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Abstract: We propose two different discrete formulations for the weak imposition of the Neumann boundary
conditions of the Darcy flow. The Raviart-Thomas mixed finite element on both triangular and quadrilat-
eral meshes is considered for both methods. One is a consistent discretization depending on a weighting
parameter scaling as O(h~1), while the other is a penalty-type formulation obtained as the discretization of a
perturbation of the original problem and relies on a parameter scaling as O(h~*1), k being the order of the
Raviart-Thomas space. We rigorously prove that both methods are stable and result in optimal convergent
numerical schemes with respect to appropriate mesh-dependent norms, although the chosen norms do not
scale as the usual L?-norm. However, we are still able to recover the optimal a priori L2-error estimates for the
velocity field, respectively, for high-order and the lowest-order Raviart-Thomas discretizations, for the first
and second numerical schemes. Finally, some numerical examples validating the theory are exhibited.
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1 Introduction

We consider the finite element approximation for the weak imposition of the Neumann boundary conditions
for the Poisson problem in its mixed formulation, also known as Darcy’s law in the context of fluid dynamics.

Let us point out that the situation is dual with respect to the standard formulation of the Poisson problem:
here the Neumann boundary conditions are essential and to the best of our knowledge it is not clear in the
literature how to proceed in order to enforce them by manipulating the weak formulation rather than the
functional spaces.

As far as the primary formulation is concerned, a wide variety of techniques have already been proposed
and are now well-understood, the most prominent of which are undoubtedly the penalty method introduced
in [4], the Lagrange multipliers approach of [3] and, of course, the Nitsche method developed in [15] and later
promoted in [17], where the author relates it to the stabilized Lagrange multiplier method of [5].

In this work two different discrete formulations of the Darcy problem for the weak imposition of the Neu-
mann boundary conditions are provided. Both of them are based on the Raviart-Thomas finite element dis-
cretization for triangular and quadrilateral meshes. Let us notice that the two schemes do not add any addi-
tional degrees of freedoms and moreover, for simplicity, all dimensionless parameters have been set to 1.

The first formulation is a consistent discretization of the Darcy system, hence it falls into the class of
Nitsche-type methods. A weighting parameter scaling as O(h~!) needs to be introduced. Let us observe that
this formulation had already appeared in the literature in [9] for the lowest-order Raviart-Thomas element,
in the context of incompressible flows in fractured media.

The latter, which is inspired by [13] and based on a perturbed variational principle, belongs instead to
the family of penalty methods. In this case the penalization parameter scales as O(h~"1), k being the order
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of the Raviart-Thomas discretization, entailing a much more severe ill-conditioning of the resulting stiffness
matrix.

We are able to prove that both formulations are stable and give rise to optimal convergent schemes with
respect to suitable mesh-dependent norms, which do not scale as the L2-norm as it is customary for the Darcy
problem. At this point we are able to demonstrate super convergence results that allow us to find an optimal
a priori estimate of the velocity error with respect to the L?-norm, respectively, for any higher order Raviart—
Thomas discretization combined with the first method and for the lowest order element with the second for-
mulation.

Note that this work should be considered as a preliminary step towards the much more involved situation
of an underlying mesh which is not fitted with the boundary of the physical domain [7].

Let us briefly sketch the outline of the paper. In Sections 2 and 3 we introduce, respectively, the strong for-
mulation of the Darcy problem and a singularly perturbed formulation of it, parametrized by € > 0*. For the
latter we are able to show that its solution is stable independently of € and that, for ¢ — 0™, it converges to the
solution of the original problem under some extra regularity assumptions on the data and on the boundary. In
Section 3 the Raviart-Thomas finite element is introduced together with our two discrete formulations, both
depending on a mesh-dependent weighting parameter y. As already mentioned, for the first one, y = h71,
while for the other y = h~(*1)_ In Section 4 we prove the desired stability estimates, with respect to different
mesh-dependent norms, guaranteeing the well-posedness of the associated problems. Then, in Section 5, op-
timal a priori error estimates, in terms of the chosen norms, are demonstrated for the velocity and pressure
fields. We demonstrate some super convergent results that enable us, for the two methods, to recover opti-
mality for the L?-error of the velocity field as well. Finally, some two-dimensional numerical examples are
provided in order to corroborate the theory.

2 The Darcy problem and its variational formulation

We briefly introduce some useful notations for the forthcoming analysis. Let D be a Lipschitz-regular domain
(subset, open, bounded, connected) of R4. Standard Sobolev spaces H5(D) for any s € R and H!(w) for
t € [-1, 1] are defined on the domain D and on a non-empty open subset of its boundary w ¢ oD, see [1],
with the convention HO(D) := L?(D), H(w) := L?(w). Moreover, we introduce the following usual notations:

L3(D) :=L*(D)/R
H (D) :={v e HD): V|, = 0}
H;’w(D) ={veHD):v|,=f}
H:(D) :=(H*(D))?, M3 ,(D):=(H}, (D), HE,(D):=(H,D)", H(w):=H @)
H(div; D) :={v € H°(D) : divv € H°(D)}
Hy ,(div; D) :={v € H(div; D) : v-n|,, = 0}
H, ,(div; D) :={v € H(div; D) : v-n|, = 0}
H°(div; D) :={v € H(div; D) : divv = O}

where the divergence operator and the traces on w are defined in the sense of distributions (see [14]). For
the sake of convenience we are going to employ the same notation | - | for the volume (Lebesgue) and surface
(Hausdorff) measures of R4,

We also denote as Q; s, the vector space of polynomials of degree at most r in the first variable, at most s
in the second and at most t in the third one (analogously for th case d = 2), IP,, the vector space of polynomials
of degree at most u. For the sake of simplicity of the notation we may write Qj instead of Qy,x or Qg k k-

Note that throughout this document C will denote generic constants that may change at each occurrence,
but that are always independent of the local mesh size.
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Let Q be a Lipschitz-regular domain of R?, d € {2, 3}. We assume its boundary I to be partitioned into

I' = I'yuTIpwithI'y nI'p = @. Let us consider the following problem, often associated to a linearized

model for the flow of groundwater through our domain Q, here representing a saturated porous medium

with permeability ». Given f € L2(Q;RY), g € L2(Q), uy € HY2(I'y), pp € HY?(I'p), we look for (u, p) €
Hy, ry(div; Q) x L?(Q) such that

wlu-vp=f inQ

divu=g in Q

2.1)
u-n=uy on Iy

pP=Dp on I'p.

The unknowns u and p represent the seepage velocity and the pressure of the fluid, respectively. The first
equation of (2.1) is called Darcy law relating the velocity and the pressure gradient of the fluid, the second
one expresses mass conservation, the third and the fourth equations are, respectively, a Neumann boundary
condition for the velocity field and a Dirichlet boundary condition for the pressure. Moreover, » € R%4 is
symmetric positive definite with eigenvalues A; such that 0 < Apin < Aj < Apax < +00, foreveryi=1,...,d.

Remark 2.1. Contrary to the case of the Poisson problem, here Dirichlet boundary conditions for the pressure
are natural, in the sense that they can be implicitly enforced in the weak formulation of the problem, while
Neumann boundary conditions for the velocity are essential, i.e., they are imposed on the functional space.
Moreover, let us observe that in the case of purely Neumann boundary conditions, in order to have well-
posedness, we have to “filter out’ the constant pressures, i.e., the trial and test functions for the pressures are
required to lie in L(Z)(.Q), and to impose a compatibility condition on the data: Ir uy = JQ g.

3 A perturbed formulation

Find (uf, p%) € H(div; Q) x L2(Q) such that

wluf -vps =f in Q
divué = in Q
g (3.1)
etuf -n=¢uy-p® only
pE=pp onI'p.
Note that as € — O* problem (3.1) formally degenerates to (2.1). In this sense (3.1) is a perturbation of prob-
lem (2.1).
In the subsequent analysis we are going to consider, for the sake of simplicity, » = I the identity matrix.

Proposition 3.1. Let (ué, p?) and (u, p) be the solutions to (3.1) and (2.1), respectively, and assume that f ¢
H(div; Q). Then there exists C > 0 such that

lu—w®]|, o < Ce (||divf||L2(Q) +11glz2c) + lunllg-12ry) + IPDIE2(ry) ) -

Proof. Let us observe that if (u, p) and (ué, p®) solve, respectively, the problems (2.1) and (3.1), then p and p®
are the solutions of
-Ap = -g+divf inQ

a—pzuN—f-n onIly (3-2)
on
P =DPp onTp
-Apf = —g +divf in Q
op¢ e
=uy-f- 3.3
3p TEP = uN f-n only (33)

p*=pp onI'p.
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Let § := p — p?, with p and p?, respectively, the solutions of (3.2) and (3.3), then § solves

-A6=0 in Q

1006
5+sla—n=p on 'y (34)
6=0 onIp.

We rewrite (3.4) in variational form. Find 6 ¢ H(l)’ r,(Q) such that

(V8, V) + (8, @)ry = €p, @)1y, V@ € Hy 1 (Q). (3.5)

Since 6 vanishes on a part of the boundary, a Poincaré-like inequality entails ||| ma < Cp V8| 12(0)» With
Cp > 0 independent of . Now, by testing (3.5) with &, we get

2 2
IVollz: () + € 161121y = €5 B)r.

The Cauchy-Schwarz, a standard trace inequality, and the Poincaré inequality above imply

1V81 70y < € 1Pl (@) 1980 120 -

On the other hand, p solves (3.2), hence

||V5||i2(9) <€ (||div f”LZ(Q) +18lc2@) + lunllg-vz(ry) + ||pD||H1/2(FD)) ||V5||L2(Q) .
Sinceu - u® = Vp +f - (Vp? + f) = V(p — p®) = V4, then we are done. O

Remark 3.1. With the extra assumption f-n = 0 on I'y, it turns out that problems (2.1) and (3.1) are equivalent
to problems (3.2) and (3.3), respectively.

In order to avoid technicalities, let us assume Q to be a convex domain with a C?> boundary and the Neumann
data to be homogeneous.

Proposition 3.2. Let (u?, p?) be the solution of (3.1) and suppose that Q is a convex domain with a Lipschitz
polygonal boundary I', f - n = O on I'y and uy = 0. Then there exists C > 0, independent of ¢, such that

0]l < C("fNHl(Q) + ”g"LZ(Q)) . (3.6)

Proof. For the sake of brevity, we are not giving the details of the proof. As above, observe that if (ué, p®)
solves (3.1), then p; is the solution of (3.3). We first assume that Q is a convex C?>-domain and, without loss
of generality, we put ourselves in the pure Neumann case I' = I'y. Then the statement follows as a particular
case of the a priori inequality of Theorem 3.1.2.3 in [11], which itself is based on the special integration by parts
identity of Theorem 3.1.1.1in [11]. Finally, as observed in Remark 3.2.4.6, the statement can be generalized to a
convex domain with Lipschitz polygonal boundary, since it can be approximated with a sequence of convex
C?-domains. O

4 The finite element discretization

Let (Th)nso denote a family of triangular or quadrilateral meshes of Q. It will be useful to partition the col-
lection of edges (or faces if d = 3) F,, of Tj, into three collections: the internal ones fﬂ; and the ones lying on
I'y and on I'p, grouped respectively in 3'"2(1‘1\1) and 3'"2(1‘1)), FO = 3",‘3(1‘1\;) u 3"2(1’13). For every K € Ty, h > 0,
let hg := diam(K) and h := maxgeg, hx. We assume the mesh to be shape-regular, i.e., there exists o > 0,
independent of h, such that maxge, hx/px < 0, px being the diameter of the largest ball inscribed in K.
Moreover, Tj is supposed to be quasi-uniform in the sense that there exists T > 0, independent of h, such
that mingeq, hx > Th. We fix an orientation for the internal faces, given f ¢ 3";'1 such that f = 0Ky, N 0K, we
assume that the normal nf points from K; toward K. Note that nothing said from here on will depend on this
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choice. Let ¢ : O — R be smooth enough so that for every K € Ty, its restriction ¢|; can be extended up to
the boundary oK. Then, for all f € 3";'1 and a.e. x € f, we define the jump of ¢ as

[@15(x) = @, () = @], ()

where f = 0K; N 0K,. We may remove the subscript f when it is clear from the context to which facet (edge if
d = 2, face if d = 3) we refer to.
In order to discretize problem (2.1), we need to choose a suitable couple of subspaces V} ¢ H (div; Q) and
Qn < L2(Q). In the following, K will be our reference element, and, according to the type of mesh employed,
it will be either the unit d-simplex, i.e., the triangle of vertices (0, 0), (1, 0), (0, 1), or the unit d-cube [0, 1]¢.
For the triangular meshes, the Raviart—-Thomas finite element on Kis

— —\d —_ o~
RT(K) := (P(K))" & xPy(K)
while, in the case of quadrilaterals, it reads as follows (see, e.g., [2]):

Qi+ 1,k(K) x Qi k+1(K), d=2

RT(K) := ~ _ _
Qr+1,k,k(K) X Qi a1,k (K) X Qi k+1(K), d =3.

We map the reference element to a general K € Ty via the affine map Fy : K — K, Fx(X) := BgX + bg, where
Br € R%4 is diagonal and invertible, and bx € RY. For H(div; Q), the natural way to transform functions
from K to K is through the Piola transform. Namely, given @ : K — RY, we define u = Pxii : K — R4 by

u(x) = Pxu(x) := |det (Bx)| ' Brli(X), X =By! (x - bg).

For functions in L2(Q), we just compose them with the affine map, namely § : K — R is transformed to
q=qo-F 1}1 : K — R. In this way, we can define the finite-dimensional subspaces:

Vi i={vy e H(div; Q) : Vth € RT(K) VK e Ty}
Qn:=1{qn € L*(Q) : qn|g o Fk € Pk (K) YK e Ty} fortriangles
Qn:={qn ¢ L? (Q): thK oFx € Q(K) VK eTyt forquadrilaterals
where RT(K) := {PxWy, : Wy, € RTt(K)}. Remember that in the pure Neumann case, i.e., I = I'y, we have to
filter out constant discrete pressures by imposing the zero average constraint to the space Q.
Let us construct the interpolation operator onto the discrete velocities ry, : [ ker, H 5(K°) — Vp, by gluing
together the local interpolation operators rg : H(K°) — RT(K), s > 1/2, K° denoting the interior of K, and

using the natural degrees of freedom of the Raviart-Thomas finite element. For every v € H5(K°), s > 1/2,
rg is uniquely defined by

(rev-Ne, gu)f = (V-Ne, qn)f Y qn € Yi(f)
(rgv, Wp)g = (V, W)k VWhpe P (K), k>0

where, for triangles,

Vi (K) == (Pict (KD, W) := Pi(f)
and, for quadrilaterals,
_1.x(K _1(K), d=2 Pr(f), d=2
Y (K) = Qp-1,k(K) X Qp,k-1(K) W (f) o= k()
Qr—1,k,k(K) ¥ Qp,k-1,k(K) X Qg k,xk-1(K), d =3, Qi(f), d=3

for all facets f and triangles or quadrilaterals K of 7. The natural choice in order to interpolate onto Qy, is
to employ an elementwise L2-orthogonal projection, i.e., IT; : L?(Q) — Qp such that for every K € Tp,
Iy := Ik, where for § € L*(Q)

IIxé, qn)g = (&, qn)g Y qn € Qp

for every K € Tp,.
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Remark 4.1. Itis worth mentioning that the following numerical analysis remains valid if we employ another
H(div)-conforming discretization instead, such as the so-called Brezzi-Douglas—Marini mixed element [6].

Proposition 4.1. The following diagram commutes:

H(div; @) n [Tgeq, HS(K°) —2 12(Q)

I Lo

Vi AN Q-
In particular, it holds
div Vi, = Qp.
Proof. For the commutative diagram note that, for every v € H(div; Q) n ] KeT) H5(K°), it holds

Ty divv, @p)g =(divV, @r)g = = (V, VOR)g + (@r, V- D)ok
== (rnV, VOR)g + {@n, raV - Mg = (divrpv, @n)g  V @n € Pi(K) (resp. Qx(K)).

A direct calculation readily shows the inclusion div V}, € Qp. Let us prove the other one. Let g, € Qp, then,
by the surjectivity of div : H'(Q2) — L?*(Q) [6], there exists v € H(div; Q) N [, H*(K°) < H'(Q) such that
divv = gj. Let us define vy, := rpv. Thanks to the commutativity diagram we have divvy, = gp. O

We are now ready to introduce the discrete formulations we want to analyze.

4.1 First formulation

Find (uy, pn) € Vi x Qp such that

{ah(Uh,vh) +b1(Vh, pn) = (£, Vi) g + h™un, Vi 1)1, + (Pp, Va-M)r, Y Vy €V 1)

bm(un, qn) = (8, qn)g — M{qn, un)ry Vqn € Qp
where m € {0, 1}. Here,

-1
ap(Wp, Vi) := (Wp, Vp)g + b (Wp -0, V- M), YV Wp, Vi € Vy

bm(Wh, gn) := (qh, divWr)g — m{(qn, Wy - D)1, VWp e Vi, qneQp.

In what follows just the analysis for the symmetric case m = 1 will be presented, however numerical results
will be provided for the case m = 0 as well.

4.2 Second formulation

Find (uy, pn) € Vi x Qp such that

{ag(uh,w.) +bo(Vh, pn) = (£,Vn) o + (€ lun, Vi -1y, + (Pp, Va-M)r, Y Vi €V 4.2)

bo(ug, qn) = (8, qn)g Y qn € Qn
where
ac(Wh, Vi) = (Up, Vi) + € H(Wp -0, vp - )r, YV Wy, Vi € V.

Remark 4.2. Let us observe that the non-symmetric version of problem (4.1), i.e., with m = 0, and formu-
lation (4.2), thanks to Proposition 4.1 allows for a weakly divergence-free numerical solution uy, namely,
divuy, = 0 in the sense of L2, provided that the right-hand side g vanishes.
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Lemma 4.1. Formulations (4.1) and (4.2) are consistent discretizations of (2.1) and (3.1), respectively.

Proof. Itis clear that (4.1) is a consistent discetization of (2.1). Let (u®, p®) be the solution to (3.1). Of course,
we have

bo(u®, gn) = (8, qn) ¥ qn € Qn.
By integrating by parts the first equation of (3.1), we obtain
(u®, vi) g + bo(Va, p%) = (P%, Vi -m)py = (£, Vi) o + (D, Vh -M), VYV € V. (4.3)
By performing static condensation of the multiplier from the boundary conditions, we obtain
pf=¢el(uy-u®-n) onTy. (4.4)
Substituting (4.4) back into (4.3), we obtain
ag(u, vy) + bo(Vp, p°) = (£, Vi) o + (€ 'y, Vi - M)py, + (Pp, VM), YV V€ Vi O
For the numerical analysis of (4.1), we endow the discrete spaces with the following mesh-dependent norms

2 2 -1 2
”vh"(),h = "vh"LZ(Q) + z h™ |lvp - n”LZ(f)

feFo(In)
lgnllf pi= Y IVanlfgo + Y W lanllfg + Y. h 7 lgnliyg,
KeTy feF! feFoIp)

while for (4.2) we are going to employ:

2 2 -1 2
IVrlIg, n,e = IVRIL2(q) + € |lvh-mp,
Jh, (Q) *

feFp(In)
Ignlls pe = Y IVanlTag + . H Ilanllgag + Y, B lgnlEag,
KeTh fegt feg?

for every vy, € Vj and gy, € Qp.

Remark 4.3. Informally speaking, the idea of both approaches is to unbalance the norms in order to go back
to the elliptic case. Note that the natural functional setting for the mixed formulation of the Poisson problem
is H(div; Q) x L?(Q), but here we consider norms that induce the same topology as that of [LZ(Q)]d x HY(Q).
Moreover, we observe that in both formulations (4.1) and (4.2) a superpenalty parameter y is imposed in the
flux variable. Indeed, the natural weight, mimicking the H ~1/2_gcalar product, would be h{up, - n, vy - n)r,.
However such a weight does not lead to an optimally converging scheme. In addition, this is also what de-
stroys the conditioning (see Section 7.2).

5 Stability estimates

In this section we carry on at the same time the proofs of the well-posedness of the two discrete formulations.

Proposition 5.1. There exist Mg, , Mq,, Mp, > 0, m = 0, 1, such that

lan(Wn, Vi)l < Ma, [Whllo,n IVRllo,n ¥ Wh, Vi € Vi

las(Wn, Vi)| < Ma, IWrllo,n,e IVRllo,n,e Y Wp, Vi € Vj
[b1(Vh, gr)l < My, [IVallo,n Igrlli,n - YVR € Vi, qn € Qn
[bo(Vr, gr)l < Mp, IVallo,n,e 1gnll1 ne VvheVh, qneQn.
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Proof. Let wp, vy, € Vi, qn € Qp be arbitrary. It holds
-1/2 -1/2
lan(Wn, Vi)l < IWhl2 (@) IVall2 @) + B2 1vh - Bl B2 1wWh -0l < IWallo,n IVAllo,
-1/2 -1/2
@ (W, Vi)l < IWrllz2() IVRllL2c) + €2 VA - Bll2cryy €712 IWh -1l < Wl pe IVRllo e -

By integration by parts, we get

b1(Vh, qn) = (qn, diVVi)g = (qn, Vi - )1y = ) (qn, divVi)g— Y (qn,Va )y
KeTn feFp(I)

== Y (Vgn, i)+ Y (lgnl,Va-m)p+ Y (qn,Vh-n)s.
KeTy fed;, feFpTn)

Thus,

Ib1(Vh, gl < Y. IV@hlliz IVnlley + Y. B2 1lgn]lzg B2 [V - nllg2,
KeThy feffr;'T

+ Y h Y2 Ngnllag kY2 VR - nllag .
feFAIp)

We recall some standard inverse inequalities, namely,
hY2 Wy -nllg < Valewy, e Faln), feF,, fcok. 5.1
In this way we obtain
[b1(Vr, gr)l < IVallo,n lgnlls p -

On the other hand,

bo(Vh, qn) == Y. (Vqn, Vi)g + (@n, VA -Mox == Y. (Van, Va)g+ Y. ([qn],Va-n)f
KeTy KeTp ng;'[

+ Z (qn, Vp -5 + Z (qn, Vi -M)f.

feFTn) feFoIp)
We have
1bo(Vh, gl < ) IVanllou IVkllzgo + Y. h 2 lanllag B2 1vh - nllp2
KeTh fedFt
+ Y WY gl B2 VR -1l < IVkllo,n,e Il n,e
feg?
having used again (5.1) and h™1/2 < ¢71/2 for ¢ <« h. O

Proposition 5.2. There exist ag,, @4, > 0 such that
an(Vh, Va) > &g, IVhlg ;¥ Vn € Vi
ac(Vh, Vh) = a, IVAl§ e ¥V € Vi
Proof. Let us take vy, € V arbitrary and compute
an(Vh, Vi) = IVnl 72y + h VA -0y = IVRIG 5 -
The other coercivity estimate follows analogously. Hence, a,4, = a4, = 1. O

Proposition 5.3. There exist 8, > 0, m € {0, 1}, such that

. bi(vy,

inf 1(Vn, gn) >
an€Qn vyevy IVallo,n 1qnll1,n

. bo(vp,

inf o(Vh, qn)

EERAUNICE UVENENN
an€Qnvyevy IVrllo,ne 1gnllp,e
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Proof. We start with m = 1. Let us fix g, € Qp, arbitrary. We construct v, by using the DOFs of the Raviart-
Thomas space:

(Vn-m, @n)r = hN(gnl, on)y  YfeFy, one ¥l (5.2)
(Vh-m, @p)f = 0 VfeFpIn), ¢ne ¥ (53)
(Vi -1, @n)r = h™qn, en)s VfeFIp), one (5.4)

Vi, ¥Yn)g = — (Van, Pu)g VKeTy, PneWi(K), k>O0. (5.5)

By using the definition of vy,

b1(Vh, qn) = (qn, divVi)g = (qn, Vi M)y = Y (qn, divVa)k = Y. (gn,Vh-m)y

KeTn feFp(I)
=~ ) (Vqn, Vi)g +{qn, Va Mok — Y (qn,Vh-m)y
KeTn feTpIn)
== ) (Vgn,Vi)x+ Y ([qn],Va-m)r+ Y (qn, Vp-m)f
KeTy fedFt feF2(Ip)
= Y IVanlfg+ Y h lanllsg + Y, BV lanliag = lgnli , -
KeTh fegi feFoIp)

Finally, let us show that |vyllo < Cllgnll; - Note that for every f € rfg (I'y), since vy, - n|f € Px(f), (5.3) implies
[Vh 'nllfzm =(Vp'n,Vp-n)f=0 = |vg-n|pp =0.

Then, let us show [[Vxll;2g) < Clignlly,p. From (5.2) it holds vy ~n|f = hi' gk [qn) |f for every f € ff;l and
from (5.5) we have 7tg ;| K= —71K, iV qn|  for every K € Ty. Note that here mg x denotes the L?-orthogonal
projection onto ¥ (K). Similarly, 7y is the L2-projection onto ¥ (f). From finite dimensionality it holds
a7 < 17z ¥l fagy + 190 - Bl 5, Hence, IVal7 ) < 1VRlZ: 0 + B’ Ildnlifa ), f being a facet of
K, which follows by a standard scaling argument (see Prop. 2.1 of [8]) and by construction of vy,.

Let us now take m = 0 and gj, € Qp. We define vy, as follows:

(Vi-m,n)r = R Xqnl, on)y  YfeTt, one ¥l (5.6)
(Vi-m, @n)r = W qn, @n)r VfeFIN), @ne ¥ (5.7)
(Vi -m, @n)r = h7qn, on)r VfeF)Ip), ¢ne ¥l (5.8)
(Vh, !I)h)K = - (th, lI)h)K VKeTh, YPpeW(K), k>0 (5.9)
bo(Vh, qn) =(qn, divVn)g = ) (qn, diVVA)g == )" (Vqn, Va)k + (qh, Vh - D)ok
KeTy KeThp
== ) (Vg Vi)g+ Y (lgnl,Va-m)p+ Y (qn,Va-m)s+ Y {(qn,Vh-M)f
KeTn feg, feFnn) feFaIn)
= Z IIVCIhII%Z(Kﬁ Z ht II[CIh]IIfzm+ Z ht IIQhIIfzm = IICIhIIih,s-
KeTy feg;l fegrz
We refer to [13] for the inequality [|Vallo. p.e < Clgnlly p,e- O

6 A priori error estimates

In this section we will prove a priori error estimates for the formulations (4.1) and (4.2).

We observe that all the constants appearing throughout this section and concerning the error bounds for
the formulation (4.2) are independent of the parameter €. This is due to the orthogonality properties of the
interpolants along the boundary.
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Lemma 6.1. Let (u, p) be the solution of the continuous problem (2.1) and (up, pr) € Vn x Qp the one of the
discrete problem (4.1) with m = 1. Then

lan = ruutllo p + 1pr = Tapllp < 0 - rputllzg) + RV lip = Mhpligegp) -
feFIn)

Proof. The stability estimates previously shown for ay(-, -) and b1 (-, -) with respect to | - [lo,, and || - ||, imply

A ,Sn)» (Vh,
n, sall, < sup 2n{CnSn). (Vn 4n)

Y (Nn, Sh) € Vi x Qp (6.1)
S e anl (21, 51)

where
An ((Mhs Sn) » (Vh, qn)) :=an(Qn, Vi) + b1(Vh, Sk) + b1(Qn, qn)
s sully = nnlly  + Isal? -

Using (6.1), for (uy — rpu, py — IIyp) there exists (vy, gn) € Vi x Qp such that

Ap ((up = rpu, pp = Iyp), (Vu, qn))

I, — ratnlio p + Ipn — Trpllyp <Vallup - rew, pr — Daplly <
VA, gl

Hence, we have

An((@n=rn0, ph—IInp), (Vh, qn)) = (U = W, Vi) 12(g) + (W = ThU, Vh)2(g) + h™' (W — 1) - 1, v - M),

+h((u-rpu) -0, vy -0, + bo(Vh, ph = p) + bo(Vi, p — Thp)

(6.2)
—{ph =P, Vn-0)ry —(p —IIxp, Vh - D)1,
+b1(up —u, gn) + b1(u - rpu, gp).
By construction of ry and IT, we have, respectively,
R {(u-rpu)-n,vp-n)r, =0  VvyeVy
bi(u-rpu, qp) = - Y (Vgn,u-rpwg+ Y ([qn], @—-rpu)-n)f=0 VgneQp
KeTh fedt
bo(Vh,p-IIpp) =0 Y vj € V.
By consistency, we have
(Up =W, Vi) 2y + RN ((up —u) -0, Vi -0y + Bo(Vh, P — D) + (Ph — D, Vi D), =0 Y Vp € Vy
bi(up-u,qn) =0 Vgn € Q.
Hence, in (6.2) we are left with
An ((ap = rpu, pp = Inp) , (Vn, qn)) = (@ = a0, Vi)120) — (D = IIpp, Vi - M)y
We have
(u—rp0, Vi)20g) = {p = IInp, Vi - D)1y < U= rpull 20y IVRl12(0)
+ Y R @ = D)z k2 vk -1l ey,
feFT)
and we can write
(I = rnliagy + B2 ey 1D = Tl ) 11V, Ol
lap = rpallo,p + Pn = Hnplli,p <
Iva, grlln
< Ju—rpullpzg)+ h'2 Y p - apllpag - m

FeFATw)
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Lemma 6.2. Let (ué, p®) be the solution of the perturbed continuous problem (3.1) and (uy, pr) € Vi, x Qy the
one of the discrete problem (4.2). Then

[ur - rhugllo,h,s +|lpn - thE"l,h,g < |uf - rhuE"LZ(Q) .

Proof. The stability estimates previously shown for a.(-, ) and bo(-, -) with respect to |- lo,n,. and |-l p,¢
imply

I, sal, . < sup 2 ((n, sn) » (Vn, qn))
’ h,e =

YV (Nn,Sn) € Vi xQp
(Vh,qn) Ivhs gnllin,e ( )

where
Ae (M, Sn) » (Vh, qn)) :=ac(Mn, Vn) + bo(Vn, Sn) + bo(Mn, qn)
2 2
lmns sull” =Nl e + IshlT e -
Hence, for (uy, — rpué, py — Iy p?) there exists (vy, gn) € Vi x Qp such that

Ag ((up — 1908, pp — IInp®) , (Va, qn))
IVh, grllp,e

lun = rtsllg p o + I = Tnp®|y . <Vallun - rou®, pr - Tepf,, . <
Hence, we have

Ae((up=rptt®, pp=Tpp®), (Vn, qn)) = (Wh =%, Vi) 2 ) + (U° = rRUE, Vi) o ) + €7 ((up —u®) - m, v, - M),
+ & H((uf - rpuf) - n, vp, - n)r, + bo(Vi, ph — P°)

+bo(Vh, p° = ITnp®) + bo(un — u®, gn) + bo(u® — rpu®, qn).
The following orthogonality relations hold by definition of ry and ITj:
e {(uf —rpuf) -m, vy -n)p, =0 VvyeVy
bo(Vn, p® —IIpp®) =0 Vvp € Vy

bo(u® - rput, qn) == Y (Vgn, u® —rpu®) + Y ([gnl, (u° - rpu®) - m)f
KeTy ngL

+ Y {qn, (W —rpuf) ) =0 Vgp € Qp.
feFpIy)

Moreover, by consistency, we have
(wn =0, Vi) ) + €((up = u®) -0, Vi - D)1y + bo(Vh, pr = pF) =0 VVh eV
bo(up —u®,gn) =0 VY gn € Qn.
Hence,
Ae ((up — rpu?, pp — Inp®), (Th, qn)) = (uf - rhug’vh)LZ(.Q)

and we can write

_ [ = ruul g Ve, Ollne

"“h - rhugllo,h,s + nph - th£||1,h,s ~ IVh, qnlln . S ||ll£ - rhuE"LZ(Q) . m

Proposition 6.1. Let (u, p) € H+1(Q) x H*1(Q) be the solution of (2.1) and (uy, px) € Vi x Qj, the one to (4.1)
with m = 1. There exists C > 0 such that, for s = min{r, t, k},

lup = rpullo p + lpr — Trpllyp < CH (lallgr gy + 1P ) - (6.3)
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Proof. By Lemma 6.1, a multiplicative trace inequality for Sobolev functions and standard approximation
results for the L2-projection

lun = ruttllon + Iph = Taplly g Sa=rnttlzy + Y, hY21p = Dapllzg,

feF(Tw)
1/2 1/2
<lu=rpulpzgg) + Y 2D~ Ml it IV (0 - Thp)ll e
KeTy,
1/2 1/2
< llu = rpulzg) + RY2RED2 DI o B2 DI
= u - rpullp2g) + K4 Pl ) -
By using Bramble-Hilbert/Deny-Lions Lemma [16], we get
lup — rawtlo n + 1pr = Taplly,p < Bl gy + R Do )
withO<t<kandO<r<k. O

Proposition 6.2. Let (uf, p¥) € H+1(Q) x H*1(Q) be the solution of the perturbed continuous problem (3.1)
and (up, pr) € Vn x Qp, the one to (4.2). There exists C > 0 such that, for s = min{r, ¢, k},

lan = rnullo o + PR = Thp%)y g e < CE*H U] ot ) - (6.4)
Proof. By Lemma 6.2 and Bramble-Hilbert/Deny-Lions Lemma [16], we get
lan = rnw®lo g o + PR = Tnp%lly g e < B 05 s ) - O

Remark 6.1. Let us remark that the quantities u — rpupllo p, lPn — rply , in (6.3) and |pn — Hnp®|, 4 ,»
[un — rnu|, , . in (6.4), respectively, are super convergent.

Theorem 6.1. Let (u, p) € H*1(Q) x H*1(Q) be the solution to (2.1) and (un, pr) € Vi x Qp the one to (4.1)
with m = 1. Then there exists C > 0 such that, for s = min{r, t, k},

I~ nllz20) < Ch* (Il o) + 1P @) -
Proof. Let us proceed by triangular inequality:
[u—unlr20) < lu-rpulag) + Iratt — U2y -

The first and the second terms in the right-hand side scale as O(h’*1) and O(hs*1), respectively, because of
Bramble-Hilbert/Deny-Lions Lemma [16] and Proposition 6.1. O

Lemma 6.3. Let (uf, p?) € H+1(Q) x H*1(Q) be the solution to the perturbed continuous problem (3.1) and
(up, pn) € Vi x Qp, the one to (4.2). Then there exists C > 0 such that, for s = min{r, k},

Juf =2 ) < Ch**! [ sy -
Proof. Let us proceed by triangular inequality:
[u® - anf|2 ) < [0° = a0 2 ) + [ra0® — ]2 g, -

The first and the second terms in the right-hand side scale as O(h%*1), respectively, because of Bramble-
Hilbert/Deny-Lions Lemma [16] and Proposition 6.2. O

Theorem 6.2. Let (u, p) € H?>(Q) x H*1(Q) be the solution to the continuous (2.1) and (un, pr) € Vi x Qp the
one to (4.2) with € = h. Assume Q to be a convex domain with a Lipschitz polygonal boundary T, f € H'(Q),
f-n=0o0onIyanduy = 0. Then, there exists C > 0 such that

I - unliz2a) < Ch (€l o) + 18Ni20) + IPDlE(ry) ) -
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Proof. Let us proceed by triangular inequality:
lu = nll2 o) < u-v] ) + [0~ a2 ) < & (JAivE] 2 o) + 8020 + IPDIE2(r, ) + U5 g

<e ("din“LZ(_Q) + 11820 + ”pD"Hl/Z(FD)) +h (Nf"Hl(Q) + ||g||L2(Q)) .

We used Lemma 6.3, Proposition 3.1, and Proposition 3.2. Finally, let us choose € = h. O

Remark 6.2. We observe that for both formulations, (4.1) and (4.2), all dimensionless parameters have been
set for simplicity to 1, unlike for the standard Nitsche method for the Poisson problem [17], where the dimen-
sionless parameter needs to be taken large enough.

7 Numerical examples

7.1 Convergence results

In this first set of numerical examples we verify that the optimal a priori error estimates of Theorems 6.1, 6.2.
We also check that the result of Theorem 6.1 holds in the non-symmetric case m = 0, as already mentioned in
Section 4. Moreover, we study the L2-error of the pressure field, for which optimal convergence is observed
in general and super convergence in the case of the lowest order Raviart-Thomas element and triangular
meshes. Although Theorem 6.2 guarantees us optimal a priori error estimates for the discretization (4.2) only
with the lowest order Raviart-Thomas element, numerical results show that we have optimal convergence
rates also for higher orders.

7.1.1 Unit square with triangular meshes

We approximate the Darcy problem in the unit square Q = (0, 1)? using a family of triangular meshes, with
weakly enforced Neumann boundary conditions on the whole boundary, using as manufactured solutions

_ ( x sin(x) sin(y)

3
s = —-0.125.
sin(x) cos(y) + x cos(x) cos(y)) Pex =Xy >

Note that uey is divergence-free. The numerical results are presented in Fig. 1.

7.1.2 Unit circle with triangular meshes

Now, we consider the unit circle Q = {(x, y) € R? : x> + y?> < 1} which is meshed using triangles. We weakly
impose the essential boundary conditions on the boundary and consider the following reference solutions:

1 .
e = (Ee" sin(xy)
ex

1 y? ) ,  Pex = X° cos(x) + y? sin(x).

This time divuey = 2y + % (e* sin(xy) + ye* cos(xy)). The numerical results are shown in Fig. 2.

7.1.3 Unit square with quadrilateral meshes

Let us consider the unit square Q = (0, 1)> meshed using quadrilaterals. We impose natural boundary condi-
tions on {(x, y) : 0 < x < 1, y = 0} and essential boundary conditions everywhere else in a weak sense. The
reference solutions are:

~ (cos(x) cosh(y)

Uey = sin(x) cosh(y))) ,  Pex = —sin(x) sinh(y) - (cos(1) — 1) (cosh(1) - 1).
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(b) Pressure error using (4.1) with m = 1.
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(f) Pressure error using (4.2).

Fig. 1: Convergence rates in the unit square with triangular meshes.
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(f) Pressure error using (4.2).

Fig. 2: Convergence rates in the unit circle with triangular meshes.
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(e) Velocity error using (4.2). (f) Pressure error using (4.2).

Fig. 3: Convergence rates in the unit square with quadrilateral meshes.

We have div uex = 0. For the numerical results we refer to Fig. 3.
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(f) Pressure error using (4.2).

Fig. 4: A priori errors in the quarter of annulus with isoparametric quadrilateral meshes.
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(c) Condition number using (4.2).

Fig. 5: Condition numbers in the unit square with quadrilat-

eral meshes.
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Fig. 6: Condition numbers in the quarter of annulus with
isoparametric quadrilateral elements.
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(c) Velocity error using (4.2).

Fig. 7: Compare L2-errors for the velocity in the unit square
with respect to different values of the penalty parameter y

with triangular meshes.

(c) Velocity error using (4.2).

Fig. 8: Compare L2-errors for the velocity in the unit circle
with respect to different values of the penalty parameter y
with triangular meshes.
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DE GRUYTER E. Burman, R. Puppi, Two FEM formulations for the Darcy flow =— 161

7.1.4 Quarter of annulus with quadrilateral isoparametric elements

Let us consider the quarter of annulus centered in the origin with inner and outer radii, respectively, r = 1 and
R = 2, discretized using quadrilateral isoparametric elements [12]. We impose natural boundary conditions
on the straight edges {(x,y) : 1 < x <2,y =0}and {(x,y) : x = 0,1 < y < 2} and weak essential boundary
conditions on the curved ones. The manufactured solutions are:

_ —Xy _l 2.2 .3
uex—(_xzy_%y2>: Pex—z(XJ/ +Y)

2

with divuex = —x? — y? — 3y. The numerical results are presented in Fig. 4.

7.2 Aremark about the condition numbers

Proceeding as in [10] it would be possible to prove that the £2-condition number of the stiffness matrix aris-
ing from the discretizations (4.1), for both m € {0, 1}, scales as h~2, as Figures 5a, 5b, 6a, and 6b confirm.
The penalty parameter for the weak imposition of the Neumann boundary conditions is the responsible of
the deterioration of the conditioning with respect to the standard mixed finite element discretization of the
Poisson problem, for which the condition number scales as h~!. An even worse situation occurs when formu-
lation (4.2) is employed. In this case the condition number scales as h~¢*2), s = min{r, k}, r being the Sobolev
regularity of the exact solution for the pressure field and k the polynomial degree of the Raviart-Thomas dis-
cretization, as confirmed by Figs. 5c and 6c.

7.3 The optimality of the penalty parameter

We want to analyze the optimality of the penalty parameter, denoted through this section as y, for both nu-
merical schemes. Let us observe indeed that in order for formulations (4.1) and (4.2) to be extend in the unfit-
ted case and provide an optimal convergence scheme, we would expect y to scale as O(h). Let us consider the
Raviart-Thomas element of order k = 1 and compare the numerical results for the L2-error of the velocity field
with respect to different powers of the mesh-size as penalty parameter. The first set of numerical experiences
is performed using triangular meshes, then we move to quadrilaterals.

To obtain Fig. 7 the same setting of Section 7.1.1 is employed. Then, in Fig. 8, we move to the configuration
of Section 7.1.2. Finally, in Figs. 9 and 10 we use, respectively, the settings of Sections 7.1.3 and 7.1.4.

In all numerical experiments, we do not detect any particular sensitivity of the convergence of the error
of the velocities with respect to y in the case of method (4.1), see, e.g., Fig. 8a. On the other hand, for the
formulation (4.2) strong influence of varying y is clearly seen in Figs. 7c, 8c, 9c, and 10c. Let us observe indeed
that for formulations (4.1) and (4.2) to be extended in the unfitted case and provide an optimal convergence
scheme, we would expect y to scale as O(h). In this sense, method (4.1) seems a more promising approach.
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