(t)

V (t, I
(1)
t , X0)

− g1(t)(JtσA(t) + 2Ztσ
′
A(t))− ZtσA(t)g

′
1(t)

σ3
A(t)

K(t, I
(1)
t , X0)E[X2

1 |X0, I
(1)
t ],

(4.29)

2.

Kt(t, I
(1)
t , X0) =

g1(t)σ
′
A(t)− g′1(t)σA(t)

σ3
A(t)

g1(t)K(t, I
(1)
t , X0)E[X2

1 |X0, I
(1)
t ]

+
ZtJtσA(t) + σ′

A(t)(Z
2
t − σ2

A(t))

σ3
A(t)

K(t, I
(1)
t , X0)

− g1(t)(JtσA(t) + 2Ztσ
′
A(t))− ZtσA(t)g

′
1(t)

σ3
A(t)

K(t, I
(1)
t , X0)Mt, (4.30)
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3.

Vz(t, I
(1)
t , X0) =

g1(t)E[X2
1 |X0, I

(1)
t ]K(t, I

(1)
t , X0)− ZtV (t, I

(1)
t , X0)

σ2
A(t)

, (4.31)

4.

Kz(t, I
(1)
t , X0) =

g1(t)V (t, I
(1)
t , X0)− ZtK(t, I

(1)
t , X0)

σ2
A(t)

, (4.32)

5.

Vzz(t, I
(1)
t , X0) =

g21(t)E[X3
1 |X0, I

(1)
t ]− 2Ztg1(t)E[X2

1 |X0, I
(1)
t ]

σ4
A(t)

K(t, I
(1)
t , X0)

+
Z2

t − σ2
A(t)

σ4
A(t)

V (t, I
(1)
t , X0), (4.33)

6.

Kzz(t, I
(1)
t , X0) =

g21(t)E[X2
1 |X0, I

(1)
t ]K(t, I

(1)
t , X0)− 2Ztg1(t)V (t, I

(1)
t , X0)

σ4
A(t)

K(t, I
(1)
t , X0)

+
Z2

t − σ2
A(t)

σ4
A(t)

K(t, I
(1)
t , X0). (4.34)

Keeping the notations Zt = I
(1)
t − g0(t)X0−µA(t), Jt = X0g

′
0(t)+µ′

A(t) from the previous proof,
and introducing Ut = E[X3

1 |X0, It]−M3
t , the SDE for (Mt) can be rewritten as

dMt =Ut

 g21(t)

2σ4
A(t)

d[I(1)]t −
g1(t)

(
g1(t)
σA(t)

)′
σA(t)

dt

+
g1(t)

σ2
A(t)

Var[X1 |X0, I
(1)
t ] (4.35)

×

((
MtσA(t)

(
g1(t)

σA(t)

)′

+ Zt
σA(t)

g1(t)

((
g1(t)

σA(t)

)′

+ g1(t)

(
1

σA(t)

)′
)

− Jt

)
dt

+
−3g1(t)Mt

2σ2
A(t)

d[I(1)]t + dI
(1)
t

)
. (4.36)

If, furthermore, (I(1)t ) is a standard RAP, its driver (Dt) is Gauss-Markov with KD(x, y) =
H1(min(x, y))H2(max(x, y)), where H1 and H2 are continuous functions on [T0, T1] such that
H1/H2 is positive and non-decreasing on [T0, T1). Then, as shown below,

[I(1)]t = [D]t =

∫ t

T0

H2(s) dH1(s)−
∫ t

T0

H1(s) dH2(s), (4.37)

where the RHS is interpreted as a difference of Riemann-Stieltjes integrals. The RHS exists
since ∫ t

T0

H2(s) dH1(s)−
∫ t

T0

H1(s) dH2(s) =

∫ t

T0

H2
2 (s) d

(
H1

H2

)
(s), (4.38)

and H1/H2 is monotone and so of bounded variation and differentiable almost everywhere.

Proposition 4.11. If the driver (Dt) is a Gauss-Markov semimartingale with KD(x, y) =
H1(min(x, y))H2(max(x, y)), then

[D]t =

∫ t

T0

H2(s) dH1(s)−
∫ t

T0

H1(s) dH2(s). (4.39)
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Proof. Let t ∈ [T0, T1], T0 = t0 < t1 < . . . < tn = t be a partition of [T0, t], and ∆j = Dtj+1
−Dtj .

Then,

E

n−1∑
j=0

∆2
j

 =
n−1∑
j=0

E[D2
tj+1

] + E[D2
tj
]− 2E[Dtj+1

Dtj ], (4.40)

=
n−1∑
j=0

H1(tj+1)H2(tj+1) +H1(tj)H2(tj)− 2H1(tj)H2(tj+1)

+
(
µD(tj+1)− µD(tj)

)2
, (4.41)

=
n−1∑
j=0

H2(tj+1)(H1(tj+1)−H1(tj))−H1(tj)(H2(tj+1)−H2(tj))

+
(
µD(tj+1)− µD(tj)

)2
. (4.42)

Since µD is continuous and of bounded variation (by the semimartingality of (Dt)),

n−1∑
j=0

(
µD(tj+1)− µD(tj)

)2 −−−−−−−−−→
max|tu+1−tu|→0

0. (4.43)

This shows that

E

n−1∑
j=0

∆2
j

 −−−−−−−−−→
max|tu+1−tu|→0

∫ t

T0

H2(s) dH1(s)−
∫ t

T0

H1(s) dH2(s). (4.44)

Furthermore,

Var

n−1∑
j=0

∆2
j

 =
n−1∑
j=0

n−1∑
i=0

Cov
(
∆2

i ,∆
2
j

)
, (4.45)

= 2
n−1∑
j=0

n−1∑
i=0

Cov2
(
∆i,∆j

)
+ 4

n−1∑
j=0

n−1∑
i=0

E[∆i]E[∆j]Cov
(
∆i,∆j

)
, (4.46)

and

Cov
(
∆i,∆j

)
=


(H1(ti+1)−H1(ti))(H2(tj+1)−H2(tj)) if i < j,

(H1(tj+1)−H1(tj))(H2(ti+1)−H2(ti)) if j < i,

H2(tj+1)(H1(tj+1)−H1(tj))−H1(tj)(H2(tj+1)−H2(tj)) if i = j.

(4.47)

We split Eq. 4.46 into the cases i < j, j < i, and i = j. Considering the case i = j first, we get

n−1∑
j=0

2Var2[∆j] + 4E2[∆j]Var[∆j] =
n−1∑
j=0

Var[∆j]
(
2Var[∆j] + 4

(
µD(tj+1)− µD(tj)

)2) (4.48)

⩽
n−1∑
j=0

(
2Var[∆j] + 4

(
µD(tj+1)− µD(tj)

)2)
× max

k∈{0,1,...,n−1}
Var[∆k]. (4.49)

27



Since max
k∈{0,1,...,n−1}

Var[∆k] −−−−−−−−−→
max|tj+1−tj|→0

0 by uniform continuity of H1 and H2, and

lim
max|tj+1−tj|→0

n−1∑
j=0

(
2Var[∆j] + 4

(
µD(tj+1)− µD(tj)

)2)
< +∞, (4.50)

we have
n−1∑
j=0

2Var2[∆j] + 4E2[∆j]Var[∆j] −−−−−−−−−→
max|tu+1−tu|→0

0.

Now, for i < j, we have

2
n−1∑
j=0

j−1∑
i=0

(H1(ti+1)−H1(ti))
2(H2(tj+1)−H2(tj))

2

+ 4
n−1∑
j=0

j−1∑
i=0

(µD(ti+1)− µD(ti))(µD(tj+1)− µD(tj))(H1(ti+1)−H1(ti))(H2(tj+1)−H2(tj))

(4.51)

=2
n−1∑
j=0

(H2(tj+1)−H2(tj))
2

 j−1∑
i=0

(H1(ti+1)−H1(ti))
2


+ 4

n−1∑
j=0

(µD(tj+1)− µD(tj))(H2(tj+1)−H2(tj))

 j−1∑
i=0

(µD(ti+1)− µD(ti))(H1(ti+1)−H1(ti))


−−−−−−−−−→
max|tu+1−tu|→0

0, (4.52)

since

1.
j−1∑
i=0

(H1(ti+1)−H1(ti))
2 −−−−−−−−−→

max|tu+1−tu|→0
[H1]tj = 0,

2.
n−1∑
j=0

(H2(tj+1)−H2(tj))
2 −−−−−−−−−→

max|tu+1−tu|→0
[H2]t = 0,

3.
j−1∑
i=0

(µD(ti+1)− µD(ti))(H1(ti+1)−H1(ti)) −−−−−−−−−→
max|tu+1−tu|→0

[µD, H1]tj = 0,

4.
n−1∑
j=0

(µD(tj+1)− µD(tj))(H2(tj+1)−H2(tj)) −−−−−−−−−→
max|tu+1−tu|→0

[µD, H2]t = 0.

The same argument can be applied to the case j < i. Hence,

Var

n−1∑
j=0

∆2
j

 −−−−−−−−−→
max|tu+1−tu|→0

0, (4.53)

which means

n−1∑
j=0

∆2
j

L2

−−−−−−−−−→
max|tu+1−tu|→0

∫ t

T0

H2(s) dH1(s)−
∫ t

T0

H1(s) dH2(s). (4.54)
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Recalling that, in the standard RAP case, we have g1(x) =
H1(x)H2(T0)−H1(T0)H2(x)

H1(T1)H2(T0)−H1(T0)H2(T1)
,

A1(x) = g1(x)H2(T1), A2(x) =
H1(T1)

H2(T1)
H2(x) − H1(x), and that σ2

A(x) = A1(x)A2(x), we get

the following expression for the SDE of (Mt):

Corollary 4.12. Under the conditions in Prop. 4.8, if (I(1)t ) is a standard X-RAP, with driver
covariance KD(x, y) = H1(min(x, y))H2(max(x, y)), then

dMt =
Var[X1 |X0, I

(1)
t ]

H1(T1)H2(t)−H1(t)H2(T1)

×

((
Zt(H

′
1(t)H2(T1)−H1(T1)H

′
2(t))−Mt(H

′
1(t)H2(t)−H1(t)H

′
2(t))

H1(T1)H2(t)−H1(t)H2(T1)
− Jt

)
dt+ dI

(1)
t

)
(4.55)

where Zt = I
(1)
t − g0(t)X0 − µA(t) and Jt = X0g

′
0(t) + µ′

A(t).

Proof. The result follows from the following computations:

1.

g21(t)(H
′
1(t)H2(t)−H1(t)H

′
2(t))

2σ4
A(t)

−
g1(t)

(
g1(t)
σA(t)

)′
σA(t)

= 0, (4.56)

2.

MtσA(t)

(
g1(t)

σA(t)

)′

+ Zt
σA(t)

g1(t)

((
g1(t)

σA(t)

)′

+ g1(t)

(
1

σA(t)

)′
)

− −3g1(t)Mt(H
′
1(t)H2(t)−H1(t)H

′
2(t))

2σ2
A(t)

=
Zt(H

′
1(t)H2(T1)−H1(T1)H

′
2(t))−Mt(H

′
1(t)H2(t)−H1(t)H

′
2(t))

H1(T1)H2(t)−H1(t)H2(T1)
(4.57)

Theorem 4.13. Under the conditions in Prop. 4.8, the process (Nt)t∈[T0,T1] defined by

dNt =

(
Zt(H

′
1(t)H2(T1)−H1(T1)H

′
2(t))−Mt(H

′
1(t)H2(t)−H1(t)H

′
2(t))

H1(T1)H2(t)−H1(t)H2(T1)
− Jt

)
dt+ dI

(1)
t

(4.58)
is a martingale with respect to (F I

t ).

Proof. We introduce the following notations:

h1(t) = H ′
1(t)H2(T1)−H1(T1)H

′
2(t), (4.59)

h2(t) = H ′
1(t)H2(t)−H1(t)H

′
2(t), (4.60)

h3(t) = H1(T1)H2(t)−H1(t)H2(T1), (4.61)

S(X0, T0, t) =

∫ t

T0

(g0(u)X0 + µA(u))h1(u)

h3(u)
du. (4.62)
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Then,

Nt =

∫ t

T0

I
(1)
u h1(u)−Muh2(u)

h3(u)
du− S(X0, T0, t)− g0(t)X0 − µA(t) + I

(1)
t . (4.63)

Let (s, t) ∈ [T0, T1]
2 such that s < t. We shall show that E[Nt | F I

s ] = Ns, the other conditions
for (Nt) to be a martingale are immediate. By the linearity of the conditional expectation, we
have

E[Nt | F I
s ] =

∫ s

T0

I
(1)
u h1(u)−Muh2(u)

h3(u)
du+

∫ t

s

E[I(1)u | F I
s ]h1(u)

h3(u)
du−Ms

∫ t

s

h2(u)

h3(u)
du

− (S(X0, T0, s) + S(X0, s, t))− g0(t)X0 − µA(t) + E[I(1)t | F I
s ]. (4.64)

By Prop. 4.4, the last and the second terms in the above expression of E[Nt | F I
s ] can be

expressed as

E[I(1)t | F I
s ] =

(
g0(t)−

A2(t)

A2(s)
g0(s)

)
X0 +

(
g1(t)−

A2(t)

A2(s)
g1(s)

)
Ms

+
A2(t)

A2(s)
Is + µA(t) +

A2(t)

A2(s)
µA(s), (4.65)

∫ t

s

E[I(1)u | F I
s ]h1(u)

h3(u)
du = X0

∫ t

s

g0(u)h1(u)

h3(u)
du+Ms

∫ t

s

g1(u)h1(u)

h3(u)
du+

∫ t

s

µA(u)h1(u)

h3(u)
du

+
(
Is − g1(s)Ms − g0(s)X0 + µA(s)

) 1

A2(s)

∫ t

s

A2(u)h1(u)

h3(u)
du. (4.66)

Notice that

1

A2(s)

∫ t

s

A2(u)h1(u)

h3(u)
du =

H1(t)−H1(s)− H1(T1)
H2(T1)

(H2(t)−H2(s))

A2(s)
, (4.67)

= 1− A2(t)

A2(s)
. (4.68)

Hence,

E[I
(1)
t | F I

s ] +

∫ t

s

E[I(1)u | F I
s ]h1(u)

h3(u)
du = (g0(t)− g0(s))X0 + (g1(t)− g1(s))Ms

+X0

∫ t

s

g0(u)h1(u)

h3(u)
du+Ms

∫ t

s

g1(u)h1(u)

h3(u)
du

+

∫ t

s

µA(u)h1(u)

h3(u)
du+ Is + µA(s) + µA(t), (4.69)

= (g0(t)− g0(s))X0 + (g1(t)− g1(s))Ms

+ S(X0, s, t) +Ms

∫ t

s

g1(u)h1(u)

h3(u)
du

+ Is + µA(s) + µA(t). (4.70)

Observe that
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∫ t

s

g1(u)h1(u)− h2(u)

h3(u)
du =

∫ t

s

H ′
1(u)H2(T0)−H1(T0)H

′
2(u)

H1(T1)H2(T0)−H1(T0)H2(T1)
du, (4.71)

= (g1(t)− g1(s)), (4.72)

which allows us to write

E[I
(1)
t | F I

s ] +

∫ t

s

E[I(1)u | F I
s ]h1(u)

h3(u)
du = (g0(t)− g0(s))X0 +Ms

∫ t

s

h2(u)

h3(u)
duMs

+ S(X0, s, t) + Is + µA(s) + µA(t). (4.73)

Plugging Eq. 4.73 in Eq. 4.64, we get

E[Nt | F I
s ] =

∫ s

T0

I
(1)
u h1(u)−Muh2(u)

h3(u)
du− S(X0, T0, s)− g0(s)X0 − µA(s) + I(1)s = Ns. (4.74)

We can use the process (Nt) to construct a Brownian motion adapted to (F I
t ).

Corollary 4.14. Under the conditions in Prop. 4.8, the stochastic process Wt =

∫ t

T0

1√
h2(s)

dNs

is a standard Brownian motion on [T0, T1] (i.e, there exists a standard Brownian motion (Ŵt)t⩾0

such that Wt = Ŵt−T0 for all t ∈ [T0, T1]) adapted to (F I
t ).

Proof. We compute the quadratic variation of (Wt):

[W ]t =

∫ t

T0

1

h2(s)
d[N ]s =

∫ t

T0

1

h2(s)
d[I(1)]s =

∫ t

T0

h2(s)

h2(s)
ds = t− T0. (4.75)

Furthermore, since (Nt) is an (F I
t )-martingale and E[[W ]t] < ∞, (Wt) is an (F I

t )-martingale.
Hence, by Lévy characterization theorem, (Wt) is an (F I

t )-adapted standard Brownian motion
on [T0, T1].

This means that we can write (Mt) as an integral with respect to a Brownian motion:

dMt =
Var[X1 |X0, I

(1)
t ]
√
H ′

1(t)H2(t)−H1(t)H ′
2(t)

H1(T1)H2(t)−H1(t)H2(T1)
dWt, (4.76)

as long as this expression makes sense, i.e, under the conditions in Prop. 4.8. When (I
(1)
t ) is

the randomized anticipative Brownian bridge on [T0, T1], the expressions become significantly
simpler:

Corollary 4.15. If (I(1)t )t∈[T0,T1] is an X-randomized anticipative Brownian bridge on [T0, T1],
then

1.

dMt =
Var[X1 |X0, I

(1)
t ]

T1 − t

(
I
(1)
t −Mt

T1 − t
dt+ dI

(1)
t

)
. (4.77)

2. For any (s, t) ∈ [T0, T1]
2 such that s ⩽ t,

E[I(1)t | F I
s ] =

(T1 − t)I
(1)
s + (t− s)Ms

T1 − s
. (4.78)
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3. The process (Wt)t∈[T0,T1], defined by

Wt :=

∫ t

T0

I
(1)
u −Mu

T1 − u
du+ I

(1)
t −X0, (4.79)

is a standard Brownian motion on [T0, T1] adapted to (F I
t ).

We repeat the proof for this particular case for the sack of comparison.

Proof. The first two points are direct consequences of Prop. 4.8 and Prop. 4.4, respectively. To
see that (Wt) is a Brownian motion adapted to (F I

t ), we notice that [W ]t = t− T0 and that

E[Wt | F I
s ] = Ws − I(1)s −Ms

∫ t

s

1

T1 − u
du+ E

[
I
(1)
t +

∫ t

s

I
(1)
u

T1 − u
du | F I

s

]
. (4.80)

By Eq. 4.78,

E

[
I
(1)
t +

∫ t

s

I
(1)
u

T1 − u
du | F I

s

]
=

(T1 − t)I
(1)
s + (t− s)Ms

T1 − s
+

∫ t

s

(T1 − u)I
(1)
s + (u− s)Ms

(T1 − s)(T1 − u)
du

=
(T1 − t)I

(1)
s + (t− s)Ms

T1 − s
+

t− s

T1 − s
I(1)s

−
t− s− (T1 − s)

∫ t

s
1

T1−u
du

T1 − s
Ms

= I(1)s +Ms

∫ t

s

1

T1 − u
du. (4.81)

Hence,

E[Wt | F I
s ] = Ws, (4.82)

and (Wt) is a Brownian motion adapted to (F I
t ).

It follows that

Mt = X0 +

∫ t

T0

Var[X1 |X0, I
(1)
s ]

T1 − s
dWs, (4.83)

which is exactly what we would have obtained by putting H1(x) = x and H2(x) = 1 in the
general expression

Mt = X0 +

∫ t

T0

Var[X1 |X0, I
(1)
s ]
√
H ′

1(s)H2(s)−H1(s)H ′
2(s)

H1(T1)H2(s)−H1(s)H2(T1)
dWs. (4.84)

Note that, when X0 = 0, X1 is centered in 0, and T0 = 0, this particular case of the randomized
Brownian bridge yields the martingale developed in [6], i.e, Mt =

∫ t

0
Var[X1 | I(1)s ]

T1−s
dWs.

Using Eq. 4.84, we give examples of FAMs where the underlying RAP is standard.

Example 4.16. Let Dt = tBt where (Bt)t⩾0 is a standard Brownian motion. Then, KD(x, y) =
min(x, y)2max(x, y), and so H1(x) = x2, H2(x) = x. The standard AP driven by (Dt) is given
by

A
(1)
t = Dt −

T1t− t2

T1T0 − T 2
0

DT0 −
t2 − t

T 2
1 − T1T0

DT1 . (4.85)
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We have

KA(x, y) =
min(x, y)(min(x, y)− T0)max(x, y)(T1 −max(x, y)

T1 − T0

, (4.86)

hence A1(x) =
x(x−T0)
T1−T0

and A2(x) = x(T1 − t). A standard X-RAP with noise process (A
(1)
t ) is

I
(1)
t = Dt −

T1t− t2

T1T0 − T 2
0

(DT0 −X0)−
t2 − t

T 2
1 − T1T0

(DT1 −X1). (4.87)

Remember that we could have chosen a different interpolating coefficient for X0 without dis-
rupting the standard property of (I(1)t ). The quadratic variation of (I(1)t ) is given by d[I(1)]t =
H ′

1(t)H2(t)−H1(t)H
′
2(t) dt = t2 dt. Hence,

Mt = X0 +

∫ t

T0

Var[X1 |X0, I
(1)
t ]s

T 2
1 s− s2T1

dWs = X0 +

∫ t

T0

Var[X1 |X0, I
(1)
s ]

T 2
1 − sT1

dWs. (4.88)

Example 4.17. Let (Dt) be an Ornstein-Uhlenbeck process with parameters θ > 0, σ > 0, µ ∈ R
and starting value d0 ∈ R, that is, the solution to

dDt = θ (µ−Dt) dt+ σ dWt, D0 = d0. (4.89)

Then KD(s, t) =
σ2

2θ
eθmin(s,t)e−θmax(s,t), and so H1(x) =

σ2

2θ
eθx, H2(x) = e−θx. The standard AP

driven by (Dt) is

A
(1)
t =

eθ(T1−t) − e−θ(T1−t)

eθ(T1−T0) − e−θ(T1−T0)
DT0 −

eθ(t−T0) − e−θ(t−T0)

eθ(T1−T0) − e−θ(T1−T0)
DT1 . (4.90)

A standard X-RAP with noise process (A
(1)
t ) is

I
(1)
t = Dt −

eθ(T1−t) − e−θ(T1−t)

eθ(T1−T0) − e−θ(T1−T0)
(DT0 −X0)−

eθ(t−T0) − e−θ(t−T0)

eθ(T1−T0) − e−θ(T1−T0)
(DT1 −X1). (4.91)

The quadratic variation of (I
(1)
t ) is given by d[I(1)]t = H ′

1(t)H2(t) − H1(t)H
′
2(t) dt = σ2 dt.

Hence,

Mt = X0 +

∫ t

T0

Var[X1 |X0, I
(1)
t ]σ

σ2

2θ

(
eθ(T1−s) − eθ(s−T1)

) dWs = X0 +
2θ

σ

∫ t

T0

Var[X1 |X0, I
(1)
t ]

eθ(T1−s) − eθ(s−T1)
dWs. (4.92)

For a given coupling πX , it is usually unlikely that Mt = E[X1 | F I
t ] has an explicit analytical ex-

pression, even in the case Mt = E[X1 |X0, I
(1)
t ]. We give an example where Mt = E[X1 |X0, I

(1)
t ]

and its SDE are explicit.

Example 4.18. Let X0 ∼ Unif({−1, 1}) and X1 ∼ Unif({−2, 0, 2}) such that

X1 |X0 =


X0 + 1 with probability 1

2
,

X0 − 1 with probability 1
2
.

(4.93)

Clearly, E[X1 |X0] = X0. Let (Bt)t⩾0 be a standard Brownian motion and

I
(1)
t = Bt −

T1 − t

T1 − T0

(BT0 −X0)−
t− T0

T1 − T0

(BT1 −X1). (4.94)
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Denoting by ϕ the density function of a N
(
0, (T1−t)(t−T1)

T1−T0

)
, g1(x) = t−T0

T1−T0
, and using Prop. 4.5,

we get

Mt =
(X0 + 1)ϕ(I

(1)
t −X0 − g1(t))

1
2
+ (X0 − 1)ϕ(I

(1)
t −X0 + g1(t))

1
2

ϕ(I
(1)
t −X0 − g1(t))

1
2
+ ϕ(I

(1)
t −X0 + g1(t))

1
2

, (4.95)

= X0 +
ϕ(I

(1)
t −X0 − g1(t))− ϕ(I

(1)
t −X0 + g1(t))

ϕ(I
(1)
t −X0 − g1(t)) + ϕ(I

(1)
t −X0 + g1(t))

, (4.96)

= X0 + tanh

(
I
(1)
t −X0

T1 − t

)
. (4.97)

In SDE form, we get

Mt = X0 +

∫
t

T0

sech2
(

Is−X0

T1−s

)
T1 − s

dWs. (4.98)

Figure 12: Paths of the X-RAP (I
(1)
t ). Figure 13: Paths of the associated FAM (Mt).

4.2 The n-arc FAM

Given a random vector X = (X0, . . . , Xn) of convexly ordered components, i.e., Xi ⩽cx Xi+1

for i = 0, . . . , n − 1, and an X-RAP (I
(n)
t )t∈[T0,Tn] on the partition {T0, Tn}∗, we construct a

martingale (Mt)t∈[T0,Tn] with respect to (F I
t ) such that MTi

a.s.
= Xi, for i = 0, . . . , n. A major

difference in the n-arc case is that we need (I
(n)
t ) to be {T0, Tn}∗-nearly Markov right away.

Definition 4.19. Given an X-RAP (I
(n)
t )t∈[T0,Tn] on {T0, Tn}∗ that is {T0, Tn}∗-nearly Markov,

an n-arc FAM for X is a stochastic process of the form Mt = E[Xn |X0, . . . , Xm(t), I
(n)
t ] where

m(t) = max{i ∈ N |Ti ⩽ t}.

By the tower property of conditional expectation, (Mt)t∈[T0,T1] is a martingale with respect to
(F I

t ). Moreover, MTi
= E[Xn |X0, . . . , Xi]

a.s.
= Xi by the convex ordering property. Hence (Mt)

is an interpolating martingale with respect to (F I
t ). Like in the n = 1 case, we assume that the

driver of (I(n)t ) has a density function in what follows.

Proposition 4.20. Let Mt = E[Xn |X0, . . . , Xm(t), I
(n)
t ] be an n-arc FAM restricted to (T0, Tn)∗.

Then,
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Mt =

∫
R yf

I
(n)
t |X0,...,Xm(t),Xn=y(I

(n)
t ) dFXn |X0,...,Xm(t)∫

R f
I
(n)
t |X0,...,Xm(t),Xn=y(I

(n)
t ) dFXn |X0,...,Xm(t)

, (4.99)

where FXn |X0,...,Xm(t) is the distribution function of Xn conditional on X0, . . . , Xm(t). In partic-
ular,

1. if (X0, . . . , Xm(t), Xn) is a continuous random variable, with density function fXn |X0,...,Xm(t),
then

Mt =

∫
R yf

I
(n)
t |X0,...,Xm(t),Xn=y(I

(n)
t )fXn |X0,...,Xm(t)(y) dy∫

R f
I
(n)
t |X0,...,Xm(t),Xn=y(I

(n)
t )fXn |X0,...,Xm(t)(y) dy

. (4.100)

2. if (X0, . . . , Xm(t), Xn) is a discrete random variable, then

Mt =

∑
y

yf I
(n)
t |X0,...,Xm(t),Xn=y(I

(n)
t )P[Xn = y |X0, . . . , Xm(t)]∑

y

f I
(n)
t |X0,...,Xm(t),Xn=y(I

(n)
t )P[Xn = y |X0, . . . , Xm(t)]

. (4.101)

The proof follows immediately from the one-arc case. Introducing the notation

u(I
(n)
t , t, xm+1, . . . , xn−1, y) = f I

(n)
t |X0,...,Xm(t),Xm(t)+1=xm+1,...,Xn−1=xn−1,Xn=y(I

(n)
t ), (4.102)

it is often more convenient to write

Mt =

∫
Rn−m(t) yu(I

(n)
t , t, xm+1, . . . , xn−1, y) dF

Xm(t)+1,...,Xn−1,Xn |X0,...,Xm(t)(xm+1, . . . , xn−1, y)∫
Rn−m(t) u(I

(n)
t , t, xm+1, . . . , xn−1, y) dF

Xm(t)+1,...,Xn−1,Xn |X0,...,Xm(t)(xm+1, . . . , xn−1, y)
.

(4.103)
We can apply Itô’s lemma in the same fashion as we did in the one-arc case. An interesting
pattern appears if (I(n)t ) satisfies gj(x)1[T0,Tj−1](x) = 0 for all j = 1, . . . , n, and for all x ∈ [T0, Tn],
that simplifies the n-arc case significantly.

Theorem 4.21. Let Mt = E[Xn |X0, . . . , Xm(t), I
(n)
t ] be an n-arc FAM, where (I

(n)
t ) sat-

isfies gj(x)1[T0,Tj−1](x) = 0 for all j = 1, . . . , n, and for all x ∈ [T0, Tn]. Then Mt =

E[Xm(t)+1 |X0, . . . , Xm(t), I
(n)
t ].

Proof. The result is trivial for t ∈ {T0, Tn}∗, so we treat the case t ∈ (T0, Tn)∗.
Let φ be the density function of (A(n)

t ), the noise process of (I(n)t ). Then,

u(I
(n)
t , t, xm+1, . . . , xn−1, y) = φ

I
(n)
t −

m(t)∑
i=0

gi(t)Xi − gm(t)+1(t)xm+1)

 , (4.104)

since gj(x)1[T0,Tj−1](x) = 0 for all j = 1, . . . , n, and for all x ∈ [T0, Tn]. Denoting by F̃ the
conditional distribution of (Xm(t)+1, . . . , Xn) given X0, . . . , Xm(t), i.e,

F̃ (xm+1, . . . , xn) = FXm(t)+1,...,Xn|X0,...,Xm(t)(xm+1, . . . , xn), (4.105)

this implies
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∫
Rn−m(t)

u(I
(n)
t , t, xm+1, . . . , xn−1, y) dF̃ (xm+1, . . . , xn−1, y)

=

∫
R
u(I

(n)
t , t, xm+1, . . . , xn−1, y) dF

Xm(t)+1|X0,...,Xm(t)(xm+1). (4.106)

We also have

∫
Rn−m(t)

y dF̃ (xm+1, . . . , xn)

=

∫
Rn−m(t)

y dFXn|X0,...,Xm(t),Xm(t)+1=xm+1,...,Xn−1=xn−1(y)

dFXm(t)+1,...,Xn−1|X0,...,Xm(t)(xm+1, . . . , xn−1), (4.107)

=

∫
Rn−m(t)−1

E[Xn |X0, . . . , Xm(t), Xm(t)+1 = xm+1, . . . , Xn−1 = xn−1]

dFXm(t)+1,...,Xn−1|X0,...,Xm(t)(xm+1, . . . , xn−1), (4.108)

=

∫
Rn−m(t)−1

xn−1 dF
Xm(t)+1,...,Xn−1|X0,...,Xm(t)(xm+1, . . . , xn−1), (4.109)

where we used the martingale property. Applying the same argument m(t) times, we get

∫
Rn−m(t)

y dF̃ (xm+1, . . . , xn) =

∫
R
xm+1 dF

Xm(t)+1|X0,...,Xm(t)(xm+1), (4.110)

which means that

∫
Rn−m(t)

yu(I
(n)
t , t, xm+1, . . . , xn−1, y) dF̃ (xm+1, . . . , xn−1, y) (4.111)

=

∫
R
xm+1u(I

(n)
t , t, xm+1, . . . , xn−1, y)dF

Xm(t)+1|X0,...,Xm(t)(xm+1). (4.112)

Finally,

Mt =

∫
Rn−m(t) yu(I

(n)
t , t, xm+1, . . . , xn−1, y) dF̃ (xm+1, . . . , xn−1, y)∫

Rn−m(t) u(I
(n)
t , t, xm+1, . . . , xn−1, y) dF̃ (xm+1, . . . , xn−1, y)

, (4.113)

=

∫
R xm+1u(I

(n)
t , t, xm+1, . . . , xn−1, y) dF

Xm(t)+1|X0,...,Xm(t)(xm+1)∫
R u(I

(n)
t , t, xm+1, . . . , xn−1, y) dF

Xm(t)+1|X0,...,Xm(t)(xm+1)
, (4.114)

=

∫
R
xm+1 dF

Xm(t)+1|X0,...,Xm(t),I
(n)
t (xm+1) (4.115)

= E[Xm(t)+1 |X0, . . . , Xm(t), I
(n)
t ], (4.116)

where we used Bayes rule.

This allows one to use the one-arc case to derive the SDE in the n-arc case without much effort.
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Proposition 4.22. Let (I
(n)
t ) be a semimartingale standard RAP, with driver covariance

KD(x, y) = H1(min(x, y))H2(max(x, y)), such that (t, x) → E[Xn |X0, . . . , Xm(t), I
(n)
t = x] is

C2(((T0, Tn)∗ \ N) × Im(I
(n)
t )) where N ⊂ (T0, Tn)∗ contains finitely many elements. Let

Mt = E[Xn |X0, . . . , Xm(t), I
(n)
t ] be an n-arc FAM. Then,

dMt =
Var[Xm(t)+1 |X0, . . . , Xm(t), I

(n)
t ]

H1(Tm(t)+1)H2(t)−H1(t)H2(Tm(t)+1)

×
[(

Zt(H
′
1(t)H2(Tm(t)+1)−H1(Tm(t)+1)H

′
2(t))−Mt(H

′
1(t)H2(t)−H1(t)H

′
2(t))

H1(Tm(t)+1)H2(t)−H1(t)H2(Tm(t)+1)
− Jt

)
dt

+ dI
(1)
t

]
(4.117)

where Zt = I
(1)
t −

m(t)∑
i=0

gi(t)Xi − µA(t) and Jt =
m(t)∑
i=0

g′i(t)Xi + µ′
A(t).

The proof follows immediately from the one-arc case. Again, denoting

dNt =

(
Zt(H

′
1(t)H2(Tm(t)+1)−H1(Tm(t)+1)H

′
2(t))−Mt(H

′
1(t)H2(t)−H1(t)H

′
2(t))

H1(Tm(t)+1)H2(t)−H1(t)H2(Tm(t)+1)
− Jt

)
dt

+ dI
(1)
t ,

(4.118)

dWt =
dNt√

H ′
1(t)H2(t)−H1(t)H ′

2(t))
, (4.119)

we have that (Wt) is a standard Brownian motion on [T0, Tn] and adapted to (F I
t ), and

Mt = X0 +

∫ t

T0

Var[Xm(s)+1 |X0, . . . , Xm(s), I
(n)
t ]
√

H ′
1(s)H2(s)−H1(s)H ′

2(s))

H1(Tm(s)+1)H2(s)−H1(s)H2(Tm(s)+1)
dWs, (4.120)

= Xm(t) +

∫ t

Tm(t)

Var[Xm(s)+1 |X0, . . . , Xm(s), I
(n)
t ]
√

H ′
1(s)H2(s)−H1(s)H ′

2(s))

H1(Tm(s)+1)H2(s)−H1(s)H2(Tm(s)+1)
dWs.

(4.121)

4.3 Filtered arcade martingales and optimal transport

Let (Bt)t⩾0 be a standard Brownian motion. For simplicity of notation, this section is focused
on the one-arc case where (I

(1)
t ) is given by

I
(1)
t = S

(1)
t + A

(1)
t = Bt −

T1 − t

T1 − T0

(BT0 −X0)−
t− T0

T1 − T0

(BT1 −X1). (4.122)

The n-arc case with general standard RAP follows without much effort. Consider the FAM

Mt = E[X1 |X0, I
(1)
t ] = X0 +

∫ t

T0

Var[X1 |X0, I
(1)
s ]

T1 − s
dWs, (4.123)

where (Wt) is a standard Brownian motion restricted to [T0, T1] and adapted to (F I
t ). The FAM

(Mt) depends heavily on the coupling πX of (X0, X1). In real life problems, the coupling is
usually not observed directly, only its marginals are. Choosing a coupling is then part of the
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modelling of the underlying problem. Another approach is to go "model-free" by utilizing a
least action principle, such as martingale optimal transport.

Optimal transport dates back to Gaspard Monge in 1781 [16], with significant advancements by
Leonid Kantorovich in 1942 [11] and Yann Brenier in 1987 [5]. It provides a way of comparing
two measures, µ and ν, defined on the Borel sets of topological Hausdorff spaces X and Y,
respectively. The mental image of optimal transport is the one of a pile of sand, modelled by a
measure µ, and a hole, modelled by another measure ν. One wishes to fill the hole with the
sand at one’s disposal in an optimal manner, by exercising the least amount of effort. To make
this statement more precise, one needs a cost function c : X × Y → [0,∞] that measures the
cost of transporting a unit mass from x ∈ X to y ∈ Y . The optimal transport problem is how to
transport µ to ν whilst minimizing the cost of transportation: given µ ∈ P(X ) and ν ∈ P(Y),

inf
π∈Π(µ,ν)

K(π) := inf
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y). (4.124)

This problem enjoys many interesting properties. For instance, when X = Y is a Polish space,
and (X , c) is a metric space,

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X×X

c(x, y)pdπ(x, y)

)1/p

(4.125)

is a metric, for any p ⩾ 1, called the Wasserstein pth metric, on the space Pp(X ) of probability
measures on X with finite pth moment. Furthermore, if X is Euclidean, and c(x, y) =∥x− y∥,
there is a one-to-one correspondence between the minimizers π∗ of inf

π∈Π(µ,ν)

∫
X×Y c(x, y)p dπ(x, y),

and the geodesics in (Pp(X ),Wp): if (X0, X1) ∼ π∗, the law of the process(
T1 − t

T1 − T0

X0 +
t− T0

T1 − T0

X1

)
t∈[T0,T1]

(4.126)

is the shortest paths from µ to ν in (Pp(X ),Wp). This links optimal transport to interpolation
on the space of random variables. The interpolating process is very basic, since it is fully
deterministic conditionally on (X0, X1). A simple solution to get a real stochastic process would
be to add an independent Brownian bridge to T1−t

T1−T0
X0 +

t−T0

T1−T0
X1. This is trivial in a way, since

the "noise" term has nothing to do with the initial optimization problem. If one desires to
interpolate using a true stochastic process without abandoning optimal transport, the entropic
regularization of optimal transport provides an answer: given µ ∈ P(X ), ν ∈ P(Y), and ε > 0,

inf
πε∈Π(µ,ν)

Kε(πε) := inf
πε∈Π(µ,ν)

∫
X×Y

c(x, y) dπε(x, y) + ε KL(πε |µ⊗ ν) (4.127)

where KL designates the Kullback-Leibler divergence

KL(πε |µ⊗ ν) =


∫
X×Y

log

(
dπε

dµ dν
(x, y)

)
dπε(x, y), if πε << µ⊗ ν,

∞ otherwise.

(4.128)

When X = Y is Euclidean, c(x, y) =∥x− y∥2, and ε = 2(T1 − T0), this problem is equivalent to
Schrödinger’s problem. If π∗

S is the solution to Schrödinger’s problem, any stochastic process
with distribution function, evaluated at z ∈ R, equal to∫

X

∫
X
F (x, y, z) dπ∗

S(x, y), (4.129)
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where F (x, y, z) is the distribution function, evaluated at z, of a Brownian bridge starting at
time T0 in value x and ending at time T1 in value y, is called Schrödinger’s bridge. Hence,
(I

(1)
t ) is an anticipative representation of Schrödinger’s bridge (in dimension one since we did

not introduce a definition of RAPs in higher dimensions) as long as (X0, X1) ∼ π∗
S, and it is

precisely the replacement that we were looking for. To recap the three interpolators built using
optimal transport in dimension one, we have:

1. The default OT interpolator, or, the shortest path interpolator on [T0, T1]: T1−t
T1−T0

X0 +
t−T0

T1−T0
X1 where (X0, X1) ∼ π∗.

2. The artificially noisy OT interpolator on [T0, T1]: (I
(1)
t ), where (X0, X1) ∼ π∗.

3. The truly noisy OT interpolator, or, Schrödinger’s bridge on [T0, T1]: (I
(1)
t ), where

(X0, X1) ∼ π∗
S.

Fix X = Y = R, since this is the setting of FAMs. We can adapt classical optimal transport to
yield a martingale coupling instead: given µ, ν ∈ P1(R) in convex order,

inf
π∈M(µ,ν)

K(π) = inf
π∈M(µ,ν)

∫
R2

c(x, y) dπ(x, y), (4.130)

We denote the minimizers of this problem by π∗
m. There are many differences between optimal

transport and its martingale counterpart. For instance, the most popular cost function c(x, y) =
(x− y)2 for optimal transport cannot be used in the martingale context:

∫
R2

(x− y)2 dπ(x, y) =

∫
R2

x2 + y2 − 2xy dπ(x, y) (4.131)

=

∫
R2

x2 dµ(x) +

∫
R2

y2 dν(y)− 2

∫
R2

y2 dν(y) (4.132)

=

∫
R2

x2 dµ(x)−
∫
R2

y2 dν(y), (4.133)

which does not depend on π. Another difference is that we loose the geodesic interpretation since
there is no counterpart to the Wasserstein distance in the martingale context. So what would
the martingale counterparts to the default, artificially noisy and truly noisy OT interpolators
be? This is not trivial, since the interpolators must be martingales, and T1−t

T1−T0
X0 +

t−T0

T1−T0
X1 is

not a martingale, regardless of the coupling of (X0, X1).

Since there is no such thing as the "shortest path" interpolator anymore, we expect it to be
"broken" in the martingale context, i.e, not continuous. We propose the process that is equal to
X0 in T0 and equal to X1 for t ∈ (T0, T1]. Now, for the artificially noisy interpolator, the FAM
(Mt) with (X0, X1) ∼ π∗

m is a candidate. Indeed, it is a martingale, and its noise process was
not taken into account in the selection of the optimal coupling π∗

m. Furthermore, if we remove
the artificial noise, i.e, we put A(1)

t = 0 in the expression of (Mt), and denote by (Gt)t∈[T0,T1] the
filtration generated by

(
T1−t
T1−T0

X0 +
t−T0

T1−T0
X1

)
t∈[T0,T1]

, we get
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Mt = E[X1 | Gt], (4.134)

= E
[
X1 |X0,

T1 − t

T1 − T0

X0 +
t− T0

T1 − T0

X1

]
, (4.135)

=


X0 if t = T0,

X1 if t ∈ (T0, T1],
(4.136)

retrieving the "broken" default interpolator. For a truly noisy MOT interpolator, i.e, a sort
of martingale counterpart to Schrödinger’s bridge, we propose a new problem, called the
information-based martingale optimal transport problem.

Definition 4.23. Let X0 ∼ µ and X1 ∼ ν, where µ and ν are L2 probability measures on R, in
convex order. Let Mt = E[X1 |X0, I

(1)
t ] be a one-arc FAM. The information-based martingale

optimal transport (IBMOT) problem associated with the randomized Brownian bridge (I
(1)
t ) is

sup
π∈M(µ,ν)

KI(π) := sup
π∈M(µ,ν)

E

[∫ T1

T0

(X1 −Mt)
2

T1 − t
dt

]
. (4.137)

To make sure that Eq. 4.137 makes sense, notice that, by the definition of FAM, and Itô’s
isometry,

E[(X1 −X0)
2] = E[(MT1 −X0)

2], (4.138)

= E

(∫ T1

T0

Var[X1 |X0, I
(1)
t ]

T1 − t
dWt

)2
 , (4.139)

= E

∫ T1

T0

(
Var[X1 |X0, I

(1)
t ]

T1 − t

)2

dt

 . (4.140)

Since E[(X1−X0)
2] = E[X2

1 ]−E[X2
0 ] < ∞, we have that E

[∫ T1

T0

(
Var[X1 |X0,I

(1)
t ]

T1−t

)2

dt

]
< ∞, and

because the product space Ω×[T0, T1] is of finite measure, we also have E
[∫ T1

T0

Var[X1 |X0,I
(1)
t ]

T1−t
dt

]
<

∞ by Hölder’s inequality. Using the martingale property, we see that

E[Var[X1 |X0, I
(1)
t ]] = E[E[X2

1 |X0, I
(1)
t ]−M2

t ], (4.141)
= E[X2

1 ]− E[M2
t ], (4.142)

= E[X2
1 +M2

t ]− 2E[MtE[X1 | F I
t ]], (4.143)

= E[X2
1 +M2

t ]− 2E[E[X1Mt | F I
t ]], (4.144)

= E[X2
1 +M2

t − 2X1Mt], (4.145)
= E[(X1 −Mt)

2]. (4.146)

By Tonelli’s theorem, since E
[∫ T1

T0

Var[X1 |X0,I
(1)
t ]

T1−t
dt

]
< ∞ and Var[X1 |X0,I

(1)
t ]

T1−t
⩾ 0, we get
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E

[∫ T1

T0

Var[X1 |X0, I
(1)
t ]

T1 − t
dt

]
=

∫ T1

T0

E
[
Var[X1 |X0, I

(1)
t ]
]

T1 − t
dt, (4.147)

=

∫ T1

T0

E[(X1 −Mt)
2]

T1 − t
dt, (4.148)

= KI(π). (4.149)

Hence, sup
π∈M(µ,ν)

KI(π) = sup
π∈M(µ,ν)

E
[∫ T1

T0

Var[X1 |X0,I
(1)
t ]

T1−t
dt

]
< ∞. Since Var[X1 |X0,I

(1)
t ]

T1−t
is exactly the

volatility process of (Mt), the IBMOT problem can be seen as the martingale Benamou-Brenier
problem [1], under the extra constraint that the volatility must be of the form Var[X1 |X0,I

(1)
t ]

T1−t
.

One can rewrite Eq. 4.137 using the integration by parts formula, making the innovation process
Wt =

∫ t

T0

I
(1)
u −Mu

T1−u
du+ I

(1)
t −X0, which is a standard Brownian motion on [T0, T1] adapted to

(F I)t∈[T0,T1], appear in the expression when evaluated at time T1. Since we have that

E

[∫ T1

T0

Var[X1 |X0, I
(1)
t ]

T1 − t
dt

]
= E[MT1WT1 −MT0WT0 ] = E[X1WT1 ], (4.150)

we get sup
π∈M(µ,ν)

KI(π) = sup
π∈M(µ,ν)

E[X1WT1 ]. Since WT1 is a N (0, T1 − T0) regardless of the

coupling π, we can complete the square to get an equivalent problem to 4.137:

E[X2
1 ]− 2 sup

π∈M(µ,ν)

E[X1WT1 ] + E[W 2
T1
] = inf

π∈M(µ,ν)
E[X2

1 ]− 2E[X1WT1 ] + E[W 2
T1
], (4.151)

= inf
π∈M(µ,ν)

E[(X1 −WT1)
2]. (4.152)

Example 4.24. Let T = T1 − T0, σ > 0, X0 ∼ N (0, σ2), X1 ∼ N (0, σ2 + T ). We show that the

Brownian coupling N

(0
0

)
,

(
σ2 σ2

σ2 σ2 + T

) is a solution for the IBMOT problem. Recall

that sup
π∈M(µ,ν)

KI(π) ⩽ E[X2
1 ]− E[X2

0 ] = T . Assuming (X0, X1) ∼ N

(0
0

)
,

(
σ2 σ2

σ2 σ2 + T

),

we get that

1. (X1, X0, I
(1)
s ) is Gaussian for all s ∈ [T0, T1] and (I

(1)
t ) is itself a Brownian motion on

[T0, T1],

2. Cov(X0, I
(1)
s ) = σ2,

3. Cov(X1, I
(1)
s ) = T1−s

T
σ2 + s−T0

T
(σ2 + T ) = σ2 + s− T0,

4.

Var(I(1)s ) =
(T1 − s)2

T 2
σ2 +

(s− T0)
2

T 2
(σ2 + T ) + 2

(T1 − s)(s− T0)

T
σ2 +

(T1 − s)(s− T0)

T
,

= (s− T0)
2 + σ2T +

(T1 − s)(s− T0)

T
,
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5.

Ms =
(
σ2 σ2 + s− T0

)(σ2 σ2

σ2 (s− T0)
2 + σ2T + (T1−s)(s−T0)

T

)−1(
X0

I
(1)
s

)
,

= I(1)s ,

6.

KI

N

(0
0

)
,

(
σ2 σ2

σ2 σ2 + T

)
 = E

[∫ T1

T0

(X1 − I
(1)
s )2

T1 − s
ds

]
,

= E

∫ T1

T0

(T1−s)2

T 2 (X1 −X0)
2 +

(
A

(1)
s

)2
T1 − s

ds

 ,

=

∫ T1

T0

(T1 − s)2 + (T1 − s)(s− T0)

T (T1 − s)
ds,

=

∫ T1

T0

(T1 − s) + (s− T0)

T
ds,

= T.

Hence Brownian motion is the optimal FAM between X0 and X1 according to IBMOT. Equiv-
alently, the Brownian coupling is the optimal martingale coupling for (X0, X1) according to
IBMOT.
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