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The two-dimensional free boundary problem for a surface dissolving in potential flow owing to
concentrated sources of dissolving agent ¢ is formulated and solved. The surface boundary evolves
quasi-steadily, and the resulting steady advection-diffusion equation for c, and Laplace’s equation for
the velocity potential form a coupled pair of conformally invariant PDEs. The dynamics of the coupled
fluid flow and evolving surface depends on the Péclet number: Pe = UL/D, where U and L are typical
velocity and lengthscales respectively, and D is the diffusivity of c. The conformally invariant property

Keywords: is exploited in finding an equation of the Polubarinova-Galin class for the conformal map from the
Conformal mapping unit ¢-disk to the evolving domain in physical space. The equation is solved numerically and the time-
Dissolution evolution of the dissolving surface determined. For a single concentrated source with flow initially
Interfaces

parallel to a flat surface, a Pe-dependent scallop-like surface shape typically develops. The problem

Free boundary involving a periodic array of concentrated sources aligned parallel to an initially flat surface is also

solved.
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1. Introduction

The interaction between fluid flow and surfaces which evolve
in response to erosion, chemical dissolution or freezing/melting
effects is, in general, a challenging nonlinear free boundary prob-
lem: the flow field depends on the surface shape which, in
turn, depends on the local fluid transport properties near the
fluid-solid boundary. There is much interest in these processes
(e.g. [1]), especially in a geological context where the interaction
leads to striking features and patterns spanning lengthscales from
centimetres to tens of kilometres. Some specific examples include
ramified stream networks [2], ice-stars [3], karst pinnacles [4],
yardangs and ventifacts [5], terraces [6,7], and the surface scal-
loping of caves, beneath ice floes and the Martian landscape
e.g. [7-10]. The flowing fluid in these examples can be either
ocean, surface- or ground-water, or wind, and the shaping of the
landscape can be through abrasion, erosion, sediment transport,
precipitation or dissolution.

One class of problems considers the mechanical effect of ero-
sion by the flow of fluid, explicitly linking the normal velocity of
the eroding interface with the local fluid shear stress e.g. [11,12].
Another class of problems to which the present work belongs, is
based on inviscid flow transporting an agent or species ¢ to which
the fluid-solid interface responds by, say, freezing, melting or dis-
solution. In this work the solid loses mass owing to concentrated
sources (see Section 3) of dissolving agent is examined. Equally,
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the problem applies to the melting of surfaces in the presence of
localised heat sources.

Mathematically, progress can be made by assuming
two-dimensional dynamics and, further, that the surface evolves
quasi-steadily. The latter assumption is valid when the normal
velocity of the surface is much smaller than a typical velocity
of the fluid flow, and is normally a good assumption for slowly
evolving geological features. Assuming the fluid is inviscid and
the flow irrotational, the fluid-surface interaction is governed
by a pair of coupled PDEs: Laplace’s equation for the velocity
potential, and the steady advection-diffusion equation for the
species concentration (or temperature) c. After a standard non-
dimensionalisation the parameter governing the behaviour of the
solution of the PDEs is the Péclet number: Pe = UL/D, where U
and L are typical velocity and lengthscales respectively, and D is
the diffusivity of c. Remarkably, this pair of PDEs is conformally
invariant [ 13], enabling powerful methods of complex analysis to
be employed to find exact and asymptotic (in the limit of small
and large Pe number) solutions for the case when the surface
boundary remains fixed (e.g. [13,14]), or analytical or numerical
solutions for the case when the surface boundary evolves e.g. [ 15—
17]. In these latter studies, the source of c is at infinity and is
advected to the surface by the flow. In contrast, the present work
considers the case when c is concentrated at a given point(s) at
finite distance from the surface.

The coupling at the fluid-solid interface is provided by a
Stefan-type boundary condition which directly links the normal
velocity of the surface to the normal gradient of ¢ at the bound-
ary. By conformal mapping the physical plane to the interior of
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the unit ¢-disk, it is shown in Section 4 the problem reduces
to finding the conformal map which satisfies a Polubarinova-
Galin-type equation as is common in other two-dimensional free
boundary problems e.g. Hele-Shaw problems [18-20], or prob-
lems, as here, involving advection and diffusion of ¢ e.g. [15-17,
21,22]. Section 6 describes the numerical approach to solving the
Polubarinova-Galin equation and presents results for the evolu-
tion of the boundary for uniform flow past an isolated source.
Results are extended in Section 7 to consider a periodic array of
point sources of c.

2. Problem formulation

Irrotational flow of an inviscid, incompressible fluid in the two
dimensional (x, y)-plane is considered. The velocity field is given
by u = V¢, where ¢ is the velocity potential which satisfies the
Laplace equation

Vip =0. (1)

Let c(x, y) measure the concentration of some species, or fluid
property such as temperature, either of which causes a boundary
to dissolve or melt. It is assumed that the flow velocity u is larger
than the normal velocity v, of the dissolving boundary, so the
fluid-surface interaction is quasi-steady. The agent c thus satisfies
the steady, advection-diffusion equation with non-dimensional
form

Peu.Vc = Vc, (2)

where Pe = UL/D is the Péclet number computed from the fluid
velocity scale U, characteristic length scale L and diffusivity D of
c(x,y).

The coupled PDEs (1) and (2) are conformally invariant [13],
and this property is exploited in this work and the complex
variable z = x + iy used.

On the solid surface the following boundary conditions apply

c=0,
u-n=20,
@-n = —Vc-n. (3)
dt

The first of these fixes the concentration of c(x, y) to be zero, the
second requires the normal velocity of the fluid flow vanish and
the third is the Stefan condition which states that the normal
velocity of the solid surface boundary is given by the normal
derivative of c(x, y)-see e.g. [15,17]. Here ‘outward’ means in the
direction from the solid surface pointing towards the interior of
the fluid domain.

3. Flow past a concentrated source

Consider first uniform flow in the real direction when no
surfaces are present. The advection-diffusion equation becomes

ac
Pe — = V’c +3(x,y), (4)
X
where a concentrated source of c(x, y) fixed at z = 0 is repre-
sented by a delta function forcing term. The solution of (4) is

(e.g. [14])

1 Pe
clx, y) = o™k [2¢x2 +y2] , (5)
T
where Ky() is a modified Bessel function.
The next step is to incorporate an infinitely long, straight and
fixed wall aligned with the real z-axis along which c(x, 0) = 0.
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For uniform flow parallel to the wall with delta function forcing
at z = i, the solution for c(x, y) is

1 Pe Pe
c(x,y) = Eexf’e/2 (KO |:2|z - i|] — Ko [2|z + i|]) . (6)

A plot of the c(x,y) with Pe = 1 is given in Fig. 1(a). The
concentration field is skewed downstream owing to advection by
the flow parallel to the wall towards increasing x. The result is
that the normal derivative of the concentration field (6) dc/dy
evaluated at y = 0 is asymmetric as shown in Fig. 1(b). Since
the Stefan condition (3) equates the normal derivative of c to the
normal velocity of the boundary, the wall will dissolve asymmet-
rically about x = 0. In turn, the flow field will evolve according
the changing surface shape. This interaction is a nonlinear free
boundary problem and is tackled in the next section using a
numerical method based on conformal mapping.

4. The Polubarinova-Galin equation

Using conformal mapping, the free boundary problem in the
z-plane is converted to a problem in the interior of unit disk in an
auxiliary ¢-plane. Let z = f(¢, t) be a time-dependent map from
the interior of the unit ¢-disk to the physical domain in the z-
plane. The boundary |¢| = 1 maps to the evolving free boundary
in the z-plane and ¢ = 0 maps to the location z = i of the source
of c(x, y).

The Stefan boundary condition (3) can be written in complex
form as

_dz _
Re [nza] = —Re[n,Vc]
= —2JRe [ﬁzaf} , (7)
0z

where n, is the complex form of the normal to the surface in the
z-plane, and the relation V = 29/0z has been used.

The form of (7) in the ¢-plane is now derived: the complex
form of the normal vector in the z and ¢-plane are related by
n, = f'n;/If'| and 9c/9z = (dc/9¢)/f’, since z = f(¢) is a
conformal map and its analyticity implies df /0¢ = 0.

Letting ¢ = rexp(if) in the ¢-plane, the normal derivative of
c(r,0) at the boundary || =1 =11is

|:_ 8c} ac
2Re [n,— | =
9

e =o(0). (8)

r=1

Substituting (8) in (7) and the fact that n, = ¢ on the unit
£ -circle, gives the Polubarinova-Galin equation

—9
Re [;f/aj;] =o(0) on |¢]=1. 9)

The Polubarinova-Galin Eq. (9) expresses the original free bound-
ary problem in the z-plane as a nonlinear equation for the un-
known conformal map f(¢,t) on the fixed boundary r = 1.
In order to proceed it is required to find o(@). This is done in
Section 5.

5. Conformal mapping for the wall dissolution problem

The upper half of the w-plane has (fixed) fluid-solid interface
coinciding with the real w-axis-see Fig. 2. A point source of ¢
is located at @ = i; ¢ = 0 on the real axis and the fluid flow
is uniform in the real direction. Thus from (6) the concentration
¢(w, @) and complex potential F(w) are

1 Pe Pe
c(w, @) = Ee“e(w”’e/z (KO |:2|a) - i|] — Ko |:2|a) + i|]> ,
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Fig. 1. (a) Concentration field ¢ given by (6) for a source at z =i, Pe = 1 and ¢ = 0 on the real axis, in colour and with equally spaced concentration contours. The
streamlines are the lines parallel to the real axis. (b) The normal gradient of c, dc/dy, along the real axis.

(-plane

U=12z—

= =00, 2 =1
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Fig. 2. Conformal maps between the z-, w- and ¢-planes. The shaded regions map to each other, and ¢ = 0 along the boundary (dark lines). The point at which the

concentration c is singular is indicated by a small black dot.

Flw) = w. (10)
The map
I Sl

1{ T (11)

maps the interior of the unit ¢-disk to the upper half of the w-
plane with ¢ = 0 mapping to w = i, the location of the point
source of c. The solution for the species concentration field in the
¢-plane is then

1 Pe [ .c—1

1
(KO |:Pe — ] — K |:Pe i H) (12)

To find the normal derivative to the boundary |¢| = 1 in the
Z-plane let ¢ = rexp(if) so that (12) becomes

1 Pe sin 6
c(r,)= —exp| ——— | x
2T r2+1+42rcos

Per Pe
(1(0[ ]_Ko[ ]) (13)
V12 4+ 14 2rcosf V12 4+ 14 2rcosf

Differentiating (13) with respect to r gives, after simplification,
the normal derivative at r = 1

8c(1 6) = 1 ox Pesin @ K Pe
ar T T P\ 2 2c0s0 ) V2 ¥ 2cos6
Pe
X —— 14
V2 +2cosb (14)

In general the conformal map z = f(¢) from the ¢-plane to
the (physical) z-plane can be written as the series
A . .
f(&)= ——= 4 i(a(t) + iby(t))¢", (15)
; +1 n=0
where A(t), ay(t) and b,(t) are real coefficients. The point { = —1
maps to z = oco. At t = 0 the w- and z-planes coincide, thus
A(0) = 2, ap(0) = —1 and all other a,(0) and b,(0) are zero.
Requiring that the source maps to z = i implies f(0) = i and
soA+ay=1and by =0.
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Fig. 3. The left hand plots show the evolving interface at uniform time intervals up to t = 5, and the right hand plots show the concentration field and streamlines
at the final time. Three different Pe are shown: (a) and (b) Pe = 1/4; (c) and (d) Pe = 1; (e) and (f) Pe = 4.

Taking the conjugate of (15) and using { = ¢~! on the

interface gives the following relation satisfied on the boundary

oo

FO) =f(&)—iA=1) (an+iby)(¢" + 7). (16)
n=0

Demanding that the interface in the z-plane tends to the real axis

far from the source implies that f = f in the limit { — —1 and

SO
A+zZ(—1)"an =0. (17)
n=0

Fig. 2 gives the relation between maps (11) and (15) and the
z, w- and ¢-planes. In summary, the mathematical problem is to
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Fig. 5. The dissolved area S as a function of time for the numerical experiments
with three different Pe shown in 3, and the exact solution S = t.

solve the Polubarinova-Galin Eq. (9) for the unknown map (15)

— 0
Re [;“f’(()aft] =0o(0), (18)

where o(0) = —dc/dr on r = 1 is given by (14). The solution to
(18) takes the form (15) subject to conditions (17) and A+ap = 1,
and initial conditions A(0) = 2, ag(0) = —1, a,(0) = b,(0) = 0,
n>1

5.1. Exact solution for Pe = 0

In the limit Pe — O it follows from (14) that () — 1/2m.
In this case (18) has the exact solution (see Appendix A for its
derivation)

2i 1 1
f(C):ﬂ(ﬁ-i-aC"‘a—E)’ (19)
where
a(t) = 1+t/71—«/1+3t/7r. (20)

2(1—t/7)
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Note that a(t) is finite when t = 7 (giving a(r) = —1/8), and
a - —1/2 ast — oo. This solution is symmetric about the
imaginary axis since in the Pe — 0 limit there is no advection
of c. An example plot of the boundary shape in this limit is given
the next Section.

6. Numerical solution for the evolving boundary

The numerical task is to approximate the map (15) by trun-
cating the infinite series at n = N and determining the 2N + 2
coefficients A(t), ao(t), ..., an(t), by(t), ..., by(t) using (18) and
the two constraint equations A+ay = 1 and the truncated version
(i.e. summed up ton = N) of (17).

To obtain a further 2N equations from (18) the method of [23]
is used: 2N points &, j = 1,..., 2N, are distributed uniformly
around the unit ¢-circle, so that (18) becomes a system of 2N
coupled first-order ODEs in t. In practice the ¢; = exp(6;) points
are chosen such that 6; € [-m + €, m — €], where € is small and
positive in order to avoid the singularity in (15) when ¢ = —1
i.e. the point at infinity in the z-plane. Here, the MATLAB routine
odel5i is used to solve this system of coupled ODEs with the
choice € = 0.006 and N = 128.

Fig. 3 shows the evolution of the interface for the cases Pe =
0.25,1 and 4 for the duration 0 < t < 5. Also shown is the
concentration field at t = 5 for each case and the streamlines
of the flow. The streamlines are computed using the complex
potential F(w) = w together with the relations (11) and the
numerical approximation of (15).

Fig. 4 compares the interface profiles for the three different
values of Pe at t = 5, and the Pe = 0 exact solution (19) and
(20). Both Figs. 3 and 4 show the formation of ‘scallop’ shaped
indentation in the dissolving wall with a steeper lip facing up-
stream and a shallower, more gradually varying lip downstream.
The asymmetry becomes more pronounced as Pe increases owing
to the advection of the c-field downstream by the uniform flow.
For Pe = 4 there is very little dissolution upstream on x = 0.
The exact Pe = 0 exact solution profile closely resembles that of
Pe = 0.25.

The rate at which surface area S is dissolved is

as —Pef [vg || dz]
dt — Jis on ’
T
:Pef |vn|dO,

9| 46 = I(Pe). @21

:[n ar Ir=1

where (3) and (8) have been used, and I(Pe) is given by

I(Pe) = 1 /nex ( Pesin@ )K[ Pe ]
Tom ), Pl252c0s0 )" V2 +2cosd
Pe

X ——————do
2+ 2cos6

Pe (™ (Pe 9) (Pe 9) 0
= — exp| —tan— | Ky | —sec = |sec =df. (22)
4 J_, 2 2 2 2 2

In Appendix B it is shown that I(Pe) = 1 for all Pe, and so
(21) implies dS/dt = 1, a general result which serves as a useful
check on the numerical results. This result can alternatively be
derived by integrating v, = —(dc/dn) around the boundary in
the z-plane, and using the 2D divergence theorem to convert this
boundary integral to the integral of —V?2c over the area occupied
by fluid. Then using (4) and treating the term involving dc/dx
by Green’s theorem together with the condition ¢ = 0 on all
boundaries, the result dS/dt = 1 follows.

Fig. 5 shows the area lost to dissolution S(t) as a function of
t computed by direct numerical evaluation of the interface area
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Fig. 6. Evolution of the interface pictured at equal time intervals up to t = 1,
positive real direction far from the wall. (a) Pe = 0.25 and (b) Pe = 4.

below the real axis. Also shown is the exact area loss S = t. The
agreement is good for all values of Pe shown, demonstrating the
accuracy of the numerical method.

7. Periodic forcing

The Green’s function forcing found in the previous Secs. can be
used to find the response of more general distributions of forcing.
In this Section forcing is considered in the form of infinite periodic
street of point sources located initially unit distance from the wall
and distance 27 aparti.e.atz = 2nw +i,n = —o0, ..., o0. In the
w-plane the solution for ¢ can be written in terms of an infinite
sum based on (10), while the flow field has the same complex
potential as a single source:

1 = Pe
— [Re(w)+2nm |Pe/2 s
c= P E e (KO [2 |w 4+ 2nm 1|]

7Pe .
—Ko [zla) + 2nm + 1|1|> ,
Flw) = . (23)
Now introduce the conformal map (e.g. [24])
— () — i (e’
w_f(;)__uog(e_]@_e)>, (24)

which maps the interior of the unit ¢-disk to the semi-strip —m <
Re(w) < &, Im(w) > 0, and which is 2w -periodic in the Re(w)
direction, and has the property f(0) = i. Thus in the ¢-plane the
solution for c is

1 = Pe

— [Re(f(¢))+2nm |Pe/2 .

= e Ko | = +2nm —i
. n:§—oo: ( 0 [ 5 IF(¢) I]

—Ko [Pze[f(;)+2nn +1|D. (25)

Differentiation of (25) gives

% — _E i elu+2nmipe/2
ar lr=1 2 =
K [% U+ 2nm 7 + 1] I
) (u+2nmy+1 (6+e‘1—2c050>’
(26)
where u = u(0) = f(exp(if)) is a real-valued function. The

sum in (26) is straightforward to compute since the rapid decay
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0.05

-0.25

(b)

for periodically arranged sources at z = 2nsw + i in a uniform stream towards the

of the modified Bessel function for large argument implies that
truncation of the infinite sum such that n € [—N, N], accurately
approximates dc/dr|,—1. Here N = 50 is used.

As in the single source case, the form of the map from the unit
¢-disk to the physical z-plane is written in terms of an infinite
series which is then approximated numerically. The following
form is used

é— _ eaof'l &
z=g(¢,t)=—ilog <m> +iag +i ;(an—i-ibn)fn’
(27)
with an initial flat interface giving conditions a,(0) = 0 and

b,(0) = 0 for all n. Note that (27) has the required property
£(0,t) =i

As in the single source case, the map g(¢,t) satisfies the
Polubarinova-Galin equation

Re [gg’?i} =o0p(0) on [¢]=1, (28)
where 0,() = —dc/0r|,= is given by (26).

The numerical solution of (28) proceeds as before with the
infinite sum being truncated at n = M, giving 2M + 1 unknowns
ap, ai, ..., ay, by, ..., by, and 2M + 1 ODEs are formed by con-
sidering (28) at 2M + 1 evenly spaced point around the unit
¢-circle. The ODE system is again solved using MATLAB'’s ode15i
routine.

Examples of the surface evolution is given in Figs. 6(a) (Pe =
0.25) and 6(b) (Pe = 4). As expected, the asymmetry in the
surface shape becomes more pronounced as Pe increases. It is
interesting that, in contrast to a single source the scalloping is
such that the steeper fluid-surface interface is downstream of
the shallower interface. This is a consequence of the periodicity
of the sources. For small times the surface shape takes the form
of a small amplitude sine curve with troughs immediately below
each source. For non-zero Pe the surface dissolves more quickly
downstream of each source. This combined with periodicity im-
plies that the interface must slope upwards more steeply than it
does downwards.

8. Conclusions

The explicit solution for uniform steady flow past a point
source of dissolving agent or heat, along with the conformally
invariant governing equations is used to derive a Polubarinova-
Galin equation for the time-dependent map which gives the
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evolving shape of an initially straight surface. Typically a scallop-
shaped depression forms in the surface, with degree of asymme-
try depending on Pe. More realistic representations of sources
can be obtained by convolving the point source solution with
a smooth and compact source distribution function. However,
sufficiently far from the smooth source the resulting distribution
of ¢ will be similar to that of a point source and so the surface
evolution will resemble that due to a point source.

An infinite street of point sources of ¢ is shown to give rise
to periodic scalloping patterns. While such an arrangement of
seems unlikely in nature, it is interesting that such repeating
scallop patterns are observed in nature. It is noted, however, that
local shedding of vorticity (via viscous effects) is thought to be
influential in the scalloping of soluble surfaces [25]. Moreover, as
a precursor to scalloping, turbulent flow over a substrate which
can either dissolve or melt has also shown to be unstable with
viscosity determining the wavelength of instability [26].

The solutions presented here are the first to consider the case
when c is concentrated at a point, and undergoes diffusion and
advection by a background flow. A possible scenario where this
may occur is on the surface of frozen lakes where the upwelling of
warm water at a confined location in the lake’s surface provides
a localised source a warm water capable of melting surrounding
‘slush’ e.g. [3]. Spectacular ice-star patterns may arise from this
process. However in such cases the dynamics appears to be more
appropriately modelled by a point source for the fluid flow rather
than a uniform flow at infinity as done here. This leads to an-
other class of problems which could be considered using similar
methods: when the fluid source is concentrated at a source and
transports fluid with, say, c = 1 at the source towards a surface
where ¢ = 0. This is left for future work.
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Appendix A. Exact solution for Pe = 0

In the Pe — 0 limit, the Polubarinova-Galin equation to be
solved is, from (14),

—of | 1
Re [Cf (;)at} =
With a constant on the RHS, (A.1) is equivalent to the Hele-Shaw
free boundary flow (e.g. [18,19]) for a source of unit strength
located a unit distance from an initially flat interface. An exact so-
lution for a similar scenario obtained using the Schwarz function
method appears in [27]. For convenience, and to accommodate
changes in notation and that here the source is located above the
interface, the details are reproduced in this appendix.
Let

. 1
Z=f(§,t)=1R(_lH_+a§ +d>,

¢ =é". (A1)

(A2)
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where R(t), a(t) and c(t) be real time-varying coefficients to be
found. This truncated form of (15) turns out to be an exact
solution in this case. Requiring that f(0, t) = i gives R = (1+d)~.

The Schwarz function of the curve representing the fluid-solid
interface is the locally analytic function g(z, t) such that g(z, t) =
Z on the curve, and is obtained by taking the conjugate of (A.2),
and using the fact that ¢ = ¢! on the unit circle:

=z —iRa(¢ + ¢~1) — 2iRd — iR. (A.3)

Demanding that the interface be aligned along the real axis as
z — oo requires thatg —-zas¢ — —landsod =a— 1/2 and
R = 2/(1+2a). That the initial interface is flat gives a(0) = 0. The
one-parameter form of the map is now determined as (19) and it
remains to find a(t) where a(0) = 0.

In terms of the Schwarz function, free boundary Hele-Shaw
flow satisfies (e.g.[18,19]) 9;g = 20, w, where w = (1/27)log(z—
i) is the complex potential in the limit z — i where the source
is located. The singular behaviour on both sides of 9;,g = 20, w
must match as z — i. From (A.2) in the limit z — ior ¢ — 0,
iRla— 1)z —i)"' ~ ¢~ and 3;g = 20, w gives
d 5 1
i (Raa — 1)) = —
Integrating (A.4) and using R = 2/(1 + 2a) and a(0) = 0 gives a
quadratic for a(t) with solution given by (20).

(A4)

Appendix B. Derivation of I(Pe) = 1

Let « = Pe/2 so that the integral (22) becomes

a [T 0 0 0
I(a) = — exp | atan — ) K; | a sec — ) sec —d6.
27 ), 2 2 2

Differentiating (B.1) with respect to « and using K;(z) = —Ko(z)—
K1(z)/z gives upon simplification

d il neX tane
a _ o AW
do 27 ) P \*HR;

(B.1)

0 0 0 0 , 0
Ki|«atan = ) tan —sec — — Ky | o tan = ) sec® — | d6. (B.2)
2 2 2 2 2
Using dKy(z)/dz = —K;(z) observe that
a [T 0 0 0 0
— exp|atan - | Ky { @tan = ) tan = sec —d6 =
21 ), 2 2 272
1 (7 0\ d 0
—— explatan—- | —Ko [ wtan = ) dO (B.3)
T J_, 2/ do 2
Integrating the RHS of (B.3) by parts gives
a [T 0 0 0 0
— exp|atan - | Ky { @tan = ) tan = sec —d6 =
21 ), 2 2 272
a [T 0 0 , 0
— explatan - | Ky | @ tan — ) sec” —d@, (B.4)
21 ), 2 2 2

where the property Ko(z) ~ /7 /2zexp(—z) as z — +oo has
been used to show that the terms arising in integration by parts
evaluated at § = 4 vanish. Hence (B.2) and (B.4) combine to
give I'(a) = 0.

Now, using K;(z) ~ 1/z as z — 0 in (B.1) gives

4 1 0
lim I(a) = i/ ﬁsecide =1

(B.5)
a—0 2 7z asec 3

Since I'(e) = 0 and I(0) = 1, it follows I(«) = 1 for all « i.e. for
all Pe.
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