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Abstract

Arcade processes are a class of continuous stochastic processes that interpolate in
a strong-sense, i.e., omega by omega, between zeros at fixed pre-specified times. Their
additive randomization allows one to match any given random variable at the given dates
on the whole probability space, and can be interpreted as a generalization of anticipative
stochastic bridges. The filtrations generated by randomized arcade processes are utilized
to construct a class of interpolating martingales between the same target random variables,
the filtered arcade martingales (FAMs), which provide an extension to the paradigm
of information-based asset pricing. FAMs are strong solutions of the martingale fitting
problem, and can be connected to martingale optimal transport (MOT) by considering
optimally-coupled target random variables. Another connection to optimal transport can
be established by using FAMs to cast the information-based martingale optimal transport
problem, a new problem that allows the introduction of noise in MOT, similar to how
Schrédinger’s problem introduces noise in optimal transport.

Keywords: Stochastic interpolation, martingale interpolation, martingale fitting, stochastic
bridge, optimal transport, nonlinear stochastic filtering, information-based asset pricing.

1 Introduction

The problem of constructing martingales which match given marginales has been the subject of
many works in probability theory and applications thereof. The origin of the problem dates
back to Strassen [20]. He showed that a discrete-time martingale (M,,),en can match a sequence
of real probability measures (u,)nen if and only if the measures (u,)nen are convexly ordered,
i.e., M, ~ p, is possible for all n € N if and only if [ f(x)du,(z) is an increasing sequence in n
for any positive convex function f. This result also extends to the continuous-time setting, see
Kellerer’s theorem [12].

Strassen’s and Kellerer’s theorems do not provide a method for constructing the matching
martingales. Many techniques are dedicated to Kellerer’s setting, where one is looking to
construct a martingale that matches a given peacock [10]: Skorokhod’s embedding problem,
Brownian random time changes, local volatility models, scaling peacocks method, etc., see [14].
Since the target is a dynamical measure, the matching is necessarily weak, and the martingale
is in continuous time. On the other hand, the matching in Strassen’s setting can be weak or
almost sure, depending on the nature of the targets (measures or random variables), and the
martingale is in discrete time. A popular tool dedicated to this task is martingale optimal
transport (MOT, [2], [3]). Inspired by Kantorovich’s optimal transport theory ([11], [21], [4]),



it provides a framework for selecting a meaningful martingale coupling by minimizing a cost
functional over the set of all martingale couplings.

Our interest lies at the intersection of Strassen’s and Kellerer’s settings: how to construct a
continuous martingale that matches, in law or almost surely, a given finite set of convexly
ordered random variables, at pre-specified given dates? For example, this is of interest in a
financial setting, where knowledge of the prices of vanilla call and put options provides an
implied distribution for the underlying asset price at future dates under no arbitrage. This
is what we call the martingale interpolation problem, since we are interpolation between the
components of a discrete-time martingale without breaking the martingality condition. The
latter is the tricky part of the problem. If we forget about the martingality condition, then
bridging the gap between a coupling and an interpolating measure does not usually cost much.
For instance, in Kantorovich’s optimal transport theory, it is well known that there is a one-to-one
correspondence between optimal couplings and optimal interpolating measures in Wasserstein
spaces, called McCann’s interpolations, under mild conditions. However, this property is not
present in the martingale counterpart of optimal transport.

Solutions to the martingale interpolation problem exist. For example, the martingale Benamou-
Brenier problem (MBBP) [1] aims to solve the optimization problem

1
/ O¢ dt
0

t
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over the set

My ~ p, My ~ v, (M,) is a martingale}, (1.1)

where (B;);>o is a standard Brownian motion and (u,v) are convexly ordered probability
measures with finite second moments. If (u, ) is irreducible in the sense of [2], Appendix A.1,
the solutions to the MBBP are called (u, v)-stretched Brownian motions, and have the form
E[F(By + Yo) | Fi], where (F;) is the filtration generated by (B; 4+ Yp). The function F': R — R
and the random variable Y, must be selected such that F'(B; + Yy) ~ v, E[F (B + Yy) | Yo| ~ 1
and Yy L (B;). In the case where (u, v) have irreducible components, the solution to the MBBP
is a stretched Brownian motion on each irreducible component, see Theorem 3.1 in [I]. Stretched
Brownian motions are interpolating martingales between the given measures p and v. Another
weak solution to the martingale interpolation problem is given by Schrodinger’s volatility models
(SVMs) [9]. Inspired by the entropic relaxation of optimal transport ([13], [17]), also known as
Schrodinger’s problem in particular cases [19], SVMs rely on a measure change. Consider two,
possibly correlated, Brownian motions, (B;);o and (B;)is0, under a measure P, and the system
of SDEs

th = Q¢ Mt dgt,
dat == b(at) +c ((lt) dBt, (12)
where the real functions b and ¢ are given, and are such that a, is an Ité process. The goal is to
change the measure P by an equivalent one, such that the process (M;)o<i<1 matches the given
measures p and v at times zero and one respectively, while being a true martingale. If several
equivalent measures that satisfy these constraints exist, one must select the one that is closest
to P in terms of the Kullback-Leibler divergence. By Girsanov’s theorem, changing PP by an
equivalent measure QQ transforms the system of SDEs as follows:
th = atMt( dét + Xt dt),
dat = b(at) +c (CLt) (dBt —+ )\t dt) (13)



One must then select the drifts (S\t) and ()\;), generated by the same measure change, that

T
minimize the functional Eg / A2+ \2ds| while satisfying the constraints My ~ pu, M ~ v

To

and (M) is a martingale.

In this paper, we construct a class of martingales that can match, almost surely, any set of
convexly ordered random variables, at an arbitrary set of fixed times, inspired by the information-
based asset pricing approach ([6],[7]). These interpolating martingales, called filtered arcade
martingales (FAMs), need two main ingredients: a discrete-time martingale (for example, a
solution to an MOT problem) and another type of interpolating process that we call arcade
process (AP).

The second section is dedicated to APs. Defined as a functional of a given stochastic process
called the driver, APs are sample-continuous stochastic processes that interpolate between zeros
on the whole probability space, i.e., omega by omega. To execute the interpolation, they rely on
deterministic functions called interpolating coefficients. APs may be viewed as multi-period
anticipative stochastic bridges. We study their properties and focus on Gaussian APs, which
will play an important role in the definition of FAMs. Starting from a Gauss-Markov driver, we
show that it is always possible to construct a Markovian AP by utilizing the covariance structure
of the driver. The resulting AP from this procedure is called standard AP, but is not unique,
since there are infinitely many Markovian APs driven by the same Gauss-Markov process.

The third section treats the additive randomization of APs, that is, the sum of a stochastic
process that is interpolates deterministically between random points, and an AP. Such processes
are called randomized arcade processes (RAPs), and can be thought as a sum between a signal
function and a noise process. By construction, a RAP can match any random variables on the
whole probability space at any given time, i.e, it is a stochastic interpolator between target
random variables in the strong sense. The notion of Markovianity does not suit RAPs in
general, since their filtrations contain the o-algebras generated by each previously matched
target random variable. For that reason, we introduce a counterpart notion, the nearly Markov
processes, and show under which conditions a RAP is nearly Markov.

In the fourth and final section, we introduce the FAMs. A FAM is defined as the conditional
expectation of the final target random variable, given the information generated by a RAP
and, hence, inherits the filtering framework from information-based asset pricing: the signal
is the final target and it can only be observed through a noisy version, the RAP. FAMs are
tractable thanks to the nearly-Markov property of the underlying RAPs, and can be simulated
using Bayes formula. Applying It6’s lemma, we derive the stochastic differential equations
satisfied by FAMs. Finally, we introduce the information-based martingale optimal transport
(IBMOT) problem, a similar problem to martingale optimal transport, that incorporates noise
in the optimization process, inspired by the entropic regularization of optimal transport and
Schrodinger’s problem. IBMOT selects the martingale coupling that maximizes the expectation

of the weighted squared error between a target random variable and its associated FAM for a
given RAP.

In what follows, we consider the collection of fixed dates {T; € R|n € Ny and i =0,1,...,n}
such that 0 < Tp < Th < Ty < ... < T, < oo. We introduce the ordered sets {1y, T, }. =

n—1
{To,Th, ..., T} and (To, Th)s = U (T3, Tita). Let (Q,F,P) be a probability space, (Dt)eir, 1,
i=0 o
a sample-continuous stochastic process such that P[D; = 0] < 1 whenever t € (Ty,T,,)., and an
R""!-valued random vector X independent of (D).



2 Arcade processes

We construct stochastic processes on [T, T,,], as a functional of (D;), which match exactly 0 (for
all w € ) at the given times {7}, T, }.. The first step is to introduce deterministic functions
called interpolating coefficients.

Definition 2.1. The functions fo, f1,..., fn are interpolating coefficients on {Ty, T, }« if fo,
fiooo o fa € CO (I, T, R) , fi(T3) = 1, and fi(T;) =0 fori,j=0,...,n,i%# j.

We can now give the definition of what we call an arcade process.

Definition 2.2. An arcade process (AP), denoted (A" )ie[mo,1,, on the partition {To, T} is a
stochastic process of the form

":=D,— Y fi(t)Dy, (2.1)
i=0
where fo, ..., fn are interpolating coefficients on {To, T, }.. The process (Dy)ieimy, 1, 5 the driver

of the AP. We denote by (F{*)ieiry,r,) the filtration generated by (A( ))te[T07Tn}.

We observe that AT( 0) = AT( 1) =...= AT( n) = 0 by construction, for all w € ).
E le 2.3. Forn =1, fy(t) = - fi(t) = =T the AP dri b tandard
xam orn e wen by a standa
p 0 T =T, T A T, -1, Yy

Brownian motion (By), is the anticipative Brownian bridge on [Ty, Th],

T, —t t—"1p
T —Tp T T =T

AV = B, — Br,. (2.2)

Example 2.4. Forn > 1, we can generalize the anticipative Brownian bridge by taking

T, —t t—"T,1
L | t ()= ———1 t), 2.3
f0< ) T1 _ T(] [TO)Tl]( )7 f ( ) Tn _ Tn_l (TnfluTn]( ) ( >
and
t—1; Tivq —1 .
fz(t) T—T;l]l( N IT}(t)—l—T‘lJrl—_T]l(T ThLﬂ(t), fO?"Z:]_,...,TL—l. (24)

We call this AP the stitched Brownian AP for it can be written as

(B, — o 7B — ;_TTO Br,, if t € [To, Th),

Agn) _ Bt BT1 t T1 BTQ, th € [T17T2)7 (25)

Bt Lt _p, —tInap. iftel, 1, T,

—Th-1 Tn—Th-1
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Figure 1: Paths simulation of a stitched Brownian AP with n = 5, using the equidistant partition
{T;=2i|i=0,1,...,5}.

Another way of generalizing the anticipative Brownian bridge to obtain an AP driven by Brownian
motion is by using Lagrange’s polynomial interpolation, that is

n T _
=TI .T:—ZZ- Jori=0,....n. (2.6)
k=0 ki

We may call the resulting AP the Lagrange-Brownian AP, which has the form

n

-y I A (27)

=0 k= Ok:;él

More generally, the Lagrange AP driven by a stochastic process (Dy) has the form

n

AM — D, - Z 11 ;}:k__t (2.8)

1=0 k=0,k#1i
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Figure 2: Paths simulation of a Lagrange-Brownian AP with n = 5, using the equidistant
partition {7; = 2i|i=0,1,...,5}.



The Lagrange APs inherit Runge’s phenomenon from their interpolation coefficients: when n is
big, the AP oscillates around the edges of the interval.
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Figure 3: Paths simulation of a Lagrange-Brownian AP with n = 10, using the equidistant
partition {T; =i|¢=0,1,...,10}, illustrating Runge’s phenomenon.

One can negate this effect by applying a transformation to the interpolating coefficients. For

T, —t
instance, the map x — |z|>0=1*D) applied to each interpolating coefficients f;(t) = H Tk T
A — 1y
k=0,k#i
fori=0,...,n, yields another set of interpolating coefficients fo, ..., fn that do no suffer from

Runge’s phenomenon.
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Figure 4: Paths simulation of a Brownian AP with n = 10 and interpolating coefficients
fo,- -+, fi0, using the equidistant partition {7; =i|i =0,1,...,10}.

Example 2.5. FElliptic APs have interpolating coefficients given by

~ Ty \* T, \’
fo(t) = \/1 - (7{1 — 7(10) Ly (t),  fult) = \/1 - (ﬁ) Len, 1 (1), (2.9)
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oo, — 1.

(2.10)
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Figure 5: Paths simulation of an elliptic-Brownian AP with n = 5, using the equidistant partition
{T;=2i|i=0,1,...,5}.

The expectation and the covariance of an AP, when they exist, are fully characterised by the
driver and the interpolating coefficients.

Proposition 2.6. If the driver (D;) has a mean function up, a variance function o3, and an
covariance function Kp, we have:

pa) = ELAT] = uo(®) =3 fOp(T), (2.11)
o2 (t) := Var[A™] = o2 (1) + Z F2(t) —2fi(t)Kp(t, T;)

+23° S HOLOKNT, T (2.12)

i=0 j=i+1

Ka(s,t) := Cov[A®™ A = Kp(s, 1) Zfz VKp(s,Ty) + fi(s)Kp(t, T))

+ 33 A HOKD(TLT). (2.13)

i=0 j=0

Proof. Eq. follows from the linearity of the expectation and Eq. follows from Eq.
Hence, it is enough to show Eq.



n

Cov[A™, AV = Cov | D, = fi(s)Dr,, Dy — Zfz (2.14)

=0

= Kp(s,t) — Cov S,Zfz | — Cov fi(s)Dy., D,

n

+ Cov Zfz )Dr,, > fi(t)Dr, (2.15)

=0
1=0

n

=K fz
+2_ D )L Kp(TT5) (2.16)
=K ;

n

() Kp(s, T;) = > fils)Kp(T;,1)

1=0

£) = 2 fil)Kp(s, T) + fi(s)Kp(t T))

+2_ D ()L Kp(T T)). (217)

]

Markov APs will play a crucial role in the construction of FAMs. An immediate property of
these processes is the following:

Proposition 2.7. Let (AE"))tG[TO’Tn] be an AP on {Ty,T,}« that is Markov with respect to
(FM Ve, If t > T for T; € {To, Ty}, then A AL F7.

In particular, if (Ai”)) is Markov and has a covariance function, then Cov(Agn),Agn)) =0
whenever s € [T}, Ti44], t € [T, Tj41] and j # i.

If we think about APs as noise processes, the most natural subclass to study is the Gaussian
subclass. But instead of looking at all APs that are also Gaussian processes, we restrict to APs
driven by Gaussian processes.

Definition 2.8. An AP (AE”))te[TO,Tn] is said to be a Gaussian AP if its driver (Dy) is a Gaussian
stochastic process.

Notice that not all APs that are Gaussian processes are Gaussian APs. But all Gaussian APs are
Gaussian processes: Take Dy = B, +tY, where (B;) is a Gaussian process and Y a non-Gaussian
random variable, and A; = D; — (1 — t)Dy — tD;. The driver is not Gaussian while the AP is a
Gaussian process.

We give a first result about the Markov property of Gaussian APs.

Theorem 2.9. Let (AE”))tE[TO,Tn] be a Gaussian AP on {Ty, T, }. with covariance function K 4.

Then (A,En)) is Markov with respect to its own filtration if and only if ¥ (r,s,t) € (Ty, Ty,)? such
that r < s < t, there exists a(s,t) € Ry such that
07 thE [ﬂaﬂ-ﬁ-l]?re [7}77}+1]7i7éj7
Ka(r,t) = (2.18)
Ka(r, s)a(s,t), otherwise.



Proof. Suppose K 4 is of the form , we shall show that (Aﬁ")) is Markov. Let k£ > 1 and
(51,89, ...,88,t) € [Ty, Tp]*** such that s; < sy < ... < sp < t. Then, (Ag")) is Markov if and
only if

Ss1 7

P [A§"> e | AW ...,Agﬂ —P [Aﬁ") - | Agj:)] . (2.19)

Since K (s,t) = 0 unless s and ¢ are in the same sub-interval, we can assume without loss of
generality that (si,so,...,8k,t) € (T, Tyny1)®! for a fixed m € {0,...,n — 1}. Define

k
Ag=) iAW, q=1,.. k-1, (2.20)
=1

where the coefficients (¢; ,) are chosen such that

k C11 . Cl,k—1
> cigKa(sit) =0 and det| : #0. (2.21)
=1 Ck-11 -+ Ck—1k—1
We notice that
0171 Ce Cl,k*l
U(Ag’f),...,Agz)) :U(Ah---,Ak*l,AgZ)) < det : : # 0. (2.22)
Ck—11 -+ Ckp—1k-1

It remains to be shown that

AP L (Ary e Agy) and A AL (AL A ). (2.23)

Equivalently, because we are treating the Gaussian case, we shall show that

Cov(A™ A)=0 and Cov(A™ A)=0 Vg=1,... k-1 (2.24)

Sk ?
Expanding these covariances, we get

k
Cov(Ay, Ay) =Y cigKalsi,t) =0, (2.25)

=1

which is guaranteed by the choice of the coefficients (¢; ), and

k
Cov(A™ A,) = Zci’qKA(sk, s;) = 0. (2.26)

Sk
i=1
The first equation implies the second because K4(s;,t) =0 = Ka(sg,s;) = 0 by [2.18] and,
when K4(s;,t) # 0, we have K4(s;,t) = a(sg, t) K a(Sk, si), which means

k k k
Zci,qKA(Sia t)y=0 = Zci’qa(sk,t)KA(sk, si))=0 = Zci7qKA(sk, si)=0. (2.27)
i=1

i=1 =1
This concludes one implication.

For the converse, suppose without lose of generality that the driver has mean 0. We observe that
Ka(z,y) =0if z € [T}, Ti1],y € [T}, Tj11),4 # j. Let (r,s,t) € (T, Ti41)® such that r < s < .
Since (Aﬁ")) is Gaussian, we have



E[A™ | A = 24 p(n), 2.28
[ t | s ] KA(S, S) S ( )

Using the Markov property of (Ag")), we get
Ka(r,t) = E[AW A" = EE[AM A | AP]] = E[E[A™ | AP]E[A [AD)),  (2.29)

which implies

Ka(s,t) Ka(r,s) Ka(s,t)Ka(r,s)
Ka(r,t)=E LA A | = ’ : 2.30
A<T’ ) KA(Sas) ’ KA(Sas ° KA(S7S) ( )
K t
Hence a(s,t) = KA((S’ )
AlS, S

We can simplify the statement of Theorem in the following way.

Corollary 2.10. A Gaussian AP (A,En))te[ToyTn] is Markov with respect to its own filtration if
and only if there exist real functions Ay : [Ty, T,] = R, and Ay : [Ty, T,] — R, such that

n—1

Ka(s,t) =Y Ay(min(s,t))As(max(s, )L, z,,,)(s, 1). (2.31)

1=0

Proof. If

n—1

Ka(s,t) = Z Aj(min(s,t))As(max(s,t)) L, 1, (5, 1), (2.32)

i=0
then V (r, s,t) € (To, T,,)2 such that r < s < t,
07 ift € [E,E+1],T€[E,j—‘]’+1],i7§j,
Ka(r,t) = (2.33)

—z, otherwise.
Hence, (A,S”)) is Markov.

For the converse, suppose that (A,ﬁ”)) is Markov. Let T, € {Tt, 1,1}« Then,

T +Tm
Ka(r,t) B Ka ( 2 H’t)

_ (2.34)
KA (7“, Tm+§m+1> KA <Tm+§m+l’ Tm+2Tm+1)
for any (r,t) € (T, Trny1)? such that r < % < t by Theorem E Hence, if
n—1
T+ T,
M) = 3 (2 ) o), (2.35)
=0
and
n—1 K, (Ti+Tz‘+1 l‘)
2 Y
Ay(z) = Lir,, 1)(1:)7 (2.36)
— K4 <Ti+§i+1’ Ti+2Ti+1> +
we have

10



n—1

Ky(s,t) = Z Ay (min(s, t))As(max(s, )Lz 1,0 (s, ). (2.37)
i=0
[
If T; € {Ty, T),_1}« and (s,t) € (T}, T;;1)? such that s < ¢, then lim A;(s) =0or lim Ay(t) =0
s—T; t—T;11

A
by continuity of K4, and A—l(t) is positive and non-decreasing on each interval (7}, T} ), since
2

K 4 is a covariance function.
Starting from a Gauss-Markov driver (D), it is always possible to construct a Markovian (A
by applying the following procedure.

Theorem 2.11. For any Gauss-Markov driver (D;), there exists an AP (Al(fn))te[Tan}, driven
by (Dy), that is Markovian.

Proof. Let T,, € {To, T,,_1}+ and (s,t) € (T}, Tyi1)? such that s < t. Choose the interpolating
coefficients fo,..., f, according to

KD(T(),T()) KD(T(),Tn) fo() KD(',T())
: : L= : : (2.38)
KD(TanO) KD(Tan) fn() KD('7Tn)
Then,
Xn: fi(OKp(Ty, T;) — Kp(-,T;) =0, Vi=0,...,n, (2.39)
which implies g
Ka(z,y) = Kp(x,y) —Z fi(x)Kp(y, T;) = Kp(x,y) —Z £ EKp(z,Ty), Y(z,y) € [Ty, T.*
= = (2.40)

Let Ty, € {To, T_1}« and (s,t) € (Trn, Trni1)? such that s < t. Recalling that (D;) is Gauss-
Markov, there exists two functions, Hy : (1}, Tne1) — R and Hy : (1), Trnt1) — R, such that
Kp(s,t) = Hyi(s)H»(t). Using this fact, we can write

Ka(s,t) = Hi(s)Ha(t) — Zfi(S)Hl(Tz‘)H2(t) - Z fi(s)Hy (1) Hy(T5) (2.41)
= Hy(t) | Hi(s) = > fi(s)Hi(T3) | — Hi(t) Y fils)Ha(Ty) (2.42)

=0 i=m-+1
= [ X A HAT) | (AHa(1) — Hy(1)) (2.43)

i=m-+1

for some A € R, where we used Eq. with ¢ = m. Hence,

A ()N, 1) (7) = Z fi(x)Ho(T3) | Vi, 1000y (), (2.44)
i=m+1
Az () Lz, 1) () = (AHo(2) — Hi(2)) Ly, 13040) (%) (2.45)
(Ag”)) is Markov by Corollary [2.10} O

11



Recall that we imposed on all drivers (D;) of APs the property that P[D; = 0] < 1 whenever
t € (To, T,)«. If we extend this property to [Tp, T),] instead, then the above construction of a
Markovian AP becomes explicit.

Corollary 2.12. If (D;) is a Gauss-Markov process such that P[D;, = 0] < 1 whenever
t € [Ty, T,), with Kp(s,t) = Hy(min(s,t))Hs(max(s,t)) for all (s,t) € [Ty, T,)* and for some
real functions Hy and Hy, then the solution to Eq. [2.39 is given by

Hl(Tl)H $) Hl(ﬂf)HQ(T)

_ o
folz) = Hl(T1)H2(To) H1(T0)H2( )]”T“ n)(7); (2.46)
Hy(T; 1)H2($) HI(I)HZ(THI) S
Ty (o) Ha(T) — F (D) Ha(Tiy) Lol (0 Jori= Lo =1,
Hy(2)Hy(Ty1) — Hi(T,-1)Ha(z)
1) = ) BT ) = Ey (T ) Ho(Ty) ) (2:45)

Proof. Let (Ty—, Ty Trnr) € {To, Trio1}? such that T,,- < Ty, < Tppr, and @ € (Thy, Tiny1)-
Then,

> 5@ KT T3) = fn @) B (T ) Ha(To) 4 fns (@) (T ) BT 2.49)
_ H(Tony1)Ho(w) — Hy(2) Hy(Trny1)
"~ H\(Tyn1)Ha(Ty) — Hi(T)) Hz(TmmHl(Tm,)Hz(Tm)
H,(2) Hy(T,) — Hi(T,n) Hy(2)
" Hy(Tny1)Ho (1) — Hl(Tm)H2(Tm+1)HI(Tm_)HQ(TmH)

Hy(2)(Hy (T~ ) Ho (T ) Ho(Tny1) — Hi(T- ) Ha(Ton) Ho(Thny1))

Hy(Tyx) Ho (Ty) — H (T Ho(Tors 1)
o @) (o) By (T ) Ho (L) — H (L) H (T ) Ho (T )
Hy(Tni1) Ha(Trn) — Hi(Tin) H2(Ting1)
(2.51)
= H1<Tm7)HQ<J}) = KD(Tmf,ZE)
The same argument applies to show Z fi(x)Kp(T+,T;) = Kp(x, T,,+). Hence,
Kp(Ty, Ty) ... Kp(To,T,) fo() Kp(-,Tp)
: : L= : : (2.53)
KD(TmTO) KD(TmTN) fn() KD('7Tn)
O]

Remark 2.13. Notice that if (D;) does not satisfy P[D, = 0] < 1 for some t € {Ty, T, }«, it is
still straightforward to construct the above AP by removing all the rows and columns of zeros in
the matriz

Kp(Ty, Ty) ... Kp(Ty,T,)
: : (2.54)
Kp(Tp,Tp) ... Kp(Tp,Tp)

12



Since the driver already matches 0 at t € {Ty, Ty, }+, we will not need to find the corresponding
interpolating coefficients because they will not appear in the AP expression. This is illustrated
by taking the Brownian motion as a driver with Ty = 0. Then fo does not matter since it is
multiplied by 0 in the AP expression.

Remark 2.14. For the choice of coefficients in Corollary[2.13, we can simplify Eqgs. and
243

AL ()L 1) () = frn1 (@) Ho (D) Lp, 10 (), (2.55)
M) = (D i) — 110)) L) (250

This method of producing Markovian APs is not unique, but certainly feels natural. The
resulting APs are called standard.

Definition 2.15. A standard AP (Al(fn))te[Toan] is an AP driven by of a Gauss-Markov process
(Dy), with Kp(s,t) = Hy(min(s,t))Hs(max(s,t)) Vs, t € [Ty, T, for some real functions Hy and
H,, of the form

( Hy (Th)Hy (t)—Hi (t)Hy(T1) Hy (t)Ho (To)— Hi (To) Ha () ;
Dy — H1(1T1)1H2(2T0)*Hi(T0)12LIz(1Tl) To — H1(1T1)H;(Tg)7H1(Tg)Hz(T1)DTl ifte [TO’T1>’
Hl(Tg)Hg(t)—Hl(t)HQ(Tg) Hl(t)Hg(Tl)—Hl(Tl)HQ(t) .
A§”> — Dy = H(T2)Ha(T1)—Hy(T1) Ha(T2) ~ 10— Hy(To) Hz(Th)—Hi(Ty) Ha(T2) 12 ift e[, T),
: Hy (Ty) Ha () — Hy () Ho (T
Dy — H1(Tnl)Hz(Tnfl)—Hi(Tnfl)H2(Tn)DTn—l

Hy () Ha(Tp—1)— H1 (To—1) Ha (£) ,
T )= P € [Ta, Tl
(2.57)

Example 2.16. If (D,) is an Ornstein-Uhlenbeck process with parameters 6 > 0,0 > 0,u € R
and starting value dy € R, that is, the solution to

2
o .
then Kp(s,t) = %eem‘n(s’t)e_emax(s’t). The standard AP driven by (Dy) is
( 0(Ty —t) _ o—6(Ty —t) 0(t—Tp) _ a—0(t—Tp) .
D; — CGe(TliTO)_Efe(TifTO)DTO - CGe(Tlng)_E—G(Tl—OTO)DTl ift € [T07T1)7
0(Ty—t) _o—0(To—t) 0(t—T7) _o—0(t—T7) )
Agn) = D, — eGe(TQETl)igfé(Tszl)D']H - eee(T27T1)7Z—0(T2—1TI)DT2 th € [T17T2)7

eO(Tn—t) _o—0(Tn—t) ft—Tp_1) _=0(t—Tp_1) .
Dy — T —Tp 1) _ g 0(Tn— n,l)DTn_l — T n,l)ie—e(Tn—Tn,l)DTn ift € [Tnfl’Tn]-

(2.59)

\

There are infinitely many Markovian APs driven by the same Gauss-Markov driver. In general,
when T, € {Ty, T,,_1}+ and (s,t) € (Tpn, Trn11)? with s < t, we have
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— | D fHAT) | | Hi(t) = fi(t) Hi(T)
i=m-+1 =0
+ Z fZ(S)Hl(Tz) Z fz(t>H2(Tz)
i=m-+1 i=m-2
— | Hals) - Z fi(s)Ha(T5) Z [(t) Hi(T5), (2.60)

where we use the convention that an empty sum is equal to zero. There are as many Markovian
APs driven by (D;) as there are ways to separate the variable of the above expression of K 4.

Example 2.17. If (Dy) is a standard Brownian motion, applying Eq. to find appropriate
interpolating coefficients yields the stitched Brownian AP. But there are other Markovian APs
driven by standard Brownian motion. For instance, in the two-period case, we may choose

o Tl —1 T2 —1
fO(t> = T, — TO]I[TOVTI;TQ] (t) - T, — To]l(TlerT2 7T2] (t)v (2'61>
t—"1To T —t
fl(t> = Tl _ Toﬂ[To,T1](t) + ml(ThTﬂ(t)v (262>
t—1T
fo(t) = mﬂm,n](t)- (2.63)

It 1s straightforward to verify that these are interpolating coefficients. Let (AEZ))te[TO,TQ] be the
AP with these interpolating coefficients driven by a standard Brownian motion. Then,

KA(87 t)
(min(s,t) — Tp) (1) — max(s,t))
= T, — Ty ]l(To,Tl)(Sa t)
_ To(max(s,t) +Ty) — 3ToTy + T¢ Ty — max(s,t)
t) — T 1 t
+ (min(s,t) — T1) ( (T, = Ty)? + T (1, 1422 (s,t)

N (min(s, t) — T1)(Ty — max(s,t)) T¢ + TZ + To(Ty — 3T1)
T2 — T1 (Tl - TO)2

x 1 (1, 73472] (min(s, t))1 (1222 3] (max(s, 1))

4 min(s, t) (T02 -+ T12 — To(Tl -+ Tg)) — (Tl — T0)2T1 —+ T(]TQ(TQ — Tl) T2 — max(s, t)
(Th — Tp)? T —Th
X ]].<T142rT2 7T2] (S,t). (264)

Thus,
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Al(I) = (ZE — TO)]l[To,Tﬂ(I) + (CL’ — T1)1<T1:%] (I) (265)
L o(TE+T? - To(Ty + Ty)) — (Th — Tp)*Ty + ToTo(To — T1)

1
T2 + T2 + To(T, — 3T1) (FEPm] (),
T1 — T T()(I + To) - 3TOT1 + T12 T1 — T
A = 1 1 2.66
2(1‘) Tl _ TO [TO,Tl](‘/E) + ( (Tl _ T0)2 _'_ T2 _ Tl (T17T1‘5T2:| ('T) ( )
1 T1+Ty (x)
T, =T (T — Tp)? (R 1

Hence, recalling Theorem (3.8, this AP is Markovian. This AP is a slight modification of the
stitched Brownian AP, where fy is not 0 on (11,T,). Hence, By, still has an influence (a
negative one since fq is negative on (T1,1s)) on the paths of the AP on (T1,T5). Similarly, we
can modify the stitched Brownian arcade by making fo not 0 on (Ty,T}):

T, —1t
folt) = TTO]I[TO,TA(W (2.67)
t—"1To T, —1t
fl (t) = Tl — TO]I[TO’Tﬂ(t> + T2 _ Tl]l(Tl’TQ] (t), (268)
Tyt t—1Ty
falt) = T~ Tl]l [TO,TO-ng] () + - Tl]l(TO-ng 7T2] (t). (2.69)

For this choice of interpolating coefficients, By, has an influence on the paths of the AP on
(To, T1). Combining the interpolating coefficients fo from Eq. and fy from Eq. we can
find an interpolating coefficient f1, such that a Brownian AP with these interpolating coefficients
1s Markovian:

Ty —t t—"1T5

fo(t) = T TO]I[TO’W] () + T, — To]l<w’T2] (1), (2.70)
B (t — To) (T — Tp) TE — ToTo + t(Ty — 2Ty + T)

fi(t) = Ty — T)(T1 — Ty) [To,%] (t) + Ty —To)(T5 — 1) (%,Tl] (t)

Ty(To(Ty — 2T3) + ThTy) + t(ToTy — T3)

(T, = Ty )(Th — To)Th (Tl’w] (¥
(Ty — t)(T? + To(Ty — 211))
(T, = Th)(Th — To)Th 1<W’TQ] ®), (2.71)

folt) = g 0__;,1 1 7,703 (t) + ;,2__1;1 1 (B2 7 (t). (2.72)

The key to building non-standard APs is to break each sub-interval into several pieces, and to
define the interpolating coefficients by parts on these pieces while making sure that they remain
continuous, and that the expression of K4 in Eq. has separable variables.

15



3 Randomized arcade processes

We extend the idea of arcade processes to interpolate between the components of the random
vector X instead of interpolating between zeros. Two sets {fo,..., f»} and {go,...,gn} of
interpolating coefficients (see Def. are needed to ensure the matching of the target random
variables. We recall that the R"™!-valued random vector X = (Xo, ..., X,,) is independent of
the stochastic driver (D,), while the random variables Xy, ..., X,, may be mutually dependent.

Definition 3.1. An X-randomized arcade process (X-RAP) (It(”))te[Toan] on the partition
{Tov, T,,}« is a stochastic process of the form

n

"= 8"+ A" =D, =Y (filt)Dr, — g:i(1) X;) (3.1)

=0

where fo, ..., [n and go, ..., g, are interpolating coefficients on {Ty, T, }.. We refer to

S = Z 9:(t) X; (3.2)
i=0
as the signal function of It(n) and to
AP =D =" fi(t) Dy, (3.3)
i=0

as the noise process of I™. We denote by (F)terry,m,) the filtration generated by (It(n)).

We notice that I;z) = Xo,... ,]:(FZ) = X,, so (It(n)) is a stochastic interpolator between the
random variables Xy, ..., X,,. We have that (S™) 1L (A™) since X 1L (D).

Remark 3.2. A related class of processes, introduced in [15], are known as the random n-bridges.
These processes, defined weakly, match given probability measures instead, and are designed in
the same way as a randomized stochastic bridge: by conditioning a stochastic process to match
certain probability measures at given times. In particular cases, the law of a RAP satisfies the
conditions for the RAP to be a random n-bridge. For instance, the RAP obtained by randomizing
the stitched Brownian AP, using the same interpolating coefficients for the signal function as
the ones used in the noise process, has a law that satisfies the conditions for the RAP to be a
random n-bridge. But any other RAP driven by Brownian motion is not a random n-bridge.
Similarly, certain random n-bridges cannot have the same law as a RAP. In this paper, we did
not allow the driver to be have jumps, such as a non-continuous Lévy process, by choice. But
if we did just for the sack of comparison, a random n-bridge built using a gamma process will
never match the law of a RAP driven by a gamma process, since APs are sums, not products.

The paths of an X-RAP will depend on the coupling of X, not only on its marginal distributions.
This property is illustrated in the following example.

Example 3.3. Let X = (X, ..., X5) be a vector of independent Uni f({—1,1}) random variables,
and Y = (Yy,...,Ys5) be another vector of random variables such that Yo ~ Unif({—1,1}),
Yi=-Y, 1 fori=1,...,5. Let Af’) be an AP with elliptic interpolation coefficients driven by
Brownian motion multiplied by 0.2, g; = f; fort=0,...,5, and ]t(5), ft(5) its associated X-RAP
and Y -RAP respectively. Although we are using the same driver and interpolating coefficients
for both RAPs, and that the vectors X and Y have the same marginal distributions, the paths
of It(5) and ft(“r’), shown below, are very different.
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Figure 6: Paths simulation of I{” on [0,10] Figure 7: Paths simulation of I on [0, 10]
using the equidistant partition {T; = 2i|i = using the equidistant partition {T; = 2i|i =
0,1,...,5}. 0,1,...,5}.

Besides its main purpose of interpolating in the strong sense, a RAP can also be used to mimic
another stochastic process. Let (Y;)icin, 7] be a sample-continuous stochastic process. For
instance, if {Ty, T, }« is the equidistant partition of an interval [a,b], X = (Y7,,...,Yr,), and

{fo, -, fn} =1{90,---,9n} are the piecewise linear interpolating coefficients, then for nearly all
weQ, sup A" (w) =0, and sup S™(w) = Y,(w) as n — oo. Hence, in that case,
t€[a,b] t€la,b]
sup [I" — Y, = sup [S™ + A" —v,| 0, (3.4)
tela,b| te(a,b]

with probability one.

Example 3.4. Let [a,b] = [0,10], and {To, T,.}. its equidistant partition. If (Y:) is a fractional
Brownian motion and X = (Yr,,...,Yr,), then the paths of an X -randomized stitched Brownian
arcade will be similar to the one of (Y;) when n is large enough.

3FT T T T T ™ 3FT

Fractional Brownian Motion
(=]
Randomized Arcade Process
(=]

0 2 g 8 8 10 0 2 4 6 8 10
Time Time

Figure 8: Path of the fractional Brownian mo- Figure 9: Path of an X-RAP mimicking the
tion (Y3). same fractional Brownian motion (Y}).

Proposition 3.5. Let (S\™) and (A"™) have mean functions s, pia, variance functions o2, 0%
and covariance functions Kg, K 4, respectively. Then

pr(t) == E[I] = ps(t) + palt), (3.5)

o2(t) := Var[I™] = o%(t) + o3 (t), (3.6)
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Ki(s,t) := Cov[I{", II"] = Kg(s,t) + Ka(s, ) (3.7)
= ZZgi(t)gj(s)Cov(Xi,Xj) + Ka(s,t). (3.8)
i=0 j=0
We introduce terminologies similar to the ones from the previous section.
Definition 3.6. Let (I ) be a RAP.
1. (It(n)) is said to be a Gaussian RAP if its stochastic driver (Dy) is a Gaussian process.
2. (It(n)) is said to be a standard RAP if its noise process (AE")) is a standard AP, g;j(x)ir,_, 7,)(x) =
fi(@) g, 1)(7), and g;(x)Ligy1,_y)(x) =0, for all v € [Ty, T,,] and j=1,...,n
We give a similar Markovianity result for Gaussian RAPs to the one of AP.

Definition 3.7. Let T C R* be a real interval, and 7o < 7, < ... < 0o such that T =
{10, 71,...} CZ. The set T may be finite, i.e., there exists a maximal element T, € T, or contain
infinitely many elements. A stochastic process (Yy)ier is called T-nearly Markov if

P[ne-mj]zp[ne-nco,...y Y, (3.9)

» L Tn(s)?

for any (s, t) € I* such that s < t, and Ty = max{n |7 < s}

Theorem 3.8. Let (]t("))te[Toan} = (St(n) + AE"))te[Tan} be a Gaussian X-RAP on {1y, T, }..
Then (It(")) is {Tb, T), }«-nearly Markov if the following conditions are all satisfied:

n—1
1. The AP (A§”>) is Markov, i.e., Ka(s,t) = ) Aj(min(s,t))As(max(s,t))Lin, 1, (s, 1).

1=0

2. Forallj=1,...,n, and for all x € [Ty, T,],

gj(x)]l[To,ijl](l‘) = 07 (310)

95(@) A (Ty) gy, 1) () = As(2) iy, 1) (%) (3.11)

Proof. Let k > 1 and (s1, 8y, ..,sk,t) € [Ty, T,JF*! such that s; < sy < ... < s, < t. Then,
(I™) is {Ty, T, }.-nearly Markov if and only if

P[[}”) €| Xoy oo X 1™, JW} :P[[f") €| Xoy oo Koo, I (312)

5K s1 ) Sk

where m(sg) := max{i € N|T; < sx}. In the following, we will refer to m(sy) by m since sy is
fixed.

We first show that sq,. .., s, can be picked to all be in the sub-interval (7, T),+1). To see this,

assume there is an integer j € {1,...,k} such that s; < T, and T, < s;j41. Then
o(Xo, o, X, I, I0) = 0(Xo, o X, ALY AW T T) (3.13)

by Eq. m We also know that (Ag1 ,e Ag? ) 1L (Xo,..., X)) by the definition of the
X-RAP, and (A, . .. ,Ag? ) AL (Is(ﬁl, . ]5(7,:), 1Y since (A™) is Markov. We conclude that

IP’[[t(")e-|Xo,...,Xm,I( I<">}=P[1§")e-|xo,.. X, I IW] . (3.14)

S ) TSk m75+1""’5k:|’
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which means we can assume that sq,. .., s; are all in the same sub-interval (T, T},11)-

Let us define a,,(-) := > ¢;(-)X;, and
i=0

k k k
q :Zci,qfs(in) = Zci,qam(5i>+zci,qgm+l( m+1+ZC’Lq S5 7 q= 17'-~7k_ 17
=1 =1 =1

(3.15)
where the coefficients (c¢; ;) are chosen such that
11 .- Clk—1
Z CiqKa(si,t) =0 and det : : # 0. (3.16)
= Ck—11 -+ Ck—1k—1
This guarantees the following (where the notation "|(Xy,..., X,,)" means conditionally on

(Xo, 2 Xn)):
1. P [It(") €| XO,...,Xm,Is(?),...,JS(Q)] _p [It(”) €| XO,...,Xm,Al,...,Ak_l,JS(Q)].

2. (A, ..., Ak 1) | (Xo,...,X,,) is a Gaussian vector. To see this, we observe that Vg =
1. k-1,

k k
Zci7qKA(Si7t) =0 = Zci,qgm+1(5i) =0, (317)

where we used Eq. [3.11] Hence, A, Z Cigl % Z Cigm(8:) + Z CigA ™ for all
qg=1,...,k—1, which implies that (Aq,.. Ak 1) | (Xo, X)) isa Gaussmn vector.

k
3. AM (AL ) [ (X, X, since S ¢ Ka(si, ) = 0.

i=1
4. AW 1L (A1, ..., A1) | (Xo, ..., Xin), since (Aﬁ"’) is Markov.

To conclude, we need to show

I 1 (Ary e D)) | (Xoy oy Xon) and I 1 (Ary e D) [ (Koo Xon). (3.18)
Since (I™) = (5™ + A™), and (S™) 1L (A™), we have if

AP AL (Ary A ) | (Xoy ey Xon) and AD UL (A A ) |[(Xoy o5 X)), (3.19)

which is guaranteed by conditions [3.16] ]
Remark 3.9. If (Ag")) is standard (see Def. , then Eq. |3.11 is equivalent to
gJ( )1[ 1T]< ) fj(x)]l[Tj—th}(x)‘ (32())

This makes standard RAPs automatically nearly-Markov.

Remark 3.10. Depending on the coupling of the vector X, P [ | Xoy ooy Xongs)s g

maght simplify further. For instance, if X has continuous marginals cmd 15 distributed according
to Kantorovich’s coupling, then

S

P (1™ e ~]XO,...,Xm(s),I(”)] :]P[ | Xo, Iﬂ (3.21)

because X1, ..., X are all deterministic functions of Xo.
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Remark 3.11. It s important to notice that the nearly-Markov property is not symmetric in
time. Define Gl = o (1, It <u<T,). Let s < t in [Ty, T,|. Then, to get

P |:[s(n) S ‘ gtI] = [ n) € ’ [ ()7Xk(t)+17 cee 7Xn:| (322)
where k(t) = min{i € N|T; > t}, one needs to replace Cond. by

gj (‘T)]]'[Tj-t,-l,Tn](‘T) = 0 (323)

Example 3.12. We give an ea:ample of a non-standard X -RAP on [Ty, Ty] that is {To, To}-

nearly Markov, where Xo £ X, £ X, £ Umf({ 1,1}) are pairwise independent. Consider the
interpolating coefficients

o Tl —1 T2 —1
fo(t) = Tl — TO]I[TOVTlJQFTQ] (t) - Tl To]l(TlJrTz T](t)’ (324)
t—"Tp T
fit) = T =T, Lz 1y (1) + ﬁﬂm,n](t)a (3.25)
t—T
fa(t) = ﬁﬂ[ﬁ,nl(ﬂ- (3.26)

Let (A£2)>tG[TO,T2] be the arcade process with these interpolating coefficients driven by a standard

Brownian motion. As shown in Ex. (Aﬁz)) is Markov. For Eq. to be fulfilled, one
only need to impose go(t)Lip () = 0. For Eq. to be fulfilled, one requires that

t—T,
T, — Ty

92(0)1 g, ugm) () = ( t—T, -

g1 (t)ﬂ[To,Tl](t) ]l[To T1]<t) (327)

(t - Tl)?o) 1y, mgm) (1) (3.28)

(Th
(T2 )Ty
T 1) ) L(mymy g (8) (3.29)

Outside of the considered intervals, the functions g; can take any values as long as they remain
interpolating coefficients. Notice that the theorem does mot impose a condition on gy. For
example, we could choose g; = f; outside the above intervals. Hence, all three conditions are
fulfilled and this X-RAP is {To, T }«-nearly Markov. As we can see from the paths simulation
below, this process is visually different from a randomized stitched Brownian arcade on the
second arc (the noise has been diminished to make the paths more informative). Simulating the
signal function by itself highlights the following: Xy will determine the fate of the signal function
on [Ty, Ty since this RAP is not forgetting about previously matched random variables when
changing arc. On the first arc, where the process is simply a randomized Brownian bridge: to go
from Xo = —1 to X1 = —1 for instance, there is only one way, a straight line. On the second
arc, to go from X1 = —1 to Xy = —1, there are two ways. The signal function will choose which
way to use based on the value of Xo. This is illustrated by the paths of the signal function below:
the blue path and the green path both take value —1 at 17 and value 1 at T3, but have different
values in Ty. Hence they differ on [T1,Ts], as observed.

9201 (r2gm, 11 (1) = ( t— T1
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0.5

0 2 4 6 8 10 0 2 4 6 8 10
Time Time

Figure 10: Paths simulation of the signal Figure 11: Paths simulation of a non-standard
function of a non-standard X-RAP, where X-RAP, where the noise process was rescaled
{TQ,TQ}* = {O, 5, ]_0} by 03, and {To, TQ}* = {0, 5, 10}

4 Filtered arcade martingales

In this section, we construct martingales with respect to the filtration generated by an X-RAP,
which interpolate between the components of X = (Xj, ..., X,,). These martingales solve an
underlying stochastic filtering problem, and extend the martingale class constructed within the
infomation-based theory of BHM. We call such martingales filtered arcade martingales (FAMs).

4.1 The one-arc FAM

Given a random vector X = (Xy, X;) with integrable, convexly ordered components Xy <. Xi,
distributed according to the real probability measures po and pq, respectively, and an X-RAP
([t(l))te[Tong] on the partition {7p, 77 }., we would like to construct a martingale (M;)icir, ] with
respect to (F!) such that My, = Xy and My, X;. An equivalent claim to Xy <. X is
that their joint distribution 7% is in the set of martingale couplings, that is M (ug, p1) = {7 €
(0, 1) NPL(R?) | (Xo, X1) ~ 7 = E[X1| Xo] ¥ Xo}. The BHM framework developed in
[6] is recovered when X, = E[X]].

Definition 4.1. Given an X-RAP (It(l)) and a martingale coupling ™, a one-arc FAM for X
on [Ty, Ty] is a stochastic process of the form M, = E[X, | F]].

Proposition 4.2. The FAM (M,)ein, 1y is an (F})-martingale that interpolates between X,
and X;.

Proof. 1. E[|M,|]] < +oc for all ¢t € [T, T1] by Jensen inequality, since E[|X;|] < 4o0.
2. For s < t, E[M; | FI] = M, by the tower property of the conditional expectation.
3. Mg, = E[X;| Xo] & X, since 75 € M(uo, p11) and I%) = Xo.

4. My, =E[X; | F}] = X; by construction of )
Hence, this (M;) is a martingale with respect to (F/) that interpolates between X, and X; on
[T07 Tl]
O]

Remark 4.3. The process (M,) is also a martingale with regard to its own filtration, denoted
(FM): for s < t,

E[M, | F)'] = E[E[M, | "] | F,] = E[E[M, | ]| ') = E[M, | F"]

M, (41)
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A notable relationship between the RAP (It(l)), its noise process (A,gl)), and the associated FAM

(M) is the following:
Proposition 4.4. If It") = go(t)Xo + g1() X1 + A" and M, = E[X, | F/], then

E[1V | FI] = go(t) Xo + g1 (t) M, + E[E[AY | FA] | FI

(4.2)

for any pair (s,t) € [Ty, T1]? such that s < t. Furthermore, if (A,gl)) is Gauss-Markov with

Ka(z,y) = Ai(min(z,y)) As(max(z,y)) (see Coro. [2.10), then

Bl 17 = (a0(0) = () Xo+ (an(0) = 2 00n(5))
+ jz—é?)fs + pa(t) + jz—((glm(s)

for any (s,t) € [Ty, T1]?* such that s < t.

Proof. Let (s,t) € [Ty, T1]? such that s < t. Notice that

E[I7 | F1] = go() Xo + g1 (1) M, + E[AY | F1,
— go(t)Xo + g1 ()M, + E[E[AM | FA | F],

since E[Agl) | FI = E[E[Agl) | Xo, X1, FA) | FH = ]E[]E[Agl) | FA4]| FI], where we used the fact

that (A,E”) 1 (Xo, X1), see Def. . If (A,E”) is Gauss-Markov, then

BLAD | 7] = EAL 1 AL] = a) + “ s (A9 = ()

Hence, by linearity of conditional expectation,
KA(87 t)

E[E[A | FIF] = na®) + =375

(ELAD | F!] = pa(s))

Notice that

1 = B[V | F] =AY | F]+ go(t)Xo + 01 () Mo,
which implies
BAM | F] = 1 = golt) Xo — g1 (1) M:
Then, plugging Eq. in Eq. and recalling that K4(s,t) = Ai(s)Ax(t) yields

E[]t(l) | Fl] = (go(t) - ﬁzéz))go(s)> Xo + (91(75) - %891(8)) M
+ j;lz—éi))js + pa(t) + jj—guA(S)-

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

]

If (]t(l)) is {1y, Ty }-nearly Markov, then M; = E[X] | X, It(l)]. We can then derive the dynamics
of (M;) using Bayes’ rule and It6’s lemma under mild assumptions. In what follows, we assume

that the driver of (It(l)) has a density function.
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Proposition 4.5. Let M, = E[X; ]Xo, ] be a one-arc FAM restricted to t € (Ty,T1). Then

Juuf ™ XN dFY Yo y)
Jo 17 Koy (1) dF 1 Xo(y)

M, = (4.11)

where FX11%0 45 the distribution function of X1 given Xo. In particular,

1. If (Xo, X1) is a continuous random vector, then

(1) _ (1) _
Joyfl 1XoXa=y ([ pXalXo gy dy [y i 1XoXa=y(1D) fX0X) (X y) dy

M, = M ) - 0 ) :
Jp [l XX ( L) Ko (y) dy  fp R IXe X =1 fEX) (X, y) dy
(4.12)
2. If (Xo, X4) is a discrete random vector, then
It(1)|X0,X1:y [(1) PIX, = X,
> uf (L " )PLXy = y | Xo)
M, =2 . (4.13)
3 fH XX () RIX = y | Xo)
y
Proof. By Bayes rule,
Pz < IV € Xo, X1 < YJP[X; < y| X
PIX; <yl Xo, 2 < IV <246 = z< ”E'(DO’ 1 S YPXG Sy Xo] (4.14)
Plz < I, < z+ €| Xy
:P[zgjtﬂ 2+ €| Xo, X1 < yP[X: < y| Xo) (4.15)
JoPlz < IV < 2 4 €] Xo, Xy = y] dFX11Xo(y)
_ Pz < IV < 246, X1 < y| Xo) (a16)
f]R]P)[Z < It(l) < Z+e€ ‘ X07X1 = y] dFX1|XO<y>
This means that, by taking the limit when € — 0,
FXl‘XofléU:Z(y) _ d]P)[I Z|X07X1 X ]FXI'XO(y) (417)
o 113020 (2) X o )
which implies
1Y X0, X1=y( 5 4 X1 1 X0
dFXl \Xo,l,§1>ZZ(y) — f - (Z) (y) ) (418)
fR [ 1 X0.X0=y () d X1l Xo (y)
Inserting the expression for dF*X: |X°’It(1)zz(y) into M;, we obtain
(1) _ 1
Mt —_ / deX1 |X0,It(1)<y) — fR yflt |X07X1_y(]t( )> dFXl | Xo (y> (419>
x Je 10X (10) AR %o )
O

Example 4.6. Let Xy ~ U([—1,1]), and X1 ~U([-2,2]). These random variables are convexly
ordered, i.e., Xo <cx X1, hence there exists at least one martingale coupling for (Xo, X1). We
choose the couplmg defined by

%Xo + 2 with probability %,
—1X,— 2 with probability }1.



This is a martingale coupling since E[X, | Xo] 2 Xo. In fact, it can be shown that this coupling
is the solution to a martingale optimal transport problem, see [18]. For any {Ty, T1}-nearly

Markov X-RAP (It(l)), we have

(9XO + 3)f'1( )|X0 X1= §X0+2 ([( )) (X + S)flt(l) |X0’X1:7%X07%([t(1)>

M, = E[X, | Xo, IV] =
t [ 1| 05 4¢ ] 6f1t()|XO’X1:%X0+§(It )+2f[£)|X0,X1:f%X0—%([t(l))

(4.21)

Example 4.7. Let X, ~ N(0,1), and X; ~ N(0,2), where X; | Xy ~ N(Xy,1). For any
{Tb, T\ }-nearly Markov X-RAP (It(l)), we have

) —y () m=Xe)?
M, — E[X |X I(l)] _ fR yflt | Xo.Xa y(It )e 2 dy (4 22)
t — 1 0y 4¢ - I(1> ‘X i (1) —(y—Xq)2 . .
fRf o X Xa=y([ e 2 dy
To simplify expressions, we introduce the following notation:
L ouft,z, Xo,y) = fi X020 (),
2. ut<t7 Z, X07 y) = %(tv 2, XO? y)?
3. uy(t, z, Xo,y) = %(t,z,Xo,y),
4. uzz(t; z, Xo, ?J) - gQTg(ta z, Xo, y)a
B K.(t,2,X0) = [pu(t, z, Xo,y) dFX11X0(y),
6. V(t, 2, Xo) = [ yu.(t, z, Xo,y) dFX11X0(y).
Thus, under the conditions in Prop. 1.5, we may write Eq. as
v, IV, X
M, = Vi, 1, Xo) (4.23)

Kt IV, Xo)
Proposition 4.8. If (I'V) is a semimartingale such that (t,z) — % is C*(((Ty, T1) \
N) x Im(IM)) where N C (Ty, Th) contains finitely many elements, and M, = E[X; | X, I, 1)]
is a one-arc FAM, then

Vilt, 11", Xo) = MK, (8,1, Xo) (o V(I Xo) = MU (1, 1Y, Xo)
K(tajfl)vX(J) K(t71t(1)aX0)
. MK2(t, I, Xo) — K.(t, I, Xo)Va(t, IV, Xo)
K2(t, IV, Xo)
A I, Xo) — MK . (t, 11, Xo)

dM, = arty

> d[IV],.  (4.24)

fOT’t S (T(), Tl)
Proof. This is verified by a straightforward application of [t6’s lemma. O

Remark 4.9. The Ito condition, i.e., (t,2) — SLZX0) s C2(((Ty, 1) \ N) x Im(IM))) where

K(t,a},Xo)
N C (Ty,T1) contains finitely many elements, imposes implicit integrability conditions on
(Xo, X1)-
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Since we studied in detail Gaussian RAPs, we can specialize Prop. [£.§ to this particular subclass.

Corollary 4.10. Under the conditions in Prop. [{.8, if the conditional probability distribution
of( ) given (Xo, X1) is N'(go(t) Xo + g1(t) X1 + pa(t), 0%(t)), we have

(1) TORY
Vit 1 X) — M 0, Xy) (BP0 1Y) = 29000 (463)

K(t, 1V, X,) oa(t)
M,g:(t) (gl((tt))> + (It(l) — go(t)Xo — pa(t)) ((ﬁ;&%)l + g1(t) <0'A1(t)>/>
+ ( ()
 (Xogo(t) + px ()9 (t) o 1)
=0 ) x Var[Xi [ Xo, Iy '], (4.25)
Vit IV, Xo) — (z})moz LY, Xo) _ 91(0) v, | X, 1) (4.26)
K(t, 1V, X,) o4 (t)

MK2(t, 1Y, Xo) = Ka(t, 1LY, Xo)Va(t, 17, Xo) 1Y — go(8)Xo — pa(t) — a (6) M,
K2(t, I, Xo) oat)
x Var[X; | Xo, I!V],

(4.27)
Verlt 117, Xo) = Moot 1, Xo) _ ELXY| Xo, 1] = MY o
ok (t, 1V, Xo) 20 (1) '
(1)
211V — go(t)Xo — palt t)M,
2L~ 9o(t) X . 1a®) £ OM: x| xo, 10,
2074(1)

(4.28)

Proof. Denoting Z, = I — go(t)Xo — pa(t), and J, = Xogo(t) + 1/4(t), the result follows from
the following computations:

1.

Vit, IV, Xo) = 91040 3_15)/1
oA
L Zhoalt) +ou(O)(ZF — o4(1))
ai(t)
~ 1) (Sioa(t) + 22,0 (1)) — ZtaA(t)g{(t)K(t IO X, )E[X2 | X, V)]
O'i(t) y 4t A0 1 0,4t |y

t)oa(t
Ooall) ) )k (1, 19, Xo)E[X? | Xo, 1Y)

vt IV, Xo)

(4.29)

Kt 10, Xp) = 2070 g)/l 0740 o, (1) (1, 100, X0 ELXE | Xo, 1)
n ZiJyoat) + oy (1) (27 — 0%

10
() (Jioa(t) + 2%535(;)) - ZtUA(t)gll(t)K(t7 IO, XM, (4.30)

(t))K(t, 19, Xy)
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_ gl(t)E[X% ‘ X07 [t(l)]K(t’ 115(1)7 XU) B Ztv(t7 [t(l)a XO)

Vot IV, X, 4.31
(’ t > 0) 0_124(15) 9 ( )
4.
W gV, IV, Xo) — 2K, IV, Xo)
Kz(t7lt aXO) - 0_2 (t) ) (432)
A
5.
20 E[X3 | Xy, IM = 27,0, (OE[X2 | X, T
sz(t,ft(l),Xo):%() [ 1’ 0, 4¢ ] . tgl() [ 1| 0, 4¢ ]K(t,ft(l),Xo)
UA<t>
zZ —o5(t) (1)
Zi Ay VX, 4.33
O'i(t) ( s 4t 0)7 ( )
6.
2OEIX2 | Xy IMK @ IV, X)) — 2Z,0:()V (t. IV, X
Kzz(t,[t(l),XO) _ gl( ) [ 1 ’ 0y 4¢ ] ( ) Lt 47 0) tgl( ) ( ) O)K(t,[t(l),Xo)
UA(t)
Z¢ — o4t
+ %‘A()K(t, 1V, x,). (4.34)

aiy(t)
O

Keeping the notations Z, = I\ — go(t) Xo — pa(t), Jy = Xogy(t) + 14 (t) from the previous proof,
and introducing U; = E[X? | X, I;] — M}, the SDE for (M;) can be rewritten as

, (0 (20
dM, =U, 2901;8) d[IM], — Wdt + j%(é))\/ar[XﬂXo,]t(l)] (4.35)
a@®\ |, oal) [(9@®)Y 1y
’ ((M”““) () + 255 <<oA<t>) +a) (517) ) i Jt) )
% d[IM], + dft“)). (4.36)

If, furthermore, (It(l)) is a standard RAP, its driver (D;) is Gauss-Markov with Kp(z,y) =
Hi(min(z,y))Hs(max(x,y)), where H; and Hy are continuous functions on [T}, 73] such that
H,/H, is positive and non-decreasing on [Ty, T7). Then, as shown below,

t ¢
[1(1)]:: = [D]; = Hy(s) dHi(s) — Hi(s) dHa(s), (4.37)
TO TO
where the RHS is interpreted as a difference of Riemann-Stieltjes integrals. The RHS exists
since

[ msam ) - [ me)am) - [ w3 (%) (), (4.38)

and H;/H; is monotone and so of bounded variation and differentiable almost everywhere.

Proposition 4.11. If the driver (D;) is a Gauss-Markov semimartingale with Kp(x,y) =
Hl(min<x7y))H2<maX(xa y)); then
t t

(D], = | Hy(s)dHy(s) — | Hi(s)dHs(s). (4.39)

TO TO
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Proof. Let t € [Ty, Th], Ty =ty < t; < ... < t, =t be a partition of [Ty, t], and A; = Dy, — D,
Then,

R

=> E[D} ] +E[D}]—2E[D,,, D], (4.40)

= > Hu(tj) Ha(tjen) + Ha(t;) Ha(t;) — 2Hi(t) Ha(t511)

+ (up(ti) — po(1))* (4.41)

n—1

= Ha(tj)(Hi(tjn) — Hity) — Hi(t;)(Ha(tj11) — Hal(ty))

+ (up(tj1) — MD(%’))Q- (4.42)

Since up is continuous and of bounded variation (by the semimartingality of (D;)),

—_

n—

(p(tje1) — up(t;)” ———— 0. (4.43)
s max|ty+41—tu|—0
This shows that
n—1 t t
E A2 Hy(s)dH(s) — [ Hi(s)dHy(s). 4.44
Z | oo, M9 A = | Hs) dHa(s) (4.44)
Furthermore,
n—1 n—1 n—1
Var S A2l =373 cov (A2,42), (4.45)
§=0 j=0 i=0
n—1 n—1 n—1 n—1
=2 COV2 (Az, A]) +4 E[AI]E[AJ]COV (Al, AJ) s (446)
=0 =0 =0 =0
and
(Hi(tiv1) — Hi(t:))(Ha(tj41) — Ha(t;)) if i <j,
Cov (A;, Aj) =« (Hi(tj41) — Hi(t;))(Ha(tir) — Ha(t;)) if j <, (4.47)

Hy (1) (Hi(tj41) — Hi(ty)) — Hi(ty)(Ha(tj41) — Ha(ty)) ifi=j.

\

We split Eq. into the cases i < j, 7 <1, and ¢ = j. Considering the case i = j first, we get

—_

Z_: 2Var®[A;] + 4E*[A;]Var[A;] = Y  Var[A)] <2Var[Aj] + 4 (pp(tjs1) — uD(tj))2> (4.48)

<. 3
- O

3

< <2Var[Aj] + 4 (up(tj41) — MD(tj»Q)

.
=)

Var[Ay]. 4.49
ey Vel (449
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Since  max  Var[Ay] ————— 0 by uniform continuity of H; and Hs, and
k€{071 7777 nil} max|tj+1 tJ|—>O

n—1

im Y (ZVar[Aj] + 4 (pup(ti) — MD(tj)f) < +oo. (4.50)
max‘tj+1—tj|—>0 §=0

n—1
we have Y 2Var’[A;] + 4E2[A;]Var[A;] ——— 0.

j:0 max|tu+1ftu\~>0

Now, for ¢ < j, we have

n—1 j—1
23 N (Hi(tiv) — Hi(t:)*(Ha(tj1) — Ha(t)?
7=0 =0
n—1 j—1
+4 Z (tiv1) — mp () (wp(tj+1) — wo(ty)) (Hi(tis) — Hi(t))(Ha(ty41) — Ha(t;))
7=0 i=
(4.51)
n—1 j—1
=2 (Hay(tj1) — Ha(t)))? (Hy(tis1) — Hi(t:))?
§=0 i=0
n—1 j—1
+4) (up(tin) — pp(ty) (Ha(tjer) — Ha(t;)) (1p(tivr) — pp () (Hi(tiva) — Hi(t:))
5=0 i=0
4.52
max|ty+41—tu|—0 07 ( 5 )
since
j—1
L Y (Hi(tin) — Hi(t))? —————— [Hi],; =0,
i=0 max|ty+1—tu|—0
n—1
2. 3 (Ha(tj) — Ha(tj)) ————— [Ha] =0,
=0 max|ty+1—tu|—0
j—1
3. 2 (up(tiva) — pp(t)) (Hi(tis) — Hi(t:)) ————— [up, Hily; =0,
i=0 max|ty41—tu|—0
n—1
4. 3 (up(tjen) — po(ty))(Ha(tj1) — Ha(ty)) ————— [up, Hale = 0.
i=0 max|ty+1—tu|—0
The same argument can be applied to the case 7 < i. Hence,
n—1
2
Var ZAj —— " (4.53)
7=0
which means
n—1 t t
A HQ(S) dHl(S) - Hl(S) dHQ(S) (454)
=0 maX|tu+1 tu|—>0 To Ty
m
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Hy () Hy(To) — Hy(To) Ha(x)

Hy(Th)Hy(Ty) — Hi(To)Ho(Th)’
Ai(z) = g1(x)Hy(Th), As(z) = Z;E;liﬂg( ) — Hy(x), and that 0% (z) = Ai(2)As(z), we get
the following expression for the SDE of (M;):

Recalling that, in the standard RAP case, we have g;(z) =

Corollary 4.12. Under the conditions in Prop. if (It(l)) is a standard X -RAP, with driver
covariance Kp(x,y) = Hy(min(x,y))Hs(max(z,y)), then

Var[ X, |XQ, ]
Hy(Th)Hy(t) — Hy(t)Ho(T1)

Zy(Hi(t)Ha(T1) — Hi(Th)Hy(t)) — My(H{(1)H2(t) — Hi(t)Hy (1)) 1
’ (< Hy(T1)Hy(t) — Hy(t)Hy(Th) - Jt) dt + dI >>

th -

(4.55)
where Zy = IV — go() Xo — pa(t) and J, = Xogo(t) + (/4(2).
Proof. The result follows from the following computations:
1. .
2\ (]! , ai(t) (£4)
205 (1) oa(t) ’ '
2.

M”@(i%)+4ﬁg<6£0?m@(;@)>

=301 ()M (HL(t) Ha(t) — Hi(1)Hj(t))
205 (t)
_ Z(Hi(8)Hy(Th) — Hy(Th) Hy(t)) — My (H{(t) Ho(t) — Ha(t)Hj(t))
Hy(T1)Ho(t) — Hi(t)Ha(T1)

(4.57)

O

Theorem 4.13. Under the conditions in Prop. the process (Ny)ierr,m) defined by

_ (Z(Hi() Ho(Th) — Hy (Th) Hy (1)) — My (Hi () Ha(t) — Hy () Hy(t)) 1
i ( i (T0) Halt) — H () (T3 ) deat”
(4.58)
is a martingale with respect to (FL).
Proof. We introduce the following notations:
hi(t) = Hi(t)Ha(Th) — Hi(Th) Hy(1), (4.59)
ha(t) = Hi(t)Ha(t) — Hy(t)Hy (1), (4.60)
hs(t) = Hi(Th) Hy(t) — Ha(t) Hy(Th), (4.61)
S(Xo, o, t) = /Tt <QO(U)XO}Z(/§3<U)>}L1(U) du. (4.62)



Then,

! [zgl)h w) — Myho(u
Ne= / ! })L () ) g, S(Xo, To, t) — go(t)Xo — pralt) + IV, (4.63)
To 3

Let (s,t) € [To, T1]? such that s < t. We shall show that E[N; | /] = N, the other conditions
for (IV;) to be a martingale are immediate. By the linearity of the conditional expectation, we
have

s 7(1) t I
HMmﬂé/hhm)Aﬂm dH/E |f ]w/ (u)
To h’3( s U
~ (S(Xo, To, 5) + (X, 5.1)) = go(t) Xo—m) B[ | 7). (4.64)

By Prop. [4.4] the last and the second terms in the above expression of E[N;|F!] can be
expressed as

I At o Ayt .
10172 = (06~ 2 500(9)) Xo+ (0n0) = 2500 ) 01
+28g A@+28M@, (4.65)

PRI | Flha(u) [ go(w)hi(w) © gy (u)ha(u) © () (u)
/S hg(U) du_XO/s —hg(u) du+Ms/S —h3<u> du+/8 —hg(’u,) du
1 tAQ(U)hl(U)
+ (I = 91(s) My — go(s)Xo + pa(s)) A2(s)/s Tl du. (4.66)

Notice that

1 [ Ag(uha(u) . Hi(8) = Hi(s) = i (Ha(t) — Ha(s))
As(s) /5 hs(u) du = A2E )) ) (4.67)
—1_jj3‘ (4.68)

Hence,

t (1) T
Bl 7+ BT 7))~ (goe) = g0(s))Xo + (91(8) — 1 ()M,

go(u)hi(u) gr(uw)hi(u)
—I—Xo/s Wd —I—M/T)du

+/ Ha(w)h (u )du—l—f + pa(s) + pa(t),  (4.69)

hs(u)
= (g0(t) — 90(5)) X0 + (91(t) — g1(s)) M
+ S(Xo, s, 1) + M, / g (u h hl)(“) du
4Lt pas) + ) (4.70)

Observe that
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/t gi(Whi(w) = ho(u) /t 1(w) Hy(To) — Hi(To) Hy(u)
s hs(u) s Hi(Th)Ha(To) — Hi(To) Hy(T1)
= (91(t) — g1(s)), (4.72)

du, (4.71)

which allows us to write

BV | F + / t EW;' 'Z%hl(“) du = (go(t) — go(s))Xo + M, / t 22553 dulM,
5 CS(Xo st L Lt pals) L pa(t), (AT3)

Plugging Eq. [£.73]in Eq. [£.64] we get

du — S(Xo, Ty, 5) — go(s)Xo — pa(s) + IV = N,. (4.74)

s

s IR (u) — o (1
E[Ntlfi]sz LI ( })Lg(uf)wuh( )

O

We can use the process (NN;) to construct a Brownian motion adapted to (F}).

Corollary 4.14. Under the conditions in Prop. the stochastic process W,

t
1
= ——=dN;
/To V hQ(S)
is a standard Brownian motion on [Ty, Th] (i.e, there exists a standard Brownian motion (W;)i=o
such that Wy = Wy_g, for all t € [Ty, T1]) adapted to (F}).

Proof. We compute the quadratic variation of (W;):

W, = /T %(S)d[]\f]s _ /T h;(g) A, = /T Zzg ds—t—T) (4.75)

Furthermore, since (N;) is an (F})-martingale and E[[W];] < oo, (W}) is an (F})-martingale.
Hence, by Lévy characterization theorem, (W) is an (F/)-adapted standard Brownian motion
on [To, Tl] L]

This means that we can write (M;) as an integral with respect to a Brownian motion:

_ VarlXy | Xo, 1) /H{(6) () — Hr(H) H(F)

dM, H(T) Ha(t) — Hi(t)Ho(Th)

aw;, (4.76)

as long as this expression makes sense, i.e, under the conditions in Prop. When ([t(l)) is
the randomized anticipative Brownian bridge on [Ty, T}], the expressions become significantly
simpler:

Corollary 4.15. If (It(l))te[To,Tl] is an X-randomized anticipative Brownian bridge on [Ty, T1],
then

1.
th —

Var[ X | Xo, IV (1Y — M, W
dt + 41V | . 477
T, —t T, —t +dh (4.77)

2. For any (s,t) € [Ty, Th)* such that s < t,

(Ty — I + (¢ — s)M,

Bl | Fl) = S

(4.78)
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3. The process (Wy)icimy, 1), defined by
‘Y - M,
W::/“—d + 1Y — X, 4.79
! To T1 — U 0 ( )
is a standard Brownian motion on [Ty, Ty] adapted to (F]).

We repeat the proof for this particular case for the sack of comparison.

Proof. The first two points are direct consequences of Prop. [£.8 and Prop. [f.4] respectively. To
see that (W) is a Brownian motion adapted to (F/), we notice that [W]; =t — T and that

t
1
E[W; | F1] :Ws—[s(l)—Ms/ du+E
s Tl—u

By Eq. (78]

(1) t I(l) y
I % du|FL|. 4.80
t + /S Tl —u 'LLl S ( )

e (T, — ) IV + (t — s) M, (Ty — ) I + (u— )M
E [(1) / U Il _ 1 / 1= s
ot oyl T DD
_ (Tl—t)[§)+(t—s)Ms N t—s 70
T1 — S T1 -5 °
t 1
s (Ty—s) [, T s duMs
T1 — S
(1) 1
=1 M du. 4.81
L (4.81)
Hence,
EW, | F}] =W, (4.82)
and (W) is a Brownian motion adapted to (F}).
[
It follows that
! Var[X; | Xo, I{V]
Mt p— XO +/ T ’ dW57 (483)
To 1= S

which is exactly what we would have obtained by putting Hy(z) = = and Hs(x) = 1 in the
general expression

Var[X; | X, Hi(s — H,(s)H!
Mt:Xo+/ ar| X, | Xo, I \/ 1(s)Hy(s)
Ty Hl(Tl)H2( ) — Hl( )H2(T1)
Note that, when Xy = 0, X is centered in 0, and Ty = 0, this particular case of the randomized

)
Brownian bridge yields the martingale developed in [6], i.e, M; = ¢ % dWs.

aw,. (4.84)

Using Eq. [4.84] we give examples of FAMs where the underlying RAP is standard.

Example 4.16. Let D, = tB, where (By)i>o s a standard Brownian motion. Then, Kp(x,y) =
min(z, y)? max(x,y), and so Hy(z) = 2%, Hy(x) = x. The standard AP driven by (D) is given
by

Tit — t? t?—t

AV =p, - L~ _p,

- _Dr. 4.85
T -T2 ™ T:P-—TT, ™ (4.85)
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We have

min(z, y)(min(z,y) — Tp) max(x, y) (77 — max(z,y)

K = 4.86
hence Ai(z) = ng—%) and Ay(z) = x(T) —t). A standard X-RAP with noise process (Agl)) is
it — ¢ t?—t
IV = Dy — = (Dry — Xo) = e (D1, — X1). 4.87
t t T1T0 _ TOQ( To 0) T12 _ TlT()( T 1) ( )

Remember that we could have chosen a different interpolating coefficient for Xo without dis-
rupting the standard property of (I.")). The quadratic variation of (It(l)) is given by d[IM], =
Hi(t)Hy(t) — Hy(t)Hy(t) dt = t* dt. Hence,

t Var[ X, | Xo, IV EVar[ X, | Xo, IV
Mt:Xo—ir/ VarlXs | Xo. I ]SdWS:XOJr/ VarlXs | Xo. 7] 4y (4.88)

2 2 2
n, Iis—s°Th T 17 — sT)

Example 4.17. Let (D;) be an Ornstein-Uhlenbeck process with parameters 0 > 0,0 > 0, u € R
and starting value dy € R, that is, the solution to

dD, = 0 (u— D,) dt + o dW,, Dy = do. (4.89)
2
Then Kp(s,t) = %eemi“(s’t)e%max(s’t), and so Hy(z) = e, Hy(x) = =", The standard AP

20
driven by (Dy) is

e@(Tl—t) _ e—@(Tl—t) ee(t—To) _ e—e(t—To)

1 _ _
A= eO(T1—To) _ o—6(T1—To) Dr eO(T1=To) _ o—6(T1—To) Dry. (4.90)

A standard X-RAP with noise process (Aﬁ”) is

9(T17t) _ 679(T17t) G(th()) _ efe(th())

(§]
89(T1 —To) e—G(Tl —To)

(§]
ee(Tl —To) _ e—@(Tl —To)

]t(l) — Dt — (DTO — Xo) — (DTl - Xl) (491)
The quadratic variation of (I.") is given by d[IV], = H|(t)Ha(t) — Hy()HL(t)dt = o2dt.
Hence,

© Var[X, | Xo, IM]o 20 [* Var[X, | Xo, I"]
Me =Kot / e (ee(Tl—S) - eH(S_Tl)) Ao = ot o /To e(Ti—s) _ f(s—=T1) dW.. (4.92)

To %
For a given coupling 7%, it is usually unlikely that M; = E[X; | F/] has an explicit analytical ex-
pression, even in the case M; = E[X] | X, It(l)]. We give an example where M; = E[X] | X, It(l)]
and its SDE are explicit.

Example 4.18. Let Xo ~ Unif({—1,1}) and X; ~ Unif({-2,0,2}) such that

Xo+ 1 with probability
X[ Xo = (4.93)
Xo— 1 with probability

o=

N =

Clearly, E[X; | Xo] = Xo. Let (By)i=0 be a standard Brownian motion and

Ty —t
T —1Tj

t—"1Tp
Ty — 1T

1Y =B, — (Br, — Xo) — (Br, — X1). (4.94)
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Denoting by ¢ the density function of a N <O %“T_OTI)), g1(z) = 151__1}10, and using Prop.
we get

<%+mexrmm <mﬁwﬂ>%+mm%

M, = , (4.95)
oI — Xo — 9(t)5 + oIV — Xo + gi(t )3
:%+wﬂ> w>wﬂ>Xﬁmo> (4.96)
¢( XO_gl(t + o(1, X0+91())
— X, + tanh ( 7 — (4.97)

In SDE form, we get

) dw.. (4.98)

Mt:X0+

To

Randomized Arcade Process
Filtered Arcade martingale
o

0 2 4 6 8 10 0 2 4 5 F) 10
Time Time

Figure 12: Paths of the X-RAP (It(l)). Figure 13: Paths of the associated FAM (M;).

4.2 The n-arc FAM

Given a random vector X = (Xj,...,X,,) of convexly ordered components, i.e., X; <¢x Xit1
fori =0,. — 1, and an X-RAP (Itn))tG[TO 7,] on the partition {Ty, T, }«, we construct a
martingale (Mt)te[TO 1,] With respect to (F!) such that My, = X;, for i = 0,...,n. A major
difference in the n-arc case is that we need (It(")) to be {Tp, T), }+-nearly Markov rlght away.

Definition 4.19. Given an X-RAP (It(n))tE[To,Tn] on {To, T, }« that is {To, T, }.-nearly Markov,
an n-arc FAM for X is a stochastic process of the form M, = E[X, | X, ..., Xm@), It(")] where
m(t) = max{i € N|T; < t}.

By the tower property of conditional expectation, (M;):c[r, ] is a martingale with respect to
(Fl). Moreover, My, = E[X,, | Xo, ..., X;] © X; by the convex ordering property. Hence (M)
is an interpolating martingale with respect to (F/). Like in the n = 1 case, we assume that the
driver of (It(")) has a density function in what follows.

Proposition 4.20. Let M; = E[X,, | Xo, ..., X, 1" ] be an n-arc FAM restricted to (T, T,,)..
Then,
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fR yf[t(n) |XO’,,,7Xm(t),X7L:y([én)) dFXn ‘ XOy-qum(t)

M, o = , (4.99)
fR fIt |XO,...,Xm(t)7Xn:y([t ) dFXn IXOV"me(t)
where FXn1X0Xme) s the distribution function of X, conditional on Xy, ... s Xom(r)- In partic-
ular,
1. if (Xo, ..., Xong), Xn) s a continuous random variable, with density function Xl X0 Xingey
then " -
L Xoyeo X (o) Xn=y (1) X0 | Xov Xy (1)) d
f]R fIt |XO,...,Xm(t),Xn:y(lt(n))an | X003 Xm(t) (y) dy
2. if (Xo,..., Ximw), Xn) is a discrete random variable, then
Sy i o X 5oy ([R[X,, = y | X, X))
My = ~—— : (4.101)
S Ko X Xe =0 (IR, = y | X, Xon)
y
The proof follows immediately from the one-arc case. Introducing the notation
n (n) . g Xy r(n
u([t( ),t,xm+1, T, y) = [l | X5 Xom(t) Xm(0) 41=Fm 1o X o1 =1, X y(It( )), (4.102)
it is often more convenient to write
Mt _ fRn—m(t) yu([t(n)? tv Tm41y -3 Tp—1, y) dFXM(t)+17W7X”71’X” |XO’W7Xm(t) (xm—i-lv ceey Tp—1, y)
fR”—m(t) u(Lﬁ(n)7 tu Tm+1y -+ Tn—1, y) dFXm(tHl,nﬂXﬂil’Xn | XO,M,Xm(t) (Im—l—lu ceey Tp—1, y)
(4.103)

We can apply [t6’s lemma in the same fashion as we did in the one-arc case. An interesting
pattern appears if (It(")) satisfies g;(2) 1z, 1,_,)(z) = 0 forall j = 1,...,n, and for all x € [Ty, T},
that simplifies the n-arc case significantly.

Theorem 4.21. Let M; = E[Xn|X0,...,Xm(t),I£n)] be an n-arc FAM, where (It(n)) sat-
isfies gj(x)limy,_yy(x) = 0 for all j = 1,...,n, and for all v € [1y,T,]. Then M; =
E[ X1 | Xoy -+ s Xongey, 11"

Proof. The result is trivial for ¢ € {Tp, T}, }., so we treat the case t € (Tp,T},)s.
Let ¢ be the density function of (Al(tn)), the noise process of (It(n)). Then,

®)
U’(It(n)vtvxm-i-la T, Y) = It(n) - Zgi(t)Xi = Im@+1(t)Tmy1) | (4.104)
=0

since g;(z)Lir,,_,(7) = 0 for all j = 1,...,n, and for all x € [T, T,]. Denoting by F the
conditional distribution of (X141, ..., Xy) given Xo, ..., Xy, i-e,

FTmyt, ..., xy) = FXm@rvXalXowoXmay (000 ), (4.105)

this implies
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/ “ U(It(n)7t7 Lm+1y - - ,$n,1,y) dF<xm+17 <o Tp—1, y)
Rn—m(t
= / Wt Tt - T, y) AFXm@e X0 X (Y (4.106)
R

We also have

/ de(a:mH,...,xn)
Rn—m(t)

= / Y A FXnl X0 X)X () 4152 m+ 1500 Xn—1=n—1 (y)
Rn—m(t)

AFXm@ 1 XnoalXoweoXon (g0 g ) (4.107)
= /Rn_m(t)_1 E[Xn | XO, R, 7Xm(t)7 Xm(t)+1 = Tm+1y- - - 7Xn—1 = xn—l]

dFXm(t)+17---,Xn—1\Xoa---va(w ($m+17 . ’xn_l), (4.108)
= /an(t)l Ty dFXm@ 1 Xn—1]X0: Xm() (Tiaty s Tno1), (4.109)

where we used the martingale property. Applying the same argument m(t) times, we get

/ YAF Tty s @) = / Tpppq AFEXm@ 11 X0 Xmay (g7 ), (4.110)
Rnr—m(t) R

which means that

/ ()yu(]tn),t,xm+1,...,a:n_l,y) dF (Tmaty - s Tn1,7Y) (4.111)
Rn—m t

—~

= / Lot WL, Tt s T, y)AF Xm0 e11 X0 Xy (g, (4.112)
R

Finally,

B J—— yu([t(n), b Tt - s Tt Y) AF Tty o Tt )

M, L . : (4.113)
fRn—m(t) u(-[t 7t7 Tm+1s .-+ Tn—1, y) dF(I’m+17 vy Tp—1, y)
St s, 31, ) AF S0 o ) (1114)
fR u([t(n)a ta Lm41y -+ Tn—1s y) dFXW(t)+1|XO7...7Xm<t) (merl) 7 .
— / Tt dFXm(t)H\Xo ..... Xm(t),ft(") (xm—&-l) (4.115)
R
= E[Xm(t)+1 | X07 v 7Xm(t)7 It(n)]a (4116>
where we used Bayes rule.
[l

This allows one to use the one-arc case to derive the SDE in the n-arc case without much effort.
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Proposition 4.22. Let ([t(n)) be a semimartingale standard RAP, with driver covariance
Kp(z,y) = Hi(min(z,y))Hs(max(z,y)), such that (t,x) — E[X, | Xo,... ,Xm(t),ft(") = x| is
C*((Ty, Tp)s \ N) x Im(1" )) where N C (T, T,). contains finitely many elements. Let
M, =E[X, | Xo, ..., Xn ,It( | be an n-arc FAM. Then,

Var[ X1 | Xos -+ Xy, 1)
Hl(Tm(t)Jrl)H?(t) — H, (t)H2(Tm(t)+1)
y [(Zt(H{(t)HQ(Tm(t)H) — Hi(To+1)H3(t)) — My(H{ (D) Ha(t) — Hi(0)H5(1) Jt) &
Hy(Toy41) Ha(t) — Hi(t) Ha(Ton(ry41)

th -

+ dIt(l)}
(4.117)

m m(t)
where Z; = It(l) — > ()X — pa(t) and J, = > gi(t) X, + s ().
; i=0

The proof follows immediately from the one-arc case. Again, denoting

O (T ) — (T ) HY() — ML) Ha(t) — Hi(H(1)
e = ( Hy o) Ha (8) — (D) BTy 1) ) ) a

+dr”
(4.118)
dn,
AW, = —— : , (4.119)
VH(t) — Hy (1) H;(t))
we have that (W;) is a standard Brownian motion on [Ty, T;,] and adapted to (F/), and
tVal‘[Xm(s)+1|Xo s X, 1 \/H' — Hi(s)H3(s))

M, = X, +/ - mls) dW,, (4.120
¢ 0 Ty ( m(s) +1)H2 ) ( )HQ(T ()Jrl) ( )

P / VarlXoney i1 | Xo, -, Xongoy, 1]/ H{ (5 Hals) = Fa(5) Hi(s)

N S H1<Tm<s>+1>H2< ) Hy(s >H2<Tm<s)+1) ”
(4.121)

4.3 Filtered arcade martingales and optimal transport

Let (B;)i=o0 be a standard Brownian motion. For simplicity of notation, this section is focused
on the one-arc case where (It(l)) is given by

Ty t—"1Tp
B Xo) —

T — To( 70 = Xo) =

The n-arc case with general standard RAP follows without much effort. Consider the FAM

1= 04 40 = 5, -

(Br, — X). (4.122)

t Var X, | Xo, I8
To T1 — S
where (W) is a standard Brownian motion restricted to [Ty, T1] and adapted to (F/). The FAM

(M;) depends heavily on the coupling 7% of (X, X;). In real life problems, the coupling is
usually not observed directly, only its marginals are. Choosing a coupling is then part of the

)
M, = E[X1| Xo, IV] = X, + ] dw,, (4.123)
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modelling of the underlying problem. Another approach is to go "model-free" by utilizing a
least action principle, such as martingale optimal transport.

Optimal transport dates back to Gaspard Monge in 1781 [16], with significant advancements by
Leonid Kantorovich in 1942 [11] and Yann Brenier in 1987 [5]. It provides a way of comparing
two measures, p and v, defined on the Borel sets of topological Hausdorff spaces X and )Y,
respectively. The mental image of optimal transport is the one of a pile of sand, modelled by a
measure u, and a hole, modelled by another measure v. One wishes to fill the hole with the
sand at one’s disposal in an optimal manner, by exercising the least amount of effort. To make
this statement more precise, one needs a cost function ¢ : X x ) — [0, 00| that measures the
cost of transporting a unit mass from x € X to y € ). The optimal transport problem is how to
transport p to v whilst minimizing the cost of transportation: given p € P(X) and v € P()),

mnell(p,v) mnell(p,v)

inf K(m):= inf /Xyc(x,y)dw(x,y). (4.124)

This problem enjoys many interesting properties. For instance, when X = ) is a Polish space,
and (X, c) is a metric space,

mell(p,v)

1/p
W, (e, v) ::< inf /X Xc(x,y)pdﬁ(x,y)> (4.125)

is a metric, for any p > 1, called the Wasserstein pth metric, on the space P,(X) of probability

measures on X with finite pth moment. Furthermore, if X is Euclidean, and c(z,y) = ||z — y||,
there is a one-to-one correspondence between the minimizers 7* of ir%f : Jrs yclz, y)Pdm(z,y),
mell(u,v
and the geodesics in (P, (X), W,): if (Xo, X1) ~ 7%, the law of the process
T, —t t—T, >
Xo + X 4.126
<T1 — 1o ’ T —1To ' te[To,Ti] ( )

is the shortest paths from u to v in (P,(X),W,). This links optimal transport to interpolation
on the space of random variables. The interpolating process is very basic, since it is fully
deterministic conditionally on (Xg, X7). A simple solution to get a real stochastic process would
be to add an independent Brownian bridge to TTI’ = Xo + jél__T’-_?O X,. This is trivial in a way, since
the "noise" term has nothing to do with the initial optimization problem. If one desires to
interpolate using a true stochastic process without abandoning optimal transport, the entropic

regularization of optimal transport provides an answer: given pu € P(X), v € P(Y), and £ > 0,

inf K. (m.):= inf / c(z,y)dr(z,y) + e KL(nm. |t @ v) (4.127)
XxY

e €1l (p,v) e €11(p,v)

where KL designates the Kullback-Leibler divergence

dr. _
i (x,y)) dr(z,y), if e << p®v,

1
KL o /Xxy o8 ( dpdv
(melp@v) = (4.128)

00 otherwise.
When X = Y is Buclidean, ¢(z,y) = ||z — y||°, and e = 2(T} — Tp), this problem is equivalent to

Schrodinger’s problem. If 7§ is the solution to Schrodinger’s problem, any stochastic process
with distribution function, evaluated at z € R, equal to

/X/XF(:C’ y 2) drs(,y). (4.129)

38



where F(z,y, z) is the distribution function, evaluated at z, of a Brownian bridge starting at
time Tj in value z and ending at time 7 in value y, is called Schrédinger’s bridge. Hence,
(It(l)) is an anticipative representation of Schrédinger’s bridge (in dimension one since we did
not introduce a definition of RAPs in higher dimensions) as long as (Xo, X1) ~ 7%, and it is
precisely the replacement that we were looking for. To recap the three interpolators built using
optimal transport in dimension one, we have:

1. The default OT interpolator, or, the shortest path interpolator on [Ty, Ti]: 2=t X, +

T1—To
t—To *
TlfToXl where (Xo,Xl) ~ .

2. The artificially noisy OT interpolator on [Ty, T1]: (It(l)), where (Xo, Xy) ~ 7.

3. The truly noisy OT interpolator, or, Schrodinger’s bridge on [Tp, T1]: (]t(l)), where
(Xo, Xl) ~ ﬂ'g.

Fix X = Y = R, since this is the setting of FAMs. We can adapt classical optimal transport to
yield a martingale coupling instead: given p,v € P;(R) in convex order,

inf K(7)= inf /c:v, dm(z,y), 4.130
ot () ot ]R2< y)dm(z,y) (4.130)

We denote the minimizers of this problem by 7 . There are many differences between optimal
transport and its martingale counterpart. For instance, the most popular cost function ¢(z,y) =
(x — y)? for optimal transport cannot be used in the martingale context:

/Rz(x —y)Pdn(z,y) = / 2? +y? — 2xydn(z,y) (4.131)

R2

_ /R (o) + /]R P av(y) -2 /R P av(y) (4.132)

~ [ o)~ [ vty (4.133)

which does not depend on 7. Another difference is that we loose the geodesic interpretation since
there is no counterpart to the Wasserstein distance in the martingale context. So what would
the martingale counterparts to the default, artificially noisy and truly noisy OT interpolators
be? This is not trivial, since the interpolators must be martingales, and TT1 1__750 Xo + 751__7}{0 Xy is
not a martingale, regardless of the coupling of (Xo, X1).

Since there is no such thing as the "shortest path" interpolator anymore, we expect it to be
"broken" in the martingale context, i.e, not continuous. We propose the process that is equal to
Xp in Ty and equal to X; for t € (Ty, T1]. Now, for the artificially noisy interpolator, the FAM
(M) with (Xo, X1) ~ 7, is a candidate. Indeed, it is a martingale, and its noise process was
not taken into account in the selection of the optimal coupling 7,. Furthermore, if we remove

the artificial noise, i.e, we put Aﬁl) = 0 in the expression of (M;), and denote by (G¢):ejr,, 1) the

filtration generated by (MXO + A= X

T1—To Th—To 1>t€[To T1]7 we get
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M; = E[X1 ]G], (4.134)

T, —t t —T;
=E | X, | Xo, = Xo + 0
Ty =Ty Ty =Ty

X1, (4.135)

XO lf t — To,
_ (4.136)
X, ift e (Ty, T,

retrieving the "broken" default interpolator. For a truly noisy MOT interpolator, i.e, a sort
of martingale counterpart to Schrodinger’s bridge, we propose a new problem, called the
information-based martingale optimal transport problem.

Definition 4.23. Let Xy ~ p and X1 ~ v, where u and v are L? probability measures on R, in
convex order. Let M, = E[X; | Xo, I )] be a one-arc FAM. The information-based martmgale

optimal transport (IBMOT) problem associated with the randomized Brownian bridge (]t )) 5

sup Kj(m):= sup E (4.137)

TEM(p,v) TeEM(p,v)

To make sure that Eq. [£.137] makes sense, notice that, by the definition of FAM, and Itd’s
isometry,

E[(X1 — X0)?] = E[(Mr, — Xo)?], (4.138)
i 2
B Var[X, | Xo, IV
_E / arl Xy [ Xo. I gy ) (4.139)
T T, —t
- 2
& Xy | Xo, IV
_E / Varl¥i [ Xo. I 1Y 4| (4.140)
T T, —t
2
1)
Since E[(X; — X)?] = E[X?] —E[X?] < oo, we have that E Tl (Var[X}l—iom) dt] < 00, and
Tl Var[Xl ‘Xo I }
because the product space (2 x [Ty, T1] is of finite measure, we also have E { f — o dt
oo by Holder’s inequality. Using the martingale property, we see that
M — 2 MWy ar2
E[Var[Xy | Xo, I, ] = E[E[X] | Xo, I, ] = M], (4.141)
= E[X?] - E[M?], (4.142)
= E[X}? + M?] — 2E[M;E[X, | F/]], (4.143)
= E[X? + M?] — 2E[E[X, M, | F]]], (4.144)
= E[X}] + M}? — 2X, M,], (4.145)
=E[(X, — M,)?]. (4.146)
(1) (1)
By Tonelli’s theorem, since E fTTol % dt| < oo and %ﬁom > 0, we get
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(1)
E /Tl Var[Xl | XOajt(l)] il - /T1 E |:VaI‘[X1 | Xo,]t ]:| " (4 147)
T Ty —t T T, —t ’ ‘
— /TI E[(X: — M,)’] dt (4.148)
T T —t ’

=K, (). (4.149)

(1) (1)
Hence, sup Kj;(r)= sup E [ ;;1 % dt] < 00. Since % is exactly the

TEM(p,v) meEM(p,v)

volatility process of (M;), the IBMOT problem can be seen as the martingale Benamou-Brenier
Var[ X, | Xo,I{]

problem [1I], under the extra constraint that the volatility must be of the form Tt

One can rewrite Eq. [£.137 using the integration by parts formula, making the innovation process

(1)
W, = Tto h;;_ﬂfi du + [t(l) — Xo, which is a standard Brownian motion on [Ty, 7;] adapted to

(F! )i, 1], appear in the expression when evaluated at time 7}. Since we have that

E dt

/T1 Var[X; |X0Jt(1)]

= E[Mzy, Wy, — My, Wr] = E[X;Wr,], (4.150)
T T —t

we get sup Kj(m) = sup E[X;Wyg]. Since Wy, is a N (0,77 — Tp) regardless of the
TeEM(p,v) TeM(p,v) _
coupling m, we can complete the square to get an equivalent problem to |4.137}

E[X7]—2 sup E[XiWr]+EWZ]= inf E[X7]-2EX,Wr]+E[W;], (4.151)
TeEM(p,v) TEM(u,v)

= inf E[(X; - Wnp)?] 4.152

ot (X1 )] ( )

Example 4.24. Let T =Ty — Ty, 0 > 0, Xo ~ N(0,02), X1 ~ N (0,02 +T). We show that the

2 2
Brownian coupling N (8) , (22 02(:_ T) 15 a solution for the IBMOT problem. Recall

: 0 o? o2
< 21 2 — ~
that wei}tl(l,i,u) K;(r) < E[X?]| —E[X3] =T. Assuming (Xo, X1) ~ N (O) : (02 2 —{—T) ,

we get that

1. (Xl,XO,Lgl)) is Gaussian for all s € [Ty, T1] and (It(l)) is itself a Brownian motion on
[T07 Tl];

2. COV(XO,]S)) =o?,

3. Cov(X;, I{V) = L5624+ =002+ T) = 0% + 5 — Tp,
(Th —s)® 5 (s—To)* ,

=7 ¢ + e (c°+T)+2

=(s—Ty)* +°T + (7 — S)jgs _ TO)7

(Th = s)(s —To) 5, , (Th—s)(s—Tp)
T o T !
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-1
o? o? X,

MS == ( 2 2 - T) —3)(s— 9
o o°+ s 0 0_2 (S B T0)2 + O'2T + (Ty )7—(1 To) [s(l)

Sl

(T1—s)2 5 )2
T (Xl — X()) + As
_E / - ( ) d

To T1 — S

/ (T —s)? 4+ (Th — 8)(s — Tp) ds
To T(Ty—s) 7
_ f(Tm —s)+ S—TO) ds,

To
=T

Hence Brownian motion is the optimal FAM between Xy and X according to IBMOT. Equiv-
alently, the Brownian coupling is the optimal martingale coupling for (Xo, X1) according to

IBMOT.
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