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Abstract
Aim: To explore if novel non-invasive diagnostic technologies identify early 
small nerve fibre and retinal neurovascular pathology in prediabetes.
Methods: Participants with normoglycaemia, prediabetes or type 2 diabetes 
underwent an exploratory cross-sectional analysis with optical coherence to-
mography angiography (OCT-A), handheld electroretinography (ERG), corneal 
confocal microscopy (CCM) and evaluation of electrochemical skin conductance 
(ESC).
Results: Seventy-five participants with normoglycaemia (n  =  20), prediabetes 
(n = 29) and type 2 diabetes (n = 26) were studied. Compared with normogly-
caemia, mean peak ERG amplitudes of retinal responses at low (16-Td·s: 4.05 μV, 
95% confidence interval [95% CI] 0.96–7.13) and high (32-Td·s: 5·20 μV, 95% CI 
1.54–8.86) retinal illuminance were lower in prediabetes, as were OCT-A para-
foveal vessel densities in superficial (0.051 pixels/mm2, 95% CI 0.005–0.095) and 
deep (0.048 pixels/mm2, 95% CI 0.003–0.093) retinal layers. There were no dif-
ferences in CCM or ESC measurements between these two groups. Correlations 
between HbA1c and peak ERG amplitude at 32-Td·s (r = −0.256, p = 0.028), im-
plicit time at 32-Td·s (r =  0.422, p < 0.001) and 16-Td·s (r =  0.327, p =  0.005), 
OCT parafoveal vessel density in the superficial (r = −0.238, p = 0.049) and deep 
(r = −0.3, p = 0.017) retinal layers, corneal nerve fibre length (CNFL) (r = −0.293, 
p = 0.017), and ESC-hands (r = −0.244, p = 0.035) were observed. HOMA-IR was 
a predictor of CNFD (β = −0.94, 95% CI −1.66 to −0.21, p = 0.012) and CNBD 
(β = −5.02, 95% CI −10.01 to −0.05, p = 0.048).
Conclusions: The glucose threshold for the diagnosis of diabetes is based on 
emergent retinopathy on fundus examination. We show that both abnormal 
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1   |   INTRODUCTION

The management of diabetes and its long-term multior-
gan morbidity remains a significant global health burden. 
In 2019, direct health expenditure for diabetes was an es-
timated $760billion worldwide.1 Within 4 years of the di-
agnosis of diabetes, the global age- and sex-standardised 
prevalence of microvascular and macrovascular disease is 
17.9%, compared to 9.2% in normoglycaemia.2

The current fasting glucose threshold of 7.0 mmol/L 
to diagnose diabetes is based on historical population-
based data that correlated glycaemic variables with reti-
nal abnormalities on fundus examination.3 However, the 
DETECT-2 (evaluation of screening and early detection 
strategies for type 2 diabetes and impaired glucose tol-
erance) collaboration recently reported the presence of 
diabetic retinopathy (DR) at a lower fasting plasma glu-
cose of 6.5 mmol/L.4 There is growing recognition that 
diabetes-specific end-organ complications can develop 
prior to the onset of diabetes. Prediabetes is an established 
high-risk state for progression to diabetes.5 Worldwide, 
one in 13 adults (374 million) aged 20–79 years have pre-
diabetes,6 with excess microvascular and macrovascu-
lar disease reported in these individuals compared with 
normoglycaemia.7,8

New, highly sensitive diagnostic tools have demon-
strated small nerve fibre damage and retinal neurode-
generation in prediabetes.9 Reduced sweating, measured 
using electrochemical skin conductance (ESC), shows 
sympathetic dysfunction in prediabetes,10 and corneal 
nerve parameters, measured using corneal confocal mi-
croscopy (CCM), are lower in subjects with impaired 
glucose tolerance who develop type 2 diabetes.11 In ad-
dition to well-documented changes in the retinal nerve 
fibre layer detected with optical coherence tomography 
(OCT),12 OCT-angiography (OCT-A) reveals a reduction in 
parafoveal vessel density, which precedes the onset of DR 
on fundus examination.13 Handheld electroretinography 
(ERG) data show that early retinal neurodysfunction can 
predict the onset of vision-threatening DR.14

This exploratory study compared the utility of OCT-A, 
handheld ERG, CCM and ESC for the detection of early 
neurovascular pathology in prediabetes and diabetes, to 
inform the selection of the most sensitive technologies to 
screen individuals at high risk of microvascular sequelae.

2   |   METHODS

2.1  |  Ethics statement

This study was approved by an independent National 
Health Service Research Ethics Committee in November 
2018 (REC ID: 18/LO/2126). Written informed consent 
was obtained from all participants.

2.2  |  Design, setting and population

Participants with prediabetes or type 2 diabetes were 
recruited from primary care, the South-East London 
Diabetic Eye Screening Programme (DESP) and diabetic 
eye clinics at a large teaching hospital (King's College 
Hospital). Pre-screening was conducted using primary 
care and hospital electronic patient record databases, and 
potentially eligible participants were invited to attend 
screening. Controls of similar ages with normoglycaemia 
were recruited through a King's College London research 
volunteer circular. In the absence of prior data, a sample 

retinal neurovascular structure (OCT-A) and function (ERG) may precede retin-
opathy in prediabetes, which require confirmation in larger, adequately powered 
studies.

K E Y W O R D S
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NOVELTY STATEMENT

What is already known?
•	 The glucose threshold for diabetes is histori-

cally based on the presence of retinopathy.
•	 Prediabetes is associated with micro- and mac-

rovascular disease.

What this study has found?
•	 Handheld electroretinography and optical co-

herence tomography angiography can identify 
early retinal neurovascular dysfunction, in the 
absence of retinopathy on fundus imaging.

What are the implications of the study?
•	 Point-of-care devices may facilitate screening for 

early end-organ dysfunction in prediabetes, chal-
lenging current diagnostic thresholds for diabetes.
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size of 25 per study group was chosen, based on consensus 
recommendations for exploratory analyses.15

2.3  |  Eligibility criteria

Inclusion and exclusion criteria are listed in Table 1.

2.4  |  Study groups

Participants were stratified into three groups according to 
their HbA1c: (i) normoglycaemia: <39 mmol/mol (5.7%), 
(ii) prediabetes: 39–47 mmol/mol (5.7–6.4%), and (iii) 
type 2 diabetes: >47 mmol/mol (>6.4%), as per American 
Diabetes Association criteria.

2.5  |  Clinical and laboratory assessment

Participants completed questionnaires on their age, gen-
der, ethnicity and date of diagnosis of either prediabetes or 

type 2 diabetes, if relevant. Clinical examination included 
blood pressure, height, weight and waist circumference. 
Venous blood sampling was performed for fasting glu-
cose, insulin, c-peptide, HbA1c, renal function and lipid 
profile tests. Urine samples were collected to calculate the 
albumin-to-creatinine ratio (ACR). Homeostatic model 
assessment of insulin resistance (HOMA-IR) was calcu-
lated using the following equation:

2.6  |  Handheld electroretinography

Handheld ERG was performed in each eye in no prede-
termined order by a masked examiner, using the RETeval 
device (LKC Technologies) (Appendix  S1). Testing was 
conducted in a darkened room without pharmacological 
mydriasis. Implicit time and peak amplitude of responses 
were recorded in each eye in response to dim (16-Td·s) 
and bright (32-Td·s) retinal illumination. Pupil responses 
were also measured in photopic and scotopic conditions, 
to calculate the pupil area ratio.

2.7  |  Optical coherence tomography 
angiography

After pharmacological mydriasis, images from both eyes 
were obtained in no predetermined order by a masked oph-
thalmic technician using the Heidelberg Spectralis OCT2/
OCT-A (Heidelberg Engineering GmBH) (Appendix S1). 
Images from the superficial vascular plexus (SVP) and 
deep capillary plexus (DCP) were graded for quality by a 
masked examiner. Only images with <50% of the foveal 
avascular zone (FAZ) and parafoveal regions affected by 
motion artefacts were selected for analysis. The FAZ area 
was defined as the region surrounding the fovea devoid of 
any retinal capillaries on SVP images, using an automated 
method based on the Kanno-Saitama Image-J macro, im-
plemented in MATLAB® (MathWorks; Figure 1). Where 
required, images were manually corrected by a masked 
examiner.

The parafoveal region was defined as the area bordered 
by two concentric rings with diameters of 1 and 2.5 mm 
centred on OCT-A images (Figure  1e). A validated, au-
tomated, object-oriented filtering vessel segmentation 
method was used to enhance and then binarise parafoveal 
SVP and DCP vessels. The parafoveal SVP and DCP vessel 
density was computed as the number of pixels occupied 
by the binarised vessels within the predefined ring region 
divided by the total area (mm2) of the predefined ring re-
gion (Figure 1f).

HOMA − IR =

Fasting glucose
(

mmol

L

)

× Fasting insulin
(

mIU

ml

)

22.5

T A B L E  1   Eligibility criteria

Inclusion criteria Adults aged 18 years or older

Able to comply with all study procedures 
and provide informed consent

Ocular exclusion 
criteria

Inability to obtain clear fundus imaging

Any maculopathy or retinopathy of non-
diabetic aetiology in either eye

Previous macular laser therapy

Intravitreal treatment or intraocular surgery 
within 3 months of enrolment

Previous panretinal photocoagulation laser 
treatment

Previous ocular trauma

A known diagnosis of glaucoma, uveitis, or 
corneal disease in either eye, excluding 
any corneal abrasion that resolved 
spontaneously or with topical antibiotics 
taken for less than 1 month

No restrictions on the severity of diabetic 
retinopathy or maculopathy for 
participants with type 2 diabetes

Systemic exclusion 
criteria

Photosensitive epilepsy

Systemic vascular disease causing 
retinopathy

Autoimmune disease or peripheral 
neuropathy of non-diabetic aetiology

Pharmacotherapy known to interfere with 
electrochemical skin conductance within 
48 h of testing
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2.8  |  Corneal confocal microscopy

Both eyes of all participants were scanned with the 
Heidelberg Retinal Tomograph III Rostock Cornea 
Module (Heidelberg Engineering GmBH) in no prede-
termined order by a masked optometrist, using an es-
tablished protocol (Appendix  S1).16 Up to six central 
and eight inferior whorl (IW) images were selected 
equally from both eyes by a masked examiner, using 
previously reported criteria for image quality and lo-
cation.17 Corneal nerves were traced using CCMetrics 
(University of Manchester, Manchester, UK) by two 
masked examiners, to obtain corneal nerve fibre length 
at the central cornea (CNFL-CC) or IW (CNFL-IW), 
corneal nerve fibre density, corneal nerve branch den-
sity and tortuosity coefficient.

2.9  |  Electrochemical skin conductance

ESC was measured in both hands and feet of all partici-
pants by a masked examiner, and directly calculated using 
the SUDOSCAN device (Impeto Medical, Paris, France) 
(Appendix S1).

2.10  |  Fundus photography

Dilated stereoscopic two-field colour fundus photogra-
phy was performed by a masked ophthalmic technician. 
Images were obtained in no predetermined order of the 
macula and optic disc in each eye, using the Topcon 
TRC-50DX (Topcon Corporation). For participants with 
type 2 diabetes, images were also obtained from DESP 

F I G U R E  1   Optical coherence 
tomography angiography (OCT-A) 
image analysis protocol. Figures outline 
the image processing steps to calculate 
superficial vascular plexus (SVP) 
parafoveal vessel density and foveal 
avascular zone (FAZ) area: (a) raw 
OCT-A image, (b) binarised image after 
optimally oriented flux filtering and 
thresholding, (c) overlay of raw OCT-A 
image and binarised image, (d) FAZ 
area, (e) overlayed concentric rings with 
diameters of 1 mm (green) and 2.5 mm 
(blue) to define the parafoveal region, (f) 
the parafoveal region used to calculate 
vessel density by computing pixels against 
ring area.
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if performed within 4 weeks of enrolment. Images were 
graded as per UK National Screening Committee criteria.

2.11  |  Test–retest variability

Reproducibility of ERG, OCT-A, CCM and ESC measure-
ments have been described previously.10,13,14,16

2.12  |  Statistical analysis

Data were analysed using Stata/MP 16.0 (StataCorp). 
To focus on two-way comparisons, differences between 
groups were assessed using two-tailed t-tests instead 
of ANOVA, or Mann–Whitney tests, if data were para-
metric or non-parametric, respectively. Associations 
between systemic variables and microvascular param-
eters were explored using linear regression. The CCM 
measurements were averaged between both eyes, as per 
a validated protocol. In the absence of similar proto-
cols for ESC, ERG and OCT-A, measurements for these 
technologies were analysed from the eye, hand, or foot, 
with the more abnormal reading. p < 0.05 were consid-
ered hypothesis-generating, hence adjustments were 
not made for multiple comparison testing. Regression 
analyses were performed, calculating standardised β-
coefficients to report the unit change in the depend-
ent variable in response to a single standard deviation 
change in the independent variable.

3   |   RESULTS

3.1  |  Enrolment and baseline 
characteristics

Of the 81 screened participants, three failed eligibility 
criteria, two were lost to follow-up and one withdrew 
participation. Based on HbA1c results, seven previously 
undiagnosed participants were placed in the prediabetes 
group, whilst two participants with previously diagnosed 
prediabetes were placed in the type 2 diabetes group. This 
resulted in the following participant numbers: normo-
glycaemia (n = 20); prediabetes (n = 29); type 2 diabetes 
(n = 26).

3.2  |  Clinical and laboratory data

Table 2 summarises the clinical and laboratory data for 
all participants, using means and medians for paramet-
ric and non-parametric data respectively. Differences in 

waist circumference in males were noted between nor-
moglycaemia and prediabetes (12.5 cm, 95% confidence 
interval [95% CI] 2.1–22.9) and between prediabetes 
and type 2 diabetes (9.2  cm, 95% CI 1.5–16.9); and in 
females, between normoglycaemia and type 2 diabe-
tes (13.8 cm, 95% CI 0.4–27.2). There were also differ-
ences in systolic blood pressure (10.4 mmHg, 95% CI 
1.5–19.2), HOMA-IR (0.89 units; z = −2.81, p = 0.004) 
and HDL (0.3 mmol/L; z = 2.25, p = 0.02) between nor-
moglycaemia and type 2 diabetes, and in systolic blood 
pressure (9.0 mm Hg; 95% CI 0.9–17.0) and urinary ACR 
(0.04 mg/mmol; z = −2.51, p = 0.01) between prediabe-
tes and type 2 diabetes.

Table 3 summarises parameters measured from all four 
technologies for all participants.

3.3  |  Fundus photography

Dilated stereoscopic two-field colour fundus photogra-
phy revealed no evidence of retinopathy in normogly-
caemia or prediabetes. In type 2 diabetes, 15 (58%) and 
11 (42%) participants had no DR (R0) and mild non-
proliferative DR (R1) disease in the worse eye respec-
tively. Among those with R1 disease, four participants 
had referrable maculopathy (M1) disease in both eyes 
and three had M1 disease in one eye. None of the partici-
pants had referrable moderate non-proliferative DR (R2) 
or worse in either eye.

3.4  |  Handheld electroretinography

Measurable results were obtained on all 75 partici-
pants. Differences were observed in the peak amplitude 
of retinal responses at 32-Td·s in prediabetes (5.20 μV, 
95% CI 1.54–8.86) and type 2 diabetes (5.55 μV, 95% CI 
1.99–9.12), compared to normoglycaemia. A similar dif-
ference was also observed at 16-Td·s between normo-
glycaemia and prediabetes (4.04 μV, 95% CI 0.96–7.13). 
The implicit time at 16-Td·s (z = −2.96, p = 0.003) and 
at 32-Td·s (z  =  −3.53, p  =  0.0003) was longer in type 
2 diabetes compared to prediabetes. There was a differ-
ence in implicit time between normoglycaemia and type 
2 diabetes at 32-Td·s (z = −2.71, p = 0.006), but not at 
16-Td·s (z = −1.82, p = 0.07). No differences were found 
in pupil area ratios in photopic and scotopic light condi-
tions between groups. There was a trend for worsening 
peak amplitude and implicit time at both 16-Td·s and 
32-Td·s, across all three groups, from normoglycaemia 
to type 2 diabetes (Cuzick's tests: z = −2.09, p = 0.037; 
z  =  2.01, p  =  0.044; z  =  −2.42, p  =  0.016; z  =  2.81, 
p = 0.005 respectively).
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3.5  |  Optical coherence tomography 
angiography

After excluding ungradable images, data on FAZ area 
and vessel density in the SVP were available for 69 
(92%) participants, and for the DCP in 63 (84%) par-
ticipants, in at least one eye. Parafoveal vessel den-
sity was different in both the SVP (0.045 pixels/mm2, 
z = 2.64, p = 0.008) and DCP (0.048 pixels/mm2, 95% 
CI 0.003–0.093) between normoglycaemia and predia-
betes. Between normoglycaemia and type 2 diabetes, 
SVP and DCP parafoveal vessel density both differed 
(0.050 pixels/mm2, z  =  2.39, p  =  0.016; 0.068 pixels/
mm2, 95% CI 0.027–0.110 respectively). No differences 
were noted between prediabetes and type 2 diabetes. 
A difference in FAZ area was also observed between 

normoglycaemia and type 2 diabetes (0.106 mm2, 95% 
CI 0.019–0.193). There was a trend for increasing FAZ 
area, decreasing SVP and decreasing DCP parafoveal 
vessel density across all three groups, from normo-
glycaemia to type 2 diabetes (Cuzick's tests: z = 2.58, 
p = 0.010; z = −2.35, p = 0.019; z = −2.91, p = 0.004, 
respectively).

3.6  |  Corneal confocal microscopy

Adequate CCM images were available for 71 (95%) par-
ticipants. There were no differences between prediabetes 
and the other study groups; however, mean CNFL-CC was 
lower in type 2 diabetes compared to normoglycaemia 
(4.74 mm/mm2, 95% CI 0.53–8.95).

T A B L E  2   Baseline characteristics of study participants

Baseline characteristic

Study group
p-value on two-way group 
comparisons

NGM PD T2DM
NGM vs 
PD

NGM vs 
T2DM

PD vs 
T2DM

Participants, n 20 29 26 — — —

Male sex, n (%) 9 (45.0) 16 (55.2) 15 (57.7) — — —

Age (years) 55.3 (11.1) 61.0 (9.4) 60.7 (10.4) 0.06 0.10 0.92

Time since diagnosis of prediabetes or 
diabetes, n

— <1 year: 6
1–5 years: 7
>5 years: 3
Unknown: 13

<1 year: 5
1–5 years: 10
>5 years: 9
Unknown: 2

— — —

Systolic blood pressure (mm Hg) 127.0* (16.6) 128.4‡ (16.1) 137.4*,‡ (13.2) 0.76 0.02 0.03

Diastolic blood pressure (mm Hg) 84.7 (9.4) 86.0 (10.8) 88.6 (8.6) 0.66 0.15 0.33

Number of individuals taking 
antihypertensive medications, n (%)

5 [25] 10 [34] 13 [50] — — —

Body mass index (kg/m2) 26.1 (23.5–29.7) 27.5 (23.7–29.7) 28.9 (25.2–32.2) 0.79 0.20 0.29

Waist circumference in cm in males 104.3*,‡ (11.1) 91.9 (12.6) 101.1*,‡ (7.7) 0.02 0.40 0.02

Waist circumference in cm in females 80.4† (14.8) 87.7† (13.7) 94.2 (15.3) 0.22 0.04 0.29

Number of individuals taking statins, 
n (%)

2 (10) 9 (31) 14 (54) — — —

HbA1c in mmol/mol (%) 36*,† (35–37) [5.4] 42†,‡ (40–44) [6.0] 53*,‡ (49–58) [7.0] <0.001 <0.001 <0.001

HOMA-IR (units) 1.55* (0.65–3.29) 2.13 (1.04–2.84) 2.44* (1.94–5.05) 0.28 0.004 0.09

Serum HDL (mmol/L) 1.6* (1.2–1.8) 1.4 (1.2–1.6) 1.3* (1.0–1.6) 0.23 0.03 0.17

Serum triglycerides (mmol/L) 1.0 (0.8–1.3) 1.2 (0.8–1.4) 1.1 (0.7–1.5) 0.35 0.66 0.61

eGFR (ml/min/1.73m2) 83.5 (74.0–90.0) 79.0 (67.0–90.0) 80.5 (69.0–90.0) 0.32 0.51 0.77

Urinary ACR (mg/mmol) 0.58 (0.34–1.34) 0.63‡ (0.35–1.42) 0.67‡ (0.36–1.49) 0.96 0.08 0.01

Retinopathy on fundus image, n (%) 0 – 0 – 9 (35) — — —

Notes: Participants divided by study group: (i) normoglycaemia (NGM), (ii) prediabetes (PD), and (iii) type 2 diabetes (T2DM). Parametric data are presented 
as means with standard deviations in parentheses; non-parametric data are presented as medians with interquartile ranges in parentheses. Other values are 
shown in square brackets.
Numbers in bold show statistically significant differences between groups.
Abbreviations: ACR, albumin–creatinine ratio; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
p < 0.05 on two-tailed t-tests or Mann–Whitney tests shown by: *(NGM vs T2DM), †(NGM vs PD) and ‡(PD vs T2DM).
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3.7  |  Electrochemical skin conductance

Data were available for all 75 participants. There were 
no differences observed between normoglycaemia and 
prediabetes, although eight of 21 (38%) participants with 
severe ESC-hands deficits (<40 μS) and seven of 13 (54%) 
with severe ESC-feet deficits (<50 μS) had prediabetes. 
ESC-hands was lower (11.45μS, 95% CI 0.15–22.76), but 
there was no difference in ESC-feet (9.02 μS, 95% CI −0.78 
to 18.81) in with type 2 diabetes compared to normogly-
caemia. There was a trend for worsening ESC-hands and 
ESC-feet across all three groups, from normoglycaemia 
to type 2 diabetes (Cuzick's tests: z  =  −2.12, p  =  0.034; 
z = −2.01, p = 0.045 respectively).

3.8  |  Correlation with HbA1c

Figure 2 shows scatterplots of HbA1c against the key pa-
rameters from each of the four technologies. There were 

correlations between HbA1c and CNFL (r  =  −0.293, 
p  =  0.017), ESC-hands (r  =  −0.244, p  =  0.035), peak 
amplitude at 32-Td·s (r  =  −0.256, p  =  0.028), im-
plicit time at 32-Td·s (r  =  0.422, p < 0.001) and 16-Td·s 
(r = 0.327, p = 0.005), parafoveal vessel density in the SVP 
(r = −0.238, p = 0.049), and parafoveal vessel density in 
the DCP (r = −0.3, p = 0.017).

3.9  |  Regression analysis

Table 4 displays regression coefficients (β) for the princi-
pal parameters from each of the four technologies against 
clinical and metabolic data. No patterns were observed 
on residual plots, hence a linear model was applied. In 
addition to associations with HbA1c, both implicit time 
at 32-Td·s and DCP parafoveal vessel density showed 
associations with systolic blood pressure (β  =  0.04, 
95% CI 0–0.07, p  =  0.03; β  =  −0.001, 95% CI −0.002 to 
0, p  =  0.04 respectively). HOMA-IR was a predictor of 

T A B L E  3   Neurovascular parameters of study participants

Microvascular parameter

Study group
p-value on two-way group 
comparisons

NGM PD T2DM
NGM vs 
PD

NGM vs 
T2DM

PD vs 
T2DM

Handheld electroretinography
Peak amplitude at 16-Td·s (μV) 19.4† (5.6) 15.4† (5.9) 15.9 (5.6) 0.01 0.05 0.70
Peak amplitude at 32-Td·s (μV) 22.2*,† (6.4) 17.0† (6.4) 16.7* (6.1) 0.006 0.002 0.80
Implicit time at 16-Td·s (ms) 30.4 (29.2–32.2) 30.0‡ (28.6–31.2) 31.7‡ (30.6–33.8) 0.42 0.07 0.003
Implicit time at 32-Td·s (ms) 29.2* (28.1–30.8) 28.9‡ (27.2–30.0) 31.1*,‡ (29.8–31.9) 0.46 0.006 <0.001
Pupil area ratio (unitless) 1.70 (1.4–2) 1.70 (1.5–1.9) 1.80 (1.4–1.9) 0.86 0.69 0.79
Optical coherence tomography angiography
FAZ area (mm2) 0.298* (0.134) 0.342 (0.134) 0.405* (0.131) 0.22 0.02 0.07
SVP PVD (pixels/mm2) 0.477*,† (0.421–0.510) 0.432† (0.341–0.468) 0.427* (0.359–0.461) 0.008 0.02 0.98
DCP PVD (pixels/mm2) 0.411*,† (0.068) 0.363† (0.070) 0.343* (0.070) 0.04 0.002 0.30
Corneal confocal microscopy
CNFL-CC (mm/mm2) 30.63* (6.80) 27.44 (6.85) 26.08* (5.96) 0.15 0.04 0.46
CNFL-IW (mm/mm2) 27.02 (7.44) 25.52 (7.77) 26.44 (5.92) 0.55 0.80 0.68
CNFD (fibres/mm2) 30.14 (5.91) 27.10 (6.21) 28.73 (7.44) 0.13 0.54 0.39
CNBD (branches/mm2) 85.94 (58.75–109.37) 103.54 (634.53–127.97) 93.75 (66.25–118.75) 0.43 0.53 0.76
TC (unitless) 16.74 (6.08) 17.74 (5.71) 17.65 (4.34) 0.60 0.59 0.95
Electrochemical skin conductance
ESC-hands (μS) 56.3* (17.4) 51.1 (18.8) 44.8* (19.1) 0.34 0.05 0.23
ESC-feet (μS) 71.0 (51.5–80.0) 74.0 (58.0–79.0) 63.0 (55.0–72.0) 0.91 0.35 0.17

Note: Participants divided by study group: (i) normoglycaemia (NGM), (ii) prediabetes (PD) and (iii) type 2 diabetes (T2DM). Parametric data are presented as 
means with standard deviations in parentheses; non-parametric data are presented as medians with interquartile ranges in parentheses.
Numbers in bold show differences between groups.
Abbreviations: CC, central cornea; CNBD, corneal nerve branch density; CNFD, corneal nerve fibre density; CNFL, corneal nerve fibre length; DCP, deep 
capillary plexus; ESC, electrochemical skin conductance; FAZ, foveal avascular zone; IW, inferior whorl; PVD, parafoveal vessel density; SVP, superficial 
vascular plexus, TC, tortuosity coefficient.
p < 0.05 on two-tailed t-tests or Mann–Whitney tests shown by: *(NGM vs T2DM), †(NGM vs PD) and ‡(PD vs. T2DM).
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CNFD (β = −0.94, 95% CI −1.66 to −0.21, p = 0.012) and 
CNBD (β  =  −5.02, 95% CI −10.01 to −0.05, p  =  0.048), 
but not CNFL. The FAZ area was a predictor of SVP PVD 
(β  =  −0.67, 95%CI −1.12 to −0.21, p  =  0.005) and DCP 
PVD (β = −0.7, 95% CI −1.12 to −0.28, p = 0.001). There 
was an association between implicit time at 32-Td·s and 
DCP parafoveal vessel density (β = −8.8, 95% CI −16.32 
to −1.28, p = 0.02). There were also associations between 
the FAZ area and ESC-hands (β = −47.81, 95% CI −80.9 to 
−14.74, p = 0.005) and ESC-feet (β = −53.2, 95% CI −82.91 
to −23.51, p < 0.001).

4   |   DISCUSSION

This study demonstrates that emerging, commercially 
available, retinal diagnostic devices may detect early end-
organ damage in prediabetes. The abnormalities evident 
with handheld ERG and OCT-A suggest that retinal dam-
age occurs prior to visible retinopathy. This challenges the 
current glycaemic thresholds for diabetes, that were set 
based on the detection of visible retinopathy.

Handheld ERG identified a reduction in peak ampli-
tude of retinal responses and OCT-A showed reduced 

F I G U R E  2   Scatterplots of microvascular parameters compared with HbA1c. Data presented for (a) central cornea corneal nerve fibre length 
(CNFL-CC), (b) electrochemical sweat conductance (ESC) in the hands, (c) electroretinography (ERG) peak amplitude (PA) at 32-Td·S, (d) ERG 
implicit time (IT) at 32-Td·S, (e) superficial vascular plexus (SVP) parafoveal vessel density (PVD) and (f) deep capillary plexus (DCP) PVD. Data 
logarithmically transformed and colour-coded by study group: normoglycaemia (green), prediabetes (yellow) and type 2 diabetes (red).
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parafoveal vessel density in the superficial (SVP) and deep 
(DCP) layers of the retina in the prediabetes group com-
pared to normoglycaemia. In the EUROCONDOR study 
neurodysfunction, measured using multifocal ERG, was 
found in 60% of individuals with type 2 diabetes without 
visible DR.18 This is in keeping with published literature 
suggesting that retinal neurodegeneration precedes the 
onset of blood–retinal barrier breakdown and retinal vas-
culopathy. Indeed, Harrison et al. showed that multifocal 
ERG implicit time predicts the onset of DR in adults with 
diabetes.19 Furthermore, both ERG implicit time at 32-
Td·s and DCP parafoveal vessel density were associated 
with HbA1c and systolic blood pressure.

Whilst peak amplitude has been shown to be altered 
in individuals with mild-to-moderate hypertension, to our 
knowledge this is the first report of an association between 
systolic blood pressure and ERG implicit time.20 Our data 
also suggest that retinal illuminance at 32-Td·s is a stron-
ger discriminator of retinal dysfunction than 16-Td·s. 
Putative pathological mechanisms include retinal isch-
aemia secondary to focal retinal and choroidal circulatory 

changes. The relatively low perfusion and high metabolic 
demands of the inner retina make it susceptible to meta-
bolic stresses, with retinal ganglion cells among the first 
neuronal cells to undergo diabetes-induced apoptosis.

Hypertension has also been associated with a reduc-
tion in retinal capillary density in the deep rather than su-
perficial vascular plexus.21 Similarly, vessel changes in the 
deep retinal layers are more significantly associated with 
the severity of DR and have a higher index to discriminate 
individuals with type 2 diabetes from controls.22 Ashraf 
et al. showed a differential reduction in vessel densities 
in the SVP and DCP, with greater involvement of the su-
perficial retinal vasculature in advanced DR.23 Frizziero 
et al. showed structural changes in the SVP and functional 
alterations of the mfERG in people with diabetes but no 
DR.24 Our study corroborates emerging data that vessel 
density is a more sensitive measure of early retinal dam-
age in dysglycaemia than FAZ area.24

We did not find corneal nerve loss in prediabetes. This 
contrasts with previous studies showing corneal nerve 
loss in subjects with IGT and increased neuropathic 

T A B L E  4   Regression analysis of key microvascular parameters

(a) Corneal confocal microscopy: CNFL-CC (μm)
(b) Electrochemical skin conductance: ESC-hands 
(μS)

Variable

Regression 
coefficient 
(β) 95% CI p-value

Standardised 
β coefficient

Regression 
coefficient 
(β) 95% CI p-value

Standardised 
β coefficient

Age (years) −0.09 −0.26, 0.07 0.25 −0.14 −0.09 −0.52, 0.34 0.67 −0.05

SBP (mm Hg) −0.04 −0.14, 0.07 0.49 −0.09 −0.03 −0.32, 0.25 0.81 −0.03

Waist (cm) −0.11 −0.23, 0.00 0.06 −0.23 0.05 −0.26, 0.36 0.77 0.03

BMI (kg/m2) −0.28 −0.57, 0.02 0.06 −0.23 0.06 −0.71, 0.84 0.87 −0.02

HbA1c (mmol/mol) −0.18 −0.34, −0.30 0.02* −0.29 −0.46 −0.87, −0.04 0.03* −0.25

HOMA-IR −0.68 −1.43, 0.07 0.07 −0.22 −0.87 −2.81, 1.07 0.38 −0.10

(c) Electroretinography: implicit time at 32-Td·s 
(ms)

(d) Optical coherence tomography angiography: 
DCP PVD (pixels/mm2)

Variable
Regression 
coefficient (β) 95% CI p-value

Standardised 
β coefficient

Regression 
coefficient 
(β) 95% CI p-value

Standardised  
β coefficient

Age (years) 0.05 0.00, 0.10 0.06 0.22 −0.002 −0.003, 0.002 0.08 −0.22

SBP (mmHg) 0.04 0.00, 0.07 0.03* 0.25 −0.001 −0.002, 0.000 0.04* −0.26

Waist (cm) 0.02 −0.02, 0.06 0.26 0.13 0.0006 −0.001, 0.002 0.34 0.12

BMI (kg/m2) 0.04 −0.05, 0.14 0.39 0.10 0.0001 −0.003, 0.003 0.93 0.01

HbA1c (mmol/mol) 0.11 0.06, 0.17 <0.001* 0.43 −0.003 −0.005, −0.007 0.009* −0.33

HOMA-IR 0.06 −0.20, 0.33 0.63 0.06 −0.01 −0.01, 0.01 0.33 −0.12

Note: Regression coefficients (β) with 95% confidence intervals (95% CI) shown for (a) corneal nerve fibre length on the central cornea (CNFL-CC), (b) 
electrochemical skin conductance (ESC) in the hands, (c) implicit time at 32-Td·S and (d) deep capillary plexus parafoveal vessel density (DCP PVD).
Abbreviations: BMI, body mass index; HOMA-IR, homeostatic model assessment of insulin resistance; SBP, systolic blood pressure.
p < 0.05 shown by “*”. Standardised β coefficients display the predicted unit change in the dependent variable in response to a single standard deviation change 
in the independent variable.
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symptoms, increased thermal thresholds, and reduced 
intraepidermal nerve fibre density.11 These data suggest a 
spectrum of small nerve fibre dysfunction and damage in 
people with prediabetes, and may be related to the lower-
than-expected BMI of the prediabetes group.9 Indeed, we 
have recently demonstrated corneal nerve loss in obese 
individuals without diabetes, which improved after bar-
iatric surgery.25 We found a tendency for greater corneal 
nerve loss with increasing waist size, BMI and HOMA-IR. 
We have also previously shown a reduction in corneal 
nerve fibre density but no difference in corneal nerve fibre 
length or branch density in patients with screen detected 
type 2 diabetes and good glycaemic control.26 We found no 
evidence of sudomotor dysfunction in subjects with predi-
abetes in contrast with previous data,10 and more marked 
abnormalities in the hands as opposed to the feet in pa-
tients with type 2 diabetes.

Limitations of the current dataset include the relatively 
high waist circumference and BMI of normoglycaemic 
controls, particularly males. This was in part due to diffi-
culties in recruiting non-obese individuals of similar ages, 
along with unanticipated HbA1c results and group alloca-
tion. Despite the relatively small sample size and lack of 
corroborative tests to categorise dysglycaemia (IFG,  IGT 
or both), between-group differences were demonstrated 
alongside associations with HbA1c, blood pressure and 
insulin resistance. The data generated provide a compel-
ling rationale for larger, adequately powered studies to 
confirm or refute our findings. Additionally, longitudinal 
studies are required to assess the utility of these measures 
in identifying individuals most likely to develop progres-
sive microvascular disease.

There are emerging data that early interventions in 
at-risk individuals can prevent the progression of micro-
vascular complications. Lifestyle interventions includ-
ing diet and exercise and randomised controlled trials of 
new antidiabetic medications have all shown benefits.27 
We recently demonstrated that treatment with GLP-1 or 
insulin in patients with type 2 diabetes leads to an im-
provement in corneal nerve morphology.28 In a follow-up 
to the EUROCONDOR study, topical administration of 
brimonidine and somatostatin as neuroprotective agents 
prevented the worsening of retinal neurodysfunction.29

A one-stop microvascular screening service using 
point-of-care devices may provide a feasible model for the 
early detection and follow-up of neurovascular disease 
in prediabetes and type 2 diabetes, and warrants further 
investigation.30 The presence of early end-organ damage 
could be used to individualise the diagnostic thresholds 
between normoglycaemia, prediabetes and diabetes, 
rather than relying solely on measures of hyperglycae-
mia. The two most promising devices tested in this study 
could be easily adapted to screen people with prediabetes. 

Handheld ERG is relatively inexpensive, portable, easy to 
use, does not require pupillary dilatation and could be un-
dertaken rapidly in most clinical settings. OCT-A is expen-
sive, requires a trained technician and requires pupillary 
dilatation, but is now routinely available in most hospital 
eye clinics.

In summary, rapid, non-invasive and commercially 
available devices can identify early retinal neurovascular 
damage in individuals with prediabetes.
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