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Abstract. We consider a fully discrete loosely coupled scheme for incompressible fluid-structure
interaction based on the time semi-discrete splitting method introduced in [13]. The splittling

method uses a Robin-Robin type coupling that allows for a segregated solution of the solid and

the fluid systems, without inner iterations. For the discretisation in space we consider piecewise
affine continuous finite elements for all the fields and ensure the inf-sup condition by using a Brezzi-

Pitkäranta type pressure stabilization. The interfacial fluid-stresses are evaluated in a variationally

consistent fashion, that is shown to admit an equivalent Lagrange multiplier formulation. We prove
that the method is unconditionally stable and robust with respect to the amount of added-mass in

the system. Furthermore, we provide an error estimate that shows the error in the natural energy

norm for the system is O
(√
T (
√

∆t + h)
)

where T is the final time, ∆t the time-step length and h

the space discretization parameter.

1. Introduction

The computational solution of fluid-structure interaction problems remains a challenging problem.
Indeed the combination of the continuity requirement of velocities and stresses across the interface with
the incompressibility constraint leads to a very stiff problem. In order to be able to use optimised
solvers and existing codes for the fluid and the solid sub-systems and to simplify the handling of
geometric nonlinearities it is appealing to use a loosely coupled (or explicit coupling) where the solid
and fluid systems are solved sequentially, passing information across the coupling interface at discrete
time levels, without iterating between the sub-systems within one time-step. This partitioned solution
procedure has been very successful in the context of aeroelasticity (see [17]), but in other applications,
depending on the geometry of the computational domain or the physical parameters, it has been shown
to suffer from severe stability problems (see [16]). In particular, in applications where the fluid-solid
density ratio is close to one any naive decoupling of the fluid-solid system to form a loosely coupled
scheme is known to be unstable.

In this paper, we revisit the loosely coupled scheme based on a Robin-Robin type coupling for the
coupling of an incompressible fluid with a thick-walled solid, introduced in [15, Algorihm 4]. Recently
(see [13]), this method was analysed in the time semi-discrete framework, i.e. independent of any
space mesh parameter, and was shown to be stable independent of the fluid-solid density ratio. In
particular, the dependence of the Robin-coefficient on the inverse of the space mesh parameter (and
the pressure stabilizer necessary for the stability arguments of [15]) were eliminated. The splitting

error of the scheme could then be shown to be O(
√
T
√

∆t). Note the absence of exponential growth of
perturbations in time (with respect to T ), accomplished using a technique introduced by Baker in [4].
The success in [13] relies on the fact that, at the continuous level, one can use the Robin condition in
strong form, provided the solution of the time-discretised fluid system is sufficiently regular. Indeed,
if α ∈ R+ denotes the Robin parameter, u, q, σf (u, p) and σs(η) are the fluid and solid velocities
and stresses at some time-levels, ∗ superscripts indicate a shift by one time-step, and Σ stands for the
fluid-solid interface, the Robin type coupling condition in the fluid formally reads

σf (u, p)nf + αu = αq + σf (u∗, p∗)nf on Σ.
1
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A key ingredient in the stability analysis of the time semi-discretized method is to write

(1.1) α(u− q) = σf (u∗, p∗)nf − σf (u, p)nf .

Assuming sufficient regularity, the discrepancy in the velocities across the interface can then be re-
placed by the increment of the stresses, which is used to obtain stability. It should however be noted
that, at the discrete level, the relation (1.1) does not hold true in general, if standard finite elements
are used for space discretization. Indeed, the stresses will be discontinuous accross element boundaries
and on polygonal approximations of the boundary also nf will jump. It follows that the equality (1.1)
can not be used and that a fully discrete scheme based on the time-discrete approach of [13] has to
be carefully designed, with a discretization of the stresses that is compatible with the loosely coupled
scheme.

Drawing on ideas from [31] (see also [15, Algorithm 3]) we consider a variational consistent rep-
resentation of the interfacial fluid-stresses (i.e., as the classical fluid variational residual involving a
fluid-sided lifting operator) and show that the resulting scheme can be recast as a Lagrange multi-
plier method. Matching the trace spaces of the solid and fluid velocities, with that of the multiplier,
allows us to recover a relation similar to (1.1) in the fully discrete framework. A complete a priori
error analysis for the fully discrete method, using piecewise affine approximation for all the unknowns
is then carried out resulting in an error estimate of O

(√
T (
√

∆t + h)
)

in the natural norm. This
shows that our extension to the fully discrete case of the method proposed in [13] is optimal, with
no added conditions on the discretization parameters or exponential growth of perturbations. To the
best of our knowledge this is the first fully discrete loosely coupled method for fluid-structure inter-
action problems with thick-walled solids that allows for error estimates reflecting the splitting error
and the approximation order of the finite element space, without any conditions on the physical or
discretization parameters.

1.1. Overview of previous work. The source of instability occurring in loosely coupled methods
was identified by Causin et al. [16] as the so-called added-mass effect, see also [31, 25]. They also
showed that the alternative, solving the interface coupling implicitly (strong coupling) and in a par-
titioned iterative fashion, on the other hand is very costly in this regime, due to the stiffness of the
coupling. A first step in the direction of decoupling the two systems were the semi-implicit coupling
schemes (see [21, 34, 3, 1, 9]), where the implicit part of the coupling, typically the elasticity system and
the fluid incompressibility (i.e., the added-mass), guarantees stability, and the explicit step (transport
in the fluid and geometrical non-linearities) reduces the computational cost. Such splitting methods
nevertheless retain an implicit part, although of reduced size, and require a specific time-stepping in
the fluid. Provably stable fully explicit coupling was first achieved by Burman and Fernández [14]
using a formulation based on Nitsche’s method, drawing on an earlier, fully implicit formulation by
Hansbo et al. [28]. Stability was achieved by the addition of a temporal pressure stabilization that
relaxed incompressibility in the vicinity of the interface. Although the proposed scheme was proved
to be stable irrespectively of the added-mass effect, it suffered from a strong splitting error of order
O(∆t/h) leading to a convergent scheme only for ∆t = O(hα) with α > 1. The source of this consis-
tency error was the penalty term of the Nitsche formulation. In a further development Burman and
Fernández compared the Nitsche based method with a closely related scheme using a Robin type split-
ting procedure [15]. Robin type domain decomposition had already been applied for the partitioned
solution of strong coupling by Badia et al. [2, 32, 26] and Robin related explicit coupling was proposed
in [5], but without theoretical justification. The loosely coupled scheme based on Robin type coupling
of [15] was proved to be stable, but with similar shortcomings as the Nitsche based method. Since then
several works [24, 11, 8, 23] have studied the loosely coupled schemes for the interaction of an incom-
pressible fluid and a thick-walled solid. At best (see [24, 23]) their error analysis results in estimates of

order O(∆t/
√
h) under various (mild) conditions on the discretization parameter. Observe that these

latter references extend techniques designed for the case of an incompressible fluid interacting with a
thin-walled solid (see [20, 18]) to the case of the coupling with a thick-walled solid. When preparing to
submit the present work we came across a report recently posted to arxiv by Seboldt and Bukač [36],
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where a method using Robin-conditions in a loosely coupled scheme similar to the one introduced in
[11] was analyzed. The main differences in our work compared to theirs is that we use residual lifting,
or Lagrange multipliers, for the interface stresses and prove error estimates without conditions on the
discretization parameters and without exponential growth of the stability constant in time. In their
work on the other hand they derive a stability estimate for the time semi-discretized problem where
a moving domain is accounted for and use arbitrary inf-sup stable finite element spaces in the error
analysis.

1.2. Coupling of an incompressible fluid with a thin-walled solid. Let us finally mention the
case of an incompressible fluid coupled with a thin-walled solid, i.e. a solid that is modeled on a
domain of co-dimension 1 compared to the fluid system. This system is simpler and many coupling
schemes have been developed and analysed starting with the seminal work of Guidoboni et al. [27],
for instance [20, 18, 22, 10, 38, 33].

Since the solid model is restricted to the (d − 1) dimensional interface domain the solid velocities
interact with the fluid everywhere in their domain of definition. This means that there is no relaxation
times associated with propagation of waves in the direction perpendicular to the interface. Therefore
the stability of the solid system holds on the d− 1-dimensional interface and not in the d-dimensional
bulk. The fundamental idea for stability is to implicitly integrate the solid inertial contributions
within the fluid, through a Robin-type interface condition (which avoids the above mentioned added-
mass issues) and appropriately extrapolate the remaining solid contributions for accuracy (see, e.g.,
[20, 18]). Nevertheless, when considering thick-walled solids, typically a trace inequality must be
applied to control interface quantities using the stability in the bulk domain (see, e.g., [23]). This
leads to the need of control of higher derivatives, or a loss of a negative power of the space mesh
parameter. Therefore, when methods used for the coupling with thin-walled solids are extended to
the thick-walled solid case, sub-optimal accuracy issues depending on the ratio of the time and space
grid parameters result as in the examples in the previous section. In other words, time splitting with
thick-walled solids suffers from more severe accuracy issues than in the thin-walled solid case.

2. The linear fluid-solid interaction problem

Let Ωs and Ωf be two polygonal domains with a matching interface Σ = ∂Ωs ∩Ωf . For simplicity,
we assume that the interface Σ is a straight line. We also let Σf = Ωf\Σ and Σs = Ωs\Σ. We consider
the following coupled problem

(2.1)


ρf∂tu− div σf (u, p) =0 in (0, T )× Ωf ,

divu =0 in (0, T )× Ωf ,

u =0 on (0, T )× Σf ,

(2.2)


ρs∂tq − div σs(η) =0 in (0, T )× Ωs,

q − ∂tη =0 in (0, T )× Ωs,

η =0 on (0, T )× Σs,

(2.3)

{
u =q on (0, T )× Σ,

σf (u, p)nf + σs(η)ns =0 on (0, T )× Σ,

complemented with the following initial conditions:

η(0, ·) =η0 in Ωs,

q(0, ·) =q0 in Ωs,

u(0, ·) =u0 in Ωf .



4 ROBIN-ROBIN COUPLING

Here, ni is the outward pointing normal to ∂Ωi for i = s, f . The stress tensors are given by

σf (u, p) :=2µε(η)− pI,
σs(η) :=2L1ε(η) + L2(div η)I.

Here µ is the viscosity of the fluid and L1, L2 are the Lamé constants of the solid, with L1 > 0 and
L2 ≥ 0. The solid and fluid densities are denoted ρs, ρf , respectively.

Let us define the following spaces

V s :={v ∈H1(Ωs) : v = 0 on Σs},

V f :={v ∈H1(Ωf ) : v = 0 on Σf},
V g :=L2(Σ),

Mf :=L2
0(Ωf ).

We let

λ := σf (u, p)nf .

Then if we assume that λ ∈ L2(Σ) we have that the solution of (2.1)-(2.3) satisfies the weak formu-
lation: For t > 0, find q(t),η(t) ∈ V s, u(t) ∈ V f , λ(t) ∈ V g , p(t) ∈Mf satisfying

ρs(∂tq, ξ)s + as(η, ξ) + 〈λ, ξ〉 =0 ∀ξ ∈ V s(2.4a)

(q,φ)s − (∂tη,φ)s =0 ∀φ ∈ V s(2.4b)

ρf (∂tu,v)f + af
(
(u, p), (v, θ)

)
− 〈λ,v〉 =0 ∀(v, θ) ∈ V f ×Mf(2.4c)

〈u− q,µ〉 =0 ∀µ ∈ V g.(2.4d)

Here (·, ·)i is the L2 inner-product on Ωi, i = s, f . Also, 〈·, ·〉 is the L2 inner-product on Σ. Finally,
the bilinear form af and as are respectively given by

af
(
(u, p), (v, θ)

)
:=2µ(ε(u), ε(v))f − (p,div v)f + (divu, θ),

as(η, ξ) :=2L1(ε(η), ε(ξ))s + L2(div η,div ξ)s

and the induced elastic energy norm

‖η‖2S := as(η,η).

3. Numerical method

3.1. Time discretization: Robin-based loosely coupled scheme. We discretize the time interval
(0, T ) with N sub-intervals (tn, tn+1) where tn = ∆tn, T = tN and ∆t is the time-step length. We
introduce the standard notation

∂∆tf
n+1 :=

1

∆t
(fn+1 − fn), fn+1/2 :=

1

2
(fn+1 + fn).

As mentioned in the introduction, a splitting method was introduced in [13] using a Robin-based
procedure that solves two PDEs, sequentially, in each time step. Here we further discretize that
method by applying a backward Euler method in the fluid and a mid-point scheme in the solid. This
yields the time semi-discrete solution procedure reported in Algorithm 1, where α > 0 denotes the
so-called Robin parameter (user defined). Note that Algorithm 1 is nothing but the generalization
of the genuine Robin-Robin explicit coupling scheme introduced in [15, Algorithm 4] to the case of a
general Robin coefficient α > 0 (i.e., the traditional Nitsche penalty parameter γµ/h is replaced by
α).

Unconditional energy stability and sub-optimal O(
√

∆t) accuracy are derived in [13] for the PDE
version of Algorithm 1, irrespectively of the value of α > 0. The relation (3.2)4 plays a fundamental
role in the analysis of the method. The next section provides a fully discrete version of Algorithm 1
using a conforming finite element approximation in space.



ROBIN-ROBIN COUPLING 5

Algorithm 1 Time semi-discrete, Robin-based, loosely coupled scheme (from [13]).

(1) Solid subproblem:

(3.1)



ρs∂∆tq
n+1 − div σs(η

n+ 1
2 ) =0 in Ωs,

∂∆tη
n+1 =qn+ 1

2 in Ωs,

ηn+1 =0 on Σs,

σs(η
n+ 1

2 )ns + αqn+ 1
2 =αun − σf (un, pn)nf on Σ.

(2) Fluid subproblem:

(3.2)


ρf∂∆tu

n+1 − div σf (un+1, pn+1) =0 in Ωf ,

divun+1 =0 in Ωf ,

un+1 =0 on Σf ,

σf (un+1, pn+1)nf + αun+1 =αqn+ 1
2 + σf (un, pn)nf on Σ.

3.2. Finite element approximation with fitted meshes. We assume that Tih is a simplicial
triangulation of Ωi where i = s, f . We assume the meshes are quasi-uniform and shape-regular [6].
Furthermore, we assume that the meshes match on the interface Σ. We define the following finite
element spaces:

V s
h :={v ∈ V s : v|K ∈ P1(K),∀K ∈ Tsh},

V f
h :={v ∈ V f : v|K ∈ P1(K),∀K ∈ T

f
h},

V g
h :={ trace space of V f

h on Σ},

Mf
h :={v ∈Mf : v|K ∈ P1(K),∀K ∈ T

f
h}.

Here P1(K) is the space of linear functions defined on K and P1(K) = [P1(K)]2. Note that, owing
to the mesh conformity, we have

(3.3) trace|ΣV
s
h = trace|ΣV

f
h = V g

h .

In order to circumvent the lack of inf-sup stability of the pair V f
h /M

f
h , we consider the following

pressure stabilized discrete bilinear form for the fluid (see, e.g., [7]):

af,h
(
(uh, ph), (vh, θh)

)
:= af

(
(uh, ph), (vh, θh)

)
+ h2(∇ph,∇θh)f .

At last, we introduce the standard fluid-sided discrete lifting operator Lh : V g
h → V f

h , such that, the
nodal values of Lhµh vanish out of Σ and (Lhµh)|Σ = µh, for all µh ∈ V g

h .

Algorithm 2 Fully discrete, Robin-based, loosely coupled scheme.

(1) Solid subproblem: Find qn+1
h ,ηn+1

h ∈ V s
h such that q

n+1/2
h = ∂∆tη

n+1
h and

(3.4) ρs(∂∆tq
n+1
h , ξh)s + as(η

n+1/2
h , ξh) + α〈(qn+1/2

h − unh), ξh〉+ 〈λnh, ξh〉 = 0 ∀ξh ∈ V s
h .

(2) Fluid subproblem: Find un+1
h ∈ V f

h , ph ∈M
f
h such that

(3.5) ρf (∂∆tu
n+1
h ,vh)f + af,h

(
(un+1

h , pn+1
h ), (vh, θh)

)
+ α〈un+1

h − qn+1/2
h ,vh〉 − 〈λnh,vh〉 = 0 ∀(vh, θh) ∈ V f

h ×M
f
h .

(3) Energy-preserving fluid-stress evaluation: Find λn+1
h ∈ V g

h such that

(3.6) 〈λn+1
h ,µh〉 = ρf (∂∆tu

n+1
h ,Lhµh)f + af,h

(
(un+1

h , pn+1
h ), (Lhµh, 0)

)
∀µh ∈ V g

h .
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The proposed finite element approximation of Algorithm 1 is reported in Algorithm 2. It should be
noted that the interfacial fluid stress reconstruction given by step (3) has been introduced for purely
analysis purposes (see discussion below) and it should be omitted in any computer implementation.
Indeed, there is no specific need of evaluating the Lagrange multiplier λn+1

h as an additional unknown,
since the right-hand side of (3.6) can be inserted directly in (3.4) and (3.5).

Step (1) of Algorithm 2 can be reformulated as: Find qn+1
h ,ηn+1

h ∈ V s
h such that

ρs(∂∆tq
n+1
h , ξh)s + as(η

n+1/2
h , ξh) + α〈(∂∆tη

n+1
h − unh), ξh〉+ 〈λnh, ξh〉 =0 ∀ξh ∈ V s

h ,(3.7a)

(q
n+1/2
h ,φh)s − (∂∆tη

n+1
h ,φh)s =0 ∀φh ∈ V s

h .(3.7b)

Moreover, from (3.5) and (3.6), we have that

(3.8) 〈λn+1
h ,µh〉 = α〈qn+1/2

h − un+1
h ,µh〉+ 〈λnh,µh〉

for all µh ∈ V g
h . As a result, steps (2) and (3) of Algorithm 2 can be reformulated as: Find un+1

h ∈
V f
h , ph ∈M

f
h ,λ

n+1
h ∈ V g

h such that

ρf (∂∆tu
n+1
h ,vh)f + 2µ(ε(un+1

h ), ε(vh))f − (pn+1
h ,div vh)f − 〈λn+1

h ,vh〉 =0 ∀vh ∈ V f
h(3.9a)

(divun+1
h , θh)f + h2(∇pn+1

h ,∇θh)f =0 ∀θ ∈Mf
h(3.9b)

α〈un+1
h − qn+1/2

h ,µh〉+ 〈λn+1
h − λnh,µh〉 =0 ∀µh ∈ V g

h .(3.9c)

Finally, it is also worth noting that, owing to (3.3) and (3.8), we have

(3.10) λn+1
h = α(q

n+1/2
h − un+1

h ) + λnh on Σ

for n ≥ 1. This relation, which represents discrete counterpart of (3.2)4, is a fundamental ingredient
of the stability analysis reported in next section. Also, for convenience we write the relationship:

(3.11) q
n+1/2
h = ∂∆tη

n+1
h on Ωs.

3.3. Stability. Next, we will prove stability of the method. The following identity is crucial.

(3.12)
〈
v −w,ψ

〉
=

1

2

(
‖v‖2L2(Σ) − ‖w‖

2
L2(Σ) + ‖ψ −w‖2L2(Σ) − ‖ψ − v‖

2
L2(Σ)

)
.

The following quantities will allow us to state the stability result,

Snh =‖ηnh‖2S + ρs‖qnh‖2L2(Ωs) + ρf‖unh‖2L2(Ωf ) + ∆t(α‖unh‖2L2(Σ) +
1

α
‖λnh‖2L2(Σ)),

Znh =ρf‖unh − un−1
h ‖2L2(Ωf ) + 2α∆t‖∂∆tη

n
h − un−1

h ‖2L2(Σ) + 4µ∆t‖ε(un+1
h )‖2L2(Ωf ) + 2h2∆t‖∇pnh‖2L2(Ωs).

Lemma 3.1. Let {(qn+1
h ,ηn+1

h ,un+1
h , pn+1

h ,λn+1
h }N−1

n=0 ⊂ V s
h × V s

h × V
f
h × Mf

h × V
g
h be given by

Algorithm 2. The following energy identity holds:

SMh +

M∑
m=1

Zmh = S0
h for 1 ≤M ≤ N.

Proof. We let ξh = q
n+1/2
h in (3.7a) and using (3.11) we get

1

2
‖ηn+1

h ‖2S +
ρs
2
‖qn+1
h ‖2L2(Ωs) =

1

2
‖ηnh‖2S +

ρs
2
‖qnh‖2L2(Ωs).

+ α∆t
〈
(unh − ∂∆tη

n+1
h ), ∂∆tη

n+1
h 〉 −∆t〈λnh, ∂∆tη

n+1
h 〉.

If we now set vh = un+1
h in (3.9a) and θh = pn+1

h in (3.9b) we obtain

ρf
2
‖un+1

h ‖2L2(Ωf ) +
ρf
2
‖un+1

h − unh‖2L2(Ωf ) + 2µ∆t‖ε(un+1
h )‖2L2(Ωf ) + h2∆t‖∇pn+1

h ‖2L2(Ωf )

=
ρf
2
‖unh‖2L2(Ωf ) + ∆t〈λn+1

h ,un+1
h 〉.



ROBIN-ROBIN COUPLING 7

Adding the above two equations we get

1

2
‖ηn+1

h ‖2S +
ρs
2
‖qn+1
h ‖2L2(Ωs) +

ρf
2
‖un+1

h ‖2L2(Ωf )

+
ρf
2
‖un+1

h − unh‖2L2(Ωf ) + 2µ∆t‖ε(un+1
h )‖2L2(Ωf ) + h2∆t‖∇pn+1

h ‖2L2(Ωf )

=
1

2
‖ηnh‖2S +

ρs
2
‖qnh‖2L2(Ωs) +

ρf
2
‖unh‖2L2(Ωf ) + ∆tJ

where

J :=α
〈
(unh − ∂∆tη

n+1
h ), ∂∆tη

n+1
h

〉
−
〈
λnh, ∂∆tη

n+1
h

〉
+
〈
λn+1
h ,un+1

h

〉
After some manipulations and using (3.10) we obtain

J =α
〈
(unh − un+1

h + un+1
h − ∂∆tη

n+1
h ), ∂∆tη

n+1
h

〉
−
〈
λnh, ∂∆tη

n+1
h − un+1

h + un+1
h

〉
+
〈
λn+1
h ,un+1

h

〉
=α
〈
unh − un+1

h , ∂∆tη
n+1
h

〉
+ α

〈
un+1
h − ∂∆tη

n+1
h , ∂∆tη

n+1
h

〉
−
〈
λnh, ∂∆tη

n+1
h − un+1

h

〉
+
〈
λn+1
h − λnh,un+1

h

〉
=α
〈
unh − un+1

h , ∂∆tη
n+1
h

〉
+
〈
λnh − λn+1

h , ∂∆tη
n+1
h − un+1

h

〉
−
〈
λnh, ∂∆tη

n+1
h − un+1

h

〉
=α
〈
unh − un+1

h , ∂∆tη
n+1
h

〉
−
〈
λn+1
h , ∂∆tη

n+1
h − un+1

h

〉
=α
〈
unh − un+1

h , ∂∆tη
n+1
h

〉
+

1

α

〈
λn+1
h ,λnh − λn+1

h

〉
.

With (3.12), we have

α
〈
unh − un+1

h , ∂∆tη
n+1
h

〉
=
α

2

(
‖unh‖2L2(Σ) − ‖u

n+1
h ‖2L2(Σ)

− ‖∂∆tη
n+1
h − unh‖2L2(Σ) + ‖∂∆tη

n+1
h − un+1

h ‖2L2(Σ)

)
,

1

α

〈
λn+1
h ,λnh − λn+1

h

〉
=

1

2α

(
‖λnh‖2L2(Σ) − ‖λ

n+1
h ‖2L2(Σ) − ‖λ

n+1
h − λnh‖2L2(Σ)

)
.

Using (3.10), we note that ‖λn+1
h − λnh‖2L2(Σ) = α2‖∂∆tη

n+1
h − un+1

h ‖2L2(Σ). Thus, we conclude

J =
α

2

(
‖unh‖2L2(Σ) − ‖u

n+1
h ‖2L2(Σ)

)
+

1

2α

(
‖λnh‖2L2(Σ) − ‖λ

n+1
h ‖2L2(Σ)

)
− α

2
‖∂∆tη

n+1
h − unh‖2L2(Σ).

We finally arrive at

1

2
Sn+1
h +

1

2
Zn+1
h =

1

2
Snh.

The result now follows after summing both sides. �

4. Error Analysis

4.1. The linear interpolant and the L2- projection. In order to carry out the error analysis we
define the following discrete errors:

Hn
h :=ηnh −Rshηn, Qn

h := qnh −Rshqn,

Un
h :=unh −R

f
h(un), Λn

h := λnh − Phλn,
Pnh :=pnh − Sh(pn),
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where Rih, i = s, f are the Scott-Zhang interpolants defined in [35] projecting onto our finite element

spaces V sh , V fh . Also, Sh is the Scott-Zhang interpolant into Mf
h modified by a global constant so the

average on Ωf is zero. Finally, Ph is the L2 projection onto V gh . Thus,

(4.1)
〈
Phλn,µh

〉
=
〈
λn,µh

〉
, ∀µ ∈ V gh .

There is flexiblity in defining the Scott-Zhang interpolant and we choose the degrees of freedom on the

boundary so that, Rshv = Rfhw on Σ if v ∈ [H1(Ωs)]
2 and w ∈ [H1(Ωf )]2 and v = w on Σ . For these

interpolants, we have the well known stability result for v ∈ [H1(Ωi)]
2, i = s, f , and r ∈ H1(Ωf ),

(4.2) ‖Rihv‖H1(Ωi) ≤ C‖v‖H1(Ωi), ‖Shr‖H1(Ωf ) ≤ C‖r‖H1(Ωf ).

We will also need the trace inequality

(4.3) ‖v‖L2(Σ) ≤ C‖v‖H1(Ωi).

Furthermore, it is well known that for v ∈ [H2(Ωi)]
2, i = s, f , and r ∈ H2(Ωf ),

‖Rihv − v‖L2(Ωi) ≤ Ch
2‖v‖H2(Ωi), ‖Shr − r‖L2(Ωf ) ≤ Ch2‖r‖H2(Ωf ),(4.4)

‖Rihv − v‖H1(Ωi) ≤ Ch‖v‖H2(Ωi), ‖Shr − r‖H1(Ωf ) ≤ Ch‖r‖H2(Ωf ).(4.5)

The interpolants restricted to the Σ will be the Scott-Zhang interpolant on Σ so we have

‖Rihv − v‖L2(Σ) + h‖Rihv − v‖H1(Σ) ≤ Ch2‖v‖H2(Σ).

Thus, using the trace estimate with this approximation result we have

‖Rihv − v‖L2(Σ) + h‖Rihv − v‖H1(Σ) ≤ Ch2‖v‖H3(Ωi), ∀v ∈ [H3(Ωi)]
2.(4.6)

We may now state consistency-type results for the solid and the fluid.

Lemma 4.1. The following identities hold for all ξh ∈ V s
h , vh ∈ V

f
h , and µh ∈ V g

h .

ρs(∂∆tR
s
hq

n+1, ξh)s + as(R
s
hη

n+1/2, ξh) + α〈(∂∆tR
s
hη

n+1 −Rfhu
n), ξh〉+ 〈Phλn, ξh〉

= T1(ξh) +
1

2
T2(ξh) + V1(ξh)− S2(ξh) + S3(ξh),(4.7)

ρf (∂∆tR
f
hu

n+1,vh)f + 2µ(ε(Rfhu
n+1), ε(vh))f − (Shp

n+1,div vh)f − 〈Phλn+1,vh〉 =S1(vh) + V2(vh),

(4.8)

(divRfhu
n+1, θh)f + h2(∇Shpn+1,∇θh)f =V3(θh) + V4(θh),(4.9)

where

T1(ξh) :=ρs(∂∆tR
s
hq

n+1 − ∂tqn+1/2, ξh)s,

T2(ξh) :=〈λn − λn+1, ξh〉,

S1(vh) :=ρf (∂∆tR
f
hu

n+1 − ∂tRfhu
n+1,vh)f ,

S2(µh) :=α〈Rfhu
n+1 − ∂∆tR

s
hη

n+1,µh〉,

S3(µh) :=α〈Rfhu
n+1 −Rfhu

n,µh〉,

V1(ξh) :=as(R
s
hη

n+1/2 − ηn+1/2, ξh)s,

V2(vh) :=2µ(ε(Rfhu
n+1 − un+1), ε(vh))f − (Shp

n+1 − pn+1,div vh)f ,

V3(θh) :=(div (Rfhu
n+1 − un+1), θh)f ,

V4(θh) :=h2(∇Shpn+1,∇θh)f .

Remark 4.2. Note that the error equation for the solid domain, (4.7), was obtained by taking the
difference between the fully-discrete equation (3.7a) and the average of the continuous equation (2.4a)
at time-steps n and n+ 1, in order to match the ηn+1/2 that occurs in the Robin-Robin method.
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Proof. For (4.7), let L1 denote the left-hand side. Then we have

L1 =ρs(∂∆tR
s
hq

n+1 − ∂tqn+1/2, ξh)s + ρs(∂tq
n+1/2, ξh)s + as(R

s
hη

n+1/2, ξh)

+ α〈(∂∆tR
s
hη

n+1 −Rfhu
n+1), ξh〉+ S3(ξh) + 〈λn, ξh〉−〈λn+1/2, ξh〉

=T1(ξh)− as(ηn+1/2, ξh) + as(R
s
hη

n+1/2, ξh)− 〈λn+1/2, ξh〉
− S2(ξh) + S3(ξh) + 〈λn, ξh〉

=T1(ξh) + V1(ξh) +
1

2
T2(ξh)− S2(ξh) + S3(ξh).

For (4.8), let L2 denote the left hand side. We have

L2 =ρf (∂∆tR
f
hu

n+1 − ∂tun+1,vh)f + ρf (∂tu
n+1,vh)f

+ 2µ(ε(Rfhu
n+1), ε(vh))f − (Shp

n+1,div vh)f − 〈λn+1,vh〉
=S1(vh)− 2µ(ε(un+1), ε(vh))f + (pn+1,div vh)f + 〈λn+1,vh〉

+ 2µ(ε(Rfhu
n+1), ε(vh))f − (Shp

n+1,div vh)f − 〈λn+1,vh〉
=S1(vh) + V2(vh).

Recall that divun = 0 for all n ≥ 1. For (4.9), let L3 denote the left hand side. We have

L3 =(divRfhu
n+1, θh)f + h2(∇Shpn+1,∇θh)f

=(divRfhu
n+1 − divun+1, θh)f + h2(∇Shpn+1,∇θh)f

=V3(θh) + V4(θh).

�

From Lemma 4.1, we find that the following error equations follow immediately after applying (3.7)
and (3.9).

Corollary 4.3. For all ξh ∈ V s
h , vh ∈ V

f
h , and θh ∈Mf

h , the following identities hold.

ρs(∂∆tQ
n+1
h , ξh)s + as(H

n+1/2
h , ξh) + α〈(∂∆tH

n+1/2
h −Un

h ), ξh〉+ 〈Λn
h, ξh〉

= −T1(ξh)− 1

2
T2(ξh)− V1(ξh) + S2(ξh)− S3(ξh),(4.10)

ρf (∂∆tU
n+1
h ,vh)f + 2µ(ε(Un+1

h ), ε(vh))f − (Pn+1
h ,div vh)f − 〈Λn+1

h ,vh〉 =− S1(vh)− V2(vh),

(4.11)

(divUn+1
h , θh)f + h2(∇Pn+1

h ,∇θh)f =− V3(θh)− V4(θh).(4.12)

We also will need the following identities.

Lemma 4.4. The following identities hold:

(4.13a) Λn+1
h −Λn

h = α(∂∆tH
n+1
h −Un+1

h ) + gn+1
1

(4.13b) Q
n+1/2
h = ∂∆tH

n+1
h −Rshgn+1

2 ,

where

gn+1
1 := α(∂∆tR

s
hη

n+1 −Rfhu
n+1)− (Phλn+1 − Phλn),

gn+1
2 := qn+1/2 − ∂∆tη

n+1.
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Proof. Using (3.10) we obtain

Λn+1
h −Λn

h =(λn+1
h − λnh)− (Phλn+1 − Phλn)

=α(∂∆tη
n+1
h − un+1

h )− (Phλn+1 − Phλn)

=α(∂∆tH
n+1
h −Un+1

h ) + gn+1
1 .

We also have by (3.7b)

q
n+1/2
h =qn+1

h −Rshqn+1/2

=∂∆tH
n+1
h + ∂∆tR

s
hη

n+1 −Rshqn+1/2

=∂∆tH
n+1
h −Rshgn+1

2 .

�

4.2. Approximation Results. Finally, before we prove error estimates we will prove approximation
inequalities. We recall the definition of space-time norms where X is a Hilbert space

‖v‖2L2(r1,r2;X) :=

∫ r2

r1

‖v(·, s)‖2Xds.

The following are a series of approximation estimates. The proofs are elementary and appear in the
appendix for completeness.

Lemma 4.5. The following inequalities hold

‖∂∆tR
s
hq

n+1 − ∂tqn+1/2‖2L2(Ωs) ≤C
(
h4

∆t
‖∂tq‖2L2(tn,tn+1;H2(Ωs)) + ∆t3‖∂3

t q‖2L2(tn,tn+1;L2(Ωs))

)
,

(4.14a)

‖λn+1 − λn‖2L2(Σ) ≤C∆t

(
µ2‖∂tu‖2L2(tn,tn+1;H2(Ωf )) + ‖∂tp‖2L2(tn,tn+1;H1(Ωf ))

)
,(4.14b)

‖Rfhu
n+1 −Rfhu

n‖2L2(Σ) ≤C∆t‖∂tu‖2L2(tn,tn+1;H1(Ωf )),(4.14c)

‖Rshgn+1
2 ‖2L2(Σ) ≤C∆t3‖∂3

t η‖2L2(tn,tn+1;H1(Ωs)),(4.14d)

‖∂∆tR
f
hu

n+1 − ∂tun+1‖2L2(Ωf ) ≤C
(
h4

∆t
‖∂tu‖2L2(tn,tn+1;H2(Ωf )) + ∆t‖∂2

tu‖2L2(tn,tn+1;L2(Ωf ))

)
,

(4.14e)

‖∇Rshgn+1
2 ‖2L2(Ωs) ≤C∆t3‖∂3

t η‖2L2(tn,tn+1;H1(Ωs)),(4.14f)

‖gn+1
1 ‖2L2(Σ) ≤C∆t

(
µ2‖∂tu‖2L2(tn,tn+1;H2(Ωf )) + ‖∂tp‖2L2(tn,tn+1;H1(Ωf ))

+ α2‖∂2
t η‖2L2(tn,tn+1;H1(Ωf ))

)
,(4.14g)

‖Shpn+1 − pn+1‖2L2(Ωf ) ≤C
(

∆th4‖∂tp‖2L2(tn,tn+1;H2(Ωf )) +
h4

∆t
‖p‖2L2(tn,tn+1;H2(Ωf ))

)
,(4.14h)

‖ε(Rfhu
n+1 − un+1)‖2L2(Ωf ) ≤C

(
∆th2‖∂tu‖2L2(tn,tn+1;H2(Ωf )) +

h2

∆t
‖u‖2L2(tn,tn+1;H2(Ωf ))

)
,(4.14i)

‖∇Shpn+1‖2L2(Ωf ) ≤C
(

∆t‖∂tp‖2L2(tn,tn+1;H1(Ωf )) +
1

∆t
‖p‖2L2(tn,tn+1;H1(Ωf ))

)
,(4.14j)

‖un+1‖2H3(Ωf ) ≤C(∆t‖∂tu‖2L2(tn,tn+1;H3(Ωf )) +
1

∆t
‖u‖2L2(tn,tn+1;H3(Ωf ))),(4.14k)
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‖∇(Rshη
n+1/2 − ηn+1/2)‖2L2(Ωs) ≤C

(
h2∆t‖∂tη‖2L2(tn,tn+1;H2(Ωs)) +

h2

∆t
‖η‖2L2(tn,tn+1;H2(Ωs))

)
,

(4.14l)

‖∇(Rsh − I)∂∆tη
n+1‖2L2(Ωs) ≤C

h2

∆t
‖∂tη‖2L2(tn,tn+1;H2(Ωs)).(4.14m)

4.3. Main Theorem. Now we can prove the main error estimate. We define the following quantities:

Snh :=‖Hn
h ‖2S + ρs‖Qn

h‖2L2(Ωs) + ρf‖Un
h ‖2L2(Ωf ),

Enh :=∆tα‖Un
h ‖2L2(Σ) +

∆t

α
‖Λn

h‖2L2(Σ),

Wn
h :=ρf‖Un

h −Un−1
h ‖2L2(Ωf ) + 4µ∆t‖ε(Un

h )‖2L2(Ωf ) + 2∆th2‖∇Pnh ‖2L2(Ωs),

Znh :=∆tα‖∂∆tH
n
h −Un−1

h ‖2L2(Σ).

Theorem 4.6. Let (u,λ,η, q) be a regular enough solution of (2.4) and let {(ηnh , qnh ,unh, pnh,λnh)}Nn=1

be given by Algorithm 2. The following discrete error estimate holds:

max
1≤m≤N

(Smh + Emh ) +

N∑
m=1

(Wm
h + Zmh ) ≤ 4(S0

h + E0
h) + CYΨ,

where

Y :=

(
T

α
(µ2 + 1) + αT

)
∆t+

(
1

α
(µ2 + 1) + ρfT + α

)
∆t2

+ Tα∆t3 +

(
T (ρs + 1) + α+ 1

)
∆t4 +

(
T + 1 + α

)
h2

+

(
T (ρf + ρs) +

1

µ

)
h4 + (1 + µ)h2∆t2 +

h4∆t2

µ
,

and

Ψ :=‖∂tη‖2L2(0,T ;H2(Ωs)) + ‖∂2
t η‖2L2(0,T ;H2(Ωs)) + ‖∂3

t η‖2L2(0,T ;H1(Ωs)) + ‖∂4
t η‖2L2(0,T ;L2(Ωs))

+ ‖u‖2L2(0,T ;H3(Ωf )) + ‖∂tu‖2L2(0,T ;H2(Ωf )) + ‖∂2
tu‖2L2(0,T ;L2(Ωf )) + ‖p‖2L2(0,T ;H1(Ωf ))

+ ‖∂tp‖2L2(0,T ;H1(Ωf )) + ‖η‖2L∞(0,T ;H2(Ωs)).

Proof. Using (4.13b) we have

as(H
n+1/2
h ,Q

n+1/2
h ) =

1

2∆t
‖Hn+1

h ‖2S −
1

2∆t
‖Hn

h ‖2S − as(H
n+1/2
h , Rshg

n+1
2 ).

If we let ξh = Q
n+1/2
h in (4.10) we obtain

1

2
‖Hn+1

h ‖2S +
ρs
2
‖Qn+1

h ‖2L2(Ωs)(4.15)

=
1

2
‖Hn

h ‖2S +
ρs
2
‖Qn

h‖2L2(Ωs) + ∆t as(H
n+1/2
h , Rshg

n+1
2 )−∆tT1(Q

n+1/2
h )

− ∆t

2
T2(Q

n+1/2
h )−∆tV1(Q

n+1/2
h ) + ∆tS2(Q

n+1/2
h )−∆tS3(Q

n+1/2
h ) + J1,

where

J1 :=− α∆t
〈
(∂∆tH

n+1
h −Un

h ),Q
n+1/2
h 〉 −∆t〈Λn

h,Q
n+1/2
h 〉.
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We simplify J1 by using (4.13a)

J1 =− α∆t
〈
(∂∆tH

n+1
h −Un+1

h ),Q
n+1/2
h 〉+ ∆t〈Λn+1

h −Λn
h,Q

n+1/2
h 〉

− α∆t
〈
Un+1
h −Un

h ,Q
n+1/2
h 〉 −∆t〈Λn+1

h ,Q
n+1/2
h 〉

=∆t〈gn+1
1 ,Q

n+1/2
h 〉 − α∆t

〈
Un+1
h −Un

h ,Q
n+1/2
h 〉 −∆t〈Λn+1

h ,Q
n+1/2
h 〉.

Therefore, if we plug this in to (4.15) we have

1

2
‖Hn+1

h ‖2S +
ρs
2
‖Qn+1

h ‖2L2(Ωs)

=
1

2
‖Hn

h ‖2S +
ρs
2
‖Qn

h‖2L2(Ωs) + ∆tas(H
n+1/2
h , Rhg

n+1
2 )−∆tT1(Q

n+1/2
h )

− ∆t

2
T2(Q

n+1/2
h )−∆tV1(Qn+1/2) + ∆tS2(Q

n+1/2
h )−∆tS3(Q

n+1/2
h )〉

+ ∆t〈gn+1
1 ,Q

n+1/2
h − α∆t

〈
Un+1
h −Un

h ,Q
n+1/2
h 〉 −∆t〈Λn+1

h ,Q
n+1/2
h 〉.(4.16)

If we now set vh = Un+1
h in (4.11) and θh = Pn+1

h in (4.12) we get

ρf
2
‖Un+1

h ‖2L2(Ωf ) +
ρf
2
‖Un+1

h −Un
h ‖2L2(Ωf ) + ∆t2µ‖ε(Un+1

h )‖2L2(Ωf ) + ∆th2‖∇Pn+1
h ‖2L2(Ωs)

=
1

2
‖Un

h ‖2L2(Ωf ) + ∆t〈Λn+1
h ,Un+1

h 〉 −∆tS1(Un+1
h )−∆tV2(Un+1

h )−∆tV3(Pn+1
h )−∆tV4(Pn+1

h ).

(4.17)

If we use that

∆tS2(Q
n+1/2
h )− ∆t

2
T2(Q

n+1/2
h ) + ∆t〈gn+1

1 ,Q
n+1/2
h 〉 =

∆t

2
T2(Q

n+1/2
h )

and add (4.16) and (4.17), we may write the following

1

2
Sn+1
h +

1

2
Wn+1
h =

1

2
Snh +K1 + · · ·+K9 + J2,(4.18)

where

K1 :=−∆tT1(Q
n+1/2
h ), K2 :=

∆t

2
T2(Q

n+1/2
h ), K3 := −∆tS3(Q

n+1/2
h ),

K4 :=−∆tS1(Un+1
h ), K5 := ∆tas(H

n+1/2
h , Rshg

n+1
2 ), K6 := −∆tV3(Pn+1

h ),

K7 :=−∆tV4(Pn+1
h ), K8 := −∆tV1(Q

n+1/2
h ), K9 := −∆tV2(Un+1

h ).

and

J2 :=− α∆t
〈
Un+1
h −Un

h ,Q
n+1/2
h 〉 −∆t〈Λn+1

h ,Q
n+1/2
h 〉+ ∆t〈Λn+1

h ,Un+1
h 〉.

Using (4.13b) we see that

J2 =− α∆t
〈
Un+1
h −Un

h , ∂∆tH
n+1
h 〉 −∆t〈Λn+1

h , ∂∆tH
n+1
h −Un+1

h 〉
+ α∆t

〈
Un+1
h −Un

h , R
s
hg

n+1
2 〉+ ∆t〈Λn+1

h , Rshg
n+1
2 〉.

Using (4.13a) gives

J2 =− α∆t
〈
Un+1
h −Un

h , ∂∆tH
n+1
h 〉 − ∆t

α
〈Λn+1

h ,Λn+1
h −Λn

h〉,

+ α∆t
〈
Un+1
h −Un

h , R
s
hg

n+1
2 〉+ ∆t〈Λn+1

h , Rshg
n+1
2 +

gn+1
1

α
〉.
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We can then use (3.12) to get

−α∆t
〈
Un+1
h −Un

h , ∂∆tH
n+1
h 〉 =− α∆t

2
(‖Un+1

h ‖2L2(Σ) − ‖U
n
h ‖2L2(Σ))

− α∆t

2
(‖∂∆tH

n+1
h −Un

h ‖2L2(Σ) − ‖∂∆tH
n+1
h −Un+1

h ‖2L2(Σ)).

−∆t

α
〈Λn+1

h ,Λn+1
h −Λn

h〉 =− ∆t

2α
(‖Λn+1

h ‖2L2(Σ) − ‖Λ
n
h‖2L2(Σ) + ‖Λn+1

h −Λn
h‖2L2(Σ)).

Next, we note from (4.13a) that we have

1

2α
‖Λn+1

h −Λn
h‖2L2(Σ) =

α

2
‖∂∆tH

n+1
h −Un+1

h ‖2L2(Σ) +
1

2α
‖gn+1

1 ‖2L2(Σ)

+ 〈∂∆tH
n+1
h −Un

h , g
n+1
1 〉−〈Un+1

h −Un
h , g

n+1
1 〉.

Therefore, combining the above equations we have

J2 :=− α∆t

2
(‖Un+1

h ‖2L2(Σ) − ‖U
n
h ‖2L2(Σ) + ‖∂∆tH

n+1
h −Un

h ‖2L2(Σ))

− ∆t

2α
(‖Λn+1

h ‖2L2(Σ) − ‖Λ
n
h‖2L2(Σ))−

∆t

2α
‖gn+1

1 ‖2L2(Σ) −∆t〈∂∆tH
n+1
h −Un

h , g
n+1
1 〉

+ ∆t〈Λn+1
h , Rshg

n+1
2 +

gn+1
1

α
〉+ ∆t

〈
Un+1
h −Un

h , αR
s
hg

n+1
2 + gn+1

1 〉.

Substituting this into (4.18) we arrive at

1

2
Sn+1
h +

1

2
En+1
h +

1

2
Wn+1
h +

1

2
Zn+1
h +

∆t

2α
‖gn+1

1 ‖2L2(Σ)

=
1

2
Snh +

1

2
Enh +

12∑
i=1

Ki,(4.19)

where

K10 :=−∆t〈∂∆tH
n+1
h −Un

h , g
n+1
1 〉, K11 := ∆t〈Λn+1

h , Rshg
n+1
2 +

gn+1
1

α
〉,

K12 :=∆t
〈
Un+1
h −Un

h , αR
s
hg

n+1
2 + gn+1

1 〉.

Before proceeding to bound all the terms, we apply (4.13b) to K8 and obtain

K8 =−∆tas((R
s
h − I)ηn+1/2, ∂∆tH

n+1
h ) + ∆tas((R

s
h − I)ηn+1/2, Rshg

n+1
2 ).

One can verify the following discrete integration by parts

−∆tas((R
s
h − I)ηn+1/2, ∂∆tH

n+1
h ) =Bn+1 + ∆tas((R

s
h − I)∂∆tη

n+1,H
n+1/2
h ).

where

Bn+1 := as((R
s
h − I)ηn,Hn

h )− as((Rsh − I)ηn+1,Hn+1
h ).

Thus, we have

K8 =Bn+1 + ∆tas((R
s
h − I)∂∆tη

n+1,H
n+1/2
h ) + ∆tas((R

s
h − I)ηn+1/2, Rshg

n+1
2 ).

Now we bound each Ki for 1 ≤ i ≤ 12. The number δ > 0 would be chosen sufficiently small later.
Using the Cauchy-Schwarz inequality we get

K1 ≤ ∆t‖∂∆tR
s
hq

n+1 − ∂tqn+1/2‖L2(Ωs)‖Q
n+1/2
h ‖L2(Ωs).

If we appy the geometric-arithmetic mean inequality we get

K1 ≤ δ
ρs∆t

T
(‖Qn+1

h ‖2L2(Ωs) + ‖Qn
h‖2L2(Ωs)) + C(δ)T∆tρs‖∂∆tR

s
hq

n+1 − ∂tqn+1/2‖2L2(Ωs).
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To bound K2 we use (4.13b)

K2 = −∆t

2
(T2(∂∆tH

n+1
h −Un

h ) + T2(Un
h ) + T2(Rshg

n+1
2 ).

Therefore, afer using the Cauchy-Schwarz inequality we have

K2 ≤
∆t

2
‖λn+1 − λn‖L2(Σ)(‖∂∆tH

n+1
h −Un

h ‖L2(Σ) + ‖Un
h ‖L2(Σ) + ‖Rshgn+1

2 ‖L2(Σ)).

Hence, using the geometric-arithmetic mean inequality we see that

K2 ≤δ
(∆t2α

T
‖Un

h ‖2L2(Σ) + ∆tα‖∂∆tH
n+1
h −Un

h ‖2L2(Σ)

)
+
C(δ)

α
(∆t+ T )‖λn+1 − λn‖2L2(Σ) + C(δ)α∆t‖Rshgn+1

2 ‖2L2(Σ).

Similarly, we have

K3 ≤ ∆tα‖Rfhu
n+1 −Rfhu

n‖L2(Σ)(‖∂∆tH
n+1
h −Un

h ‖L2(Σ) + ‖Un
h ‖L2(Σ) + ‖Rshgn+1

2 ‖L2(Σ)),

and

K3 ≤δ
(∆t2α

T
‖Un

h ‖2L2(Σ) + ∆tα‖∂∆tH
n+1
h −Un

h ‖2L2(Σ)

)
+ C(δ)α(∆t+ T )‖Rfhu

n+1 −Rfhu
n‖L2(Σ) + C(δ)α∆t‖Rshgn+1

2 ‖2L2(Σ).

Following this same process, we have

K4 ≤ δ
ρf∆t

T
‖Un+1

h ‖2L2(Ωf ) + C(δ)ρf∆tT‖∂∆tR
f
hu

n+1 − ∂tun+1‖2L2(Ωf ),

K5 ≤ δ
∆t

T
(‖Hn+1

h ‖2S + ‖Hn
h ‖2S) + C(δ)T∆t‖Rshgn+1

2 ‖2S ,

K7 ≤ δ∆th2‖∇Pn+1
h ‖2L2(Ωf ) + C(δ)∆th2‖∇Shpn+1‖2L2(Ωf ),

K8 ≤ δ
∆t

T
(‖Hn

h ‖2S + ‖Hn+1
h ‖2S) + C∆t‖Rshgn+1

2 ‖2S

+ C(δ)∆tT‖(Rsh − I)∂∆tη
n+1‖2S + C∆t‖(Rsh − I)ηn+1/2‖2S +Bn+1,

K10 ≤ δα∆t‖∂∆tH
n+1
h −Un

h ‖2L2(Σ) +
C(δ)∆t

α
‖gn+1

1 ‖2L2(Σ),

K11 ≤ δ
(∆t)2

Tα
‖Λn+1

h ‖2L2(Σ) +
C(δ)T

α
‖αRshgn+1

2 + gn+1
1 ‖2L2(Σ),

K12 ≤ δ
(∆t)2α

T
(‖Un+1

h ‖2L2(Σ) + ‖Un
h ‖2L2(Σ)) +

C(δ)T

α
‖αRshgn+1

2 + gn+1
1 ‖2L2(Σ).

To estimate K6, we perform integration by parts and proceed as before. Thus,

K6 = ∆t(Rfhu
n+1 − un+1,∇Pn+1

h )f −∆t
〈
(Rfhu

n+1 − un+1) · n, Pn+1
h

〉
≤ ∆t‖Rfhu

n+1 − un+1‖L2(Ωf )‖∇Ph‖L2(Ωf ) + ∆t‖Rfhu
n+1 − un+1‖L2(Σ)‖Pn+1

h ‖L2(Σ)

≤ C∆th2‖un+1‖H2(Ωf )‖∇Pn+1
h ‖L2(Ωf ) + C∆th2‖un+1‖H3(Ωf )‖∇Pn+1

h ‖L2(Ωf ),

where the last step follows from applying (4.6) and using the trace inequality (4.3) on Pn+1
h . We also

used Poincare’s inequality. Thus, applying this result along with Young’s inequality, we have

K6 ≤ δ∆th2‖∇Pn+1
h ‖2L2(Ωf ) + C(δ)∆th2‖un+1‖2H3(Ωf ).

Finally, for K9, we can easily show that

K9 ≤δ∆tµ‖ε(Un+1
h )‖2L2(Ωf ) + C(δ)∆tµ‖ε(Rfhu

n+1 − un+1)‖2L2(Ωf ) + C(δ)
∆t

µ
‖Shpn+1 − pn+1‖2L2(Ωf ).
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Combining the above inequalities, we have∑
1≤i≤12

Ki ≤12δ
∆t

T
(Sn+1
h + Snh + En+1

h + Enh) + 12δ(Zn+1
h + Wn+1

h ) + C(δ)Gn+1 +Bn+1,

where Gn+1 :=
∑14
i=1G

n+1
i such that

Gn+1
1 :=T∆tρs‖∂∆tR

s
hq

n+1 − ∂tqn+1/2‖2L2(Ωs), Gn+1
2 :=

1

α
(∆t+ T )‖λn+1 − λn‖2L2(Σ),

Gn+1
3 :=α(∆t+ T )‖Rfhu

n+1 −Rfhu
n‖2L2(Σ), Gn+1

4 := ∆tα‖Rshgn+1
2 ‖2L2(Σ),

Gn+1
5 :=ρf∆tT‖∂∆tR

f
hu

n+1 − ∂tun+1‖2L2(Ωf ), Gn+1
6 := (∆t+ T∆t)‖Rshgn+1

2 ‖2S ,

Gn+1
7 :=

∆t

α
‖gn+1

1 ‖2L2(Σ), Gn+1
8 :=

T

α
‖αRshgn+1

2 + gn+1
1 ‖2L2(Σ),

Gn+1
9 :=

∆t

µ
‖Shpn+1 − pn+1‖2L2(Ωf ), Gn+1

10 := µ∆t‖ε(Rfhu
n+1 − un+1)‖2L2(Ωf ),

Gn+1
11 :=∆th2‖∇Shpn+1‖2L2(Ωf ), Gn+1

12 := ∆th2‖un+1‖2H3(Ωf ),

Gn+1
13 :=∆t‖(Rsh − I)ηn+1/2‖2S , Gn+1

14 := ∆tT‖(Rsh − I)∂∆tη
n+1‖2S .

Therefore, if we take the sum of (4.19) from 1 to M ≤ N , we have

1

2
(SMh + EMh ) +

1

2

M∑
m=1

(
Wm
h + Zmh

)

≤1

2
(S0
h + E0

h) + 24δ max
0≤m≤N

(
1

2
Smh +

1

2
Emh ) + 12δ

M∑
m=1

(
Wm
h + Zmh

)
+

M∑
m=1

Bm + C(δ)

M∑
m=1

Gm.(4.20)

We can use the telescoping sum to get

M∑
m=1

Bm = as((R
s
h − I)η0,H0

h)− as((Rsh − I)ηM ,HM
h ).

We may then bound this term using Cauchy-Schwartz and Young’s inequality, giving us

M∑
m=1

Bm ≤δ(‖HM
h ‖2S + ‖H0

h‖2S) + C(δ)(‖(Rh − I)ηM‖2S + ‖(Rh − I)η0‖2S).

If we take δ small enough, say 24δ ≤ 1/2, we obtain after using (4.20)

1

4
max

1≤m≤N
(Smh + Emh ) +

1

4

N∑
m=1

(
Wm
h + Zmh

)

≤S0
h + E0

h + C max
0≤m≤N

‖(Rh − I)ηm‖2S + C

N∑
m=1

Gm.(4.21)

Now we proceed to bound
∑N
m=1G

m
i for every 1 ≤ i ≤ 14. Using (4.14a) we have

N∑
m=1

Gm1 ≤ CTρs
(
h4‖∂tq‖2L2(0,T ;H2(Ωs)) + ∆t4‖∂3

t q‖2L2(0,T ;L2(Ωs))

)
.

Using (4.14b) we get

N∑
m=1

Gm2 ≤ C
(

1

α
(∆t+ T )

)
∆t

(
µ2‖∂tu‖2L2(0,T ;H2(Ωf )) + ‖∂tp‖2L2(0,T ;H1(Ωf ))

)
.
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If we apply (4.14c) we obtain

N∑
m=1

Gm3 ≤Cα(∆t+ T )∆t‖∂tu‖2L2(0,T ;H1(Ωf )).

From (4.14d), it follows that

N∑
m=1

Gm4 ≤ C∆t4α‖∂3
t η‖2L2(0,T ;H1(Ωs)).

We can use (4.14e) to obtain

N∑
m=1

Gm5 ≤ CTρf
(
h4‖∂tu‖2L2(0,T ;H2(Ωf )) + ∆t2‖∂2

tu‖2L2(0,T ;L2(Ωf ))

)
.

As a result of (4.14f) and (4.14g) we have

N∑
m=1

Gm6 ≤ C(1 + T )∆t4‖∂3
t η‖2L2(0,T ;H2(Ωs)),

N∑
m=1

Gm7 ≤ C
∆t2

α

(
µ2‖∂tu‖2L2(0,T ;H2(Ωf )) + ‖∂tp‖2L2(0,T ;H1(Ωf )) + α2‖∂2

t η‖2L2(0,T ;H1(Ωf ))

)
,

N∑
m=1

Gm8 ≤ CT∆t3α‖∂3
t η‖2L2(0,T ;H1(Ωs))

+ C
∆tT

α

(
µ2‖∂tu‖2L2(0,T ;H2(Ωf )) + ‖∂tp‖2L2(tn,tn+1;H1(Ωf )) + α2‖∂2

t η‖2L2(0,T ;H1(Ωf ))

)
.

Proceeding in the same manner, from (4.14h) - (4.14m) we have

N∑
m=1

Gm9 ≤ C
h4

µ

(
∆t2‖∂tp‖2L2(0,T ;H2(Ωf )) + h4‖p‖2L2(0,T ;H2(Ωf ))

)
,

N∑
m=1

Gm10 ≤ Cµ
(

∆t2h2‖∂tu‖2L2(0,T ;H2(Ωf )) + h2‖u‖2L2(0,T ;H2(Ωf ))

)
,

N∑
m=1

Gm11 ≤ Ch2

(
∆t2‖∂tp‖2L2(0,T ;H2(Ωf )) + ‖p‖2L2(0,T ;H2(Ωf ))

)
,

N∑
m=1

Gm12 ≤ Ch2(∆t2 + 1)‖un+1‖2L2(0,T ;H3(Ωf )),

N∑
m=1

Gm13 ≤ Ch2

(
∆t2‖∂tη‖2L2(0,T ;H2(Ωs)) + ‖η‖2L2(0,T ;H2(Ωs))

)
,

N∑
m=1

Gm14 ≤ Ch2T‖∂tη‖2L2(0,T ;H2(Ωs)).

We can also have the bound

max
0≤m≤N

‖(Rh − I)ηm‖2S ≤ Ch2 max
0≤m≤N

‖η(tm)‖2H2(Ωs) ≤ Ch
2‖η‖2L∞(0,T ;H2(Ωs)).

Thus, combining the terms we get

max
0≤m≤N

‖(Rh − I)ηm‖2S +

N∑
m=1

Gm ≤ CYΨ.
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Plugging this into (4.21) completes the proof.
�

5. Numerical experiments

The purpose of this section is to illustrate, via numerical experiments, the performance of the loosely
coupled scheme given by Algorithm 2. We consider the well-known pressure wave propagation example
(see, e.g., [19, Section 6.1.1]). In (2.1)-(2.3), we have Ωf = [0, L] × [0, R], Ωs = [0, L] × [R,R + ε],
Σ = [0, L]× {R}, L = 6, R = 0.5 and ε = 0.1. All the units are given in the CGS system. At the left
fluid boundary x = 0 we impose a sinusoidal pressure of maximal amplitude 2× 104 during 5× 10−3

s, corresponding to half a period. Free traction is enforced at x = L and a symmetry condition on the
bottom wall. Transverse membrane effects in the solid are included through a zeroth-order term c0η
in (2.2)1. Zero displacement and zero traction are respectively enforced on the solid later and upper
boundaries. The fluid physical parameters are ρf = 1 and µ = 0.035. For the solid we have ρs = 1.1,
L1 = 1.15 · 106, L2 = 1.7 · 106 and c0 = 4 · 106. A multiplying coefficient of 10−3/µ is applied to
the Brezzi-Pitkäranta pressure stabilization method. All the simulations have been performed with
FreeFem++ (see [29]).

Figure 1. Snapshots of the fluid pressure and solid deformation at t = 5 ·10−3, 10−2

and 1.5 · 10−2 (from top to bottom). Algorithm 2 with τ = 2.5 · 10−4, h = 0.05 and
α = 500.

Figure 1 shows some snapshots of the fluid pressure approximation obtained with Algorithm 2 for
τ = 2.5 · 10−4, h = 0.05 and α = 500. For illustration purposes, the fluid and solid domains are
displayed in deformed configuration (magnified by a factor 5). The numerical solution remains stable,
in agreement with Lemma 3.1, and shows a propagating pressure-wave.

5.1. Accuracy. In order to asses the accuracy of Algorithm 2, a reference solution has been generated
using a strongly coupled scheme and a high space-time grid resolution (h = 3.125 · 10−3, ∆t = 10−6).
Convergence histories are measured in terms of the relative elastic energy-norm ‖ηNref −ηNh ‖S at time
t = 0.015, by refining both in time and in space at the same rate, namely, by taking

(∆t, h) ∈
{(

5 · 10−4

2i
,

10−1

2i

)}4

i=0

.

This allows, in particular, to highlight the h-uniformity of the error estimate provided in Theorem 4.6.
Figure 2 reports the corresponding convergence histories obtained with Algorithm 2 with α =

500 and the strongly coupled scheme. We can clearly see that Algorithm 2 delivers an overall sub-
optimal convergence rate, close to O(

√
h). This is in agreement with the error estimate provided



18 ROBIN-ROBIN COUPLING

by Theorem 4.6 with ∆t = O(h). The strongly coupled scheme yields an overall O(h) accuracy, as
expected.

Figure 2. Time-convergence history of the displacement at t = 0.015, with ∆t =
O(h) obtained with Algorithm 2 (α = 500) and the strongly coupled scheme.

Figure 3. Time-convergence history of the displacement at t = 0.015, with ∆t =
O(h) obtained with Algorithm 2 (α = 500), the strongly coupled scheme and the
genuine Robin-Robin explicit coupling scheme from [15, Algorithm 4].

Another salient feature of Figure 2 is that it highlights the h-uniformity of the time-splitting error.
This is indeed one the key features of Algorithm 2 with respect to the genuine Robin-Robin explicit
coupling scheme reported in [15, Algorithm 4], in which α = γµ/h. The resulting splitting error
scales as O(∆t/h), and hence preventing convergence under ∆t = O(h). Figure 3 provides numerical
evidence of this issue and shows Algorithm 2 fixes it.

The h-uniformity of the splitting error has further implications in terms of accuracy. Indeed, owing
to Theorem 4.6, one correction iteration in Algorithm 2 is expected to deliver O(h) overall accuracy,
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Figure 4. Time-convergence history of the displacement at t = 0.015, with ∆t =
O(h) obtained with the strongly coupled scheme and Algorithm 2 with 1 correction
iteration (α = 500).

under ∆t = O(h). This is a consequence of the fact that K ≥ 1 correction iterations of Algorithm 2
correspond to K iterations of a defect-correction method (see, e.g., [14, 30, 37]) in which Algorithm 2
serves as approximate solver of the strongly coupled scheme. The resulting iterative procedure delivers

O(∆t+∆t
K+1

2 ) time accuracy, so that after one correction iteration (K = 1) we retrieve the first-order
accuracy in time of the strongly coupled scheme. Numerical evidence of this is given in Figure 4. We
can also notice that the convergence behavior is very close to the one provided by the strongly coupled
scheme. This is a fundamental advantage of Algorithm 2 with respect to the genuine Robin-Robin
explicit coupling scheme, in which both high order extrapolation and several corrections are need to
cope with the loss of h-uniformity (see [15]).

The superior accuracy of the Algorithm 2 with one correction iteration is also clearly visible in
Figure 5, where the interface displacements associated to Figures 2 and 4 (first four points of each
curve) are displayed. For comparison purposes, the reference displacement is also shown. Observe that
the defect-correction variant of Algorithm 2 retrieves the accuracy of the strongly coupled scheme.

5.2. Impact of the Robin coefficient α. We now turn our attention to another fundamental
question related to Algorithm 2: the choice of the Robin parameter α. From Theorem 4.6, the leading
term of the time splitting error scales as √

α−1 + α
√

∆t.

We can hence anticipate that accuracy should be spoiled for (relatively) large or small values of α.
Numerical evidence of this behavior is provided in Figures 6 and 7, where the convergence histories
obtained with Algorithm 2 (without and with correction) are reported for different values of α. Indeed,
the best accuracy is obtained for (relatively) moderate values of α, ranging from 250 to 2000, whereas
out of this interval accuracy degrades rapidly. It should be noted that, since α is not dimensionless,
these optimal values are expected to depend on the physical parameters of the system.

6. Conclusion

We analyzed the fully discrete formulation of the Robin-Robin splitting method introduced in [13].
Using first-order finite elements (with pressure stabilization to account for the lack of inf-sup stability),
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(a) ∆t = 5 · 10−4, h = 0.1. (b) ∆t = 2.5 · 10−4, h = 0.05.

(c) ∆t = 1.25 · 10−4, h = 0.025. (d) ∆t = 6.25 · 10−5, h = 0.0125.

Figure 5. Comparison of the displacements at t = 0.015 obtained for different levels
of space-time refinement, ∆t = O(h).

we proved an error estimate that decays as O(h+
√
T∆t). In future work, we hope to improve upon

this result and develop higher order methods for the FSI problem.
In particular, our numerical experiements suggest that the Robin-Robin method may perform

better than O(
√
T∆t), depending on the value of the physical parameters. Recent results in [12] have

shown that, under suitable assumptions, the Robin-Robin coupling method yields nearly optimal error
estimates (O

(
∆t(1+log 1

∆t )
)
) when applied to a system in which a parabolic equation and a hyperbolic

equation are coupled across. As this system has strong similarities to the FSI system analyzed in this
paper, we hope to similarly improve the suboptimal estimates derived in this paper.
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[10] M. Bukač, S. Čanić, and B. Muha. A partitioned scheme for fluid-composite structure interaction problems. J.
Comput. Phys., 281:493–517, 2015.

[11] M. Bukač, I. Yotov, and P. Zunino. An operator splitting approach for the interaction between a fluid and a

multilayered poroelastic structure. Numer. Methods Partial Differential Equations, 31(4):1054–1100, 2015.
[12] E. Burman, R. Durst, M. A. Fernández, and J. Guzmán. Loosely coupled, non-iterative time-splitting scheme

based on Robin-Robin coupling: unified analysis for parabolic/parabolic and parabolic/hyperbolic problems, 2021.

arXiv:2110.08181 (Submitted).
[13] E. Burman, R. Durst, and J. Guzman. Stability and error analysis of a splitting method using Robin-Robin coupling

applied to a fluid-structure interaction problem. Numerical Methods for Partial Differential Equations, 2021.

[14] E. Burman and M. A. Fernández. Stabilization of explicit coupling in fluid–structure interaction involving fluid
incompressibility. Computer Methods in Applied Mechanics and Engineering, 198(5-8):766–784, 2009.

[15] E. Burman and M. A. Fernández. Explicit strategies for incompressible fluid-structure interaction problems:

Nitsche type mortaring versus robin–robin coupling. International Journal for Numerical Methods in Engineering,
97(10):739–758, 2014.

[16] P. Causin, J.-F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms for fluid–
structure problems. Computer methods in applied mechanics and engineering, 194(42-44):4506–4527, 2005.

[17] C. Farhat, M. Lesoinne, and P. LeTallec. Load and motion transfer algorithms for fluid/structure interaction

problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and
application to aeroelasticity. Comput. Methods Appl. Mech. Engrg., 157(1-2):95–114, 1998.

[18] M. Fernández, J. Mullaert, and M. Vidrascu. Explicit Robin-Neumann schemes for the coupling of incompressible

fluids with thin-walled structures. Comput. Methods Appl. Mech. Engrg., 267:566–593, 2013.
[19] M. Fernández, J. Mullaert, and M. Vidrascu. Generalized Robin-Neumann explicit coupling schemes for incompress-

ible fluid-structure interaction: stability analysis and numerics. Internat. J. Numer. Methods Engrg., 101(3):199–

229, 2015.
[20] M. A. Fernández. Incremental displacement-correction schemes for incompressible fluid-structure interaction. Nu-

mer. Math., 123(1):21–65, 2013.

[21] M. A. Fernández, J.-F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the coupling of an
elastic structure with an incompressible fluid. Internat. J. Numer. Methods Engrg., 69(4):794–821, 2007.

[22] M. A. Fernández, M. Landajuela, and M. Vidrascu. Fully decoupled time-marching schemes for incompressible
fluid/thin-walled structure interaction. J. Comput. Phys., 297:156–181, 2015.

[23] M. A. Fernández and J. Mullaert. Convergence and error analysis for a class of splitting schemes in incompressible

fluid-structure interaction. IMA J. Numer. Anal., 36(4):1748–1782, 2016.
[24] M. A. Fernández, J. Mullaert, and M. Vidrascu. Generalized robin–neumann explicit coupling schemes for incom-

pressible fluid-structure interaction: Stability analysis and numerics. International Journal for Numerical Methods

in Engineering, 101(3):199–229, 2015.
[25] C. Förster, W. A. Wall, and E. Ramm. Artificial added mass instabilities in sequential staggered coupling of

nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Engrg., 196(7):1278–1293,

2007.
[26] L. Gerardo-Giorda, F. Nobile, and C. Vergara. Analysis and optimization of Robin-Robin partitioned procedures

in fluid-structure interaction problems. SIAM J. Numer. Anal., 48(6):2091–2116, 2010.

[27] G. Guidoboni, R. Glowinski, N. Cavallini, and S. Canic. Stable loosely-coupled-type algorithm for fluid-structure
interaction in blood flow. J. Comput. Phys., 228(18):6916–6937, 2009.

[28] P. Hansbo, J. Hermansson, and T. Svedberg. Nitsche’s method combined with space-time finite elements for ALE
fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg., 193(39-41):4195–4206, 2004.

[29] F. Hecht. New development in FreeFem++. J. Numer. Math., 20(3-4):251–265, 2012.

[30] W. Layton, H. K. Lee, and J. Peterson. A defect-correction method for the incompressible Navier-Stokes equations.
Appl. Math. Comput., 129(1):1–19, 2002.

[31] P. Le Tallec and J. Mouro. Fluid structure interaction with large structural displacements. Comput. Meth. Appl.
Mech. Engrg., 190:3039–3067, 2001.

[32] F. Nobile and C. Vergara. An effective fluid-structure interaction formulation for vascular dynamics by generalized
Robin conditions. SIAM J. Sci. Comput., 30(2):731–763, 2008.
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[36] A. Seboldt and M. Bukač. A non-iterative domain decomposition method for the interaction between a fluid and

a thick structure, 2020.



ROBIN-ROBIN COUPLING 23

[37] H. J. Stetter. The defect correction principle and discretization methods. Numer. Math., 29(4):425–443, 1977/78.
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Appendix A. Proof of Lemma 4.5

Proof. We begin this proof by establishing several identities. The first identity follows from Minkowski’s
integral inequality and Jensen’s inequality. Namely, we note that for any H`-norm ‖ · ‖, we have

(A.1) ‖ 1

∆t

∫ tn+1

tn

w(·, s)ds‖2 ≤ 1

∆t

∫ tn+1

tn

‖w(·, s)‖2ds.

Our remaining identities are straightforward to prove. Let |r| ≤ 2 and define

w̄n+1(x) :=
1

∆t

∫ tn+1

tn

w(x, s) ds.

We have

∂rx(wn+1 − wn) =

∫ tn+1

tn

∂rx(∂tw)(·, s)ds,(A.2)

∂rx(∂∆tw
n+1 − ∂twn+1/2) =

1

2∆t

∫ tn+1

tn

(tn+1 − s)(s− tn)∂rx∂
3
tw(·, s)ds,(A.3)

∂∆tw
n+1 − ∂twn+1 =

−1

∆t

∫ tn+1

tn

(s− tn)∂2
tw(·, s)ds,(A.4)

∂rx(wn+1 − w̄n+1) =
1

∆t

∫ tn+1

tn

(s− tn)∂rx(∂tw)(·, s)ds,(A.5)

∂rx(wn+1/2 − w̄n+1) =
−1

2∆t

∫ tn+1

tn

(tn+1 − 2s+ tn)∂rx(∂tw)(·, s)ds.(A.6)

We may now proceed with the proof of Lemma 4.5.
To prove (4.14a), we write ∂∆tR

s
hq

n+1− ∂tqn+1/2 = (Rsh− I)∂∆tq
n+1 + (∂∆tq

n+1− ∂tqn+1/2) and

∂∆tq
n+1 =

1

∆t

∫ tn+1

tn

(∂tq)(·, s)ds.

Hence,

(Rsh − I)∂∆tq
n+1 =

1

∆t

∫ tn+1

tn

(Rsh − I)(∂tq)(·, s)ds.

It therefore follows from (A.1) and (4.4) that
(A.7)

‖(Rsh− I)∂∆tq
n+1‖2L2(Ωs) ≤

1

∆t

∫ tn+1

tn

‖(Rsh− I)(∂tq)(·, s)‖2L2(Ωs)ds ≤
Ch4

∆t

∫ tn+1

tn

‖∂tq(·, s)‖2H2(Ωs)ds.

To estimate ∂∆tq
n+1 − ∂tqn+1/2, we apply Hölder’s inequality to (A.3) with |r| = 0 to obtain

|∂∆tq
n+1 − ∂tqn+1/2| ≤

(
1

4∆t2

∫ tn+1

tn

(tn+1 − s)2(s− tn)2ds

)1/2(∫ tn+1

tn

|∂3
t q(·, s)|2ds

)1/2

=

(
∆t3

5!

)1/2(∫ tn+1

tn

|∂3
t q(·, s)|2ds

)1/2

.

Therefore,

(A.8) ‖∂∆tq
n+1 − ∂tqn+1/2‖2L2(Ωs) ≤

∆t3

5!

∫ tn+1

tn

‖∂3
t q(·, s)‖2L2(Ωs)ds.
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To get the estimate (4.14b), we recall that λn+1 = σf (un+1, pn+1)n. Then, we use a trace inequality
(4.3) to get

‖λn+1 − λn‖2L2(Σ) ≤ C‖σf (un+1, pn+1)n− σf (un, pn)n‖2H1(Ωf )

≤ C
(
µ2‖ε(un+1 − un)‖2H1(Ωf ) + ‖pn+1 − pn‖2H1(Ωf )

)
.

Applying (A.1) and (A.2), we obtain our result.
The bound for (4.14c) follows in the same manner with an additional application of (4.2).
Similarly, (4.14d) follows immediately from (A.3) and (A.1) after applying the trace inequality (4.3)

and the stability result (4.2).

To get the bound (4.14e) we write ∂∆tR
f
hu

n+1 − ∂tun+1 = (Rfh − I)∂∆tu
n+1 + ∂∆tu

n+1 − ∂tun+1.
Similar to the bound (A.7), we can show that

‖(Rfh − I)∂∆tu
n+1‖2L2(Ωf ) ≤

Ch4

∆t

(∫ tn+1

tn

‖∂tu(·, s)‖2H2(Ωf )

)
.

Furthermore, applying (A.5) and Hölder’s inequality, we establish

‖∂∆tu
n+1 − ∂tun+1‖2L2(Ωf ) ≤

∆t

3

∫ tn+1

tn

‖∂2
tu(·, s)‖2L2(Ωf )ds.

Combining the above two inequalites gives (4.14e).

For (4.14f), we use (4.2) and write

‖∇Rshgn+1
2 ‖2L2(Ωs) ≤ C‖g

n+1
2 ‖2H1(Ωs).

The bound now follows exactly that of (4.14d).
In order to prove (4.14g) we bound each term in gn+1

1 separately. To bound the term α(∂∆tR
s
hη

n+1−
Rfhu

n+1) we use that un+1 = ∂tη
n+1 on Σ, indicating that Rfhu

n+1 = Rsh∂tη
n+1. Therefore

α(∂∆tR
s
hη

n+1 −Rfhu
n+1) = α(∂∆tR

s
hη

n+1 − ∂tRshηn+1).

Thus, applying the trace inequality (4.3) and stability (4.2), we have

α2‖∂∆tR
s
hη

n+1 − ∂tRshηn+1‖2L2(Σ) ≤ Cα
2‖∂∆tη

n+1 − ∂tηn+1‖2L2(tn,tn+1;H1(Ωs)).

Therefore, applying (A.4) and using Hölder’s inequality, we have

α2‖∂∆tR
s
hη

n+1 − ∂tRshηn+1‖2L2(Σ) ≤ Cα
2∆t

∫ tn+1

tn

‖∂2
t η(·, s)‖H1(Ωs).

Combining this with (4.14d) gives (4.14g).
Next, the proofs for (4.14h) and (4.14i)are nearly identical, so we only provide the proof of (4.14h).

Recall from (4.4) that

‖Shpn+1 − pn+1‖2L2(Ωf ) ≤ Ch
4‖pn+1‖2H2(Ωf ).

We may then write pn+1 = pn+1 − p̄n+1 + p̄n+1. Thus we have

‖Shpn+1 − pn+1‖2L2(Ωf ) ≤ Ch
4

(
‖pn+1 − p̄n+1‖2H2(Ωf ) + ‖p̄n+1‖2H2(Ωf )

)
.

Then, using (A.5) (A.1), along with Hölder’s inequality, we have

‖pn+1 − p̄n+1‖2H2(Ωf ) ≤C∆t‖∂tp‖2L2(tn,tn+1;H2(Ωf )),

‖p̄n+1‖2H2(Ωf ) ≤C
1

∆t
‖p‖2L2(tn,tn+1;H2(Ωf )).

Our result then follows from combining the terms above.
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For (4.14j), we use the stability result (4.2) to recognize that ‖∇Shpn+1‖L2(Ωf ) ≤ C‖pn+1‖H1(Ωf ).
We may then follow the proof of (4.14h) to write

‖∇Shpn+1‖2L2(Ωf ) ≤ C
(
‖pn+1 − p̄n+1‖2H1(Ωf ) + ‖p̄n+1‖2H1(Ωf )

)
.

Following the same process as (4.14h), this yeilds

‖∇Shpn+1‖2L2(Ωf ) ≤ C
(

∆t‖∂tp‖2L2(tn,tn+1;H1(Ωf )) +
1

∆t
‖p‖2L2(tn,tn+1;H1(Ωf ))

)
.

In a similar fashion, we bound (4.14k) by writing un+1 = un+1 − ūn+1 + ūn+1. The result follows in
the same manner as (4.14j).

To prove (4.14l), we follow the proof of (4.14h), however we apply (4.5) and (A.6) in place of (4.4)
and (A.5). Thus we have

‖∇(Rsh − I)ηn+1/2‖2L2(Ωs) ≤ Ch
2‖ηn+1/2‖2H2(Ωs).

Thus, noting ηn+1/2 = ηn+1/2 − η̄n+1 + η̄n+1, we have

‖ηn+1/2 − η̄n+1‖2H2(Ωs) ≤C∆t‖∂tη‖2L2(tn,tn+1;H2(Ωs)),

‖η̄n+1‖2H2(Ωf ) ≤
1

∆t
‖η‖2L2(tn,tn+1;H2(Ωs)).

We then combine terms.
Finally, for (4.14m) we use (A.1) and (4.5), to get

‖∇(Rsh − I)∂∆tη
n+1/2‖2L2(Ωs) ≤C

h2

∆t
‖∂tη‖2L2(tn,tn+1;H2(Ωs)).
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