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ABSTRACT: 36 

Background: Arterial haemodynamic parameters derived from reservoir-excess pressure 37 

analysis exhibit prognostic utility. Reservoir-excess pressure analysis may provide useful 38 

information about an influence of altered haemodynamics on target organ such as the 39 

kidneys. We determined whether the parameters derived from the reservoir-excess 40 

pressure analysis were associated with the reduction in estimated glomerular filtration rate 41 

(eGFR) in 542 older adults (69.4±7.9 yrs, 194 females) at baseline and after three years. 42 

Methods: Reservoir-excess pressure parameters including reservoir pressure integral 43 

(INTPR), excess pressure integral, systolic and diastolic rate constants were obtained by 44 

radial artery tonometry. Results: After three years, and in a group of 94 individuals 45 

(72.4±7.6 yrs, 26 females), there was an eGFR reduction of more than 5% per year (median 46 

reduction of 20.5% over three years). A multivariable logistic regression analysis revealed 47 

that higher baseline INTPR was independently associated with a smaller reduction in eGFR 48 

after accounting for conventional cardiovascular risk factors and study centres [odds ratio: 49 

0.660 (95% confidence intervals, 0.494-0.883), p=0.005]. The association remained 50 

unchanged after further adjustments for potential confounders and baseline renal function 51 

[odds ratio: 0.528 (95% confidence intervals, 0.351-0.794), p=0.002]. No other reservoir-52 

excess pressure parameters exhibited associations with the reduction in renal function. 53 

Conclusions: This study demonstrates that baseline INTPR was associated with the decline 54 

in renal function in older adults at 3-year follow-up, independently of conventional 55 

cardiovascular risk factors. This suggests that INTPR may play a role in the functional decline 56 

of the kidneys. 57 

58 
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60 

List of abbreviations and acronyms 61 

BP, blood pressure; CKD, chronic kidney disease; DCL, the decline group; DRC, diastolic rate 62 

constant; eGFR, estimated glomerular filtration rate; INTPR, reservoir pressure integral; 63 

INTXSP, excess pressure integral; MAXPR, peak reservoir pressure; ND, the non-decline 64 

group; OR, odds ratio; SRC, systolic rate constant; SUMMIT-VIP, the SUrrogate markers for 65 

Micro- and Macrovascular hard endpoints for Innovative diabetes Tools-Vascular Imaging 66 

Prediction study.  67 

68 

INTRODUCTION: 69 

The arterial blood pressure (BP) waveform provides valuable information about 70 

cardiovascular risk. The peak and trough on a BP waveform, for example, represent systolic 71 

and diastolic BP, respectively, which are well-recognised cardiovascular risk factors that 72 

have been utilised for risk stratification. Another example is pulse pressure and 73 

augmentation index, which are obtained from specific points on the BP waveform and are 74 

indicators of BP pulsatility and a pulsatility marker, respectively. Despite the proven 75 

usefulness of these BP parameters, there remains a greater residual cardiovascular risk 76 

associated with BP that is unaccounted for at present.1 This may be partly explained by the 77 

fact that these BP parameters are derived either from extreme points on the BP waveform 78 

or calculated from specific points on the BP waveform, rather than extracting information 79 

from the BP waveform as a whole. 80 

81 

Reservoir-excess pressure analysis conceptualises the BP waveform as the summation of 1) 82 

the reservoir pressure component that reflects the theoretical minimum hydraulic work 83 
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necessary to generate a given stroke volume, and 2) the excess pressure component that is 84 

an index of unnecessary work done by the left ventricle in each cardiac cycle.2 Reservoir-85 

excess pressure analysis derives its parameters by directly extracting them from the BP 86 

waveform morphology. This is an advantage of this analysis over other BP parameters 87 

because subtle haemodynamic abnormalities, that are not apparent at specific points on the 88 

BP waveform, may be identified with the parameters of reservoir-excess pressure analysis. 89 

In this regard, the ability of reservoir-excess pressure parameters to predict cardiovascular 90 

events has been demonstrated independently of conventional cardiovascular risk factors 91 

including BP,3-10 suggesting a clinical utility of the concept. 92 

93 

A reduction in renal function, expressed as a reduced estimated glomerular filtration rate 94 

(eGFR) in clinical practice, occurs with normal ageing, but the age-related loss of renal 95 

function is exacerbated by comorbidities such as hypertension and type 2 diabetes.11 96 

Progressive renal impairment leads to chronic kidney disease (CKD), a dire consequence of 97 

which is the progression to end-stage renal disease that requires dialysis and/or renal 98 

transplantation. Patients with CKD have a significantly higher risk for cardiovascular disease 99 

than appropriately matched controls.12 Clinical care of people with CKD focuses on slowing 100 

the decline in renal function, aiming to delay/avoid the need for renal replacement therapy 101 

and reducing cardiovascular risk. Identification of those at highest risk of progressive renal 102 

disease and cardiovascular disease in this patient group remains an important and unmet 103 

clinical need. In this context, reservoir-excess pressure analysis may provide useful 104 

information about the influence of altered haemodynamics on target organs, in this case the 105 

kidneys, additionally to conventional risk factors like systolic and diastolic BP.13 Specifically, 106 

because reservoir pressure corresponds to the instantaneous blood volume stored in large 107 
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arteries,14 and diastolic rate constant (DRC) represents the rate of reservoir pressure 108 

discharge, alterations in these parameters may be indicative of adverse renal 109 

haemodynamics. Therefore, we aimed to test the hypothesis that the parameters derived 110 

from reservoir-excess pressure analysis would predict the reduction in eGFR at 3-year 111 

follow-up in older adults.        112 

113 

METHODS: 114 

The data that support the findings of this study are available from the corresponding author 115 

upon reasonable request. 116 

117 

Participants 118 

This is a sub-study of the SUrrogate markers for Micro- and Macrovascular hard endpoints 119 

for Innovative diabetes Tools-Vascular Imaging Prediction (SUMMIT-VIP) study. Participants 120 

were older adults (n=542) recruited from Exeter, Dundee (both United Kingdom) and Malmö 121 

(Sweden) for the SUMMIT-VIP study, for whom raw radial pressure waveform data were 122 

available (Supplemental Figure S1). Participants were studied at baseline and at 3-year 123 

follow-up. The details of the main study including the criteria for inclusion/exclusion have 124 

been described elsewhere15, 16 and a brief summary is included in the Supplemental Material 125 

(Supplemental Methods). Demographic and clinical characteristics data including physical 126 

and laboratory analyses were obtained based on the predefined main study protocol at 127 

each site. All study procedures were approved by UK National Research Ethics Service South 128 

West Committee, East of Scotland Research Ethics Service and the institutional ethics 129 

committee at the University of Lund, Sweden. Written informed consent was obtained from 130 

all participants. 131 
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132 

Acquisition of radial pressure waveform and derivation of reservoir-excess pressure 133 

parameters 134 

The details of our radial pressure waveform acquisition method have been described 135 

elsewhere.10 Briefly, the participants lay supine on an examining bed and rested for 10 min 136 

before the assessment. Right radial artery pressure waveforms were recorded with a high-137 

fidelity micromanometer attached to a SphygmoCor system (Version 8.2, AtCor Medical Pty 138 

Ltd, West Ryde, Australia) over 10 sec. Dedicated inbuilt software then processed acquired 139 

waveforms to calculate an ensemble-averaged radial pressure waveform calibrated by 140 

brachial systolic and diastolic BP (as per the manufacturer’s recommendation) using a 141 

validated semi-automated oscillometric device (Omron M6, Hoofddorp, Netherlands). 142 

143 

The ensemble-averaged radial pressure waveform was then used to calculate reservoir-144 

excess pressure parameters based on the pressure-alone approach. A review of the method 145 

that includes its theoretical basis and validation has been published recently.17 In the 146 

reservoir-excess pressure analysis, the measured pressure waveform can be separated into 147 

1) a reservoir pressure component which varies in magnitude through changes in the148 

resistance to outflow from the reservoir, the reservoir compliance and the asymptotic 149 

pressure,18 and 2) an excess pressure component which is the difference between the 150 

measured pressure waveform and reservoir pressure. The calculation of the reservoir 151 

pressure depends on determination of two rate constants: the systolic rate constant (SRC) 152 

which is the inverse of the product of the constant of proportionality between the excess 153 

pressure and the arterial inflow and the total arterial compliance; and DRC which is the 154 

inverse of the product of the peripheral vascular resistance and the total arterial 155 



HYPE-2022-19483/R1 

compliance. Reservoir-excess pressure parameters analysed in this study were 1) reservoir 156 

pressure integral (INTPR), 2) peak reservoir pressure (MAXPR), 3) excess pressure integral 157 

(INTXSP), 4) SRC, and 5) DRC. Figure 1 shows a schematic example of the reservoir-excess 158 

pressure separation. 159 

160 
Renal function 161 

The reduction of renal function over three years was defined as a reduction of eGFR of more 162 

than 5% per year (Decline Group: DCL; taken as a reduction of 15% or more at follow-up), as 163 

previously published study described.19 eGFR was calculated using the Chronic Kidney 164 

Disease Epidemiology Collaboration creatinine equation20 at baseline and after 3-year 165 

follow-up period. Urinary albumin to creatinine ratio was obtained by a random spot urine 166 

sample obtained during the study visit with a detection limit for albumin of 3.0 mg/l.21 167 

Albuminuria (macro-albuminuria) was defined as the urinary albumin to creatinine ratio >25 168 

mg/mmol for men and 35 mg/mmol for women.  169 

170 

Statistical analysis 171 

Data are presented as means±SD, median (interquartile range), means [95% confidence 172 

intervals (CI)] or number (%). Skewed data were appropriately transformed for statistical 173 

analysis. Independent samples t-tests and analysis of covariance were used to examine the 174 

differences in variables between groups. Univariable and multivariable logistic regression 175 

analyses were performed to quantify associations between reservoir-excess pressure 176 

parameters and the decline in renal function at 3-year follow-up and reported as odds ratio 177 

(OR) [95% CI]. For multivariable logistic regression analyses, the following variables were 178 

considered and included as covariates: age, sex, baseline eGFR, brachial systolic BP, type 2 179 
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diabetes, total and HDL cholesterol, current smoking, pharmacological hypertensive 180 

treatment, study centre, body mass index, previous history of cardiovascular disease, 181 

presence of albuminuria at baseline and resting heart rate (assigned as above/below 182 

median due to collinearity as a continuous variable). Reservoir-excess pressure parameters 183 

were standardised before entering into the logistic regression analysis to allow comparisons 184 

across the parameters (i.e. 1-standard deviation increase). A sensitivity analysis was 185 

performed by changing the cut-off point for a decline in renal function from 5% per year to 186 

10% per year to determine whether different thresholds would influence associations 187 

between reservoir-excess pressure parameters and the decline in renal function. Statistical 188 

analysis was conducted using IBM SPSS Statistics 26 (IBM, Armonk, NY) and statistical 189 

significance was set at p<0.05 (two sided). 190 

191 

RESULTS: 192 

Table 1 shows the selected baseline characteristics of the study participants for the 193 

combined group and the DCL and ND groups. The DCL group was older, had lower levels of 194 

HDL cholesterol, had a higher concentration of fasting glucose and HbA1c, and had a faster 195 

heart rate than the ND group (all p<0.05). The presence of type 2 diabetes was more 196 

prevalent in DCL than ND (p<0.05). At 3-year follow-up, changes in eGFR compared with 197 

baseline was -16.7 (-21.8 – -13.9) ml/min/1.73m2 in DCL and 0.6 (-4.7 – 7.3) ml/min/1.73m2 198 

in ND. This corresponded to a percentage change in eGFR of -20.5 (-26.3 ‒ -17.6) % in DCL 199 

and 0.8 (-6.3 – 9.6) % in ND (both p<0.001).  200 

201 

The reservoir-excess pressure parameters at baseline between DCL and ND are shown in 202 

Figure 2. After age and sex were accounted for, INTPR was lower in DCL [84.2 (81.1-87.5) 203 
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mmHg·s] than ND [90.5 (88.9-92.1) mmHg·s, p=0.001]. There were no differences in MAXPR 204 

[107.5 (106.2-108.8) mmHg], INTXSP [7.3 (6.9-7.8) vs 7.2 (7.0-7.4) mmHg·s, p=0.533], SRC 205 

[6.6 (6.3-7.0) vs 6.9 (6.7-7.1) 1/s, p=0.159] and DRC [2.3 (2.2-2.5) vs 2.3 (2.2-2.3) 1/s, 206 

p=0.491] between DCL and ND after age and sex were taken into account.  207 

208 
Logistic regression analysis was performed to determine whether baseline reservoir-excess 209 

pressure parameters predicted the reduction of renal function (as a dichotomised 210 

parameter) at 3-year follow-up (Figure 3). In a minimally adjusted (age and sex) logistic 211 

regression model (Figure 3A), INTPR was associated with the reduction of eGFR at follow-up 212 

[OR: 0.685 (0.537-0.452), p=0.002]. The association was unattenuated after a multivariable 213 

adjustment that included Framingham risk factors and study centre [OR: 0.660 (0.494-214 

0.883), p=0.005], as shown in Figure 3B. Further, more extensive adjustment for body mass 215 

index, previous history of cardiovascular disease, baseline eGFR, presence of albuminuria at 216 

baseline and resting heart rate above/below the median value did not alter the association 217 

[Figure 3C, OR: 0.528 (0.351-0.794), p=0.002]. Nor was the association altered by the 218 

inclusion of haemoglobin A1c, heart rate-corrected aortic augmentation index, carotid-219 

femoral pulse wave velocity or by the replacement of brachial systolic BP with other BP 220 

variables (aortic BP, aortic pulse pressure and brachial pulse pressure; Supplemental Table 221 

S1). 222 

223 

There was no association between the reduction in eGFR at follow-up and MAXPR [OR: 224 

0.827 (0.649-1.055) p=0.126, 0.686 (0.460-1.024) p=0.065, and 0.682 (0.444-1.047) 225 

p=0.080], INTXSP [OR: 1.102 (0.865-1.404) p=0.433, 1.142 (0.821-1.587) p=0.430, and 1.102 226 

(0.770-1.579) p=0.596], SRC [OR: 0.870 (0.646-1.172) p=0.360, 0.948 (0.706-1.274) p=0.724, 227 
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and 0.979 (0.720-1.329) p=0.890], DRC [OR: 1.110 (0.877-1.405) p=0.387, 1.248 (0.945-228 

1.649) p=0.118, and 1.274 (0.951-1.706) p=0.105] in the minimally adjusted model, the 229 

multivariable adjusted model, or the extensively adjusted multivariable model (Figure 3). 230 

The association did not change with the inclusion of haemoglobin A1c, heart rate-corrected 231 

aortic augmentation index, carotid-femoral pulse wave velocity or when replacing brachial 232 

systolic BP with brachial pulse pressure in the model, although 1) the addition of heart rate-233 

corrected augmentation index and carotid-femoral pulse wave velocity in the extensively 234 

adjusted model marginally strengthened the association between MAXPR and the reduction 235 

in eGFR, and 2) the association between DRC and the reduction in eGFR during the follow-236 

up period was marginally strengthened with the replacement of brachial systolic BP with 237 

aortic systolic BP and aortic pulse pressure (Supplemental Table S1). 238 

239 

When the threshold for the decline in renal function was changed to a reduction in eGFR of  240 

more than 10% per year from 5% per year as a part of a sensitivity analysis, INTPR remained 241 

associated with the reduction of renal function at follow-up, and the other reservoir-excess 242 

pressure parameters showed no association with the reduction of renal function. That is, 243 

results were similar for each threshold of reduction in eGFR (Supplemental Table S2 shows 244 

the participants characteristics and Supplemental Table S3 shows detailed results for the 245 

sensitivity analysis).   246 

247 
248 

DISCUSSION: 249 

In this longitudinal study of older adults with variable cardiovascular risk factors, we 250 

demonstrate an association between baseline INTPR and the decline in renal function at 3-251 

year follow-up independently of conventional cardiovascular risk factors. The association 252 
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between baseline INTPR and the decline in renal function persisted after taking other 253 

potential confounders into account and after changing the threshold for the decline in renal 254 

function. These are novel observations that support the notion that INTPR plays a pivotal 255 

role in the functional decline of the kidneys in older adults. It also suggests that INTPR is a 256 

marker of adverse systemic haemodynamics. 257 

258 

The parameters derived from reservoir-excess pressure analysis have already demonstrated 259 

prognostic utility by predicting cardiovascular morbidity and mortality in several studies.3-10 260 

In this study, we are able to provide novel evidence that the reservoir-excess pressure 261 

parameter, INTPR, possesses additional clinical utility by predicting the decline in renal 262 

function in older adults over three years. The observed association was independent of 263 

conventionally obtained BP indices, such as brachial and aortic systolic BP, indices of BP 264 

pulsatility such as brachial and aortic pulse pressure, and index of pulsatility marker such as 265 

aortic augmentation index. This indicates an advantage of reservoir-excess pressure analysis 266 

over conventional BP waveform analysis to decipher the information contained in a BP 267 

waveform contour. In other words, the capability of parameters derived from conventional 268 

BP waveform analysis to extract information from a BP waveform may be inadequate 269 

because those parameters are extreme points on the BP waveform or derivatives calculated 270 

from those specific points. There remains a greater residual cardiovascular risk associated 271 

with BP that is unaccounted for by conventional BP indices, and reservoir-excess pressure 272 

analysis may be able to fill the gap by identifying subtle haemodynamic abnormalities 273 

apparent in a BP waveform that would be otherwise undetected.  274 

275 
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In our cohort, a smaller baseline INTPR was associated with a large decline in eGFR at 3-year 276 

follow-up, indicating that INTPR may play a protective role in maintaining and/or slowing a 277 

decline in eGFR in older adults. This proposition makes sense because INTPR corresponds to 278 

the net volume of blood stored in an artery14 and the volume of blood stored in central 279 

arteries, especially in the aorta, becomes smaller when the buffering function of those 280 

arteries become less effective as a consequence of the age-associated increase in central 281 

artery stiffness. Considering the premise that the reservoir pressure component makes a 282 

major contribution to the diastolic phase of the BP waveform and tissue perfusion in 283 

diastole,2 increased central artery stiffness could lead to impaired renal perfusion and 284 

potentially affect eGFR. These assumptions are supported by a previous observation in 285 

patients with hypertension showing that an increased aortic stiffness 1) amplifies blood flow 286 

reversal in the descending thoracic aorta which in turn reduces a diastolic flow discharge 287 

toward the abdominal aorta, and then 2) reduces the blood inflow from the supra-renal 288 

abdominal aorta to the renal arteries, which eventually leads to a reduction in eGFR.22 289 

Therefore, the diminished reservoir function could not only increase cardiovascular risk but 290 

also deteriorate renal function, potentially creating positive feedback that progressively 291 

damages the kidneys. In older adults, this might explain the higher cardiovascular risk and 292 

accelerated renal decline in people with CKD.12, 23 293 

294 

The smaller INTPR may also indicate a deleterious influence of increased central artery 295 

stiffness on the microvasculature of highly-perfused low-resistance organs such as the brain 296 

and kidneys. Greater central artery stiffness reduces impedance mismatch between central 297 

and peripheral arteries that 1) increases flow pulsatility, and 2) increases the penetration of 298 

excessive pulsatile energy into the microcirculation of the organs that may cause adverse 299 
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structural changes. In the case of the kidneys, sustained exposure to flow pulsatility and 300 

excessive pulsatile energy is considered to damage small arteries and glomeruli in the renal 301 

cortex, leading to a loss of arterial volume in that area and/or an increase in renal vascular 302 

resistance.24, 25 It is thus plausible that these derangements occurring in the kidneys, 303 

separately from or in combination with diminished blood flow to the renal arteries 304 

discussed above, may account for the deterioration of renal function observed in this study. 305 

306 

The observed robust association between INTPR and the eGFR reduction at 3-year follow-up 307 

independently of conventional haemodynamic indices could potentially be influenced by the 308 

underestimation of brachial cuff-measured BP at baseline.26 A previous study revealed a 309 

significant underestimation of brachial cuff-measured BP due to serious vascular 310 

irregularities associated with advanced CKD, leading to significant trend for underestimation 311 

of aortic systolic BP with declining eGFR.27 Given the greater burden of cardiovascular risk at 312 

baseline in DCL compared to ND in our study, it could be reasonable to speculate that 313 

baseline risk assessed from conventional brachial cuff-measured BP and derived central 314 

haemodynamic indices could have been underappreciated in our DCL cohort. This, in turn, 315 

may provide another advantage of applying the reservoir-excess pressure concept in people 316 

with CKD, in whom conventional haemodynamic indices inadequately extract cardiovascular 317 

risk embedded in the BP waveform.   318 

319 

A recent pilot study has demonstrated that changes in INTXSP were inversely associated 320 

with the changes in eGFR over three years in healthy middle-aged and older adults,13 which 321 

is contrary to our null finding of no association between baseline INTXSP and the reduction 322 

in eGFR. There are several important differences in study cohorts that could account for the 323 
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divergent results between the studies, such as sample size (33 vs 542 participants in this 324 

study), age (>10 yrs older in our cohort), health status (far more cardiovascular risk factors 325 

in our cohort), and differences in baseline eGFR (~30 ml/min/1.73m2 lower baseline eGFR in 326 

our cohort). Additionally, the divergent results could also stem from the difference between 327 

INTXSP derived from the aorta (previous study) and INTXSP derived from the radial artery 328 

(this study). Excess pressure, like the BP waveform, undergoes substantial and variable 329 

amplification from the aorta to the radial artery28 due to wave reflections,29 and thus 330 

INTXSP measured in the radial artery may not correspond to INTXSP measured in the aorta. 331 

In contrast, reservoir pressure is little different between the aorta and radial artery.28, 30 The 332 

implication of this is that, when acquired from peripheral sites, an association of eGFR with 333 

reservoir-excess pressure parameters could be more consistently observed with reservoir 334 

pressure parameters rather than those from the excess pressure parameters. A recent 335 

cross-sectional study has shown that DRC derived from the aorta and brachial artery is 336 

consistently associated with eGFR in older adults who underwent elective coronary 337 

angiography,31 providing additional support for our finding of an association between the 338 

reservoir pressure component and preserved renal function in older adults.     339 

340 

Limitations 341 

eGFR was obtained twice in this study: once at baseline and the other at the 3-year follow-342 

up period. Thus, it is not possible to characterise the temporal pattern of change in eGFR 343 

during this period.32 Whether baseline INTPR is associated with different patterns of eGFR 344 

change over time is beyond the scope of this study. Additionally, renal haemodynamics data 345 

such as renal resistive index by Doppler ultrasound were not available in this study; these 346 

could have helped interpret our findings. Finally, our study cohort was older adults with 347 
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varied cardiovascular risk factors, and hence, the results found in this study may not be 348 

applicable to specific patient cohorts, for example people with hypertension or type 2 349 

diabetes. 350 

351 

Perspectives 352 

This study demonstrates that a smaller baseline INTPR was associated with the decline in 353 

renal function in older adults at 3-year follow-up, independently of conventional 354 

cardiovascular risk factors. These observations have unveiled a novel prognostic utility of 355 

reservoir-excess pressure parameters beyond the ability to predict cardiovascular events.3-10 356 

Reservoir-excess pressure analysis has the potential to provide an additional tool for the risk 357 

stratification of renal function in at-risk individuals and older adults with CKD. 358 

359 

Novelty and Relevance: 360 

What is new? 361 

• Reservoir pressure integral, a parameter derived from reservoir-excess pressure362 

analysis, was associated with the decline in renal function independently of363 

conventional cardiovascular risk factors.364 

What is relevant? 365 

• INTPR plays a pivotal role in the functional decline of the kidneys in older adults.366 

• Reservoir-excess pressure parameters may have a novel prognostic utility beyond367 

the ability to predict cardiovascular events.368 

Clinical/Pathophysiological Implications? 369 
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• Reservoir-excess pressure analysis has the potential to provide an additional tool for 370 

the risk stratification of renal function in at-risk individuals and older adults with 371 

CKD. 372 
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FIGURE LEGENDS: 496 

Figure 1. A schematic representation of reservoir-excess pressure separation in the radial 497 

artery.10 Total pressure is the acquired radial pressure waveform and reservoir pressure is 498 

the calculated waveform. INTPR, reservoir pressure integral; MAXPR, peak reservoir 499 

pressure; INTXSP, excess pressure integral; SRC, systolic rate constant; DRC, diastolic rate 500 

constant. 501 

502 

Figure 2. Comparisons of reservoir-excess pressure parameters between groups. Data are 503 

shown as the means (95% confidence intervals) before the adjustment for age and sex. 504 

*different between groups (p=0.001). ND, participants without a decline in renal function;505 

DCL, participants with a decline in renal function; INTPR, reservoir pressure integral; MAXPR, 506 

peak reservoir pressure; INTXSP, excess pressure integral; SRC, systolic rate constant; DRC, 507 

diastolic rate constant. 508 

509 

Figure 3. Minimally adjusted (A), multivariable (B) and extensively adjusted (C) logistic 510 

regression analyses to predict the reduction of estimated glomerular filtration rate at 3-year 511 

follow-up. Data are shown as odds ratio (95% confidence interval). The minimally adjusted 512 

model includes age and sex as independent variables. The multivariable adjusted model 513 

includes age, sex, total and HDL cholesterol, type 2 diabetes, current smoking, systolic blood 514 

pressure, pharmacological treatment for hypertension and study centre as independent 515 

variables. The extensively adjusted multivariable model further includes body mass index, 516 



HYPE-2022-19483/R1 

history of cardiovascular disease, baseline estimated glomerular filtration rate, albuminuria 517 

at baseline and resting heart rate above/below the median value as independent variables. 518 

INTPR, reservoir pressure integral; MAXPR, peak reservoir pressure; INTXSP, excess pressure 519 

integral; SRC, systolic rate constant; DRC, diastolic rate constant. 520 

521 
522 

523 
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Table 1. Selected characteristics of the study participants at baseline stratified by groups. 

ALL (n=542) ND (n=448) DCL (n=94) p (ND v DCL)

Age, yrs 69.4±7.9 68.8±7.8 72.4±7.6 <0.001 

Female, n (%) 194 (35.8) 168 (37.5) 26 (27.7) 0.070 

BMI, kg/m2 28.6 (25.5-31.9) 28.5 (25.6-32.1) 28.9 (25.1-31.2) 0.644 

Total CHOL, mmol/l 4.2 (3.6-5.0) 4.2 (3.6-5.1) 4.1 (3.5-4.6) 0.102 

LDL CHOL, mmol/l 2.2 (1.7-2.9) 2. (1.7-3.0) 2.1 (1.6-2.7) 0.255 

HDL CHOL, mmol/l 1.3 (1.1-1.6) 1.3 (1.1-1.6) 1.2 (1.0-1.5) 0.024 

Creatinine, µmol/l 85.5±23.9 85.4±24.1 85.8±22.9 0.892 

HbA1c, mmol/mol 47.5 (40.0-59.0) 46.0 (40.0-57.0) 53.0 (42.0-67.8) 0.001

eGFR, ml/min/1.73m2 79.0±19.3 78.9±19.3 79.7±19.2 0.706

eGFR change, ml/min/1.73m2 -1.0 (-9.3─5.4) 0.6 (-4.7─7.3) -16.7 (-21.8 ─ -13.9) <0.001 

Brachial Systolic BP, mmHg 135±17 134±17 136±17 0.291 

Brachial Diastolic BP, mmHg 75±9 75±9 73±8 0.111 
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Brachial PP, mmHg 59.8±13.7 59.2±13.5 62.7±14.3 0.024 

Aortic systolic BP, mmHg 126±17 126±17 127±17 0.541 

Aortic PP, mmHg 50±14 49±14 52±14 0.107 

Aortic AIx@HR75, % 24.7±7.8 24.6±7.9 24.9±7.4 0.712 

Heart rate, beat/min 60±10 59±9 62±10 0.018 

CVD, n (%) 233 (43.0) 185 (41.3) 48 (51.1) 0.082

Type 2 diabetes, n (%) 345 (63.7) 273 (60.9) 72 (76.6) 0.004

Diabetes duration, yrs 10 (5-15) 9 (5-14) 13 (7-18) <0.001 

Albuminuria, n (%) 13 (2.4) 3 (0.7) 10 (10.6) <0.001 

Smoking, n (%) 34 (6.3) 27 (6.0) 7 (7.5) 0.606 

HTRx, n (%) 384 (70.9) 310 (69.2) 74 (78.7) 0.065 

RASRx, n (%) 305 (56.3) 245 (54.7) 61 (64.9) 0.064 

Statin, n (%) 368 (67.9) 303 (67.6) 65 (69.2) 0.775 

CFPWV, m/s* 10.4 (9.0-12.4) 10.3 (9.0-12.2) 11.2 (9.6-13.2) 0.023† 
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Data are shown as means±SD, median (interquartile range) or number (%). *n=454 for ALL, n=379 for DCL and n=75 for ND. †p=0.555 after 

age, mean arterial pressure and heart rate were taken into account. ALL, combined group; ND, participants without a decline in renal function; 

DCL, participants with a decline in renal function; BMI, body mass index; CHOL, cholesterol; LDL, low-density lipoprotein; HDL, high-density 

lipoprotein; HbA1c, haemoglobin A1c; eGFR, estimated glomerular filtration rate; BP, blood pressure; PP, pulse pressure; AIx@HR75, 

augmentation index corrected at heart rate of 75 bpm; CVD, cardiovascular disease; HTRx, pharmacological treatment for hypertension; 

RASRx, the use of renin-angiotensin system blockers; CFPWV, carotid-femoral pulse wave velocity. 
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