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Abstract  1 

As most ecosystems are being challenged by multiple, co-occurring stressors, an important 2 

challenge is to understand and predict how stressors interact to affect biological responses. A 3 

popular approach is to design factorial experiments that measure biological responses to pairs of 4 

stressors and compare the observed response to a null model expectation. Unfortunately, we 5 

believe experiment sample sizes are inadequate to detect most non-null stressor interaction 6 

responses, greatly hindering progress. Determination of adequate sample size requires (i) 7 

knowledge of the detection ability of the inference method being used, and (ii) a consideration of 8 

the smallest biologically meaningful deviation from the null expectation. However, (i) has not been 9 

investigated and (ii) is yet to be discussed. Using both real and simulated data we show sample 10 

sizes typical of many experiments (<10) can only detect very large deviations from the additive null 11 

model, implying many important non-null stressor-pair interactions are being missed. We also 12 

highlight how only reporting statistically significant results at low samples sizes greatly 13 

overestimates the degree of non-additive stressor interactions. Computer code that simulates 14 

data under either additive or multiplicative null models is provided to estimate statistical power 15 

for user defined responses and sample sizes and we recommend this is used to aid experimental 16 

design and interpretation of results. We suspect that most experiments may require 20 or more 17 

replicates per treatment to have adequate power to detect non-additive. However, researchers 18 

still need to define the smallest interaction of interest, i.e. the lower limit for a biologically 19 

important interaction, which is likely to be system specific, meaning a general guide is unavailable. 20 

Sample sizes could potentially be increased by focussing on individual-level responses to multiple 21 

stressors, or by forming coordinated networks of researchers to repeat experiments in larger-scale 22 

studies. Our main analyses relate to the additive null model but we show similar problems occur 23 

for the multiplicative null model, and we encourage similar investigations into the statistical 24 
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power of other null models and inference methods.  Without knowledge of the detection abilities 25 

of the statistical tools at hand,  26 

or definition of the smallest meaningful interaction, we will undoubtedly continue to miss 27 

important ecosystem stressor interactions. 28 

29 
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Introduction 30 

Most, if not all, ecosystems are being impacted by multiple co-occurring stressors (e.g., climate 31 

change, invasive species, pollution), which are predominately anthropogenic in origin (Halpern et 32 

al. 2015; Beauchesne et al. 2021), and are capable of affecting individuals through to entire 33 

ecosystems (Jackson et al. 2021; Simmons et al. 2021; Sokolova 2021). At the individual level, 34 

responses to multiple stressors might be assessed by their joint effect on the physiology of an 35 

organism, e.g., a decline in feeding, growth, or fecundity, or a biochemical change (Nõges et al. 36 

2016), and may also be measured on survival rates (e.g. bee health responses to agrochemicals, 37 

Siviter et al. 2021). Population responses to multiple stressors may be assessed by monitoring 38 

densities, biomass, or other markers such as chlorophyl concentrations (e.g. freshwater 39 

population responses to combinations of invasive species, pesticides, temperature or UV changes,  40 

Burgess et al. 2021), whereas ecosystem responses might be measured through multiple stressor 41 

effects on functional and taxonomic diversity (e.g. coral reef species richness responses to 42 

warming and acidification, Timmers et al. 2021), or through other measures on ecosystem 43 

integrity (e.g. stability, Polazzo and Rico, 2021). 44 

 45 

Going beyond effects of single stressors is therefore an important focus in ecology and a key 46 

question is whether and how these co-occurring stressors may interact. For example, two 47 

stressors operating together may act to amplify their individual effects and lead to a synergistic 48 

interaction. In this case their joint effects are greater than predicted from their individual effects. 49 

This might occur for example if one stressor (e.g. dehydration caused by a drought) reduces the 50 

fitness of an individual and makes it more susceptible to another stressor such as a disease 51 

(Lafferty and Holt, 2003). On the other hand, two stressors acting on the same biological process 52 

could have a negative (interfering) effect on one another and therefore lead to an antagonistic 53 
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effect; their joint effects are less than predicted by their individual effects. In extreme cases this 54 

can lead to reversal interactions (Jackson et al., 2016) where the combined effect of a pair of 55 

stressors has a different sign to those of both stressors acting on their own. For example, Boone et 56 

al. (2005) showed how the combined effect of carbaryl and nitrate decreased green frog (Rana 57 

clamitans) tadpole growth, even though individually both increased tadpole growth.  58 

 59 

Cataloguing, and predicting how often and under what conditions synergies and antagonisms 60 

might occur can have important implications for management strategy. In the case of a synergistic 61 

interaction between two stressors, removal or reduction of the impact of even one stressor could 62 

have a large effect. However, more caution is required when considering management of an 63 

antagonistic interaction since, if the antagonism is particularly strong, removal of one of the 64 

stressors could in principle lead to a worse outcome as the biological response to the pair of 65 

stressors might be less severe than the response to either stressor acting alone. However, current 66 

knowledge of how stressors interact to affect biodiversity at various scales is limited (Hodgson and 67 

Halpern 2019; Lemm et al. 2021). To date, progress has been driven by individual studies that have 68 

contributed to larger-scale meta-analyses, but relatively few generalisations are possible (Côté et 69 

al. 2016; Orr et al. 2020). This is perhaps not surprising given the broad range of ecosystems, 70 

taxonomic groups, and biological responses that have been considered (e.g., Ban et al., 2014; 71 

Burgess et al., 2021; Lange et al., 2018), but another contributory factor that has not been 72 

examined is the issue of adequate sample sizes in multiple stressor experiments.   73 

 74 

We contest that many potentially important stressor-pair interactions are being missed due to low 75 

replication number. In order to design effective multiple stressor experiments that have adequate 76 

sample sizes, researchers must consider the trifecta of: i) resource costs (whether the design is 77 
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feasible given time, spatial, financial constraints), ii) the smallest stressor-pair interaction that can 78 

be detected (statistical power), and iii) the minimum biological effect of interest (Figure 1). 79 

However, we believe only resource costs and therefore feasibility normally factor into 80 

experimental design since the detection limits of the statistical tools commonly used in stressor 81 

interactions have not been quantified, and there has been no discussion on what a biologically 82 

important stressor interaction is. We define the smallest interaction of interest as the smallest 83 

biologically relevant deviation from the null expectation and could represent the smallest 84 

deviation that would warrant a change in management strategy compared to the null. Here we 85 

will look at sample sizes typical of stressor interaction experiments, use empirical examples, and 86 

analyse of statistical models to highlight why it is likely important interactions are being missed, 87 

and show how the minimum biological effect of interest dictates the sample sizes required.  88 

 89 

 90 

Figure 1. The three considerations important for determining experimental design to investigate 91 

how pairs of stressors interact, and the trade-offs that occur when any of them are more limiting 92 

than the others. 93 
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Stressors: model expectations and interactions 94 

The effects of multiple interacting stressors are commonly determined through the 95 

implementation of null models (e.g., Schäfer and Piggott, 2018) where the observed response is 96 

compared to an expectation that the stressors are non-interacting (De Laender, 2018). Other 97 

methods are available, such as the linear model approach (e.g., Spears et al. 2021), but null 98 

models continue to enjoy widespread use in ecology and evolution (e.g. van Veen and Murrell, 99 

2005; Flügge et al. 2012; Murrell, 2018; Rajala et al. 2018), Moreover, linear models also make 100 

assumptions about the form of the interaction (e.g. additive) and in any case the issue of sample 101 

size is germane to all approaches. Of the range of available null models for multiple stressor 102 

interactions, the additive null model (Gurevitch et al., 2000) is the most widely applied (e.g., Crain 103 

et al., 2008; Burgess et al. 2021; Siviter et al. 2021) and has the expectation (null hypothesis) that 104 

the overall effect of the multiple interacting stressors is equal to the sum of the effects of the 105 

stressors acting individually. In effect the question is: “Do the individual effects of two stressors 106 

simply add up when they are both present?”.  107 

 108 

The statistical test is therefore whether the additive null model can be rejected in favour of an 109 

alternative hypothesis that interactions are: i) greater than anticipated by the additive null model 110 

(Synergistic interactions); ii) less than the sum of the individual stressor effects (Antagonistic 111 

interactions); or iii) opposite to that suggested by the additive null model (Reversal interactions) 112 

(see e.g., Jackson et al., 2016; Orr et al. 2020). Although we will focus on the additive model and 113 

show it has low power to detect non-additive stressor-pair interactions, we also show similar 114 

results for the multiplicative null model (Lajeunesse, 2011), which is argued (Fournier et al., 2006), 115 

to be preferable for biological responses (e.g., survival) that are bounded (see Supporting 116 

Information). 117 
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 118 

The null model approach requires a factorial experiment design with four treatments that each 119 

measure the same biological response metric of interest (e.g., individual survival; population 120 

density or biomass; species richness) under different stressor conditions. Each measure ���, is the 121 

mean value of this response metric taken over �� replicates, where � � ��, 	, 
, ��. The first 122 

treatment, C, is the control which is the system (i.e., individual, population, community) of interest 123 

in the absence of either stressor under scrutiny. There are two treatments (A, B) that account for 124 

the response of the system to each of the individual stressors of interest acting in isolation. The 125 

final treatment, �, is the estimate of the response to both stressors acting simultaneously i.e. the 126 

interaction. Associated with each treatment is an estimate of the standard deviation of the 127 

response to the treatment, and these are denoted by 
��, where again � � ��, 	, 
, ��. All three 128 

elements, ���, 
��, and ��   are required for the additive and multiplicative null models and from 129 

this input each null model computes an effect size, with associated confidence intervals from 130 

which the interaction type is inferred.  131 

 132 

Effect sizes are used as they can provide a standardised measure of the difference between two 133 

groups (treatments) and therefore enable straightforward comparison of experiments where the 134 

biological response may be on different scales (e.g. density, survival). In the case of stressor-pair 135 

interactions the effect size is defined as the difference between the response predicted by the null 136 

model from the individual responses (A and B) and the observed response to both stressors acting 137 

simultaneously (I). We use the definition of effect sizes for factorial experiments under the 138 

additive model defined by Gurevitch et al., (2000). The observed interaction effect is defined as 139 

�� � ��� � ���, and the expected response that assumes the joint effect is equal to the sum of the 140 

individual effects of stressors A and B is defined as  �� � ��� � ��� � 2���. To compute effect sizes 141 
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(�
�		 ), we use Hedges’ d which is unbiased by small sample sizes (Hedges and Olkin, 1985). The 142 

calculation of the additive effect size, (ESAdd), is given as 143 

  �
�		  �  ��
��

�
· �  144 

                � ���
���
���
���

�
· �,       (Equation 1.1) 145 

where s is the pooled standard deviation that takes into account the standard deviations (
��) 146 

associated with each treatment mean, and � is the small sample bias correction factor (Borenstein 147 

et al., 2009). Both s and � are defined in the Supporting Information. 148 

 149 

Once computed, we need to know if �
�		  is statistically different from 0 in which case the null 150 

hypothesis is rejected in favour of an alternative that is dependent on whether �
�		  is positive or 151 

negative (explored in more detail in the Supporting Information). Put simply, the test answers 152 

whether there is sufficient evidence to define the stressor interaction as being non-additive. The 153 

test requires the construction of confidence intervals (at some specified level of statistical 154 

significance α), and these in turn require an estimate of the standard error for our effect size. The 155 

estimate of the variance defined by  156 

��		  �   �� · � �

��
� �

��
� �

��
� �

��
� ��������

����
 ��
 ��
 ���
�,   (Equation 1.2) 157 

and from this the standard error is computed as  158 


��		  �   ���		 ,         (Equation 1.3) 159 

with the important observation that the standard error for 
��		  is not divided by the square root 160 

of the sample size as is the case for normal estimates of the sampling distribution of a mean. 161 

Standard errors should decrease as more samples are taken but increasing sample sizes will 162 
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already reduce the variance (Equation 1.2), and hence 
��		 . Finally, the confidence intervals are 163 

computed as  164 

���		  �   ��/� · 
��		 ,         (Equation 1.4) 165 

with ��/� being the critical Z-score taken at the statistical level of significance α. Typically, α = 166 

0.05, and we divide by two as a two-tailed test is required because the stressors interaction can be 167 

less than, or greater than expected under the null model, which means ��/� � 1.96. The test has 168 

 ! �  �� � �� �  �� �  �� � 4  degrees of freedom. An important point to note is how the 169 

sample sizes �� appear at multiple stages in the process, with increasing sample sizes leading to 170 

smaller confidence intervals for the effect size, and a higher chance that the null hypothesis is 171 

rejected (because 0 is not contained within the range covered by the confidence intervals). As the 172 

equations contain many terms, it is relatively easy for a small error to creep into the computation 173 

of the effect sizes and confidence intervals, although this may be avoided through the use of 174 

openly available statistical software such as the R library multiplestressR (Burgess and Murrell, 175 

2021). 176 
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 177 

Figure 2. Scatter plot of Hedge’s d effect sizes for bee health response to single stressors (x-axis) 178 

and the interaction of two stressors (y-axis). Data is taken from the meta-analysis of Siviter et al. 179 

(2021), and we plot the absolute value for the effect sizes on a logarithmic scale. Interaction effect 180 

sizes (�
���) are computed assuming the additive null model, using equation (1.1). Single stressor 181 

effect size is computed using the escalc function in the R library metafor (Viechtbauer, 2010). The 182 

straight line is the line y = x, therefore denoting the special case where the absolute value of the 183 

single and interaction effect sizes are equal. Points below this line denote single stressor effect 184 

sizes larger in absolute value than stressor pair interaction effect sizes and those above the line 185 

denote the opposite relationship. 186 

 187 
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In case the reader is in any doubt about the potential importance of interactions relative to the 188 

single stressor effects we use data on bee responses to a range of agrochemicals, nutrient 189 

stressors and parasites published in Siviter et al. (2021) to highlight how single stressor and 190 

multiple stressor effect sizes have similar overall distributions (Figure 2). What is also clear is that, 191 

at least in this data, interaction effect sizes may be quite large even though single effects are 192 

negligible and vice versa.  Therefore, absence of large effect sizes in biological responses to 193 

individual stressors does not preclude the possibility for large effect sizes for the interaction, i.e. 194 

the interaction may be very different to the null expectation (and therefore non-additive) even 195 

though responses to individual effects are negligible. 196 

 197 

Typical samples sizes in multiple stressor experiments 198 

Perhaps the most basic question an empirical scientist can ask is “Does my study have sufficient 199 

data to answer my question?” (Johnson et al., 2015). In multiple stressor research this amounts to 200 

asking whether the sample size is sufficient to detect a departure from the null model of a given 201 

magnitude should this be the true interaction. We emphasise the qualification of a given 202 

magnitude as this is where the researcher has to determine a priori the smallest deviation from 203 

the null expectation that is biologically important. However, this concept has not been discussed, 204 

but is critical to knowing how likely we are to be missing important non-null stressor interactions 205 

and is a point we focus on in more detail below. 206 

 207 

In the absence of any guidance based upon understanding of the null models, researchers have to 208 

make sample size decisions that are likely more determined by resource constraints (financial, 209 

time, or space costs; Boyd et al., 2018; Rineau et al., 2019), or heuristic arguments (such as a rule 210 

of thumb value that is not based on power analyses). Perhaps as a consequence of the lack of 211 
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statistical guidance, the number of replicates in experiments to investigate stressor interactions 212 

rarely reaches double figures. For example, two recent meta-analyses (Gomez Isaza et al., 2020; 213 

Seifert et al., 2020) included no experiments with more than six replicates per treatment, while a 214 

third (Burgess et al., 2021) found <1% of the experiments used more than eight replicates per 215 

treatment (Figure 3). Exceptions to this trend tend to focus on individual-level responses with 216 

recent examples taken from honeybee health responses to multiple pesticides (Bird et al. 2021) 217 

where the control treatment mean sample size was 179.33, and bee responses to pairs of 218 

agrochemicals where the control treatment mean sample size for studies where this data is 219 

publicly available was 115.62 (Siviter et al. 2021).  220 

 221 

The importance of sample size for detecting interactions between pairs of co-occurring stressors 222 

has only recently been acknowledged. Using simulated data created from a food web model 223 

Burgess et al. (2021) showed how even low levels of observation error, where 99% of all measured 224 

responses were within 10% of the true response value, can lead to the inability to detect the true, 225 

non-additive interaction in the majority of cases at typical sample sizes of ��= 4. In other words, 226 

even small levels of noise can overwhelm the biological signal when sample sizes are low. Burgess 227 

et al. (2021) concluded that the large proportion of perceived additive interactions in their 228 

freshwater-focussed dataset could easily be explained by the low sample sizes (Figure 3), and that 229 

many possibly biologically important non-additive stressor interactions were being missed. 230 

However, whilst this warning is useful, it does not answer the question of how many replicates are 231 

required.  232 
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 233 

Figure 3. The frequency distribution of control treatment sample sizes from a dataset of 545 234 

stressor interactions in freshwater ecosystems (Burgess et al., 2021). 235 

 236 

Critical effect sizes: the smallest detectable interactions 237 

The ability to detect a non-null interaction is dependent on the strength of the interaction, the 238 

variation of the biological responses, and the sample sizes (i.e., ���, 
��, and ��), as well as the 239 

level of statistical significance α. Both ��� and 
��, are unknowns and are to be estimated in the 240 

experiments, whereas ��   (barring resource costs), and α are both choices of the researchers.  The 241 

importance of sample size in detecting non-null interactions can be illustrated with an empirical 242 

example (Figure 4). Here, we use the additive null model to determine the effect of stressor pairs 243 

on bee health data (Siviter et al., 2021) which comprises a wide range of sample sizes. As 244 

expected, increasing sample size results in an increased ability to detect non-null interactions, and 245 

we can see how greater sample sizes allow weaker non-null interactions to be identified and 246 

classified (Figure 4).  247 
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 248 

Figure 4. The effect of sample size on the ability to detect interactions with different effect sizes 249 

for the bee health responses to multiple stressors in Siviter et al. (2021). Open squares denote 250 

data points that are statistically indistinguishable from the null model of an additive interaction 251 

(i.e., the null model that co-occurring stressors are simply the sum of their individual effects). Data 252 

points that lead to the rejection of the null model can be assigned as synergistic (purple triangles), 253 

antagonistic (green circles), or reversals (yellow diamonds). The black lines denote the critical 254 

effect size that separates the region of detectable departure from the null model at the 5% level of 255 

significance. Median sample size per treatment is plotted on the x axis. A small number of null 256 

interactions appear outside of the null region where the experiment had uneven sample sizes 257 

between treatments, but for clarity of presentation the critical effect size is computed under the 258 

assumption of equal sample sizes within each study. Results were generated using the 259 

multiplestressR R package (Burgess and Murrell, 2021, 2022), with code to reproduce this figure 260 

provided in the Supporting Material. 261 

 262 
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For each sample size, there is a minimum effect size that an experiment will be able to distinguish 263 

as being statistically different to the null model (illustrated by the black lines in Figure 3). Effect 264 

sizes below this threshold denote interactions that cannot be distinguished from the null model 265 

expectation of additivity at the chosen level of statistical significance. This threshold, referred to as 266 

the Critical Effect Size (see Mudge et al., 2012; Lakens, 2022) can be exactly calculated for the 267 

additive null model (the equation for which is detailed in the Supporting Information but can be 268 

computed using the R library multiplestressR; Burgess and Murrell, 2021). Analysis of the bee 269 

health data (Siviter et al., 2021) shows how the critical effect size (�
�		 ) predicts non-additive 270 

interactions and verifies the expectation that only very large effect sizes can reject the null 271 

expectation of additivity when sample sizes are below 20 per treatment (Figure 4). At the very low 272 

samples sizes that typify multiple stressor research, especially for population- and community-273 

level responses, effect sizes have to be very large (e.g., for �� � 4, �
�		~2) in order for non-274 

additive interactions to be detected.  275 

 276 

Statistical power 277 

The critical effect size is the smallest detectable effect size for a given sample size, but due to 278 

sampling variation we can expect the estimated effect size to differ between repeat experiments. 279 

Statistical power represents the proportion of these repeat experiments that would correctly 280 

result in the rejection of the null model expectation, assuming a non-additive interaction exists, 281 

and we explore this using a data simulation approach. Although any single effect size can be 282 

generated by an infinite number of combinations of treatment means and treatment standard 283 

deviations, we use a simple example to illustrate low sample sizes yield low power to detect non-284 

additive interactions. 285 

 286 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2021.07.21.453207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453207
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

We set the expected control treatment mean biological response (e.g., survival probability) to 287 

�$���% = 0.8. The expected responses to two separate stressors (e.g. pesticides, A and B) are 288 

assumed to be the same, and we set �$���% = �$���% � 0.65, whereas the expected mean of the 289 

response to both stressors acting simultaneously is allowed to vary 290 

�$���% � �0.525, 0.55, 0.60, 0.65�. In all treatments the expected standard deviation �$
��% = 291 

0.05. These values for �$���% and �$
��% gives rise to expected effect sizes �$�
���% � �3, 2, 1, 292 

0.5} respectively. In all cases the interactions are less than the additive prediction and should 293 

result in an antagonistic interaction being inferred. For simplicity we assume all treatments have 294 

the same replication number, so �� � �� � �� � �� � (. We simulate 1000 ‘experiments’ for 295 

each combination of n and �$���%, and assume treatment values are sampled from a Gaussian 296 

distribution with standard deviation )� � �$
��%, and means given by the expected treatment 297 

means �$���%, We then use multiplestressR (Burgess and Murrell 2021, 2022) to test whether we 298 

can correctly reject the null model of an additive interaction in favour of an antagonistic 299 

interaction for each ‘experiment’, and from this we compute the statistical power.  300 

 301 

Simulating effect sizes under these parameters shows clearly that low sample sizes lead to low 302 

statistical power size (Figure 5a). For example, when n = 3, only about 50% of experiments would 303 

result in the correct rejection of the null model when the expected effect size is 3. The problems 304 

are predictably worse for smaller effect sizes, and even n = 20 results in power of only 305 

approximately 0.5 when the expected effect size is 1. To get power of at least 0.8 requires samples 306 

sizes of approximately 5, 9, 34 and >100 for �$�
���% � �3, 2, 1, 0.5} respectively. As shown in 307 

Figure 2, most empirical interaction effect sizes are below 1, and this means n > 18 is required to 308 

correctly reject the additive null model at least half the time. Adjusting the parameters to get the 309 

same effect sizes but with )� � 0.025, for � � ��, 	, 
, �� shows treatment variance makes a 310 

negligible difference (see Figure S2, Supporting information) and verifies earlier work that shows 311 
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Gaussian distributed observation errors have to be unrealistically small ()� * 0.0001) in order to 312 

lead to a high detection rate (Burgess et al., 2021). However, as shown by Burgess et al. (2021) for 313 

n = 4, reducing treatment variation (i.e. lowering �$
��% whilst keeping expected treatment 314 

means constant) will result in larger effect sizes and will therefore increase power to detect.  315 

 316 

A consequence of low statistical power is that considering only the statistically significant 317 

interactions may greatly overestimate the effect size and hence overestimate the deviation of the 318 

interaction from additivity. Figure 5b shows examples for a synergistic interaction (�$���% �319 

0.45;  �$
��% = 0.05, other parameters as before) and an antagonistic interaction (�$���% �320 

0.55;  �$
��% = 0.05, other parameters as before) for a range of sample sizes. The expected (or 321 

true) effect sizes are �$�
���% � 1, and �$�
���% �  �1, respectively, The critical effect size 322 

determines the smallest effect size that can result in a non-additive interaction being detected, so 323 

detected effect sizes are always larger than this value. In our examples the mean detected 324 

interaction effect size only approaches the true interaction effect size at around n = 40, and at 325 

small sample sizes the mean detected effect size is approximately three times the magnitude of 326 

the true effect size (Figure 5b). This shows how publishing only statistically significant results from 327 

experiments with low sample sizes leads to overestimation of non-additivity, a problem that has 328 

also been highlighted for biological responses to single stressors (Yang et al. 2022).  329 
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Figure 5. The effect of sample size on (a) the power to detect non-additive interactions of different 335 

strengths as determined by the effect sizes (ES); and (b) the bias towards overestimating the 336 

strength of the departure from additivity when considering only those interactions that result in a 337 

statistically significant result. Data is simulated with two stressors causing the same response 338 

when operating in isolation and all treatment standard deviations are set to have the same value. 339 

In (a) the expected interaction treatment mean is varied to generate the different expected effect 340 

sizes. In (b) the mean detected effect size averages over only those simulations where the null 341 

model is rejected. In both panels the data points are computed from 1000 simulations 342 

(‘experiments’) for the same set of parameters at each sample size. See main text for more details 343 

of the simulations. 344 

 345 

Smallest interaction of interest: What is a biologically meaningful interaction? 346 

Up to now our discussion has largely related to statistical but not biological significance i.e. we 347 

have asked: (1) what is the smallest effect size we can detect, and (2) what is our statistical power 348 

for given sample size? As we have shown, small sample sizes can lead to the detection of only 349 

large effect sizes and therefore highly non-additive interactions (Figure 4), but at the other end of 350 

the scale infinitely large sample sizes can detect infinitely small departures from additivity (i.e., the 351 

lines in Figure 4 asymptote slowly to 0). So, whilst small sample sizes likely miss key stressor 352 

interactions, large sample sizes can waste resources (Figure 1) and uncover biologically 353 

insignificant stressor-pair interactions. To avoid either of these outcomes, the researcher needs to 354 

determine the smallest interaction that would lead to a biologically meaningful deviation from the 355 

null model before the experiment is run (to avoid any bias from knowing the result). We define 356 

this interaction as the minimum biological effect size, and we argue this depends upon both the 357 

study system and response of interest. For example, a researcher may want to determine whether 358 

two stressors combine to affect a response (e.g., juvenile survival rates) in a non-additive manner 359 
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for an endemic or threatened species. In this scenario it is important to be able to detect a small 360 

deviation from additivity (i.e., a small effect size) as failing to detect even a weak interaction may 361 

lead to the wrong mitigation strategy being selected and potentially exacerbate the effects of 362 

these stressors to the detriment of the study system (Brown et al., 2013; Côté et al., 2016). 363 

Commonplace sample sizes (e.g. 4 replicates per treatment) are not adequate for this question 364 

(Figures 4, 5), and the researcher will likely need to implement sample sizes that are multiple (two 365 

or more) times larger than those commonly used. There may be other situations where a smaller 366 

effect is not so important, implying smaller samples are adequate, such as monitoring abundance 367 

declines in a system with high functional redundancy, but even here care needs to be taken since 368 

concerns have been raised regarding publication bias leading to  the overestimation of stressor 369 

effects from experiments with small sample sizes (Figure 5b, Yang et al., 2021). 370 

 371 

How should the minimum effect size of interest be determined? Although it might seem tempting 372 

to use the heuristic guidelines proposed by Cohen (1988) for small, medium, large effect sizes, we 373 

do not believe they are appropriate for multiple stressor research due to the heterogeneity in 374 

systems, responses, and stressors. For example, would we decide upon the same minimum effect 375 

size for survival responses at different stages in a species’ life cycle? In any case these guidelines 376 

only relate to Cohen’s d or Hedge’s d and do not apply to null models such as the multiplicative 377 

null model that operate on a different scale. Other ways that the minimum effect size of biological 378 

interest could be determined include guidance from ecological theory, and results of previous 379 

meta-analyses (Lakens, 2022). However, in order for a theoretical model to be a useful guide, it 380 

needs to be an adequate approximation to the stressors, biological system, and response under 381 

scrutiny. This is a tall ask, since it is likely that empirical evidence is required to calibrate the model 382 

in the first place, in which case there is already some evidence that could be used (carefully) to 383 
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consider the number of replicates required. The results of previous meta-analyses could act as a 384 

guide, although again care needs to be taken since it is possible that publication biases towards 385 

biologically novel but not necessarily statistically robust effect sizes (Filazzola and Cahill Jr. 2021) 386 

could affect summary effect sizes. Moreover, meta-analyses in ecology and evolution often report 387 

high levels of heterogeneity (Senior et al., 2016) compared to human clinical trials since ecological 388 

and evolutionary studies often focus on multiple taxa, in real world environments, that are subject 389 

to many different forms of environmental and biological variation (Burgess et al. 2021; Côté et al., 390 

2016). It is therefore hard to know if the summary effect sizes reported in these meta-analyses are 391 

relevant for other, more focussed, studies that might being asking subtly different questions 392 

involving, for example, different stressors or responses. 393 

 394 

Consequences and recommendations 395 

Overall, we do not believe there is a simple answer to the smallest effect size of biological interest. 396 

Instead, we propose researchers use their expert knowledge to use values for the treatment 397 

means and standard deviations and estimate power using the simple R function 398 

(interaction_power) we used to generate Figure 5. For example, it might be decided that a 10% 399 

deviation from additivity would constitute a biologically important stressor interaction, and along 400 

with estimates of treatment means and standard deviations the code could be used to explore 401 

likely levels of statistical power for a range of sample sizes. This will give at least a ball-park figure 402 

before the experiment is completed and may give the opportunity to increase sample sizes as 403 

appropriate. We also add that the code can be employed to estimate power for either additive or 404 

multiplicative null models (see Supporting Information). More generally, the sweet-spot of sample 405 

size is dependent on the trifecta of resource costs, statistical power, and minimum effect of 406 

biological interest, and failure to take any of these into consideration may limit the effectiveness 407 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2021.07.21.453207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453207
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

of any experiment (Figure 1). However, it seems likely that in many cases �� � 4 does in fact lead 408 

to biologically important on-null stressor-pair interactions being left undetected (Figures 4 and 5), 409 

and given the relationship between critical effect size and sample size, 20 replicates (or more) 410 

might be desirable.  411 

 412 

The recent meta-analyses of how pairs of pesticides interact to affect bee health (Siviter et al. 413 

2021, Bird et al. 2021) are examples of experiments with very large sample sizes, and the fact that 414 

they both focus on studies at the individual-level highlight how this might be a resource efficient 415 

way to increase replicate numbers. This echoes earlier calls to focus on individual-level responses 416 

to stressors as it is the fate and/or behaviour of the individual that is directly affected (e.g., Maltby 417 

1999). However, responses at other (higher) levels of biological complexity such as population, 418 

community and ecosystem are also likely to be of interest because it is the response of these 419 

levels that may matter the most from a stressor management standpoint (Simmons et al. 2021). 420 

Moreover, because each species is embedded within a food web, interactions between species 421 

can lead to compensatory (antagonistic) or synergistic effects that are not observed for individual 422 

species in isolation (Christensen et al., 2006; Burgess et al. 2021; Simmons et al. 2021). 423 

Unfortunately, it is much harder to increase the sample sizes of many mesocosm experiments for 424 

these higher levels of organisation simply due to the financial cost, space, and time required to 425 

manage large sample sizes for all four treatments (Boyd et al., 2018). One alternative to boost 426 

within-study replication is to use coordinated networks of researchers who ask the same 427 

experimental question(s) across multiple sites, using the same protocol (Filazzola and Cahill Jr. 428 

2021; Yang et al., 2022). An example of this is the Nutrient Network (NutNet) organisation 429 

(https://nutnet.org/) that amongst its key questions asks: To what extent are plant production and 430 

diversity co-limited by multiple nutrients in herbaceous-dominated communities? Another 431 
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instance of this linked approach is the Managing Aquatic ecosystems and water resources under 432 

multiple stress (MARS) project (Hering et al., 2015) that has investigated the responses of a large 433 

number of European water bodies to multiple stressors (e.g., Birk et al. 2020). As always, there is 434 

no silver bullet, and coordinated networks may suffer from increases in data heterogeneity due to 435 

the multiple site nature of the network and the natural environmental and biological variation this 436 

includes, but also because small, but important differences in protocol may occur simply due to 437 

the number of research teams implementing the framework (Filazzola and Cahill Jr. 2021).  438 

 439 

Our discussions of null models and sample sizes have been restricted to investigations of pairs of 440 

stressors, yet we know that many ecosystems are being challenged with more than two stressors 441 

(Halpern et al., 2015). For example, Nõges et al. (2016) identified European waters with up to 442 

seven co-acting stressors, although two co-acting stressors were the most common, being 443 

identified in 42% of cases. Similarly, there have been calls for investigating the responses to 444 

stressors at multiple levels of intensity (Polazzo et al. 2021; Schäfer and Piggott, 2018), since 445 

responses at low and high stressor intensities may differ greatly (Beaumelle et al., 2020; Dixon et 446 

al., 2020) and result in different interactions being detected (Ma et al., 2020). In both cases, 447 

sample sizes will need to be even larger than for two stressors each at a single intensity, and as we 448 

have already found, many experiments are probably greatly underpowered even in this simpler 449 

scenario. In order to maximise the outcome for the input of resources we suggest that individual 450 

studies should first try to boost sample sizes for simpler experiments before adding in further 451 

complexity, and encourage investigations of greater than two stressors and/or multiple intensities 452 

to use coordinated networks where the sample sizes can be distributed across multiple research 453 

teams, or focus on individual-level responses where sample sizes may more easily run into the 454 

hundreds (e.g. Bird et al. 2021; Siviter et al. 2021). 455 
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 456 

Ultimately, resource constraints may mean it is not possible to design an experiment with 457 

adequate sample sizes to capture biologically interesting/important stressor-pair interactions, 458 

especially for studies on responses at higher levels of biological organisation. Interpretation of 459 

experiments based on low sample sizes should be cautious and it should be remembered that 460 

failure to reject the null model is not evidence that mean that the null model is true. Hence, failure 461 

to detect a non-additive interaction between two stressors should not be associated with 462 

conclusions that the interaction is additive, only that there is insufficient evidence to show 463 

otherwise. Alternative statistical tests such equivalence tests (Lakens, 2017) are required to 464 

determine if any deviation from the null expectation is trivially small, and that the interaction can 465 

therefore be deemed additive. However, experiments with small samples are useful as they can 466 

provide data for meta-analyses that collate individual experiments together to greatly increase the 467 

power to correctly reject the null model (e.g., Crain et al., 2008; Jackson et al., 2016; Przeslawski et 468 

al., 2015). The key point is that to aid general understanding, and avoid publication bias (e.g. 469 

Figure 5b), it is crucial that all experiments are published with the data made openly available (i.e., 470 

the three components of sample size, mean and standard deviation/error or variance for each 471 

treatment) and not just those experiments that detect ‘interesting’ non-null stressor-pair 472 

interactions (Filazzola and Cahill Jr., 2021). Indeed, it is likely that publication bias is leading to the 473 

effects of anthropogenic stressors being overestimated (Yang et al., 2022), while multiple stressor 474 

ecology suffers from the erroneous over-reporting of synergistic interactions (Côté et al., 2016). 475 

Unfortunately, there are still many papers that do not report or make their data (i.e., treatment 476 

means etc.) readily available. For example, Burgess et al. (2021) identified 122 papers that 477 

appeared suitable for their meta-analysis of freshwater stressor interactions, but 66 had to be 478 

discarded due to missing data or having figures that were too unclear for data extraction. Not 479 
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reporting these data represents a waste of resources, as it prevents future analyses (which are 480 

often unanticipated during the original study) from being conducted (Hanson and Walker, 2020).  481 

In summary we make two main recommendations. Firstly, we urge researchers to make all data 482 

(sample sizes, mean and standard deviation of each treatment) easily available, regardless of 483 

statistical significance. Secondly, we ask researchers to state observed effect size(s), the critical 484 

effect size(s) if using the additive null model, and give an estimate of statistical power (e.g., by 485 

using data simulated using our code) of the experiment(s). Giving all this extra information will 486 

help to give an idea of the adequacy of the sample size implemented, and will also aid 487 

interpretation of the results.  488 

 489 

Conclusions 490 

Our aim here was to open the discussion regarding sample sizes in multiple stressor research and 491 

show that before we ask the question “how much data do I need?”, we first need to answer the 492 

question “what is a biologically important interaction?”. Increasing sample sizes will always lead to 493 

an improvement in our statistical ability to detect unexpected stressor-pair interactions, but at 494 

extreme sample sizes we will likely be detecting only very small departures from the null model 495 

and these may not necessarily be relevant for management decisions. Setting the lower bound for 496 

an interesting stressor-pair interaction is critical to knowing what sample sizes are required. This 497 

lower bound is very much dependent on the system, stressors and response variable being 498 

measured, so we believe it can only be tackled using expert knowledge. Currently, it is our view 499 

that many experiments are likely underpowered and missing biologically important interactions, 500 

but studies that mostly focus on individual-level responses to stressors may be more adequately 501 

sampled. Strategies such as research networks may help increase sample sizes for higher levels of 502 

biological organisation such as communities, but there is still value in conducting smaller-scale 503 
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studies, provided they are all published to avoid publication bias, and the data is made freely 504 

available, since they can contribute to meta-analyses and aid the design of subsequent 505 

experiments. We also urge the reporting of estimated power which will aid interpretation of 506 

results. Finally, although we have focussed on the commonly used additive and multiplicative null 507 

models, there are a number of other null models that have been proposed (e.g., Schäfer and 508 

Piggott, 2018; Dey and Koops, 2021), and to date there is no guidance on sample sizes required to 509 

detect non-null interactions of any given magnitude. This needs to be remedied. Until we can 510 

quantify the abilities of the statistical models to detect different strengths of interactions, we will 511 

be kept in the dark about how many unexpected interactions we are missing, and the amount of 512 

data required to uncover them. 513 
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