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Abstract

Reverse causality is a common attribution error that distorts the

evaluation of private actions and public policies. This paper explores

the implications of this error when a decision maker acts on it and

therefore affects the very statistical regularities from which he draws

faulty inferences. Applying the Bayesian-network approach of Spiegler

(2016), I explore the equilibrium effects of a certain class of reverse-

causality errors, in the context of an example with a quadratic-normal

parameterization. I show that the decision context may protect the

decision maker from his own reverse-causality error. That is, the cost

of reverse-causality errors can be lower for everyday decision makers

than for an outside observer who evaluates their choices.
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1 Introduction

Reverse causality is a ubiquitous error. Observing a correlation between

two variables of interest, we often form an instinctive causal interpretation

in one direction, even if true causation goes in the opposite direction. Re-

verse causality is often invoked as a warning to social scientists and medical

researchers, to beware of naive causal interpretations of correlational data.

For example, Harris (2011) famously criticized the developmental psychol-

ogy literature for taking for granted that observed correlation between child

personality and parental behavior reflected a causal link from the latter to

the former. Harris argued that causality might go in the opposite direction:

parental behavior could be a response to the child’s innate temperament.

Clearly, when researchers and other outside observers interpret correla-

tions under the sway of a reverse-causality error, their evaluation of private

interventions or public policy may become distorted. But what happens

when decision makers  on a reverse-causality error, such that their result-

ing behavior affects the very statistical regularities from which they draw

inferences through their faulty prism?

For illustration, consider the developmental psychology example men-

tioned above and embed it in the following decision context. A counselor

observes a child’s exogenous characteristics and chooses a therapy. These

two factors cause the child’s behavior. Parental behavior is a response to the

child’s behavior and the counselor’s therapy. However, the counselor operates

under the perception that parental behavior is an independent variable that

joins the list of factors that cause the child’s behavior. This difference can

be represented by two directed acyclic graphs (DAGs), which conventionally

represent causal models (Pearl (2009)):

 → 

& ↓ &
 → 

 → 

& ↓
 ← 

(Figure 1)

True model Subjective model

In this diagram,  represents the child’s characteristics,  represents the
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counselor’s action,  represents the child’s behavior and  represents the

parent’s behavior. The counselor’s subjective causal model departs from the

true model by inverting the link between  and  and severing the link from 

into . That is, the counselor regards  as an exogenous variable that causes

, whereas in fact it is an endogenous variable and  is one of its direct cause.

The diagram is paradigmatic, in the sense that the error it represents

could fit several real-life situations. In a monetary economics context, differ-

ent specifications of the Phillips curve disagree over which of the two vari-

ables, inflation and employment, is a dependent variable and which is an

explanatory variable. This can be viewed as a disagreement over the di-

rection of causality (see Sargent (1999) and Cho and Kasa (2015) — I will

discuss this example in detail in Sections 2 and 3). In a social policy context,

 represents initial socioeconomic or demographic conditions,  represents

welfare policy,  represents poverty levels or income inequality, and  is a

public-health indicator. According to this interpretation, public health is an

objective consequence of income inequality or poverty, yet designers of social

policy operate under the assumption that health is an exogenous, indepen-

dent factor that affects the social outcome rather than being caused by it

(for a survey of a literature that wrestles with the causal relation between

income inequality and health, see Pickett and Wilkinson (2015)).

My objective in this paper is to take these familiar disagreements over

the direction of causality and place them in a  context, in which the

objective data-generating process is affected by decision makers’ behavior,

which in turn is a response to statistical inferences that reflect their causal

error. In this way, reverse causality ceases to be the exclusive problem of

outside observers who make scientific claims, and becomes a payoff-relevant

concern for decision makers with skin in the game. Is there a fundamental

difference between the two scenarios? How does the decision context affect

the magnitude of errors induced by reverse causality?

To study these questions, I apply the modeling approach developed in

Spiegler (2016,2020a), which borrows the formalism of Bayesian networks

from the Statistics and AI literature (Cowell et al. (1999), Pearl (2009))

to analyze decision making under causal misperceptions. According to this

3



approach, a decision maker (DM henceforth) fits a DAG-represented causal

model to an objective joint distribution over the variables in his model. The

DM best-replies to the (possibly distorted) belief that arises from this act

of fitting a misspecified causal model to objective data. Since the belief

distortions may depend on the DM’s strategy, it is appropriate to analyze

subjectively optimal behavior as an equilibrium object. I apply this model

to the specification of true and subjective causal models depicted in Figure

1.

I carry out the analysis in the context of an example with a quadratic-

normal parameterization, such that the DM’s payoffs are given by a quadratic

loss function of  and , and the joint distribution over the four variables is

Gaussian. This parameterization helps in terms of analytic tractability and

transparent interpretation of the results, which allows for crisp comparative

statics. However, it is also appropriate because fitting a DAG-represented

model to a Gaussian distribution is equivalent to OLS estimation of a recur-

sive system of linear regressions (Koller and Friedman (2009, Ch. 7)). Causal

interpretations of linear regressions permeate discussions of reverse causality

in social-science settings. Assuming that the environment is Gaussian ensures

that the linearity of the DM’s model is not wrong per se — the misspecifica-

tion lies entirely in the underlying causal structure, which is represented by

the DAG.

The analysis of this simple model demonstrates the subtle equilibrium

effects of decision making under reverse causality errors. One effect is that

features of the model that would be irrelevant in a quadratic-normal model

with rational expectations — specifically, the variances of the noise terms

in the equations for  and  — play a key role when the DM exhibits the

reverse-causality error given by Figure 1.

The results also illuminate the difference between committing a reverse-

causality error as a “spectator” or as an “actor”. A special case of the

specification given by Figure 1 is that the action’s objective effect on the

outcome variables  and  is null. In this case, the DM can be viewed as a

“spectator”. This DM’s reverse-causality error induces a wrong prediction

of  and he suffers a welfare loss as a result. Compare this with a DM who
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is an “actor”, in the sense that his action has a non-null direct effect on 

(but still no effect on ). I show that when this effect  offsets the direct

effect of  on  (in the sense that ( |  ) = − ), the DM’s equilibrium

strategy is as if he has rational expectations. This DM suffers no welfare loss

as a result of his reverse-causality error. Thus, the decision context protects

an “actor” from his error in a way that it does not for a “spectator”. The

lesson is that in some situations, reverse causality may be less of a problem

for DMs than for the scientists who analyze their behavior.

2 The Model

A DM observes an exogenous state of Nature  ∼ (0 2) before taking a

real-valued action . The DM is an expected-utility maximizer with vNM

utility function ( ) = −(− )2, where  is an outcome variable that is

determined by  and  according to the equation

 =  − +  (1)

Another outcome  is then determined by  and  according to the equation

 = − +  (2)

The parameters   are constants that capture the direct effects of  on

the outcome variables  and . Assume   ∈ [0 1], such that these direct
effects are of an “offsetting” nature. This restriction is motivated by the

real-life situations alluded to in the Introduction. The terms  ∼ (0 2)

and  ∼ (0 2) are independently distributed noise variables. The ratio of

the variances of these noise terms, denoted

 =
2
2

(3)

will play an important role in the sequel.

A (potentially mixed) strategy for the DM is a function that assigns a
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distribution over  to every realization of . Once we fix a strategy, we have a

well-defined joint probability measure  over all four variables    , which

can be written as a factorization of marginal and conditional distributions as

follows:1

(   ) = ()( | )( |  )( |  ) (4)

The term ( | ) represents the DM’s strategy. This factorization reflects the
causal structure that underlies  and that can be described by the leftward

DAG in Figure 1, which I denote ∗.2

I interpret  as a long-run distribution that results from many repetitions

of the same decision problem. Our DM faces a one-shot decision problem,

against the background of the long-run experience accumulated by many

previous generations of DMs who faced the same one-shot problem (each

time with a different, independent draw of the random variables   ).

The correct-specification benchmark

Suppose the DM correctly perceives the true model — i.e., he has “rational

expectations”. Then, he will choose  to minimize

[(− )2 |  ]

where the expectation  is taken w.r.t the objective conditional distribution

∗( |  ) ≡ ( |  ). This means that we can plug (1) into the objective
function and use the fact that  is independently distributed with () = 0.

Hence, the rational-expectations prediction is that the DM will choose

∗() =


1 + 
(5)

Note that  has no direct payoff relevance for the DM. Moreover, since 

does not affect the transmission from  and  to , it is entirely irrelevant

1The factorization is invalid when some terms involve conditioning on zero probability

events. Since this is not going to be a problem for us, I ignore the imprecision.
2Schumacher and Thysen (2020) study a principal-agent model in which the true causal

model has the same form as ∗, although the nodes have different interpretations (in
particular, the action variable corresponds to the initial node), and the agent’s subjective

causal model is quite different.
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for the DM’s decision, because  is a consequence of  and . Therefore, the

constant  plays no role in the DM’s rational action. Moreover, the variances

of the noise terms   are irrelevant for ∗.

Now relax the assumption that the DM correctly perceives the true model.

Instead, he believes that the distribution over     obeys a causal struc-

ture that is given by the rightward DAG in Figure 1, which I denote by .

Compared with ∗, the DAG  inverts the causal link between  and ,

and also removes the link  → . This means that the DM regards  as an

exogenous direct cause of , instead of the consequence of  and  that it

actually is.

The following are two examples of situations that fit this specification of

the true and subjective DAGs ∗ and .

Example 2.1: Parenting

Here is a variant on the story presented in the Introduction. A parent ob-

serves characteristics of his child (possibly the child’s home behavior in a

previous period), captured by the state variable . He then chooses how

toughly to behave toward the child, as captured by the variable . The

child’s resulting home behavior is captured by some index . The quality of

the child’s school interactions with teachers and peers, as measured by the

index , is a consequence of the child’s and the parent’s home behavior. How-

ever, the parent believes that school interactions are an independent driver of

the child’s home behavior, rather than a consequence of home interactions.

Example 2.2: Quantity setting

A large firm observes a demand indicator  before setting its production

quantity . The price  is a function of demand and quantity. The variable

 represents a competitive fringe that reacts to the price and the production

quantity. However, the firm believes that the market agents that constitute

the competitive fringe are not price takers, but rather independent decision

makers that affect the price.

The quadratic loss function ( ) = −(−)2 is not necessarily plausible
in these examples. However, in both cases we can write down a sensible

quadratic utility function (e.g. due to linear demand and constant marginal
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costs in Example 2.2), and then redefine    via some linear transformation

to obtain the quadratic loss specification, without any effect on our formal

results (that is, the DM’s action will be the same up to the above linear

transformation). The reason is that under any quadratic utility function,

the DM’s optimal action is linear in ( |  ), which is his subjective
expectation of  conditional on  and .

Following Spiegler (2016), I assume that given the long-run distribution

, the DM forms a subjective belief, denoted , by fitting his model  to

 according to the Bayesian-network factorization formula. For an arbitrary

DAG  over some collection of variables 1  , the formula is

(1  ) =

Y
=1

( | ()) (6)

where  = ()∈ and () represents the set of variables that are viewed

as direct causes of  according to . Formula (4) was a special case of (6)

for  = ∗. Given our specification of the subjective DAG , (6) reads as

follows:

(   ) = ()()( | )( |   )

The interpretation of this belief-formation model is as follows. The DM’s

DAG  is a misspecified subjective model. The DM perceives the statistical

regularities in his environment through the prism of his incorrect subjective

model. In other words, he fits his model to the long-run statistical data (gen-

erated by the true distribution ), producing the subjective distribution .

A related interpretation is that the objective distribution  is not transpar-

ently available to the DM. Instead, he needs to probe it via empirical queries.

Our DM does not try to test his model; he only queries  to estimate it. He

only performs the measurements that quantify the terms in the factorization

formula (6), and does not take additional measurements that could refute

his model. A third interpretation is based on Esponda and Pouzo (2016).

We can regard  as a set of probability distributions — i.e. all distributions

0 for which 0 ≡ 0. The DM has a prior belief whose support coincides

with this set. He goes through a process of Bayesian learning, by observing
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a sequence of  draws from . The limit belief of this process is  (see

Spiegler (2020a)).

The DM’s subjective belief  induces the following conditional distribu-

tion over , given the DM’s information and action, by applying Bayes’ rule

to :

( |  ) = (  )

( )

Since ( ) form an ancestral clique in , ( ) = ( ) (see Lemma 1 in

Spiegler (2020b)). Since

(  ) =

Z


(   ) =

Z


()( )( |   )

we obtain

( |  ) =
Z


()( |   ) (7)

The DM chooses  to maximize his expected utility w.r.t this conditional

belief, which means minimizingZ


( |  )(− )2 (8)

Personal equilibrium

The behavioral model is potentially ill-defined because it is not obvious that

( |  ) is invariant to the DM’s strategy (( | )). To resolve this
ambiguity, Spiegler (2016) introduces a notion of “personal equilibrium”, such

that the DM’s subjective optimization is defined as an equilibrium concept

(this is a hallmark of models of decision making under misspecified models

— see also Esponda and Pouzo (2016)). A strategy (( | )) is a personal
equilibrium if it always prescribes subjective optimal actions with respect to

the belief (( |  )), which in turn is calculated when we take the DM’s
strategy as given.3

I focus on personal equilibria in linear strategies. A strategy (( | )) is
3In general, this definition requires trembles in order to be fully precise. This subtlelty

is irrelevant for our present purposes.
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linear if there is some constant  such that ( | ) assigns probability one
to  =  for every . When the DM plays a linear strategy, the objective

joint distribution  over the four variables is Gaussian. It is well-known

that in this case,  is Gaussian as well (see Koller and Friedman (2009,

Ch. 7)). (My definition of linear strategies assumes a zero intercept. This

restriction is without loss of generality, and made only to make calculations

more transparent.)

Comment: The pure prediction case

When  = 0, the DM’s action has no causal effect on . In other words, the

DM faces a pure prediction problem: his subjectively optimal action is equal

to his subjective expectation of  conditional on . Therefore, the link → 

can be omitted from∗. This raises the following question: can we be equally

cavalier about whether to include the link →  in the subjective DAG ?

Including the link means that the DM erroneously regards his action as a

direct cause of  (but he is open to the possibility that when estimated, the

measured effect will be null).

It turns out that the answer to our question is positive, in the following

sense. When we remove the link →  from , we can no longer ignore the

subtleties that called for treating subjective maximization as an equilibrium

phenomenon. If we apply the concept of personal equilibrium, and impose

in addition the requirement that the DM’s equilibrium strategy is pure, then

the model’s prediction will be the same as when  includes the link → .

If the relation between  and  were noisy — e.g. by introducing a random

shock to the DM’s behavior, or an explicit preference shock — this would

cease to be true, and we would have to take a stand on whether  includes

the link →  — i.e. whether the DM understands that  has no causal effect

on .

Example 2.3: Inflation forecasting with a wrong Phillips curve

The following variation on Sargent’s (1999) simplified version of the well-

known monetary model due to Barro and Gordon (1983) fits the pure pre-

diction case.4 The variable  represents a monetary quantity such as money

4This specification (with rational expectations) was also employed by Athey et al.
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growth, which determines inflation  via (1). Independently, the private sec-

tor (corresponding to the DM in our model) observes  and forms an inflation

forecast . The variable  represents employment, which is determined as

a function of inflation and inflationary expectations via the Phillips curve

(2). The parameter  measures the extent to which anticipated inflation

offsets the real effect of actual inflation; the case of  = 1 captures the “new

classical” assumption that only unanticipated inflation has real effects.

The private sector’s inflation forecast is based on a misspecified Phillips

curve, which regards  as an independent, explanatory variable and  as the

dependent variable. Sargent (1999) and Cho and Kasa (2015) refer to this

inversion of the causal inflation-employment relation in terms of an economet-

ric identification strategy, and dub it a “Keynesian fit”. The key difference

between these papers and the present example is that they assume that the

private sector has rational expectations; it is the monetary authority (which

chooses ) that operates under a misspecified model (Spiegler (2016) describes

how to reformulate Sargent’s example in the DAG language). In contrast, in

the present example, it is the private sector that bases its inflation forecasts

on a wrong Phillips curve.

3 Analysis

The following is the main result of this paper.

Proposition 1 There is a unique personal equilibrium in linear strategies.

The DM’s strategy is

() =


1 +  + (1− )
(9)

Proof. The proof proceeds in two steps. First, I derive a general form of the

DM’s linear equilibrium strategy, having free parameters. I then calculate

the value that these parameters must take.

(2005).
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Step 1: For any equilibrium in linear strategies, there are constants 0 1 2 3

such that the DM’s equilibrium strategy takes the form:

 = ( |  ) = 0 + 1 + 3()

1− 2
(10)

Proof : By assumption, the DM chooses  to minimize (8) at every . As we

observed above, when the DM’s equilibrium strategy is linear,  is Gaussian.

Therefore, the conditional distribution ( |   ) can be written as a
regression equation

 = 0 + 1 + 2+ 3 +  (11)

where 0 1 2 3 are coefficients and  ∼ (0 2) is an independent noise

term. Since  treats  and  as independently distributed error terms with

() = 0, (11) implies

( |  ) = 0 + 1 + 2+ 3() (12)

It also follows from (11) that (8) can be rewritten asZ


()(0 + 1 + 2+ 3 − + )2 (13)

where the expectation over  is taken w.r.t the independent distribution

(0 2). Note that the DM integrates over  as if it is independent of 

because indeed,  posits that  ⊥ . This assumption is wrong, according

to the true model ∗.

Choosing  to minimize (13), and using the observation that () = 0,

we obtain the following first-order condition:

(2 − 1) · [0 + 1 + 2+ 3()− ] = 0

This can be written as

(2 − 1) · [( |  )− ] = 0
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Plugging (12) and rearranging, we obtain (10). ¤

Step 2: Pinning down the values of 0 1 2 and showing that () = 0

Proof : Let us derive

( |  ) =
Z


()( |   ) (14)

As a first step, let us calculate ( |   ). (Note that  is  independent
of  conditional on  ; therefore, ( |   ) need not coincide with ( |
 ).) Plugging (1) in (2), we obtain

 =  − +  =  + −  (15)

Therefore,

( |   ) = ( − +  |   ) =  − +( |   ) (16)

It follows that in order to get an explicit expression for ( |   ), we
need to derive ( |   ). Toward this end, rearrange (15) to obtain

+  =  + (+ )− 

Therefore,

( |   ) = ( | +  =  + (+ )− )

Since  ∼ (0 2) and  ∼ (0 2) are independent variables, we can use

the standard signal extraction formula to obtain

( |   ) =  · ( + (+ )− ) (17)

where

 =
2

2 + 2
=



1 + 
(18)
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Plugging (17) in (16), we obtain

( |   ) = (1− ) + (+  − )+ 

Plugging this expression in (14), we obtain

( |  ) = (1− ) + (+  − )+ ()

Plugging this expression in (10), we obtain

() =
1− 

1− + (1− )
 +



1− + (1− )
()

Plugging this in (1) in (2) and repeatedly taking expectations, we obtain

() = 0 such that () is given by (9).

We have thus pinned down 0 = 0, 1 = 1−  and 2 = − (1− ) in

(10). The value of 3 is irrelevant because () = 0. Since   ∈ [0 1] and
 ∈ (0 1), 2 6= 1 such that (10) is well-defined and unique.
The DM’s equilibrium strategy () has several noteworthy features, in

comparison with the correct-specification benchmark ∗().

Sensitivity to the state of Nature 

The coefficient of  in the expression for () is lower than 1(1+), which

is the correct-specification benchmark value. This means that the DM’s

reverse-causality error results in diminished responsiveness to the state of

Nature. The reason is that the DM erroneously believes that  is not the

only independent factor affecting  (apart from ). The extent of this rigidity

effect depends on  , as explained below.

The relevance of 

In the correct-specification benchmark, the variances of the error terms in the

relations (1)-(2) are irrelevant for the DM’s behavior. This is a consequence

of the quadratic-normal specification of the model. In contrast, the DM’s

reverse-causality error lends these variances a crucial role. When  = 2
2


is small — corresponding to the case that the equation for  is precise relative

to the equation for  — () is closer to the correct-specification benchmark
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∗(). In contrast, when  is large, the departure of () from ∗() is

big. In particular, in the  →∞ limit, () is entirely unresponsive to .

The intuition for this effect is as follows. When forming the belief ( |
 ), the DM integrates over  as if it is an exogenous, independent variable

(this is the DM’s basic causal error) and estimates the conditional expectation

( |   ) for each value of . This conditional expectation represents
a signal extraction problem, and therefore takes into account the relative

precision of the equations for  and . When  is small,  is uninformative of

 relative to , and therefore the conditional expectation ( |   ) places
a low weight on . As a result, the DM’s erroneous treatment of  does

not matter much, such that the DM’s belief ends up being approximately

correct. In contrast, when  is large,  is uninformative of  relative to ,

and therefore the conditional expectation ( |   ) places a large weight
to . Since the DM regards  as an exogenous variable that is independent

of , the DM ends up attaching low weight to the realized value of  when

evaluating ( |  ).
The role of 

Recall that the parameter  measures the direct effect of  on , which is the

outcome variable that the DM erroneously regards as an independent cause

of . The case of  = 0 corresponds to a DM who is a “spectator” as far as

the outcome variable  is concerned. At the other extreme, the case of  = 1

corresponds to a DM whose action fully offsets the effect of  on .

It is easy to see from (9) that the departure of the DM’s subjectively

optimal action from the correct-specification benchmark becomes smaller as

 grows larger. Accordingly, the DM’s welfare loss due to his reverse-causality

error becomes smaller. When  = 1, the DM’s action  with the

correct-specification benchmark. In this case, the DM’s reverse-causality

error inflicts no welfare loss. In other words, the fact that the DM is not a

spectator but an actor who influences  protects him from the consequences

of his erroneous view of  as a cause of . Of course, this conclusion relies

on the particular restrictions on the value of , and should not be taken as

a general lesson.
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The intuition for this effect is as follows. When  = 1,  =  −  + .

This means that given ,

 = −( |  ) + 

In other words,  is equal to the difference between the realization of  and

its point forecast, plus independent noise. The point forecast can be viewed

as an OLS estimate based on some linear regression (where  is regressed

on ,  and , and then  is integrated out). From this point of view, 

is an OLS residual (plus independent noise). By definition, this residual is

independent of the regression’s variables, and therefore its incorrect inclusion

has no distorting effect on the estimation of .

Example 2.3 revisited

Consider the pure-prediction case of  = 0, and recall Example 2.3. This

example concerns inflation forecasts based on a wrong Phillips curve that

inverts the direction of causality between inflation and employment. The case

of  = 1 corresponds to the “new classical” monetary theory that anticipated

inflation has no real effects. As it turns out, in this case the private sector

forms correct inflation forecasts despite its wrong model. A discrepancy with

the rational-expectations forecast — in the direction of more rigid forecasts

that only partially react to fluctuations in  — arises when   1 — i.e. when

anticipated inflation has real effects.

4 Two Variations

This section explores two variations on the basic model of Section 2. Each

variation relaxes one of the twin assumptions that  inverts the link between

 and  and treats  as an exogenous variable.

4.1 Belief in Exogeneity without Reverse Causality

Let the DM’s subjective DAG be the rightward DAG in Figure 1, and modify

the true model ∗ (given by the leftward DAG in Figure 1) with the following
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DAG ∗∗:
 → 

& ↓ &
 ← 

Specifically, the equations for  and  are

 = + 

 =  − +  + 

where    are constants in (0 1), and  ∼ (0 2) and  ∼ (0 2) are

independently distributed noise variables.

The DM’s subjective model  departs from ∗∗ by removing the link

 → , but otherwise the DAGs are identical. Thus, the only causal mis-

perception that  embodies relative to the true model ∗∗ is a belief that

 is an exogenous, independent variable. The following example provides an

illustration of this specification of  and ∗∗.

Example 4.1: Public health

Suppose that  represents initial conditions of a public health situation;

the DM is a public-health authority and  represents the intensity of some

mitigating public-health measure;  represents the population’s behavioral

personal-safety response (higher  corresponds to more lax behavior); and 

represents the eventual public health outcome. The authority’s error is that

it takes the likelihood of various scenarios of the population’s behavior as

given without taking into account the fact that it responds to the intensity

of the public-health measure.

We will now see that although this error has non-null behavioral implica-

tions, those are quite different from what we saw in Section 3. The analysis

here is much simpler. As in the main model, the DM chooses  such that

 = ( |  ) =
Z


()( |   )

The difference is that now, ( |   ) is straightforward to calculate be-
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cause  is conditioned on its actual direct causes:

( |   ) =  − + 

I take it for granted that () = 0. Therefore,

 =  − 

such that the DM’s subjectively optimal action is

() =


1 + 

Note that personal-equilibrium subtleties are irrelevant in this derivation.

By comparison, the correct-specification action would satisfy

 = ( |  ) =  − + 

such that

∗∗() =


1 + − 

We see that as in the model of Section 2, treating  as an independent

exogenous variable leads to a more rigid response to . Here the reason

is that since () = 0, the average unconditional effect of  on  is null,

whereas conditional on   0 it is positive. Therefore, failing to treat  as

an intermediate consequence of  leads the DM to neglect a causal channel

that affects , which means that he ends up underestimating the total effect

of  on .

However, unlike the basic model of Section 2, the variances of the noise

parameters play no role in the solution: a change in the precision of the

equations for  or  will have no effect on the outcome. Finally, unlike the

basic model, the decision context does not protect the DM from his own

error. Indeed, a larger  only  the discrepancy between () and

∗∗(). The conclusion is that the mere failure to recognize the endogeneity

of  leads to very different effects than when this failure is combined with

the reverse-causality error.
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4.2 Reverse Causality without Belief in Exogeneity

In this sub-section I consider a variation on the model that retains the reverse

causality aspect of , while relaxing the assumption that the DM regards 

as an independent exogenous variable. Thus, assume that the true DAG is

∗, as given by Figure 1, while the DM’s subjective DAG  is

 → 

& ↓ &
 ← 

(Figure 2)

The subjective model departs from the true model by inverting the link

between  and , but otherwise it is identical to ∗.

The DM’s misperception can be viewed in terms of the conditional-

independence properties that it gets wrong. While  postulates that  ⊥  |
, ∗ violates this property because of the causal channel from  to  that

passes through .

Example 4.2: More parenting

Suppose that  represents an adolescent’s initial conditions. The DM is

the adolescent’s parent. The variable  represents the amount of time that

the adolescent spends online, and  represents the intensity of the parent’s

attempts to limit this online exposure. The variable  represents the ado-

lescent’s mental health. Thus, according to the true model, online exposure

is not a cause but a consequence of mental health. The parent’s interven-

tion may have a direct effect on mental health, possibly because it includes

spending more time with his child, which may have direct effects on , inde-

pendently of the activity it substitutes away from. The parent believes that

online exposure has a direct causal effect on the adolescent’s mental health.

Let us analyze personal equilibrium in linear strategies under this speci-

fication of ∗ and .

Proposition 2 There is a unique personal equilibrium in linear strategies.

The DM plays the rational-expectations strategy given by (5).
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Proof. The DM chooses  to minimizeZ


( |  )(− )2 =

Z


( | )
Z


( |   )(− )2 (19)

Using essentially the same argument as in the proof of Proposition 1, the

DM’s strategy satisfies:

 = ( |  ) (20)

where

( |  ) =
Z


( | )( |   )

Calculating ( |   ) proceeds exactly as in the proof of Proposition 1
because the true process that links these four variables is the same. Therefore,

( |   ) = (1− ) + (+  − )+ 

where  is given by (18). It follows that

( |  ) =

Z


( | )[(1− ) + (+  − )+ ]

= (1− ) + (+  − )+ 

Z


( | )

Our task now is to calculate the last term of this expression: First, plug-

ging (1)-(2), we obtain



Z


( | ) = 

Z
0
(0 | )

Z


( | 0 )

= 

Z
0
(0 | )[0 − − ]

= (0 | )−  ( + ) 

where (0 | ) is determined by the DM’s equilibrium strategy, which we

have yet to derive.
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Plugging this in the expression for ( |  ), we obtain

( |  ) = (1− ) + (+  −  −  − )+ (0 | )
= (1− ) − + (0 | )

Plugging in (20) and rearranging, we obtain

 =
(1 + )− (0 | )

1− 

This equation defines  as a deterministic function  of , such that (0 |
) = (). It follows that

() =
(1 + )− ()

1− 

or

() = (1 + )

Inverting the function, we obtain

−1() =


1 + 

which is the DM’s equilibrium strategy.

Thus, when the DM correctly perceives that  has a direct causal effect

on , the fact that he inverts the causal link between  and  is immaterial

for his equilibrium behavior, which coincides with the correct-specification

benchmark. It follows that the DM’s belief that  is independent of  is

essential for the anomalous effects of our main model. The same conclusion

would be obtained if we assumed instead that the DM’s subjective DAG does

not contain a direct  →  link but instead contains the link  →  (or an

indirect link  → → , where  is a variable that is objectively correlated

with  but independent of all other variables conditional on ).
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5 Conclusion

This paper explored behavioral consequences of a certain reverse-causality

error — inverting the causal link between two outcome variables and deeming

one of them exogenous — in an example of a quadratic-normal environment.

Two novel qualitative effects emerge from our analysis. First, the DM’s

behavior is sensitive to the variances of the noise terms in the equations

for the two outcome variables  and  — something that would not arise in

the quadratic-normal setting under a correctly specified subjective model.

Second, the anomalous effects vanish when the DM’s direct effect on the

final outcome variable  fully offsets the effect that the intermediate outcome

variable  has on . In this sense, the decision context protects the DM from

his reverse-causality error.

As we saw in Section 4, these novel effects crucially rely on the combi-

nation of the two aspects of the DM’s model misspecification — namely, his

inversion of the causal link between the two outcome variables and his belief

in the exogeneity of . When one of these assumptions is relaxed, the DM’s

behavior ceases to display these effects and can even revert to the correct-

specification benchmark. This should not be construed as “fragility” of our

analysis, but rather as further demonstration that in Gaussian environments,

rational-expectations predictions tend to be robust to many causal misspec-

ifications (see Spiegler (2020b)). The same causal misperceptions would be

less innocuous under a non-Gaussian objective data-generating process.

Of course, the specification of the true and subjective DAGs in Figure

1 does not exhaust the range of relevant reverse-causality errors. Spiegler

(2016) gives an example in which the true DAG is  →  ← , the DM’s

wrong model is → → , and  (rather than ) is the payoff-relevant vari-

able. That is, in reality  is exogenous and the DM’s reverse-causality error

leads him to believe that  causes  — the exact opposite of the situation in

our main model. Eliaz et al. (2021) quantify the maximal possible distortion

of the estimated correlation between  and  due to this error (as well as

more general versions of it).

Thus, I am not claiming that the results in this paper are universal fea-
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tures of situations in which the true and subjective DAGs disagree on the

direction of a certain link. That would be analogous to claiming that sub-

game perfect equilibrium in an extensive-form game is robust to changes in

the game form. Nevertheless, as the examples in this paper demonstrated,

many real-life situations fit the mold of Figure 1 and its variations, such that

hopefully the analysis in this paper has provided relevant insights into the

consequences of reverse-causality errors for agents who act on them.
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