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Abstract—In this paper, we propose an approach to address the
problems with ambiguity in tuning the process and observation
noises for a discrete-time linear Kalman filter. Conventional
approaches to tuning (e.g. using normalized estimation error
squared and covariance minimization) compute empirical mea-
sures of filter performance and the parameter are selected
manually or selected using some kind of optimization algorithm
to maximize these measures of performance. However, there
are two challenges with this approach. First, in theory, many
of these measures do not guarantee a unique solution due to
observability issues. Second, in practice, empirically computed
statistical quantities can be very noisy due to a finite number
of samples. We propose a method to overcome these limitations.
Our method has two main parts to it. The first is to ensure
that the tuning problem has a single unique solution. We achieve
this by simultaneously tuning the filter over multiple different
prediction intervals. Although this yields a unique solution,
practical issues (such as sampling noise) mean that it cannot
be directly applied. Therefore, we use Bayesian Optimization.
This technique handles noisy data and the local minima that it
introduces. We demonstrate our results in a reference example
and demonstrate that we are able to obtain good results. We
share the source code for the benefit of the community1.

I. INTRODUCTION

State estimation through Kalman filters consists of two main

steps: state prediction followed by a measurement update,

both predicated on models of the system. The state prediction

step uses a process model to predict how the state evolves

over time. The measurement update step uses an observation

model to relate a measured quantity to the state estimate.

Since both the process and observation models are imperfect,

errors in these models are treated as random noise terms

that are injected into the system. Most designs assume the

noise in these systems is white, zero mean and uncorrelated.

As a result, filter tuning consists of choosing the values of

the process and observation noise covariances, thereby fully

defining the noise distribution.

Given the critical role that tuning plays in the performance

of these algorithms, multiple techniques for tuning filters have

been developed [1], [2], [3]. Perhaps the simplest approach

is to use a two-stage divide-and-conquer strategy. In the first

stage, the observation covariance is estimated by operating

the system in lab conditions and monitoring the sensor noise

characteristics. In the second stage, the observation covariance

1https://github.com/arpg/kf bayesopt

is held fixed, and the process noise covariance is determined.

Since the process noises contain information about the state

disturbances and dynamic model uncertainties, which often

cannot be reproduced in lab settings, the covariance is often

chosen by collecting data from an operational domain and

quantifying the quality of the estimates. Typically a perfor-

mance cost is assigned, and the process noise covariance is

adjusted to minimize the value of that cost.

Other approaches include ‘black box’ auto-tuning methods

[4], [5], [6], which construct a cost function to be minimized

based on properties of the state or statistical principles regard-

ing estimates produced. We demonstrate that, even in simple

examples, these methods do not guarantee convergence to a

unique optimum, and frequently converge to the incorrect opti-

mum. We also shed light on the relationship between noise pa-

rameter identifiability and use of consistency metrics as fitness

measures for auto-tuning methods, particularly to understand

how mismatches between the filter-assumed and true system

noise parameters impacts search algorithm convergence. Novel

solutions to these issues are presented via measurement and

process noise perturbation strategies, and demonstrated on

reference examples via Bayesian optimization.

II. PRELMINARIES

A. Discrete and Continuous Time Systems

Our approach depends upon adjusting the prediction interval

in the Kalman filter. Therefore, it is important to understand

the relationship between the discrete and continuous time

systems. The state of the system at time t is xt. The system is

described by continuous time process model and observation

models,

ẋt = Atxt +Gtut + Γtvt,

zt = Htxt +wt,
(1)

where ut is the control input, the process noise is the additive

white process vt with intensity V, and the measurement noise

is an additive white noise process wt with continuous time

intensity W. In discrete time, the state at timestep k is xk.

The system evolution from timestep k − 1 to k is

xk = Fkxk−1 +Bkuk + vk, (2)

http://arxiv.org/abs/2108.10712v1
https://github.com/arpg/kf_bayesopt


where uk is the control input and vk is the process noise,

which is assumed to be zero mean and independent with

covariance Qk. The observation model is

zk = Hkxk +wk, (3)

where wk is the observation noise.

The discrete-time system is derived from the continuous

time system using techniques such as Van Loan’s method [7],

Fk = eAt∆t, Bk =

∫ ∆t

0

eAtmdm,

Qk =

∫ ∆t

0

eAtmΓVΓT eA
Tmdm.

(4)

If the observation is from an integrating sensor, the discrete

time observation vector is Rk = W/∆t [7]. For a non-

integrating sensor Rk = Rt, i.e. it is independent of ∆t.

B. Kalman Filter

A Kalman filter can be used to find the optimal state

estimate [8], via a two stage process of prediction followed

by measurement update. The prediction is

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (5)

Pk|k−1 = FkPk−1|k−1F
⊤
k +Qk (6)

while the update is

x̂k|k = x̂k|k−1 +Kkez,k, (7)

Pk|k = Pk|k−1 −KkSk|k−1K
⊤
k , (8)

Sk|k−1 = HkPk|k−1H
⊤
k +Rk (9)

Kk = Pk|k−1H
⊤
k S

−1

k|k−1
(10)

One important issue with this method is tuning: given Fk

and Hk, the process and observation noise processes V and W

must be determined. This is normally achieved by exploring

different values of V and W and applying a fitness measure.

C. Parameter Fitness and Tuning

Two widely used measures for fitness are the normalized es-

timation error squared (NEES) and the normalized innovation

error squared (NIS). The NEES and NIS is computed from

ǫx,k = eT
x,kP

−1

k|kex,k, (11)

ǫz,k = eT
z,kS

−1

k|k−1
ez,k, (12)

where ex,k = xk − x̂k|k, ez,k = zk − ẑk|k−1. If the filter

is statistically consistent, it can be shown that the expected

values of the NEES and the NIS are [9]

E [ǫx,k]≈nx, E [ǫz,k]≈nz, (13)

Although the ǫz,k and ǫx,k are widely used, they have the

property that they are bounded from below (by 0) but not

from above. This naturally introduces a bias or asymmetry in

the measure. To overcome this, we use a log measure instead:

JNEES =

∣

∣

∣

∣

∣

log

(

∑T

k=1
ǭx,k/T

nx

)∣

∣

∣

∣

∣

,

ǭx,k =
1

N

N
∑

i=1

ǫi
x,k.

(14)

where N is the number of Monte Carlo runs and T is the

period of sampling. JNEES is not bounded. However, when

the filter is consistent, JNEES = 0.

D. Related Work

Though the problem of Kalman filter tuning has been widely

studied, it remains a challenging open problem for which no

single best technique exists [10], [11]. These include: max-

imum likelihood and Bayesian inference [12], least squares

for data processed via Kalman smoothing [13], and auto-

/cross-correlation analysis [14]. These methods are theoret-

ically advantageous for well-defined linear systems where

noise models have known structure, and are useful in online

settings. Yet, they can also suffer from numerical stability and

implementation issues, making them harder to use. Moreover,

they are difficult to generalize for non-linear filters, e.g. since

the optimal set of noise parameters in linearization-based

filters can vary significantly with system state and time [15].

The family of ‘black box’ optimization approaches consid-

ered here are widely used. The defining features of black box

methods are the choice of filter output fitness measure and

search algorithm. Powell [3] proposed using a mean weighted

filter state error norm as a fitness measure to be minimized

via downhill simplex search. In earlier work, Oshman and

Shaviv [16] presented a fitness measure based on chi-square

tests for NEES consistency (evaluated using truth model

simulations) to tune process noise covariance parameters via

genetic algorithms. More recently, [4] developed a technique

using Bayesian optimization search and generalized filter

output fitness measures based on NIS consistency tests with

real/logged data, as well as NEES consistency tests with truth

model simulation runs. Other metrics closely related to NIS

consistency assessment [17], [18], [19] could also be adapted

as fitness measures.

While search methods like genetic algorithms and Bayesian

optimization can explore the global parameter space, the

observability (i.e. identifiability) of noise parameters relative

to estimation error and consistency-based fitness metrics is not

well understood. For instance, [16] noted that their approach

generally converged towards an infinite basin of feasible

parameters which all satisfy the NEES consistency criterion,

without necessarily minimizing the resulting steady state P.

As such, [16] also proposed a fitness measure to minimize fil-

ter covariance, while ensuring NEES consistency within some

tolerance. However, the general conditions for convergence

toward unique or multiple/infinite solutions remain unclear.

Ref. [10] addresses the observability of Q and R in discrete

time Gauss-Markov linear systems by deriving a matrix rank



test. This is theoretically useful for assessing uniqueness of

time invariant Q and R parameters, provided the hypothesized

matrix structures match the true system behavior. Otherwise,

the correctness and sensitivity of the matrix structures and

values cannot be readily deduced.

III. THE PROBLEM OF OBSERVABILITY

The non-uniqueness (non-observability) of noise parameters

via consistency-based fitness metrics is a key problem for

black box tuning approaches. We illustrate this using the

following linear example. We seek to tune the process and

observation noise processes for a 1D particle. The particle’s

state is its position and velocity,

xt =
[

xt ẋt

]⊤
.

It moves with a constant velocity with noise injected into the

acceleration. The particle’s position is periodically observed

by a non-integrating sensor. Therefore, the continuous time

equations are

A =

[

0 1
0 0

]

, G =

[

0
1

]

, H =
[

1 0
]

, Γ =

[

0
1

]

.

Van Loan’s method yields the familiar discrete-time equations

Fk =

[

1 ∆t
0 1

]

, Bk =

[

∆t2/2
∆t

]

, Hk =
[

1 0
]

,

Qk = V

[

∆t3/3 ∆t2/2
∆t2/2 ∆t

]

, Rk = W.

(15)

Suppose the actual (groundtruth) process and observation

noise intensities are Va = 1 and Wa = 0.1. However,

these values are not known, and a black-box tuning algorithm

will try candidate values for V and W. In the appendix, we

derive the expressions to compute JNEES(V,W,Va,Wa).
Fig. 1 plots these values for different choices of (V,W).
When V < Va and W < Wa (bottom left), JNEES is

high because the filter is inconsistent. When V > Va and

W > Wa (top right), JNEES is large again because the

filter is conservative. The thick curved blue line shows where

JNEES ≈ 0 and shows multiple solutions which appear

consistent. The yellow curve is the set of samples of (V,W)
for which JNEES(V,W,Va,Wa) ∈ [−0.0025, 0.0025]
(ǫx,k(V,W,Va,Wa) ∈ [1.995, 2.005]). We refer to this

curve as the “NEES line.” Fig. 2 plots the log determinants

of Pk−1|k−1(V,W) and Pa
k|k−1

(V,W,Va,Wa) along this

curve. These results largely support Oshman and Shaviv [16]:

there are multiple solutions which appear to be consistent with

the NEES, and the optimal solution occurs near where the

covariance is minimized. However, we see it is possible to

choose values which are slightly inconsistent.

There are two implications for these results. The first is that,

to compute the optimal solution, we had to derive closed form

solutions for the NEES. This is possible in linear systems only

by knowing the groundtruth noises, which are not available in

practice, and for nonlinear systems is generally unachievable

in closed form. Therefore, empirical techniques will have to be

used. Second, tuning to incorrect noises means that the filter
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Fig. 2: Log determinant of the actual and computed covariance

matrices along the NEES line. The jagged appearance is due

to the quantization in the sampling. V = Va and W = Wa

at point 149.

is not robust to changes in the configuration. For example, if

the correct values for V and W are used, the filter should

be consistent given any timestep length. Slight errors in these

values no longer means this is true.

For example, consider the filter solution when V =
1.045,W = 0.95 which is around point 130 on Fig. 2.

For ∆t = 0.1 this gives a the value JNEES = 0.0018
(ǫx,k = 2.0037). Furthermore, if one computes the values of

ǫx,k(V,W,Va,Wa) using fixed values for noise intensities

but varying ∆t, there is a clear and significant change in the

NEES for these various timestep lengths.

Our motivation is to find a way to expose the er-

rors more clearly, since they can lead to suboptimal so-

lutions in auto-tuning techniques. In Fig. 3, we compute

ǫx,k(V,W,Va,Wa) using fixed values for the noise inten-

sities but varying ∆t between 0.1 s and 1 s. As can be seen,

these results suggest that the impact of a tuning error becomes

more significant if the filter timestep changes relative to the
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timestep used when tuning the original filter.

IV. NOISE TUNING

A. The Effects of Noise Perturbations

The previous section demonstrated that the JNEES values

are ambiguous in supporting correct noise tuning. When cou-

pled with minimising the covariance, the values can be found

in theory; however, the differences can be small. The dif-

ferences become apparent at long prediction intervals, which

is computationally costly, and worse converges very slowly

over lengthening intervals. However, this can suggest that one

strategy is to use different timestep lengths and observe the

effect on estimation statistics.
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Fig. 4: Overlay of NEES curves with values of ∆t =
[0.1, 0.2, 0.3, 0.4, 0.5]. Each cell contains the count of the

number of runs within which a NEES value of 2 is obtained.

To motivate this, Fig. 4 shows the effect of computing

over several different timesteps. For each timestep, van Loan’s

technique was used to construct the system and the NEES was

calculated. As before, only the values close to 2 were kept.

For each value of ∆t a different NEES curve is generated.

All of the curves intersect at the same point which is the

groundtruth value of the intensity. This is hardly surprising. If

the filter is tuned to the groundtruth values, it should generate

the same NEES irrespective of the timestep length. However,

it also suggests that the observability of the optimal tuning

parameters can be influenced by timestep length.

The foregoing has been conducted purely using a theoretical

analysis of NEES calculations. To test the effect of this, we

used 200 Monte Carlo runs and computed JNEES using (14).

Figs. 5a and 5b plot the JNEES values for ∆t = 0.1 and ∆t =
0.5 respectively. These show that, despite sampling noise, we

see a very similar behaviour again with the curve being shifted

and values along a ridge being very similar.

B. Cost Function for Optimization

The conclusion of the foregoing argument is that there is

implicit dependence of JNEES as a function of ∆t. To our

knowledge, this is not very well-explored in the literature. In

auto-tuning Kalman filter algorithms, the JNEES is typically

evaluated conditioned upon a single value of ∆t. Of course,

the alternative, where ∆t is allowed to vary as a parameter

to JNEES , results in a computationally expensive parameter

search. Yet the extreme value and implicit function theorems

imply that such a minimum exists somewhere between ∆t =
(0, h) where h is “small,” as is typical for numerical integra-

tion and required for local truncation error to be acceptably

low, and as long as there are no discontinuities in F or S.

To avoid the need for an expensive search, we choose a

sample of ∆t values and a logical operation in our search:

for each pair [V,W], W ∈ [0.01, 0.5], V ∈ [0.1, 5.0],
groundtruth V = 1,W = 0.1 we calculate JNEES using

∆t = 0.1 and ∆t = 0.5. Then, we only record the larger

JNEES and get another plot. The results are shown in Fig.

5a,5b,5c. Note the plots show lg(JNEES) because, in this way,

JNEES smaller than 1 will be negative, its color is more clear.

In Fig.5a, there is a blue curve shows the small JNEES . The

red arrow points out the minimum value, which is not around

the groundtruth. in Figure 5b, the minimum is also not at the

groundtruth. We find that the global minimum JNEES is quite

random when ∆t = 0.1 or ∆t = 0.5 or other single ∆t. Thus,

when we use an optimization algorithm to search the surface,

the possible estimations can be quite random. However, this

situation is different in case Figure 5c. The global minimum

is always around [0.1,1]. It is obvious now the ∆t influences

the cost function distribution. It would be interesting to see

the mapping between different ∆t value and JNEES , which

is shown in Figure 6. It shows that when both V,W are

around the groundtruth value, JNEES is small whatever the

∆t is. These experiments motivates us to tune the KF with

different dt and find the solution that can give consistent

JNEES . The solution should be the close to the groundtruth.

In our experiment, we found that find the solution that gives

consistent JNEES with only two different dt are sufficient.

V. EXPERIMENTS

To investigate the effects of choosing multiple sample times,

we apply a Bayesian optimization (BO) auto-tuning algorithm

on two linear systems, namely: a 1D tracking problem and
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Fig. 5: In Figures (a), (b), (c), the colorbar shows the value of lg(JNEES). In (a), ∆t = 0.1; In (b), ∆t = 0.5; In (c), we

calculate JNEES at both ∆t for each [V,W] pair but only pick the larger cost. The red arrow indicates where the JNEES is

the smallest in each plot. We can see that only in (c) we have a global minima around the groundtruth value [V = 1,W = 0.1]

(a) (b)

Fig. 6: Figure (a) fixes W = 0.1 and plots V,∆t versus lg(JNEES). Figure (b) fixes V = 1 and plots W,∆t versus

lg(JNEES). We can see only when both V,W are around the groundtruth value, JNEES is small whatever the ∆t is.

a 2D tracking problem. In both examples, the process and

measurement noises parameters are optimized together. We

run two examples for the following purposes.

A. Bayesian optimization tuning

• 1D tracking: For the 1D (particle) tracking system we

introduced before, we can see the benefits of using

multiple sample time during the optimization. We display

the numerical optimization result and show the process

of BO, from where we can see the exploration ability of

the BO.

• 2D tracking system: In the 2D tracking system, we are

going to optimize 4D parameters. i.e. 2 process noise

parameters and 2 measurement noise parameters. We

perform the χ2 test to show that the filter is consistent.

We use our previous work’s optimization process [4]. i.e.

GPBO (Gaussian Process BO). However, now we run the

Kalman filter (N Monte Carlo simulations) with two sample

time (∆t = 0.1 , ∆t = 0.5) for each set of the noise estimation.

We pick the larger cost and feed it into the BO. The motivation

is that we want the cost remain small with different sample

time.

Results are compared from four auto-tuning strategies. The

first one is the proposed GPBO algorithm with the JNEES

cost function. To assess the value of the multiple sample

time strategy, we compare it to our previous approach, where



we use ∆t = 0.1 only. To further extend our previous

work, we compare the GPBO with the Downhill Simplex

(DS) algorithm. From Figure 5c, we can see that even the

groundtruth is at the correct position, the cost along the

blue curve is close to each other, which brings a challenge

to the optimizer. We show that the GPBO can efficiently

explore the cost surface and achieve better results than the

Downhill Simplex algorithm. After optimization convergence

of each method across 200 Monte Carlo runs, the following

are evaluated to compare the resulting filter tuning solutions:

the numerical value of the optimized noise parameters; filter

dynamic consistency, i.e. the error between the groundtruth

state and the estimation should be within a threshold σ; and

BO surrogate model visualizations, to demonstrate the solution

search process.

B. 1D tracking system

The BO searching range for V is [0.1, 5] and W is

[0.01, 0.5]. Two sampling periods (∆t = 0.1s, ∆t = 0.5s)

were used. In the real world implementation, we should choose

the two sample times as different as possible. Each Monte

Carlo run was carried out for T = 200∆t. For the kernel

function, the Matérn Kernel [20] with ν = 3 and automatic

relevance determination (ARD) was used. For remaining pa-

rameters such as the kernel mean, kernel hyperparmeter re-

learn iteration number and the acquisition function optimiza-

tion number, default values from the BO library [21] are used.

GPBO was performed 50 times to optimize V and W. The

results are shown in Table I. From the table we can see our

optimization appears robust: the estimation variance is small

and the mean is close to the groundtruth value, which is a

significant improvement from our previous GPBO method.

Note also that the estimation has a large variance owing to the

simulations’ stochasticity. The downhill simplex algorithm, as

expected, can get trapped in different local minima because

we initialize the sample at different points. Even with the

multiple timestep strategy, the downhill simplex struggles

to converge to the groundtruth. An effective optimizer must

explore different regions of parameter space to find the global

minima, a strength of BO. Figure 7 shows the convergence of

the resulting GPBO surrogate function and the set of sampled

v and w parameters across 200 iterations. From Figure 7, we

can see as the number of iterations increases, GPBO explores

increasingly around the local optimum. Finally, the optimal

solution is found around V = 1, W = 0.1.

C. 2D tracking system

So far, we have only considered the motion of a 1D

particle which required two scalar intensity values. However,

our method directly extends to vector-valued intensity values.

There, in this section we demonstrate the performance of

the approach in a 2D tracking system, where the state is

x = [x, y, ẋ, ẏ]T . We assume the same control input as in the

previous systems, add white Gaussian process noise to [ẋ, ẏ],

and add white Gaussian measurement noise to position [x, y].
The discrete time system is

F =









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









B =









0.5∆t2

0.5∆t2

∆t
∆t









Q =











∆t3

3
V0 0 ∆t2

2
V0 0

0 ∆t3

3
V1 0 ∆t2

2
V1

∆t2

2
V0 0 ∆tV0 0

0 ∆t2

2
V1 0 ∆tV1











(16)

We apply the same optimization methods as in the tracking

1D example for 50 independent trials. We need to increase

the GPBO initial sample to 120 and the iteration to 300 since

the dimension is higher.

For each optimization result of the algorithm, we apply

it to the Kalman Filter again with 200 Monte Carlo runs

and record the E [ǭz,k] ,E [ǭx,k] ,E [ǭz,k ǭz,k] ,E [ǭx,kǭx,k] for

validation. We choose sample time dt = 0.1 to collect the

data. Note that we don’t draw the box plot of the downhill

sample algorithm with a single sample time since its value is

too large. The range of the box plots of other methods will be

too small to visualize if we draw it. As we can see, generally

the proposed method has better NIS and covariance. However,

we still hope them can have a better match to the expectations,

which brings questions to our future work. 1: If we use NIS

based cost function, what the NEES value will be from the

optimization result? 2: Is it possible to add the covariance

into the cost function constraints? If so, can the NEES/NIS

variance value be more consistent with the expectation?

Finally, we perform the direct consistency check of the

proposed method for both 1D and 2D system. We randomly

choose one the optimization result and apply it to the Kalman

filter. Then we plot each timestep’s error and the 2σ boundary,

where the σ =
√

Pk|k. If the system is consistent, around 95%
error should be within 2σ range.

VI. CONCLUSION

We have demonstrated that there is implicit dependence of

JNEES on ∆t, and that as a result, many auto-tuning algo-

rithms face significant challenge short of running a search over

multi-dimensional space for optimal noise parameters and their

corresponding ∆t. While it is true that around the groundtruth

noise parameters, JNEES will be small independent of what

∆t is, we identify that for other guesses at noise parameters,

the JNEES is highly dependent on timestep choice. To address

this, we propose a simple sampling procedure that appears

to remedy this problem while allaying grievous increases in

computational cost. Finally, we demonstrate this new approach

on an auto-tuning algorithm for Kalman filter noise parame-

ters. As future work, we believe a proof of this technique

would be highly valuable. Furthermore, there exists an open

investigation into the effectiveness of various statistical tests

for significance in the mean and variance of the auto-tuning

algorithms.
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Fig. 7: GPBO surrogate model for JNEES cost, showing initial random sample points (green dots) and estimations (red crosses)

infered by GPBO in different iterations. From (a) to (d), with more and more estimations, our algorithm successfully explore

the cost space. The final surrogate model is similar to the real cost surface from Figure 5c. Finally, it finds the minimum

around v = 1 and w = 0.1.

TABLE I: Tracking 1D Optimization result

GPBO, ∆t = 0.1, 0.5 GPBO, ∆t = 0.1 DS ∆t = 0.1, 0.5 DS ∆t = 0.1 Groundtruth
v w v w v w v w

Mean 0.958 0.152 1.682 0.296 0.602 0.182 0.317 0.145 w = 0.1
Variance 0.115 0.010 2.043 0.076 0.094 0.011 0.412 0.012 v = 1
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Fig. 8: Orange lines: 2σ bounds; blue line: error between the estimated states and the real states in KF’s each step. If the

system is consistent, around 95% error should be within 2σ range. (a) is from the estimation result of 1D tracking system. (c)

is from 2D tracking system.

APPENDIX

In this appendix, we compute the expression to derive a

closed-form solution for the NEES directly from the system

equations. We assume that the system model equations At,

Gt, Γt and Ht are correct. Only the noise intensities are

unknown. For simplicity, we follow the work of Nishimura and

Hellner and compute the NEES of the predicted covariance.

First consider the filter which has been tuned with the inten-



GPBO2 GPBO1 DS2

3

4

5

6

7

8
NEES

(a)

GPBO2 GPBO DS2

1

2

3

4

5

NIS

(b)

GPBO2 GPBO DS2

5

10

15

20

25
NEES Var

(c)

GPBO2 GPBO DS2
0

5

10

15

20

25
NIS Var

(d)

Fig. 9: For each method’s 50 runs result, we apply them to the Kalman filter, record the

E [ǭz,k] ,E [ǭx,k] ,E [ǭz,kǭz,k] ,E [ǭx,kǭx,k] and plot the box plot. Red dash line: Expected value. GPBO2: GPBO with

two sample time approach; GPBO1: GPBO with sample time at 0.1; DS2: Downhill Simplex with two sample time approach.

sities V and W. Using van Loan’s method, we compute the

discrete time process model together with the noise covariance

matrices Qk(V) and Rk(W), where we have included the

intensities to emphasise the functional dependency. The filter

will then predict the covariance history according to

Pk|k−1(V,W) = Xk(V,W)Pk−1|k−2(V,W)X⊤
k (V,W)

+Kk(V,W)Rk(W)K⊤
k (V,W)

+Qk(V),
(17)

where

Kk(V,W) = FkKk(V,W) (18)

Xk(V,W) = Fk −Kk(V,W)Hk, (19)

and Kk(V,W) is the usual Kalman filter weight.

However, the real system has noise intensities Va and Wa.

Given that there are no errors in the system model equations,

the expected value of the mean squared error of the filter is

actually

Pa
k|k−1

(V,W,Va,Wa) =

Xk(V,W)Pa
k−1|k−2

(V,W,Va,Wa)X⊤
k (V,W)

+Kk(V,W)Rk(W
a)K⊤

k (V,W) +Qk(V
a).

(20)

Given this, the expected value of the NEES is

E [ǫx,k] (V,W,Va,Wa) =

trace
(

P−1

k|k−1
(V,W)Pa

k|k−1
(V,W,Va,Wa)

)

.
(21)

The JNEES of this value is

JNEES(V,W,Va,Wa) =

∣

∣

∣

∣

log
E [ǫx,k] (V,W,Va,Wa)

nx

∣

∣

∣

∣

.

(22)

REFERENCES

[1] B. M. Åkesson, J. B. Jørgensen, N. K. Poulsen, and S. B. Jørgensen, “A
tool for Kalman filter tuning,” in Computer Aided Chemical Engineering.
Elsevier, 2007, vol. 24, pp. 859–864.
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