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a b s t r a c t

The two-dimensional free boundary problem for a surface dissolving in potential flow owing to
concentrated sources of dissolving agent c is formulated and solved. The surface boundary evolves
quasi-steadily, and the resulting steady advection–diffusion equation for c , and Laplace’s equation for
the velocity potential form a coupled pair of conformally invariant PDEs. The dynamics of the coupled
fluid flow and evolving surface depends on the Péclet number: Pe = UL/D, where U and L are typical
velocity and lengthscales respectively, and D is the diffusivity of c . The conformally invariant property
is exploited in finding an equation of the Polubarinova–Galin class for the conformal map from the
unit ζ -disk to the evolving domain in physical space. The equation is solved numerically and the time-
evolution of the dissolving surface determined. For a single concentrated source with flow initially
parallel to a flat surface, a Pe-dependent scallop-like surface shape typically develops. The problem
involving a periodic array of concentrated sources aligned parallel to an initially flat surface is also
solved.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The interaction between fluid flow and surfaces which evolve
n response to erosion, chemical dissolution or freezing/melting
ffects is, in general, a challenging nonlinear free boundary prob-
em: the flow field depends on the surface shape which, in
urn, depends on the local fluid transport properties near the
luid–solid boundary. There is much interest in these processes
e.g. [1]), especially in a geological context where the interaction
eads to striking features and patterns spanning lengthscales from
entimetres to tens of kilometres. Some specific examples include
amified stream networks [2], ice-stars [3], karst pinnacles [4],
ardangs and ventifacts [5], terraces [6,7], and the surface scal-
oping of caves, beneath ice floes and the Martian landscape
.g. [7–10]. The flowing fluid in these examples can be either
cean, surface- or ground-water, or wind, and the shaping of the
andscape can be through abrasion, erosion, sediment transport,
recipitation or dissolution.
One class of problems considers the mechanical effect of ero-

ion by the flow of fluid, explicitly linking the normal velocity of
he eroding interface with the local fluid shear stress e.g. [11,12].
nother class of problems to which the present work belongs, is
ased on inviscid flow transporting an agent or species c to which
he fluid–solid interface responds by, say, freezing, melting or dis-
olution. In this work the solid loses mass owing to concentrated
ources (see Section 3) of dissolving agent is examined. Equally,
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the problem applies to the melting of surfaces in the presence of
localised heat sources.

Mathematically, progress can be made by assuming
two-dimensional dynamics and, further, that the surface evolves
quasi-steadily. The latter assumption is valid when the normal
velocity of the surface is much smaller than a typical velocity
of the fluid flow, and is normally a good assumption for slowly
evolving geological features. Assuming the fluid is inviscid and
the flow irrotational, the fluid–surface interaction is governed
by a pair of coupled PDEs: Laplace’s equation for the velocity
potential, and the steady advection–diffusion equation for the
species concentration (or temperature) c . After a standard non-
dimensionalisation the parameter governing the behaviour of the
solution of the PDEs is the Péclet number: Pe = UL/D, where U
and L are typical velocity and lengthscales respectively, and D is
the diffusivity of c . Remarkably, this pair of PDEs is conformally
invariant [13], enabling powerful methods of complex analysis to
be employed to find exact and asymptotic (in the limit of small
and large Pe number) solutions for the case when the surface
boundary remains fixed (e.g. [13,14]), or analytical or numerical
solutions for the case when the surface boundary evolves e.g. [15–
17]. In these latter studies, the source of c is at infinity and is
advected to the surface by the flow. In contrast, the present work
considers the case when c is concentrated at a given point(s) at
finite distance from the surface.

The coupling at the fluid–solid interface is provided by a
Stefan-type boundary condition which directly links the normal
velocity of the surface to the normal gradient of c at the bound-

ary. By conformal mapping the physical plane to the interior of

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he unit ζ -disk, it is shown in Section 4 the problem reduces
to finding the conformal map which satisfies a Polubarinova–
Galin-type equation as is common in other two-dimensional free
boundary problems e.g. Hele-Shaw problems [18–20], or prob-
lems, as here, involving advection and diffusion of c e.g. [15–17,
21,22]. Section 6 describes the numerical approach to solving the
Polubarinova–Galin equation and presents results for the evolu-
tion of the boundary for uniform flow past an isolated source.
Results are extended in Section 7 to consider a periodic array of
point sources of c.

2. Problem formulation

Irrotational flow of an inviscid, incompressible fluid in the two
dimensional (x, y)-plane is considered. The velocity field is given
by u = ∇φ, where φ is the velocity potential which satisfies the
Laplace equation

∇
2φ = 0. (1)

Let c(x, y) measure the concentration of some species, or fluid
property such as temperature, either of which causes a boundary
to dissolve or melt. It is assumed that the flow velocity u is larger
han the normal velocity vn of the dissolving boundary, so the
luid–surface interaction is quasi-steady. The agent c thus satisfies
the steady, advection–diffusion equation with non-dimensional
form

Pe u · ∇c = ∇
2c, (2)

where Pe = UL/D is the Péclet number computed from the fluid
velocity scale U , characteristic length scale L and diffusivity D of
c(x, y).

The coupled PDEs (1) and (2) are conformally invariant [13],
and this property is exploited in this work and the complex
variable z = x + iy used.

On the solid surface the following boundary conditions apply

c = 0,
u · n = 0,
dx
dt

·n = −∇c·n. (3)

The first of these fixes the concentration of c(x, y) to be zero, the
second requires the normal velocity of the fluid flow vanish and
the third is the Stefan condition which states that the normal
velocity of the solid surface boundary is given by the normal
derivative of c(x, y)–see e.g. [15,17]. Here ‘outward’ means in the
direction from the solid surface pointing towards the interior of
the fluid domain.

3. Flow past a concentrated source

Consider first uniform flow in the real direction when no
surfaces are present. The advection–diffusion equation becomes

Pe
∂c
∂x

= ∇
2c + δ(x, y), (4)

where a concentrated source of c(x, y) fixed at z = 0 is repre-
sented by a delta function forcing term. The solution of (4) is
(e.g. [14])

c(x, y) =
1
2π

exPe/2K0

[
Pe
2

√
x2 + y2

]
, (5)

where K0() is a modified Bessel function.
The next step is to incorporate an infinitely long, straight and

fixed wall aligned with the real z-axis along which c(x, 0) = 0.
2

For uniform flow parallel to the wall with delta function forcing
at z = i, the solution for c(x, y) is

c(x, y) =
1
2π

exPe/2
(
K0

[
Pe
2

|z − i|
]

− K0

[
Pe
2

|z + i|
])

. (6)

plot of the c(x, y) with Pe = 1 is given in Fig. 1(a). The
oncentration field is skewed downstream owing to advection by
he flow parallel to the wall towards increasing x. The result is
hat the normal derivative of the concentration field (6) ∂c/∂y
valuated at y = 0 is asymmetric as shown in Fig. 1(b). Since
he Stefan condition (3) equates the normal derivative of c to the
ormal velocity of the boundary, the wall will dissolve asymmet-
ically about x = 0. In turn, the flow field will evolve according
he changing surface shape. This interaction is a nonlinear free
oundary problem and is tackled in the next section using a
umerical method based on conformal mapping.

. The Polubarinova-Galin equation

Using conformal mapping, the free boundary problem in the
-plane is converted to a problem in the interior of unit disk in an
uxiliary ζ -plane. Let z = f (ζ , t) be a time-dependent map from
he interior of the unit ζ -disk to the physical domain in the z-
lane. The boundary |ζ | = 1 maps to the evolving free boundary
n the z-plane and ζ = 0 maps to the location z = i of the source
f c(x, y).
The Stefan boundary condition (3) can be written in complex

orm as

e
[
n̄z

dz
dt

]
= −Re [n̄z∇c]

= −2Re
[
n̄z

∂c
∂ z̄

]
, (7)

where nz is the complex form of the normal to the surface in the
z-plane, and the relation ∇ ≡ 2∂/∂ z̄ has been used.

The form of (7) in the ζ -plane is now derived: the complex
form of the normal vector in the z and ζ -plane are related by
nz = f ′nζ /|f ′

| and ∂c/∂ z̄ = (∂c/∂ζ̄ )/f ′, since z = f (ζ ) is a
conformal map and its analyticity implies ∂ f /∂ζ̄ = 0.

Letting ζ = r exp(iθ ) in the ζ -plane, the normal derivative of
c(r, θ ) at the boundary |ζ | = r = 1 is

2Re
[
n̄ζ

∂c
∂ζ̄

]
= −

∂c
∂r

⏐⏐⏐⏐
r=1

≡ σ (θ ). (8)

Substituting (8) in (7) and the fact that nζ = ζ on the unit
-circle, gives the Polubarinova–Galin equation

e
[
ζ f ′

∂ f
∂t

]
= σ (θ ) on |ζ | = 1. (9)

The Polubarinova–Galin Eq. (9) expresses the original free bound-
ary problem in the z-plane as a nonlinear equation for the un-
known conformal map f (ζ , t) on the fixed boundary r = 1.
In order to proceed it is required to find σ (θ ). This is done in
ection 5.

. Conformal mapping for the wall dissolution problem

The upper half of the ω-plane has (fixed) fluid–solid interface
oinciding with the real ω-axis–see Fig. 2. A point source of c
s located at ω = i; c = 0 on the real axis and the fluid flow
s uniform in the real direction. Thus from (6) the concentration
(ω, ω̄) and complex potential F (ω) are

(ω, ω̄) =
1

eRe(ω)Pe/2
(
K0

[
Pe

|ω − i|
]

− K0

[
Pe

|ω + i|
])

,

2π 2 2
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Fig. 1. (a) Concentration field c given by (6) for a source at z = i, Pe = 1 and c = 0 on the real axis, in colour and with equally spaced concentration contours. The
streamlines are the lines parallel to the real axis. (b) The normal gradient of c , ∂c/∂y, along the real axis.
Fig. 2. Conformal maps between the z-, ω- and ζ -planes. The shaded regions map to each other, and c = 0 along the boundary (dark lines). The point at which the
concentration c is singular is indicated by a small black dot.
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F (ω) = ω. (10)

The map

ω = −i
ζ − 1
ζ + 1

, (11)

aps the interior of the unit ζ -disk to the upper half of the ω-
lane with ζ = 0 mapping to ω = i, the location of the point
ource of c. The solution for the species concentration field in the
-plane is then

(ζ , ζ̄ ) =
1
2π

exp
(
Pe
2
Re

[
−i

ζ − 1
ζ + 1

])
×

K0

[
Pe

⏐⏐⏐⏐ ζ

ζ + 1

⏐⏐⏐⏐] − K0

[
Pe

⏐⏐⏐⏐ 1
ζ + 1

⏐⏐⏐⏐])
. (12)

To find the normal derivative to the boundary |ζ | = 1 in the
ζ -plane let ζ = r exp(iθ ) so that (12) becomes

c(r, θ ) =
1

exp
(

Pe sin θ

2

)
×

2π r + 1 + 2r cos θ

3

(
K0

[
Pe r

√
r2 + 1 + 2r cos θ

]
− K0

[
Pe

√
r2 + 1 + 2r cos θ

])
. (13)

Differentiating (13) with respect to r gives, after simplification,
the normal derivative at r = 1
∂c
∂r

(1, θ ) = −
1
2π

exp
(

Pe sin θ

2 + 2 cos θ

)
K1

[
Pe

√
2 + 2 cos θ

]
×

Pe
√
2 + 2 cos θ

. (14)

In general the conformal map z = f (ζ ) from the ζ -plane to
the (physical) z-plane can be written as the series

f (ζ ) =
iA(t)
ζ + 1

+

∞∑
n=0

i(an(t) + ibn(t))ζ n, (15)

here A(t), an(t) and bn(t) are real coefficients. The point ζ = −1
aps to z = ∞. At t = 0 the ω- and z-planes coincide, thus
(0) = 2, a0(0) = −1 and all other an(0) and bn(0) are zero.
equiring that the source maps to z = i implies f (0) = i and
o A + a = 1 and b ≡ 0.
0 0
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Fig. 3. The left hand plots show the evolving interface at uniform time intervals up to t = 5, and the right hand plots show the concentration field and streamlines
t the final time. Three different Pe are shown: (a) and (b) Pe = 1/4; (c) and (d) Pe = 1; (e) and (f) Pe = 4.
Taking the conjugate of (15) and using ζ̄ = ζ−1 on the
nterface gives the following relation satisfied on the boundary

f (ζ ) = f (ζ ) − iA − i
∞∑
n=0

(an + ibn)(ζ n
+ ζ−n). (16)

Demanding that the interface in the z-plane tends to the real axis
far from the source implies that f̄ = f in the limit ζ → −1 and
4

so

A + 2
∞∑
n=0

(−1)nan = 0. (17)

Fig. 2 gives the relation between maps (11) and (15) and the
z, ω- and ζ -planes. In summary, the mathematical problem is to
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Fig. 4. Comparison of the computed interface profiles at t = 5 for different Pe,
long with the exact solution for Pe = 0 obtained from (19) and (20).

Fig. 5. The dissolved area S as a function of time for the numerical experiments
ith three different Pe shown in 3, and the exact solution S = t .

olve the Polubarinova–Galin Eq. (9) for the unknown map (15)

e
[
ζ f ′(ζ )

∂ f
∂t

]
= σ (θ ), (18)

where σ (θ ) = −∂c/∂r on r = 1 is given by (14). The solution to
(18) takes the form (15) subject to conditions (17) and A+a0 = 1,
and initial conditions A(0) = 2, a0(0) = −1, an(0) = bn(0) = 0,
n ≥ 1.

5.1. Exact solution for Pe = 0

In the limit Pe → 0 it follows from (14) that σ (θ ) → 1/2π .
In this case (18) has the exact solution (see Appendix A for its
derivation)

f (ζ ) =
2i

1 + 2a

(
1

ζ + 1
+ aζ + a −

1
2

)
, (19)

where

a(t) =
1 + t/π −

√
1 + 3t/π

. (20)

2(1 − t/π )

5

Note that a(t) is finite when t = π (giving a(π ) = −1/8), and
a → −1/2 as t → ∞. This solution is symmetric about the
imaginary axis since in the Pe → 0 limit there is no advection
of c. An example plot of the boundary shape in this limit is given
the next Section.

6. Numerical solution for the evolving boundary

The numerical task is to approximate the map (15) by trun-
cating the infinite series at n = N and determining the 2N + 2
coefficients A(t), a0(t), . . . , aN (t), b1(t), . . . , bN (t) using (18) and
the two constraint equations A+a0 = 1 and the truncated version
(i.e. summed up to n = N) of (17).

To obtain a further 2N equations from (18) the method of [23]
is used: 2N points ζj, j = 1, . . . , 2N , are distributed uniformly
around the unit ζ -circle, so that (18) becomes a system of 2N
coupled first-order ODEs in t . In practice the ζj = exp(θj) points
are chosen such that θj ∈ [−π + ϵ, π − ϵ], where ϵ is small and
positive in order to avoid the singularity in (15) when ζ = −1
i.e. the point at infinity in the z-plane. Here, the MATLAB routine
ode15i is used to solve this system of coupled ODEs with the
choice ϵ = 0.006 and N = 128.

Fig. 3 shows the evolution of the interface for the cases Pe =

0.25, 1 and 4 for the duration 0 ≤ t ≤ 5. Also shown is the
concentration field at t = 5 for each case and the streamlines
of the flow. The streamlines are computed using the complex
potential F (ω) = ω together with the relations (11) and the
numerical approximation of (15).

Fig. 4 compares the interface profiles for the three different
values of Pe at t = 5, and the Pe = 0 exact solution (19) and
(20). Both Figs. 3 and 4 show the formation of ‘scallop’ shaped
indentation in the dissolving wall with a steeper lip facing up-
stream and a shallower, more gradually varying lip downstream.
The asymmetry becomes more pronounced as Pe increases owing
to the advection of the c-field downstream by the uniform flow.
For Pe = 4 there is very little dissolution upstream on x = 0.
The exact Pe = 0 exact solution profile closely resembles that of
Pe = 0.25.

The rate at which surface area S is dissolved is
dS
dt

= Pe
∫

∂S
|vn ∥ dz|,

= Pe
∫ π

−π

|vn|dθ,

=

∫ π

−π

⏐⏐⏐∂c
∂r

⏐⏐⏐
r=1

dθ ≡ I(Pe), (21)

where (3) and (8) have been used, and I(Pe) is given by

I(Pe) =
1
2π

∫ π

−π

exp
(

Pe sin θ

2 + 2 cos θ

)
K1

[
Pe

√
2 + 2 cos θ

]
×

Pe
√
2 + 2 cos θ

dθ

=
Pe
4π

∫ π

−π

exp
(
Pe
2

tan
θ

2

)
K1

(
Pe
2

sec
θ

2

)
sec

θ

2
dθ. (22)

In Appendix B it is shown that I(Pe) = 1 for all Pe, and so
21) implies dS/dt = 1, a general result which serves as a useful
heck on the numerical results. This result can alternatively be
erived by integrating vn = −(∂c/∂n) around the boundary in

the z-plane, and using the 2D divergence theorem to convert this
boundary integral to the integral of −∇

2c over the area occupied
by fluid. Then using (4) and treating the term involving ∂c/∂x
by Green’s theorem together with the condition c = 0 on all
boundaries, the result dS/dt = 1 follows.

Fig. 5 shows the area lost to dissolution S(t) as a function of
t computed by direct numerical evaluation of the interface area
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elow the real axis. Also shown is the exact area loss S = t . The
greement is good for all values of Pe shown, demonstrating the
ccuracy of the numerical method.

. Periodic forcing

The Green’s function forcing found in the previous Secs. can be
sed to find the response of more general distributions of forcing.
n this Section forcing is considered in the form of infinite periodic
treet of point sources located initially unit distance from the wall
nd distance 2π apart i.e. at z = 2nπ + i, n = −∞, . . . ,∞. In the
-plane the solution for c can be written in terms of an infinite
um based on (10), while the flow field has the same complex
otential as a single source:

c =
1
2π

∞∑
n=−∞

e[Re(ω)+2nπ ]Pe/2
(
K0

[
Pe
2

|ω + 2nπ − i|
]

−K0

[
Pe
2

|ω + 2nπ + i|
])

,

(ω) = ω. (23)

Now introduce the conformal map (e.g. [24])

= f (ζ ) = −i log
(

ζ − e−1

e−1(ζ − e)

)
, (24)

hich maps the interior of the unit ζ -disk to the semi-strip −π ≤

e(ω) ≤ π , Im(ω) > 0, and which is 2π-periodic in the Re(ω)
direction, and has the property f (0) = i. Thus in the ζ -plane the
olution for c is

c =
1
2π

∞∑
n=−∞

e[Re(f (ζ ))+2nπ ]Pe/2
(
K0

[
Pe
2

|f (ζ ) + 2nπ − i|
]

−K0

[
Pe
2

|f (ζ ) + 2nπ + i|
])

. (25)

ifferentiation of (25) gives

∂c
∂r

⏐⏐⏐
r=1

= −
Pe
2π

∞∑
n=−∞

e[u+2nπ ]Pe/2

×

K1

[
Pe
2

√
(u + 2nπ )2 + 1

]
√
(u + 2nπ )2 + 1

(
e − e−1

e + e−1 − 2 cos θ

)
,

(26)

here u = u(θ ) = f (exp(iθ )) is a real-valued function. The
um in (26) is straightforward to compute since the rapid decay
6

of the modified Bessel function for large argument implies that
truncation of the infinite sum such that n ∈ [−N,N], accurately
approximates ∂c/∂r|r=1. Here N = 50 is used.

As in the single source case, the form of the map from the unit
ζ -disk to the physical z-plane is written in terms of an infinite
series which is then approximated numerically. The following
form is used

z = g(ζ , t) = −i log
(

ζ − ea0−1

ea0−1(ζ − e1−a0 )

)
+ ia0 + i

∞∑
n=1

(an + ibn)ζ n,

(27)

with an initial flat interface giving conditions an(0) = 0 and
bn(0) = 0 for all n. Note that (27) has the required property
g(0, t) = i.

As in the single source case, the map g(ζ , t) satisfies the
Polubarinova–Galin equation

Re
[
ζg ′

∂g
∂t

]
= σp(θ ) on |ζ | = 1, (28)

here σp(θ ) = −∂c/∂r|r=1 is given by (26).
The numerical solution of (28) proceeds as before with the

nfinite sum being truncated at n = M , giving 2M + 1 unknowns
a0, a1, . . . , aM , b1, . . . , bM , and 2M + 1 ODEs are formed by con-
sidering (28) at 2M + 1 evenly spaced point around the unit
ζ -circle. The ODE system is again solved using MATLAB’s ode15i
routine.

Examples of the surface evolution is given in Figs. 6(a) (Pe =

0.25) and 6(b) (Pe = 4). As expected, the asymmetry in the
surface shape becomes more pronounced as Pe increases. It is
interesting that, in contrast to a single source the scalloping is
such that the steeper fluid–surface interface is downstream of
the shallower interface. This is a consequence of the periodicity
of the sources. For small times the surface shape takes the form
of a small amplitude sine curve with troughs immediately below
each source. For non-zero Pe the surface dissolves more quickly
downstream of each source. This combined with periodicity im-
plies that the interface must slope upwards more steeply than it
does downwards.

8. Conclusions

The explicit solution for uniform steady flow past a point
source of dissolving agent or heat, along with the conformally
invariant governing equations is used to derive a Polubarinova–
Galin equation for the time-dependent map which gives the
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volving shape of an initially straight surface. Typically a scallop-
haped depression forms in the surface, with degree of asymme-
ry depending on Pe. More realistic representations of sources
an be obtained by convolving the point source solution with
smooth and compact source distribution function. However,

ufficiently far from the smooth source the resulting distribution
f c will be similar to that of a point source and so the surface
volution will resemble that due to a point source.
An infinite street of point sources of c is shown to give rise

o periodic scalloping patterns. While such an arrangement of
eems unlikely in nature, it is interesting that such repeating
callop patterns are observed in nature. It is noted, however, that
ocal shedding of vorticity (via viscous effects) is thought to be
nfluential in the scalloping of soluble surfaces [25]. Moreover, as
precursor to scalloping, turbulent flow over a substrate which
an either dissolve or melt has also shown to be unstable with
iscosity determining the wavelength of instability [26].
The solutions presented here are the first to consider the case

hen c is concentrated at a point, and undergoes diffusion and
dvection by a background flow. A possible scenario where this
ay occur is on the surface of frozen lakes where the upwelling of
arm water at a confined location in the lake’s surface provides
localised source a warm water capable of melting surrounding

slush’ e.g. [3]. Spectacular ice-star patterns may arise from this
rocess. However in such cases the dynamics appears to be more
ppropriately modelled by a point source for the fluid flow rather
han a uniform flow at infinity as done here. This leads to an-
ther class of problems which could be considered using similar
ethods: when the fluid source is concentrated at a source and

ransports fluid with, say, c = 1 at the source towards a surface
here c = 0. This is left for future work.
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ppendix A. Exact solution for Pe = 0

In the Pe → 0 limit, the Polubarinova–Galin equation to be
olved is, from (14),

e
[
ζ f ′(ζ )

∂ f
∂t

]
=

1
2π

, ζ = eiθ . (A.1)

ith a constant on the RHS, (A.1) is equivalent to the Hele-Shaw
ree boundary flow (e.g. [18,19]) for a source of unit strength
ocated a unit distance from an initially flat interface. An exact so-
ution for a similar scenario obtained using the Schwarz function
ethod appears in [27]. For convenience, and to accommodate
hanges in notation and that here the source is located above the
nterface, the details are reproduced in this appendix.

Let

= f (ζ , t) = iR
(

1
+ aζ + d

)
, (A.2)
1 + ζ

7

here R(t), a(t) and c(t) be real time-varying coefficients to be
found. This truncated form of (15) turns out to be an exact
solution in this case. Requiring that f (0, t) = i gives R = (1+d)−1.

The Schwarz function of the curve representing the fluid–solid
interface is the locally analytic function g(z, t) such that g(z, t) =

z̄ on the curve, and is obtained by taking the conjugate of (A.2),
and using the fact that ζ̄ = ζ−1 on the unit circle:

z̄ = g = − iR
(

ζ

1 + ζ
+

a
ζ

+ d
)

=z − iRa(ζ + ζ−1) − 2iRd − iR. (A.3)

emanding that the interface be aligned along the real axis as
→ ∞ requires that g → z as ζ → −1 and so d = a − 1/2 and
= 2/(1+2a). That the initial interface is flat gives a(0) = 0. The

one-parameter form of the map is now determined as (19) and it
remains to find a(t) where a(0) = 0.

In terms of the Schwarz function, free boundary Hele-Shaw
flow satisfies (e.g. [18,19]) ∂tg = 2∂zw, where w = (1/2π ) log(z−
i) is the complex potential in the limit z → i where the source
is located. The singular behaviour on both sides of ∂tg = 2∂zw
must match as z → i. From (A.2) in the limit z → i or ζ → 0,
iR(a − 1)(z − i)−1

∼ ζ−1, and ∂tg = 2∂zw gives
d
dt

(
R2a(a − 1)

)
=

1
π

. (A.4)

Integrating (A.4) and using R = 2/(1 + 2a) and a(0) = 0 gives a
uadratic for a(t) with solution given by (20).

ppendix B. Derivation of I(Pe) ≡ 1

Let α = Pe/2 so that the integral (22) becomes

(α) =
α

2π

∫ π

−π

exp
(

α tan
θ

2

)
K1

(
α sec

θ

2

)
sec

θ

2
dθ. (B.1)

Differentiating (B.1) with respect to α and using K ′

1(z) = −K0(z)−
K1(z)/z gives upon simplification

dI
dα

=
α

2π

∫ π

−π

exp
(

α tan
θ

2

)
×

K1

(
α tan

θ

2

)
tan

θ

2
sec

θ

2
− K0

(
α tan

θ

2

)
sec2

θ

2

]
dθ. (B.2)

Using dK0(z)/dz = −K1(z) observe that

α

2π

∫ π

−π

exp
(

α tan
θ

2

)
K1

(
α tan

θ

2

)
tan

θ

2
sec

θ

2
dθ =

−
1
π

∫ π

−π

exp
(

α tan
θ

2

)
d
dθ

K0

(
α tan

θ

2

)
dθ (B.3)

Integrating the RHS of (B.3) by parts gives

α

2π

∫ π

−π

exp
(

α tan
θ

2

)
K1

(
α tan

θ

2

)
tan

θ

2
sec

θ

2
dθ =

α

2π

∫ π

−π

exp
(

α tan
θ

2

)
K0

(
α tan

θ

2

)
sec2

θ

2
dθ, (B.4)

where the property K0(z) ∼
√

π/2z exp(−z) as z → +∞ has
been used to show that the terms arising in integration by parts
evaluated at θ = ±π vanish. Hence (B.2) and (B.4) combine to
give I ′(α) = 0.

Now, using K1(z) ∼ 1/z as z → 0 in (B.1) gives

lim
α→0

I(α) =
α

2π

∫ π

−π

1
α sec θ

2

sec
θ

2
dθ = 1. (B.5)

Since I ′(α) = 0 and I(0) = 1, it follows I(α) = 1 for all α i.e. for
all Pe.
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