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SUMMARY  1 

Epithelial cell organization and the mechanical stability of tissues are closely related. 2 

In this context, it has been recently shown that packing optimization in bended/folded 3 

epithelia is achieved by an energy minimization mechanism that leads to a complex 4 

cellular shape: the scutoid. Here we focus on the relationship between this shape and 5 

the connectivity between cells. We use a combination of computational, experimental, 6 

and biophysical approaches to examine how energy drivers affect the three-7 

dimensional (3D) packing of tubular epithelia. We propose an energy-based stochastic 8 

model that explain the 3D cellular connectivity. Then, we challenge it by 9 

experimentally reducing the cell adhesion. As a result, we observed an increment on 10 

the appearance of scutoids that correlated with a decrease of the energy barrier 11 

necessary to connect with new cells. We conclude that tubular epithelia satisfy a 12 

quantitative biophysical principle, that links tissue geometry and energetics with the 13 

average cellular connectivity. 14 
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INTRODUCTION  1 

During the last decades much progress has been achieved in the understanding of 2 

the emergence of self-organization in tissues. This problem has been addressed from 3 

the viewpoint of energetics considerations (Alt et al., 2017; Canela-Xandri et al., 2011; 4 

Fletcher et al., 2014; Misra et al., 2017; Nelson et al., 2005; Siedlik et al., 2017; 5 

Sugimura et al., 2016; Trepat et al., 2009), material-like properties (Bi et al., 2015; 6 

Campàs et al., 2014; Latorre et al., 2018; Mongera et al., 2018; Pérez-González et al., 7 

2019; Yang et al., 2017), and the analysis of the cellular packing (Curran et al., 2017; 8 

Farhadifar et al., 2007; Gibson et al., 2006; Gibson et al., 2011; Gómez et al., 2021; 9 

Honda, 1978; Lewis, 1928; Mao et al., 2013; Sanchez-Gutierrez et al., 2016; Thompson, 10 

1945). As for the latter, the analysis of epithelial surfaces as tessellations of convex 11 

polygons has revealed mathematical and physical principles with biological 12 

consequences. One well-known example are the implications of the celebrated Euler´s 13 

formula, 𝑉 − 𝐸 + 𝐹 = 𝜒 (STAR Methods) (Euler, 1767). This formula implies that cells 14 

in packed tissues have, on average, six neighbors (i.e., the average cellular connectivity 15 

on a surface reads 〈𝑛!"〉 = 6) (Reinhardt, 1918; Wetzel, 1926). This principle has 16 

biological consequences, for example, the degree of cellular connectivity regulates the 17 

strength of the cell-cell juxtracrine signaling (Guignard et al., 2020; Sharma et al., 2019; 18 

Tung et al., 2012).  19 

For a long time, the validity of this mathematical concept (i.e., each cell, on average, 20 

connects with six neighboring cells) has been assumed in three dimensions (3D): 21 

〈𝑛!"〉 = 6 ⟹	 〈𝑛#"〉 = 6. Such an assumption is rooted in the common idealization of 22 

epithelial cells as regular prismatic solids in either planar or bended epithelia. 23 

However, the recent discovery of more complex cellular shapes in epithelia, i.e., 24 

scutoids, that achieve an efficient 3D tissue packing has set a new paradigm that has 25 

not been yet fully explored (Box A) (Gómez-Gálvez et al., 2018; Mughal et al., 2018; 26 

Rupprecht et al., 2017). Scutoidal cellular shapes are the result of intercalations among 27 

cells along the apico-basal axis (Box A-C and Fig. 1A). This phenomenon is then a spatial 28 

version of the so-called T1 transitions that produce rearrangements of neighboring 29 

cells in the plane as a function of time in numerous developmental processes (Box B) 30 

(Bertet et al., 2004; Irvine and Wieschaus, 1994; Spencer et al., 2017). Scutoids imply 31 
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necessarily changes in the neighboring relationship between cells in a 3D spatial 1 

context and, consequently, modify the connectivity properties of cells (Box C). Still, the 2 

analysis of tissue organization in 3D and the corresponding biophysical insight have 3 

been hindered by the technical difficulties to accurately segment and 3D-reconstruct 4 

cells, especially in curved tissues. In addition, very few computational models account 5 

for the presence of apico-basal transitions to investigate 3D self-organization in tissues 6 

(Gómez-Gálvez et al., 2018; Ioannou et al., 2020; Mughal et al., 2018; Okuda et al., 7 

2019; Rupprecht et al., 2017). Moreover, from an energetics viewpoint, while the 8 

appearance of scutoids can be explained by a minimal model based on a surface/line 9 

tension minimization mechanism (Gómez-Gálvez et al., 2018; Mughal et al., 2018; 10 

Okuda et al., 2019; Rupprecht et al., 2017), the role played by additional energetic 11 

contributions to modulate the frequency of apico-basal intercalations is unknown. 12 

The analysis of 3D packing is in turn utterly relevant in cubic and columnar monolayer 13 

tubular epithelia, where scutoids appear more frequently (Gómez-Gálvez et al., 2018; 14 

Gómez et al., 2021; Iruela-Arispe and Beitel, 2013; Sanchez-Corrales et al., 2018). 15 

Epithelial tubes are in fact the primary developmental structures in all organisms with 16 

bilateral symmetry (Gilbert and Barresi, 2013), and tubulogenesis is fundamental in a 17 

broad variety of key developmental processes, including gastrulation and neurulation 18 

(Colas and Schoenwolf, 2001; Iruela-Arispe and Beitel, 2013; Leptin and Grunewald, 19 

1990; Nelson, 2009; Pilot and Lecuit, 2005; Röper, 2018; Swanson and Beitel, 2006). 20 

Furthermore,  epithelial tubes are the essential functional unit of many mammalian 21 

organs, including glands, components of the digestive apparatus, lungs, and kidney 22 

(Huebner and Ewald, 2014).  23 

Here, we study the packing and the 3D cellular connectivity properties of epithelial 24 

tubes. We analyze the effect of different energetic contributions to modulate the 25 

frequency of apico-basal intercalations; demonstrate that the presence of scutoids 26 

implies a breakdown of the principle 〈𝑛#"〉 = 6; and reveal a quantitative biophysical 27 

principle that links the 3D cellular connectivity, energetics, and geometrical descriptors 28 

(e.g., tissue curvature/thickness). Our findings are supported by i) a computational 29 

model that realistically renders the 3D cellular organization of tubular epithelia 30 

(including the appearance of scutoids); ii) experimental data of wildtype (wt) and 31 
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mutant epithelial tubes (Drosophila’s salivary gland) whose 3D cellular structure has 1 

been accurately characterized by means of a computer-aided image analysis pipeline. 2 

And iii), a biophysical model, supported by mathematical calculations, that connects 3 

the tissue energetics with the 3D organization of epithelial tubes.  4 

 5 

RESULTS 6 

The Voronoi computational tubular model supports a relationship between energy 7 

profiles and the intercalation propensity  8 

To understand how the geometry of tubular epithelia and different energy 9 

contributions affect the 3D cellular packing and connectivity of these tissues, we 10 

designed and implemented a computational epithelial model that follows the 11 

principles of Voronoi tessellations (Box D, E) (Gómez-Gálvez et al., 2018). In brief, we 12 

generated 3D models of epithelial tubes by populating with seeds the apical surface, 13 

Σ$ (light blue points in Fig. 1B) and implementing normal projections of those seeds 14 

up to the basal surface, Σ% (dark blue points in Fig. 1B). Each seed and its projection 15 

corresponded to an individual cell of a tube. At each surface section Σ (from apical to 16 

basal) a 2D Voronoi diagram was performed, and the collection of those tessellations 17 

rendered the 3D cellular geometry of cells (see details in STAR Methods). We point out 18 

that we do not implement any temporal dynamics to the seeds. Thus, our 19 

computational model is suited to static epithelial configurations as the ones 20 

experimentally reported herein (see below). 21 

Epithelial tubes appear in nature with very different thicknesses and cellular 22 

arrangements. In order to explore how these features influence the 3D packing 23 

properties of tubular epithelia we built diverse in silico Voronoi tubes. First, to 24 

investigate the effect of tissue thickness we computed Voronoi tubes with different 25 

surface ratios 𝑠 = 𝑅/𝑅$ (𝑅 and 𝑅$ being the radial coordinate of the tube and the 26 

apical radius respectively, Fig. 1C, D). We used 𝑠-steps of 0.5 up to 𝑠 = 10, so we were 27 

able to explore 19 different values of the basal radius, 𝑅% (Fig.  1D). Second, we 28 

generated 10 different configurations in terms of the disorder level of the spatial 29 

positions of the cellular seeds on the apical surface and the corresponding Voronoi 30 

tessellations (V1 to V10, Fig.  1D). To that end, we used a fully random Voronoi 31 
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tessellation, i.e., randomized positions of cellular seeds, as the most disordered 1 

pattern (V1). That configuration was made progressively more uniform (i.e., spatially 2 

ordered) after nine successive iterations of the homogenizing Lloyd’s algorithm (Box E 3 

and STAR Methods) (Fig. 1D). The resulting set of 10 different cellular arrangements 4 

(V1 to V10) with increasing order properties conforms a Centroidal Voronoi 5 

Tessellation (CVT) scale that has been proved useful to analyze the effect of the 6 

topological organization of tissues and to simulate different tissues and/or 7 

pathological conditions (Sanchez-Gutierrez et al., 2016; Vicente-Munuera et al., 2020).  8 

We used the CVT scale to investigate how the average number of apico-basal 9 

intercalations per cell, 〈𝑖〉, changes as a function of the apico-basal coordinate, 𝑠, and 10 

the disorder level (Fig. 1D). As previously reported, we found that the number of apico-11 

basal transitions (Fig. 1D) and scutoids (Fig. S1) increased with 𝑠 (Gómez-Gálvez et al., 12 

2018). As for the effect of the disorder level, we found that only in the case of fully 13 

disordered tubes (i.e., V1: random case), and for low values of 𝑠, there are more 14 

intercalations, whereas for the rest of cases we observed that 〈𝑖〉 is fairly independent 15 

of the CVT scale (Fig. 1D). 16 

Energy contributions can be linked to geometric features of the shapes of epithelial 17 

cells (Alt et al., 2017), see Box F-H. We used the set of Voronoi tubes (V1 to V10) to 18 

explore surface tension, elasticity, and apical contractility energies, since these energy 19 

contributions have been shown to play key roles in the organization of epithelia (Alt et 20 

al., 2017; Farhadifar et al., 2007). As a first step, we estimated the average cellular 21 

energy profiles as a function of 𝑠 in the computational tubular model (Fig. 1E-G). The 22 

average surface tension energy (Box F) is related to the average lateral area of the 23 

cells, 〈𝐴〉, and therefore increase with the surface ratio, 𝑠.  Our results revealed that 24 

〈𝐴〉 is seemingly independent of the CVT scale (Fig. 1E). Consequently, the average cell 25 

surface tension energy profile does not depend on the level of the topological disorder. 26 

The average contractile energy (Box G) is related to the average and the variance of 27 

the apical perimeter, 𝐿, (Gilbert and Barresi, 2013; Farhadifar et al., 2007) therefore it 28 

does not depend on the surface ratio, 𝑠. The Voronoi model revealed that 〈𝐿〉 is CVT 29 

independent, but the apical perimeter fluctuations decrease as the CVT scale increases 30 

(Fig. 1F). Finally, the average cell elastic energy (Gelbart et al., 2012; Odell et al., 1981) 31 
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depends on the average and the variance of the cellular volume (Box H). Since the 1 

average cell volume 〈𝑉〉 is, by construction, independent of the CVT scale (STAR 2 

Methods), the average cellular elastic energy increases with the cellular volume 3 

fluctuations, that in turn decrease with the CVT scale (Fig. 1G).  4 

In order to evaluate how the appearance of scutoids is modulated by these energy 5 

contributions for different values of the tissue thickness, we computed the cross-6 

correlation functions, 𝐶(𝑠), between the average cellular energy profiles, 〈𝐸&〉 (𝑍 being 7 

𝐴 or 𝑉, i.e., surface tension or elastic terms), and the average number of apico-basal 8 

intercalations, 〈𝑖〉 (Fig. 1H and STAR Methods). The cross-correlation measures the 9 

similarity between two signals as a function of the displacement (or lag) of one signal 10 

relative to the other. In our case the displacement/lag refers to the apico-basal 11 

coordinate, 𝑠, and consequently we inquire into the possibility that energetic 12 

contributions either precede or follow the appearance of apico-basal intercalations.  13 

Our results indicate that maximum correlations are obtained at zero lag independently 14 

of the disorder level and that the appearance of scutoids correlates more significantly 15 

with the surface tension energy profile than with the elastic energy: 95% vs. 80% 16 

respectively. The latter is in agreement with previous studies that have shown that 17 

surface tension energy minimization is the main cause underlying the appearance of 18 

scutoids (Gómez-Gálvez et al., 2018; Gómez et al., 2021; Mughal et al., 2018). Also, 19 

when assessing the extra effect of the energy input due to the apical contractility term 20 

to the surface tension energy, 〈𝐸'〉 + 〈𝐸(〉, we found that it increases the correlation 21 

between energy profile and the number of intercalations up to 98%, but it does not 22 

lead to any change in the correlation due to elastic terms, 〈𝐸)〉 + 〈𝐸(〉 (Fig. 1H).  23 

We further examined the cross-correlation between the gradient of cellular 24 

intercalations along the apico-basal axis, 𝜕*〈𝑖〉 = 𝜕〈𝑖〉/𝜕𝑠, and the gradient of the 25 

energy, 𝜕*〈𝐸&〉. In this way, we evaluated the level of correspondence between the 26 

variation of the number of intercalations and the changes of the energy as a function 27 

of the radial coordinate, 𝑠. We found that, independently of the CVT scale, 𝜕*〈𝑖〉 28 

correlates slightly stronger with changes in the surface tension energy, 𝜕*〈𝐸'〉, than 29 

with changes of the elastic contribution, 𝜕*〈𝐸)〉: ~80% versus ~75% respectively at 30 

optimal lag (Fig. 1I). Notably, 𝜕*〈𝑖〉 lags behind 𝜕*〈𝐸&〉, i.e., the optimal lag for which 31 
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𝐶(𝑠) is the largest is located at 𝑠 > 0.	 Therefore, energy variations along the apico-1 

basal axis seem to precede changes in the number of intercalations that, in turn, 2 

suggests an instructive role of the former over the latter.  3 

Summing up, the Voronoi tubular model supports the idea that surface tension 4 

energy is the more relevant contribution regulating the appearance of apico-basal 5 

intercalations, and suggests that elastic terms play a role, yet less important than 6 

surface tension, for modulating the intercalation propensity (see Discussion). 7 

 8 

The Voronoi tubular model suggests a link between 3D tissue packing and energy 9 

cues 10 

To link quantitatively energy traits and 3D packing, we implemented a benchmark 11 

able to simultaneously reveal the existence of apico-basal intercalations (scutoids) and 12 

the polygonal distribution of cells at the apical and the basal surfaces. To that end, we 13 

computed the probability that cells change their polygonal class between the apical 14 

and basal surfaces. Thus, the components (i.e., bins) of this distribution along the 15 

diagonal account for cells that have the same polygonal class at apical and basal 16 

surfaces, whereas the spreading away from the diagonal ensures the existence of 17 

scutoids and, consequently, changes in the cellular 3D connectivity (Fig. 2A and STAR 18 

Methods). Our data revealed that, regardless of the value of the tissue thickness (and 19 

the CVT scale), the dominant apical-basal polygonal class corresponds to cells with six 20 

neighbors (Fig. 2A). As the tissue thickness, 𝑠% = 𝑅%/𝑅$, increases, more scutoidal 21 

shapes with a distinct number of neighbors in apical and basal surfaces appeared. This 22 

feature was revealed by the increasing value of the spreading away from the diagonal, 23 

	𝜂! (STAR Methods and Table S1). In that regard, in agreement with the results shown 24 

in Fig. 1D-G, our data indicates that 	𝜂! increases with the tissue thickness and 25 

decreases with the CVT scale (Fig. 2B). Also, the cross-correlation analysis between the 26 

spreading coefficient and energy profiles agrees with Fig. 1H and reveals that 27 

independently of the CVT scale the neighbor exchanges correlate more strongly with 28 

the surface tension energy profile than with the elastic contribution: 90% vs. 70% at 29 

zero (optimal) lag (Fig. 2C). Furthermore, we computed the average number of total 30 

contacts between cells (i.e., the average 3D cellular connectivity), 〈𝑛#"〉, as a function 31 
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of the surface ratio (i.e., the radial coordinate) and the Voronoi class (i.e., the level of 1 

cellular disorder in the tissue) (Fig. S1). Our data indicated, that cells, on average, are 2 

connected to more than six cells, i.e., 〈𝑛#"〉 > 6, and the results are quantitatively 3 

consistent with a mathematical derivation that shows that 〈𝑛#"〉 is linearly 4 

proportional to the number of apico-basal intercalations 〈𝑖〉: 〈𝑛#"〉 = 6 + 〈𝑖〉/2 (STAR 5 

Methods and Fig. S1). 6 

 7 

The Voronoi tubular model recapitulates the properties of in vivo epithelial tubes 8 

In order to compare the results obtained in our Voronoi computational tubular 9 

models against the properties found in real tissues, we implemented a methodological 10 

pipeline that combines several image analysis techniques to accurately reconstruct the 11 

3D shapes of cells of in vivo epithelial tubes (Arganda-Carreras et al., 2017; Franco-12 

Barranco et al., 2021; Machado et al., 2019) (STAR Methods). We used the Drosophila 13 

larval salivary gland, a cubic monolayer epithelium, as a model due to its ideal 14 

characteristics to study complex tubular developmental structures (Girdler and Roper, 15 

2014) (Fig. 3A). Also, cellular growth and division, as well as possible global tissue 16 

deformation processes, do not occur in the Drosophila's salivary gland at the 17 

developmental stage of our observations (i.e. the tissue is static); a fact that enables 18 

the comparison with the Voronoi computational model. 19 

We determined the average basal surface ratio (thickness) of the salivary glands, 20 

〈𝑠%〉 = 8.5 ± 1.1, the average percentage of scutoids, 72 ± 12%, the average 3D 21 

connectivity, 〈𝑛#"(𝑠%)〉 = 6.6 ± 0.2, and the average number of apico-basal 22 

intercalations per cell, 〈𝑖(𝑠%)〉 = 1.2 ± 0.3, thus confirming in vivo the validity of the 23 

formula 〈𝑛#"〉 = 6 + 〈𝑖〉/2 (STAR Methods and Fig. S1). We also calculated the 24 

spreading coefficient of the 3D connectivity, 𝜂! = 1.2 ∙ 10+!, (Fig. 3B), and the 2D 25 

polygonal distributions in the apical and basal surfaces (Fig. S2). We observed a small, 26 

but significant, increase of the number of hexagons on the basal surface of the wt 27 

glands (see Fig. S2, Table S1).  28 

Further, in order to derive how energy contributions change as a function of the 29 

apico-basal coordinate, 𝑠, we implemented an algorithm that obtains the concentric 30 

radial sections of in vivo tubes from apical to basal (Yang et al., 2019) (STAR Methods). 31 
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These sections were used to quantify as a function of the surface ratio, 𝑠, the number 1 

of apico-basal intercalations, 〈𝑖(𝑠)〉, the average lateral area, 〈𝐴(𝑠)〉, and the cellular 2 

volume fluctuations, 𝜎)!(𝑠) (Fig. 3C). Similarly to the procedure that we implemented 3 

in the Voronoi tubular model (Fig. 1H, I), we used these in vivo data to perform a cross-4 

correlation analysis between 〈𝑖〉 and the energy contributions 〈𝐸&〉 (𝑍 being 𝐴 or 𝑉, 5 

i.e., surface tension or elastic terms). The results indicated that in vivo intercalations 6 

also correlate stronger with surface tension energy contributions than with elastic 7 

terms: ~98% vs. ~90% at zero (optimal) lag (Fig. 3D). We also found that in this case, 8 

by including the extra contribution from the apical contractile energy to the surface 9 

tension energy, i.e. 〈𝐸'〉 + 〈𝐸(〉, slightly decreases the correlation down to ~95% 10 

(optimal lag) but does not modify that of the elastic term, i.e. 〈𝐸)〉 + 〈𝐸(〉 (Fig. 3D). As 11 

for the cross-correlation between 𝜕*〈𝑖〉 and 𝜕*〈𝐸&〉, we also found that in in vivo tubes 12 

it is more significant for the case of the surface tension energy, ~80%, than for the 13 

elastic contribution, ~70%. In addition, we also observed a positive lag for 𝜕*〈𝐸)〉	that 14 

suggests an instructive role of elastic energy variations towards changes in the number 15 

of apico-basal intercalations (Fig. 3E).  16 

Subsequently, we sampled the Voronoi tubular model in terms of the disorder 17 

configuration (CVT scale) and the value of the thickness, 𝑠%, that leads to a tube that 18 

represents the aforementioned properties observed in vivo. We found that the V8 in 19 

silico model with 𝑠% = 1.75 displayed a scutoidal prevalence, 79 ± 5%, average 20 

number of 3D neighbors, 6.72 ± 0.08, average number of apico-basal intercalations 21 

per cell,  1.4 ± 0.1, and value of the 3D histogram spreading, 𝜂! = 1.4 ∙ 10+!, 22 

comparable to those found in in vivo tubes (Fig. S3). Further, the 2D polygonal 23 

distributions in the apical and basal surfaces of the V8 model (𝑠% = 1.75) were found 24 

to be similar and in agreement with those found in wt salivary glands (Fig. S2 and Table 25 

S1). We also observed that the increment apico-basal transitions by means of a larger 26 

surface ratio (𝑠% = 10) leads to an increase of topological disorder (larger variance of 27 

cell sidedness, see Fig. S2 and Table S1); a phenomenon that is similar to that observed 28 

in T1-transitions (Blankenship et al., 2006; Zallen and Zallen, 2004). Finally, we 29 

implemented the cross-correlation analyses between intercalations and energy 30 

contributions in the V8 model (𝑠% = 1.75). We obtained similar features as those 31 
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obtained in vivo, including the suggested instructive role of elastic energy variations 1 

towards changes in the number of apico-basal intercalations (Fig. S3). Altogether, we 2 

concluded that the V8 model (𝑠% = 1.75) reproduces the 2D and 3D packing properties 3 

of the Drosophila's larval salivary glands. 4 

 5 

A biophysical model explains the cellular connectivity observed in in silico and in vivo 6 

tubular epithelia 7 

In order to explain how the number of 3D neighbors of a cell (i.e., the cellular 8 

connectivity) changes as a function of the apico-basal coordinate, we developed a 9 

biophysical model. The model is based on a Kolmogorov rate equation and accounts 10 

for the probability of cells to increase their 3D connectivity as the radial coordinate 11 

along the apico-basal axis changes from 𝑠 to 𝑠 + 𝑑𝑠 (Fig. 4A, B and STAR Methods): 12 

,-!(*)
,*

= 𝑃0+1(𝑠)𝑟0+1,0 − 𝑃0(𝑠)𝑟0,031    (1) 13 

This equation determines, as a function of 𝑠, the set of probabilities {𝑃0(𝑠)} =14 

𝑃#(𝑠), 𝑃4(𝑠),⋯ , 𝑃5!"#(𝑠), i.e., the fractions of cells with a given number, 𝑚, of 3D 15 

neighbors such that ∑ 𝑃0(𝑠)0 = 1. Thus, the average 3D cellular connectivity (i.e., the 16 

average number of 3D neighbors per cell) as a function of 𝑠 reads 〈𝑛#"(𝑠)〉 = 〈𝑚〉 =17 

∑ 𝑚0 𝑃0(𝑠). 18 

In Eq. (1), 𝑟0,031 accounts for the transition “rate” at which 3D are gained, i.e., the 19 

probability per unit of 𝑠 to increase the cellular connectivity by one cell. By drawing 20 

parallels between apico-basal intercalations and planar T1 transitions (Bi et al., 2014; 21 

Gómez-Gálvez et al., 2018; Sanchez-Corrales et al., 2018) we assumed, following the 22 

Eyring model (Eyring, 1935), that cells need to overcome an energy barrier, Δ𝐸0(𝑠),  23 

to gain a new 3D neighbor, that is, 𝑟0,031~𝑒+∆7!(*) (Fig. 4A, B). Our experimental, 24 

computational, and analytical results (see STAR Methods and Figs. S4, S5) support the 25 

idea that 𝑟0,031 = 𝛼(𝑁0$8 −𝑚)𝑒+09(*), where 𝛼 is a ‘bare’ transition “rate”, 𝛽(𝑠) 26 

accounts for the energy cost required to gain one 3D neighbor at a given position of 27 

the apico-basal coordinate, 𝑠, and 𝑁0$8 is the maximum possible 3D cellular 28 

connectivity for a cell (i.e., if 𝑚 = 𝑁0$8 then 𝑟0,031 = 0) (STAR Methods). This model 29 

predicts a logistic-like growth of the cellular connectivity (STAR Methods). 30 
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In order to assess the validity of our model we implemented a fitting/optimization 1 

procedure that provides the value of the model parameters that minimize the error in 2 

the fitting of the curve 〈𝑛#"(𝑠)〉 (STAR Methods). Our results show an excellent 3 

agreement for all values of the CVT scale (Fig. S6, Table S1), the computational tubular 4 

model that represents the best in vivo data, i.e. V8 (𝑠% = 1.75) (Fig. 4C), and the wt 5 

salivary glands (Fig. 4D). We further assessed the goodness of the biophysical model 6 

by predicting accurately the 3D neighbor’s distribution as a function of the apico-basal 7 

coordinate, {𝑃0(𝑠)} (Fig. 4C, D, Fig. S6).  8 

 9 

Genetic perturbations modify the 3D cellular connectivity properties of epithelial 10 

tubes 11 

Our analyses suggest that surface tension is the energy contribution that affects the 12 

propensity of apico-basal intercalations the most. Surface tension energy originates in 13 

adhesion-mediated interactions between cells that ultimately modulate the 14 

magnitude of cell-cell contacts. Following these ideas, we explored the role of cell-cell 15 

adhesion by experimentally reducing the amount of the E-cadherin (E-cadh). For this 16 

aim, we overexpressed a UAS-RNAi line specific for the shotgun (shg) gene on the 17 

developing Drosophila salivary gland (Brand and Perrimon, 1993; Hammond et al., 18 

2000; Tepass et al., 1996) (STAR Methods). We compared the E-cadh antibody 19 

fluorescence profiles in wt and the mutant glands (ΔEcad) and confirmed the reduction 20 

of E-cadh levels in the latter (Fig. S7).  The cells in the ΔEcad glands bulged at the basal 21 

surface and were smaller than the wt cells (Fig. 5A, Table S1, Fig. S7). We processed 22 

these glands to extract their 3D cellular connectivity features and average energy 23 

profiles (STAR Methods and Table S1).  We determined the effective average basal 24 

surface ratio (STAR Methods) of the mutant salivary glands 〈𝑠%〉 = 7.4 ± 0.8, the 25 

average percentage of scutoids, 65 ± 14%, the average 3D connectivity, 6.5 ± 0.2, 26 

and the average number of apico-basal intercalations per cell, 1.1 ± 0.4, (Table S1 , 27 

Fig. S7). These values confirm the validity of the formula 〈𝑛#"〉 = 6 + 〈𝑖〉/2 in this 28 

genetic background too. Also, the cross-correlation analysis revealed that the surface 29 

tension energy remained as the main energy contribution (Fig. S8). Thus, ΔEcad and 30 

wt glands reached the same 3D connectivity although the effective surface ratio of the 31 
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former was smaller (Table S1). These results suggest that a decrease in the cellular 1 

adhesion facilitates the emergence of apico-basal intercalations. 2 

 3 

The reduction of cellular adhesion decreases the activation energy required to 4 

produce apico-basal intercalations 5 

The fitting/optimization procedure of the mutant data showed, as in the case of the 6 

wt phenotype and the in silico tubes, an excellent agreement (Fig. 5B) that allowed us 7 

to estimate the energy-related parameters as summarized by 𝛼 and 𝛽(𝑠) (Fig. 5C and 8 

Table S1). The estimation of 𝛼 and 𝛽(𝑠) in wt and mutant tubes indicated that the 9 

energy required to gain an additional neighbor, 𝛽(𝑠), is larger in in vivo tubes than in 10 

the computational model independently of the CVT scale (Fig. 5C, Fig. S9, Table S1), 11 

see Discussion. Finally, the results obtained from the analysis of the mutant glands 12 

confirmed that a decrease in the cellular adhesion facilitates the emergence of apico-13 

basal intercalations since the activation energy gets reduced in the ΔEcad phenotype 14 

when compared to the wt case (Fig. 5B and 5C, and Table S1). In particular, in the 15 

mutant case, the curve that describes the energetic cost to gain new neighbors as a 16 

function of the apico-basal coordinate, 𝛽(𝑠), lies below the curve of the wt background 17 

(Fig. 5C) and we found that the average energy cost, 𝛽̅ (STAR Methods), is ~43% 18 

larger in the wt case: 𝛽̅:;<=> = 0.46 and 𝛽̅?@ = 0.65. Altogether, when we challenged 19 

the biophysical model with the perturbation experiment, we obtained the expected 20 

results: smaller cellular adhesion leads to a smaller energetic cost to gain new 21 

neighbors.  22 

 23 

DISCUSSION 24 

Here we have shown how a biophysical principle underlies the emergence of 25 

functionally complex 3D developmental structures. Namely, cells increase their 3D 26 

connectivity in a logistic-like fashion by means of apico-basal intercalations that 27 

require overcoming an energy barrier that grows with the number of 3D neighbors. 28 

Thus, our analyses explain how the presence of scutoids affects the cellular 29 

connectivity in the third dimension.  In that regard, we have shown how the 3D cellular 30 
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connectivity and tissue energetics are coupled, and we have proposed a quantitative 1 

biophysical model to explain that relationship. 2 

Our biophysical model relies on a phenomenon observed in the Voronoi 3 

computational simulations, supported by mathematical arguments, and confirmed in 4 

experiments: the “poor get richer” principle (see STAR Methods). Roughly speaking, 5 

we have shown that the fewer neighbors a cell has on a surface, the larger is the 6 

probability of a 3D cellular connectivity increase. A similar idea has been reported in 7 

T1 dynamical processes during the remodeling of planar epithelia where it has been 8 

shown that the energy barrier associated with cellular remodeling, rather than being 9 

constant, depends on the cellular environment (Bi et al., 2014). Since the scutoidal 10 

geometry can be related to planar T1 transitions by exchanging the concepts of space 11 

and time, this result reinforces the idea of the existence of universal principles driving 12 

the organization of tissues. 13 

From the viewpoint of the tissue energetics, both the Voronoi model and in vivo 14 

tubes, identify the surface tension energy as the main cause of scutoids appearance 15 

and hints at the elastic energy as an additional driver for modulating the propensity of 16 

cells to undergo apico-basal intercalations. In that context, our results suggest that the 17 

so-called ‘bare’ transition rate, 𝛼, or even the energy cost required to gain additional 18 

neighbors, 𝛽(𝑠), would depend on both contributions. Related to this, previous studies 19 

about the role of fluctuations in the remodeling of cellular aggregates have shown that  20 

elastic behaviors (opposed to plastic ones) contribute to reduce the cell stress by 21 

lowering the energy barrier that cells need to jump over during cellular 22 

rearrangements (Marmottant et al., 2009).  23 

In our study we have found that in real tissues (both wt and mutant) the value of 24 

𝛽(𝑠) is larger than in Voronoi models. We hypothesize that it is due to the purely 25 

geometrical description used in the latter. In the in silico model the apico-basal 26 

intercalations develop as a result of a topological constraint (a Voronoi tessellation) 27 

that we have shown describes appropriately the geometrical and packing properties 28 

of tubular epithelia. However, in the salivary glands, on top of that constraint, the cells 29 

must actively remodel their membranes and cytoskeleton to make the transitions 30 

possible. In that context, the cytoskeleton, adhesion molecules, and cellular 31 
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membranes are responsible for the biophysical properties of epithelia including their 1 

energetics (Gómez-Gálvez et al., 2021b). Thus, to challenge the proposed biophysical 2 

model we measured the value of 𝛽(𝑠) in salivary glands where the amount of the 3 

adhesion molecule E-cadh was reduced. Since the 3D connectivity necessarily 4 

increases with the surface ratio, the lower effective surface ratio of the mutant gland 5 

should correspond with a reduction of the 3D connectivity. However, our results show 6 

that wt and mutant glands present the same value of 〈𝑛#"(𝑠%)〉 (Table S1, Fig. S7), thus 7 

indicating that the decrease of adhesion facilitates the appearance of apico-basal 8 

intercalations. In terms of the tissue energetics, these results suggest a reduction of 9 

the energy barrier required to undergo apico-basal intercalations in the mutant glands. 10 

This prediction was confirmed by the biophysical model that provided a lower 𝛽(𝑠) in 11 

the mutant case compared with the wt. 12 

As for the technical advances associated to our work, we point out that a high level 13 

of detail is necessary to quantify the apico-basal intercalation phenomenon and to 14 

compare the in vivo data with computational models (Gómez-Gálvez et al., 2021a). 15 

Along these lines, the importance of a realistic analysis of 3D cell-cell contacts has been 16 

highlighted by recent studies focused on understanding the growth of mouse 17 

embryonic lung explants (Gómez et al., 2021) and the early development of C. elegans 18 

(Cao et al., 2020) and Ascidians (Guignard et al., 2020). Our methodological pipeline 19 

(STAR Methods) allows to implement the accurate 3D reconstruction of cells in 20 

epithelia subjected to curvature. This analysis makes possible to quantify how different 21 

packing properties, e.g., intercalations, depend on the apico-basal coordinate. These 22 

technical improvements are necessary to extract biological consequences about the 23 

cellular and mechanical basis of self-organization in curved tissues (Ambrosini et al., 24 

2017; Hirashima and Adachi, 2019; Inoue et al., 2019) or even whole embryos 25 

(Shahbazi et al., 2019). 26 

As for the broader implications of our findings, our results provide biological insight 27 

into the regulation of cell-cell connectivity in curved tissues. This property ultimately 28 

regulates juxtracrine signaling, and is pivotal for early development, primordia 29 

patterning, and cell fate determination (Guignard et al., 2020; Sharma et al., 2019; 30 
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Tung et al., 2012). Moreover, recent research has shown that cellular connectivity 1 

regulates the viscosity of tissues (Petridou et al., 2021). 2 

Therefore, our findings open new ways to draw implications about primary 3 

developmental processes in which epithelial bending is essential such as 4 

tubulogenesis, gastrulation, neurulation, and early embryo development. In addition, 5 

we argue that, while our analyses focus on static tissues, our results could also be 6 

relevant to understand active 3D tissue remodeling. Dynamic changes of 𝛽(𝑠) would 7 

modify the apico-basal intercalation propensity and therefore the material-like 8 

properties: the larger 𝛽(𝑠) the more solid-like the tissue would behave.  9 

Recent studies have confirmed that adhesion-dependent active remodeling can be 10 

connected to an increased activity of neighbor exchanges. In particular, loss of function 11 

mutants of N-cadherin in the presomitic mesoderm of the zebrafish embryo cause an 12 

increase in extracellular spaces and a solid-fluid jamming transition (Mongera et al., 13 

2018). In addition, it has been recently shown that the stabilization of E-cad at the 14 

cellular junctions in the Drosophila eye drives an increase of tension that can be 15 

transmitted across the tissue (Founounou et al., 2021). This tension results in a 16 

reinforcement of the solid-like tissue behavior. The salivary glands experiments 17 

confirm that a reduction of E-cadherin increases the apico-basal intercalation 18 

propensity. Our biophysical model predicted that such an increase of the apico-basal 19 

intercalation propensity must be correlated with a decrease of the energy barrier 𝛽(𝑠). 20 

Notably, this prediction was confirmed through the biophysical analyses of the ΔEcad 21 

samples. 22 

Finally, with respect to the applicability of our results to other areas, we expect that 23 

the emerging field of organoids will benefit from our discoveries. A precise 24 

quantification of the 3D connectivity could then help to understand the lack of 25 

reproducibility in organoid production, one of the biggest challenges of the field 26 

(Clevers, 2016; Huch et al., 2017; Schutgens et al., 2019). Also, from a medical point of 27 

view, it has been recently shown that tissue curvature affects tumor progression due 28 

to the imbalance of tensions in apical and basal surfaces of epithelial tubes (Messal et 29 

al., 2019). Our study explains how cell energetics affect the 3D packing of these cells 30 
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and therefore may shed light on the mechanism of tumorigenic morphogenesis in 1 

tubular organs. 2 
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FIGURE TITLE AND LEGENDS 1 

Box. Geometry, topology and biophysics of cells. 2 

A: Scutoids are prismatic-like geometric solids bounded between two surfaces (top 3 

and bottom). Scutoids are characterized by three main properties: i) The shape of their 4 

top and bottom bases, and of every parallel section between them, are polygons. ii) 5 

The lateral surfaces of scutoids can be concave and/or convex surfaces such that a set 6 

of scutoids can be packed together (laterally) without leaving any empty space. iii) 7 

Scutoids have at least one vertex along the top-bottom axis such that when packed 8 

together there are changes in the nearest-neighbors relationship. The example shows 9 

a scheme of a stereotypical scutoid (left) and four scutoids packed together (right). 10 

B: A T1-transition is a tissue rearrangement observed in epithelial surfaces where a 4-11 

cells' motif swaps nearest neighbors along time. T1-transitions enable tissue plasticity 12 

through cellular reorganizations that lead, for example, to elongation in developing 13 

tissues. 14 

C: An apico-basal transition, aka an apico-basal intercalation, is a tissue 15 

rearrangement along the apico-basal (top-bottom) axis of cells that lead to new 16 

cellular contacts (nearest-neighbors exchange). An apico-basal transition is similar to 17 

the T1-transition but instead of developing along the time it does along space.  18 

D: A 2D tessellation (aka a 2D mosaic) is a partition of a surface with tiles that do not 19 

overlap or leave any gaps. In this example, the tiles are octagons and squares. 20 

E: A 2D Voronoi diagram is a particular type of tessellation built by convex polygons 21 

(Voronoi cells). These polygons emerge from a set of generator seeds (black points), 22 

such that each cell contains the region that is closer to its generating seed. The so-23 

called Lloyd’s algorithm makes the seeds of a Voronoi diagram to converge 24 

progressively to the centroids (blue points): once a Voronoi diagram is obtained for a 25 

set of seeds (black Voronoi diagram, 𝑉5), an iteration of the Lloyd’s algorithm consists 26 

in repeating the Voronoi tessellation by replacing the seeds by the centroids of the 27 

Voronoi tiles (blue Voronoi diagram, 𝑉531). The Lloyd’s algorithm makes the Voronoi 28 
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diagram progressively more ordered in terms of the polygonal distribution of the 1 

Voronoi cells. 2 

F: The surface tension energy is related to the cell-cell adherence through their 3 

lateral area contacts. For each cell, the surface tension energy reads, 𝐸' = Λ𝐴, where 4 

Λ and 𝐴 are the effective surface tension parameter and the cellular lateral area 5 

respectively. Thus, the average surface tension energy of cells reads 〈𝐸'〉 = Λ〈𝐴〉 =6 

𝐸〈'〉 and is independent of the fluctuations of 𝐴. 7 

G: The contractile energy is related to the polarized cortex activity of epithelia cells 8 

at the apical surface. The contractile energy reads  𝐸( = Γ𝐿!, where 𝐿 stands for the 9 

cellular perimeter at the apical surface and Γ is the cortical tension energy per unit of 10 

cell apical area. As a result, the average cell apical contractile energy increases with 11 

the fluctuations of the apical perimeter: 〈𝐸(〉 = Γ〈𝐿!〉 = 𝐸〈(〉 + Γ𝜎(! where 𝜎(! =12 

〈𝐿!〉 − 〈𝐿〉! is the cellular apical perimeter variance.  13 

H: The cell elastic energy is related to the volume conservation of cells. The cell elastic 14 

energy reads, 𝐸) =
C
!
(𝑉 − 𝑉D)!, where 𝑌 is proportional to the Young modulus (a 15 

quantification of the relationship between the cellular stress and strain) and, 𝑉 and 𝑉D 16 

represent the actual and target cellular volumes respectively. The average elastic 17 

energy per cell increases with the fluctuations of the volume: 〈𝐸)〉 =
C
!
〈(𝑉 − 𝑉D)!〉 =18 

𝐸〈)〉 +
C
!
𝜎)! where 𝜎)! = 〈𝑉!〉 − 〈𝑉〉! is the cellular volume variance. 19 

 20 

  21 



 21 

Figure 1. In silico Voronoi epithelial model: energetics and analysis of apico-basal 1 

cell intercalations in tubes  2 

A: (left) Scutoids entail apico-basal intercalations among packing cells that can be 3 

envisioned as spatial T1 transitions to exchange neighbors (right): the green and the 4 

red cells are neighbors in the basal surface (but not in the apical surface) while the 5 

opposite is true for the blue and the yellow cells. B: In silico Voronoi 3D epithelial 6 

models are generated by populating with cell seeds (circles) the apical surface, 𝛴$. The 7 

location of cell seeds at any other surface/plane, 𝛴, is obtained by implementing apical 8 

normal projections, 𝒏, up to the basal surface, 𝛴%. At each surface, 𝛴, a 2D Voronoi 9 

tessellation is performed and the 3D cellular shape of the cell is built upon the 10 

collection of these tessellations. C: (top) In the particular case of tubular epithelia, 11 

normal projections of apical cell seeds correspond to radial projections, and the 12 

thickness/curvature of tubes are characterized by the surface ratio, 𝑠 = 𝑅/𝑅$ 13 

(apical/basal surfaces: light/dark blue. 𝑅: dashed yellow). (bottom) Illustrative 14 

rendering of a Voronoi tube cell.  D: The so-called CVT scale (iterations of Lloyd's 15 

algorithm, STAR Methods) measures the topological disorder in in silico tubular 16 

epithelia and leads to different cellular morphologies. In a V1 (Voronoi 1) model cell 17 

seeds are randomly distributed on the apical surface to generate a planar Voronoi 18 

tessellation (STAR Methods). By applying the Lloyd algorithm iteratively, the apical 19 

topological disorder diminishes (top to bottom: V1, V5, and V10 examples). The 20 

random location of seeds in V1 implies the emergence of a wide range of different 21 

polygonal cell types. As Lloyd's algorithm iterates, the larger the tessellation order is 22 

(Box E). We observe this progressive ordering from a V1 to V10 as polygonal 23 

distributions converge to results with a larger proportion of hexagons and a reduction 24 

of the other polygonal shapes (inset: polygon distribution insets for V1, V5, and V10). 25 

The average number of apico-basal intercalations per cell in in silico tubes (𝑛 = 20 26 

realizations per CVT scale, each tube composed by 200 cells) increases with the tissue 27 

thickness (surface ratio) but does not change significantly with the CVT scale. The 28 

black/red/green arrows correspond to the illustrative examples of the planar apical 29 

tessellations shown on the left. E: The average lateral cell area as a function of the CVT 30 

and the surface ratio (values normalized to the V1 case at 𝑠% = 10, 𝑛 = 20 per CVT 31 

scale) indicates that the average surface tension energy does not depend on the level 32 
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of topological disorder. F: (Left) Green solid circles represent the normalized (with 1 

respect to the V1 case) average apical cell perimeter for each Voronoi tube sample as 2 

a function of the CVT scale. (Right) Purple solid circles account for the standard 3 

deviation of apical cell perimeter for each Voronoi tube sample. Long vertical black 4 

lines denote the mean and small segments the standard deviation (𝑛 = 20 per CVT 5 

scale). G: The cellular volume variance is a proxy for the average elastic cell energy 6 

(STAR Methods). The latter decreases with the CVT scale and increases with the 7 

surface ratio (tissue thickness) (𝑛 = 20 per CVT scale). Volume values were normalized 8 

with respect to the V1 case with 〈𝑉(𝑠% = 10)〉 = 1. H: Cross-correlation between 9 

average energy profiles along the apico-basal axis, 〈𝐸'〉 (dark grey), 〈𝐸)〉 (red), and 10 

〈𝐸'〉 + 〈𝐸(〉 (light grey), and the number of apico-basal intercalations, 〈𝑖〉. Solid lines 11 

stand for the averages among disorder configurations (i.e., CVT scale) and the dotted 12 

lines delimit the standard deviation band. 〈𝐸)〉 + 〈𝐸(〉 has not been plotted since the 13 

extra contribution of the contractile term, 〈𝐸(〉, does not modify the correlation 14 

function. I: Cross-correlation between energy gradients (𝜕*〈𝐸'〉 and 𝜕*〈𝐸)〉) and the 15 

gradient of intercalations along the apico-basal axis (𝜕*〈𝑖〉). Color code as in H.  16 
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Figure 2. Three-dimensional packing and connectivity properties of the Voronoi 1 

tubular model 2 

A: (left) Schematic representation of a 3D histogram that accounts for the probability 3 

that cells have 𝑛$ (number) of neighbors in the apical surface and 𝑛% neighbors in the 4 

basal surface. Cells with the same polygonal class in apical and basal surfaces 5 

contribute to bins along the diagonal (red squares). The bins spreading away from the 6 

diagonal (green squares) ensures the presence of scutoidal cells. E.g.: the red and 7 

green cells shown in the plot contribute to the bins indicated in the 3D histogram (red 8 

and green stars respectively). (right) 3D histograms of V5 tubes for increasing values 9 

of the surface ratio. A larger value of the spreading coefficient, 𝜂!, (STAR Methods) 10 

indicates an increasing number of scutoids. B: Density plot showing the value of the 11 

spreading coefficient, 𝜂!, of 3D histograms as a function of the surface ratio and the 12 

Voronoi class in in silico tubes (𝑛 = 20 tubes per CVT scale). C: Cross-correlation 13 

between average energy profiles along the apico-basal axis, 〈𝐸'〉 (dark grey), 〈𝐸)〉 14 

(red), and 〈𝐸'〉 + 〈𝐸(〉 (light grey), and the spreading coefficient, 𝜂!. Solid lines stand 15 

for the averages among disorder configurations (i.e., CVT scale) and the dotted lines 16 

delimit the standard deviation band. 〈𝐸)〉 + 〈𝐸(〉 has not been plotted since the extra 17 

contribution of the contractile term, 〈𝐸(〉, does not modify the correlation function.  18 
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Figure 3. Drosophila’s salivary gland analysis 1 

A: (top) Full projection of a representative wildtype salivary gland (cell contours 2 

stained by Cy3-labeled phalloidin, STAR Methods). (middle) Computer rendering of the 3 

segmented salivary gland shown on top. Scale bar 100𝜇𝑚. (bottom) 3D rendering of a 4 

representative segmented salivary gland. B: Density plot of the 3D distribution of 5 

neighbor exchanges between apical and basal surfaces as a function of the number of 6 

neighbors in apical, 𝑛$, and basal, 𝑛%, surfaces (as in Fig. 2A) in wildtype salivary glands 7 

(𝑛 = 20 glands, 979 cells). C: Average profiles of the number of apico-basal 8 

intercalations, 〈𝑖〉, average lateral area, 〈𝐴〉, and cellular volume fluctuations, 𝜎)! in in 9 

vivo tubes as a function of the apico-basal coordinate, 𝑠 (𝑛 = 20 glands, similar to Fig. 10 

1D-E, G). D-E: Cross-correlation analysis between energy and intercalation profiles 11 

(same as Fig. 1H-I). The error band indicates in this case the variability among 12 

experimental samples (𝑛 = 20 glands).   13 
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Figure 4. Biophysical model: in silico and in vivo results 1 

A: (top) Cell intercalations along the apico-basal axis can be visualized as spatial T1 2 

transitions (non-reversible: once a neighbor is won it cannot be lost). (bottom) The 3 

“poor get richer” principle (STAR Methods) suggests an increasing energetic cost (i.e., 4 

a larger activation energy) for recruiting new neighbors as a function of the number of 5 

neighbors already won. In our model, 𝛽(𝑠) accounts for the energetic cost per 3D 6 

neighbor (per apico-basal intercalation) to recruit a new neighbor (STAR Methods). 7 

B: The energy landscape shown in B (bottom) can be modeled by a stochastic dynamics 8 

(a Kolmogorov rate equation) where cells increase their 3D neighbors with a 9 

probability per unit of surface ratio, 𝑟E,0, that depends on the activation energy, 𝛽(𝑠)	, 10 

a ‘bare’ transition rate, 𝛼, and the maximum cell connectivity 𝑁0$8 (STAR Methods). 11 

C: Results of the Kolmogorov model in V8 (𝑠% = 1.75) in silico tubes (𝑛 = 20). The 12 

left/center density plots represent the cellular connectivity distribution (i.e., the 13 

fraction/probability of cells with a given number of 3D neighbors) as a function of 𝑠 14 

obtained in the Voronoi simulation (left) and as predicted by the Kolmogorov model 15 

(center); the red circles (left/right) indicate the average number of 3D neighbors per 16 

cell 〈𝑛#"〉; the red line (center/right) shows 〈𝑛#"〉 as obtained by the Kolmogorov 17 

model. The density plot on the right shows the difference between the predicted and 18 

the actual connectivity distributions and the corresponding error, 𝜀! (magenta lines). 19 

D: Same as panel C but results obtained in salivary glands (𝑛 = 20 glands). The 20 

maximum value of 𝑠 in the analyzed radial sections of the glands is 𝑠 = 6.5. This value 21 

being the largest radial section of the smallest gland (STAR Methods).  22 
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Figure 5. Biophysical analysis of ∆Ecad salivary glands 1 

A: (top) Full projection of a representative ∆Ecad salivary gland (cell contours stained 2 

by Cy3-labeled phalloidin, STAR Methods). (bottom) Computer rendering of the 3 

mutant salivary gland shown on top. Scale bar 100𝜇𝑚. B: Results of the Kolmogorov 4 

model for the ∆Ecad salivary gland (𝑛 = 10 glands). The left/center density plots 5 

represent the connectivity distribution (i.e., the fraction/probability of cells with a 6 

given number of 3D neighbors) as a function of 𝑠 obtained in the Voronoi simulation 7 

(left) and as predicted by the Kolmogorov model (center); the red circles (left/right) 8 

indicate the average number of 3D neighbors per cell 〈𝑛#"〉; the red line (center/right) 9 

shows 〈𝑛#"〉 as obtained by the Kolmogorov model.  The density plot on the right 10 

shows the difference between the predicted and the actual connectivity distributions 11 

and the corresponding error, 𝜀! (magenta lines). Same color code than in Fig 4C-D. The 12 

maximum value of 𝑠 in the analyzed radial sections of the glands is 𝑠 = 5.5. This value 13 

being the largest effective radial section of the smallest gland (STAR Methods). C: 14 

Energy cost required to gain additional neighbors as a function of 𝑠 (STAR Methods) 15 

for wt glands (green), for ∆Ecad glands (red), and for the V8 (𝑠% = 1.75) model (blue). 16 

The inset shows the values of the bare transition rates, 𝛼, and the average value (along 17 

the apico-basal coordinate) of 𝛽.  18 
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STAR METHODS 1 

RESOURCES AVAILABILITY 2 

Lead contact 3 

Further information and requests for resources and reagents should be directed to and 4 

will be fulfilled by the lead contact, Luis M. Escudero (lmescudero-ibis@us.es). 5 

Materials availability 6 

No new materials were generated in this study. 7 

Data and code availability 8 

All data used in our analysis has been deposited at Mendeley Data and are publicly 9 

available as of the date of publication. DOIs are listed in the key resources table. All 10 

original code used in our analysis has been deposited at Mendeley Data and is publicly 11 

available as of the date of publication. DOIs are listed in the key resources table. Any 12 

additional information required to reanalyze the data reported in this paper is 13 

available from the lead contact upon request. 14 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 15 

Immunohistochemistry and confocal imaging of salivary glands 16 

Flies were grown at 25 °C using standard culture techniques. The following lines were 17 

obtained from the Bloomington Drosophila Stock Center (BDSC): wt Oregon R (BDSC 18 

5), UAS-shg-RNAi (BDSC 38207), AB1-Gal4 (BDSC 1824). AB1-Gal4 drives Gal4 protein 19 

in the third instar larva salivary gland. We dissected the salivary glands from third instar 20 

larvae. After PBS dissection, the glands were fixed using 4% paraformaldehyde in PBS 21 

for 20 min. The samples were washed three times for 10 min with PBT (PBS, 0.3% 22 

Triton) and blocked in PBT with 1% bovine serum albumin (PBT-BSA) for 30 minutes at 23 

room temperature. The samples were then incubated with primary antibodies at 4ºC 24 

overnight, followed by washing and blocked before being incubated for 1 hr 45 25 

minutes at room temperature with a secondary antibody and fluoresceine conjugated 26 

phalloidin (Alexa 647 phalloidin, Thermo Fisher Scientific) to label the cell contours of 27 
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the epithelial cells. After washing, the stained larval salivary glands were mounted 1 

using Fluoromount-G (Southern Biotech). We used two pieces of double-sided 2 

adhesive tape (one on top of each other) as a spacer (Aldaz et al., 2013), so the salivary 3 

glands preserve their shape. The following antibodies were used: rat anti-E-cadherin 4 

(1:200, DCAD2, DSHB), goat anti-rat Alexa 488 (1:1000, Thermo Fisher Scientific). 5 

 Images were taken using a Nikon Eclipse Ti-E laser scanning confocal microscope. 6 

The images were captured using a ×20 dry objective and 2.5 µm steps between slices. 7 

The image stacks were exported as 1024 × 1024 pixels TIFF files. 8 

 9 

METHODS DETAILS 10 

3D glands segmentation 11 

To segment the salivary gland stacks of images and reconstruct (semi-automatically) 12 

the shape of cells in three dimensions we used the Fiji (Schindelin et al., 2012) plugin 13 

LimeSeg (Machado et al., 2019). It infers cell outlines by using surface elements 14 

(“Surfels”) obtained by manually placing single ellipsoidal-like seeds on every cell (see 15 

https://imagej.net/LimeSeg for details). Once cell outlines were found, we exported 16 

them as point clouds (output). We developed a custom-made Matlab code (2021a 17 

MathWorks) to postprocess the output of LimeSeg in order to correct errors and obtain 18 

perfectly segmented salivary glands. In addition, we manually segmented the lumen 19 

of the glands using the Volume Segmenter app, in Matlab. To faithfully represent the 20 

gland as a cylinder, we selected a subset of cells: cells that were not ductal, neither 21 

located at the tip of the gland.  22 

To segment mutant salivary glands we took advantage from the 20 segmented wt 23 

salivary glands, and we used them as training dataset into a deep-learning 24 

segmentation pipeline. We trained a stable 3D-U-Net CNN ((Franco-Barranco et al., 25 

2021), https://github.com/danifranco/EM_Image_Segmentation) using as input the 26 

salivary glands phalloidin channel (actin filaments) staining cell outlines, and as target 27 

the segmented cell outlines. The output (prediction) of this pipeline was a probability 28 

map of cell outlines, that was post-process using the PlantSeg (Wolny et al., 2020) 29 

segmentation module to extract individual instances. Here, again, we segmented the 30 
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lumen of the glands using the Volume Segmenter app, and segmentation errors were 1 

curated using our custom-made Matlab code. 2 

To obtain the cellular neighborhood relations of salivary glands for different values of 3 

the radial expansion, we proceeded as follows. We calculated the cell height by 4 

estimating the distance between the centroid of the cell apical surface with respect to 5 

the centroid position of its basal surface, 𝑑(𝑠$ , 𝑠%). Then, to capture a concentric radial 6 

section of the gland, we linearly extrapolated the equivalent cell height to the given 7 

surface ratio, 𝑠: 8 

𝑑(𝑠$ , 𝑠) = 𝑑(𝑠$ , 𝑠%)	
*
*$

     (2) 9 

where 𝑑(𝑠$ , 𝑠) is the Euclidean distance between the position of the centroid of the 10 

cell at the apical surface, 𝑠$ = 1, and the position of the centroid at a value 𝑠 = 𝑅/𝑅$ 11 

of the radial expansion. Finally, to obtain the gland cylindrical radial section for a given 12 

value of the radial expansion, 𝑠, we collected all voxels between apical and the upper 13 

bound of the calculated distance 𝑑(𝑠$ , 𝑠).  14 

 15 

Voronoi tubular model 16 

Using custom-made Matlab code we generated a Voronoi model that simulates the 17 

surface of a cylinder unfolded over the Cartesian plane, see details in  Gomez-Galvez 18 

et al. ((Gómez-Gálvez et al., 2018), Methods). The only difference with the cited 19 

methodology, is that in this work the Voronoi diagrams has been constructed by means 20 

of the Delaunay triangulation technique. Therefore, we just considered the cells’ 21 

vertices information (Cartesian coordinates and connections) for a much faster 22 

computation. For each realization, we used an initial set of 200 randomly located seeds 23 

on a rectangular domain of 512 (X axis; transverse axis of cylinder) per 4096 (Y axis; 24 

longitudinal axis of cylinder). We performed this procedure for 10 different initial 25 

Voronoi diagrams (Voronoi 1 (V1, random seeds) to Voronoi 10 (V10, more ordered 26 

and homogeneous cells). These diagrams represent the apical (inner) surfaces of 27 

computational tubes, and they were obtained by applying N-1 times the Lloyd’s 28 

algorithm (Lloyd, 1982) to the random seeds, where N is then the resulting Voronoi 29 

model. For instance, to compute a V1, we use purely random seeds, while to obtain a 30 
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V4 diagram, it would be required to apply 3 times the Lloyd’s algorithm to random 1 

seeds. In the limit of the CVT scale (iterations of the Lloyd’s algorithm) going to infinity 2 

the organization of cells tends to a hexagonal lattice. Subsequent radial sections that 3 

define computational tubes with different surface ratios were obtained by 4 

implementing a radial projection of the Voronoi seeds. For each apical surface of the 5 

tube, we generated 40 expansions by incrementing the surface ratios (𝑠%) using 0.25 6 

steps: 1 (apical), 1.25, 1.5, … ,10 (19 𝑠-steps	× 10 apical cell arrangements × 20 7 

realizations). 8 

As for the 3D reconstruction of cells in Voronoi tubes, each set of seeds that 9 

characterizes cells on a given cylindrical section defines a unique 2D Voronoi diagram 10 

at every surface and hence the corresponding 2D cellular domains. The set of 2D 11 

Voronoi regions that belong to the same radially projected seed from the apical to the 12 

basal surface then define each 3D cellular shape. Each of the obtained 3D cells was 13 

further processed using the Matlab function ‘alphaShape’ to transform the set of 14 

voxels into a compact, solid, object. This reconstruction pipeline was implemented 15 

using Matlab (2021a).  16 

As for the connection of the CVT scale with the average elastic energy of cells, we first 17 

notice that for a given tube of length 𝐿, radiuses 𝑅 and 𝑅$, and with a fixed number of 18 

cells, 𝑁, the average cell volume, 〈𝑉〉, is independent of the CVT scale: 〈𝑉〉 =19 
1
5
∑ 𝑉F5
FG1 = 𝜋𝐿(𝑅! − 𝑅$!)/𝑁 = 𝜋𝐿𝑅$!(𝑠! − 1)/𝑁. On the other hand, if cells have a 20 

target volume 𝑉D then the elastic energy (linear regime) of cell 𝑖 reads 𝐸)% =21 
C
!
(𝑉F − 𝑉D)!, where 𝑌 is proportional to the Young's modulus. Consequently, the 22 

average cell elastic energy, 〈𝐸)〉 =
1
5
∑ 𝐸)%
5
FG1 = 𝐸〈)〉 +

C
!
𝜎)!, where 𝐸〈)〉 =

C
!
(〈𝑉〉 −23 

𝑉D)! is the elastic energy of a cell with an average cell volume 〈𝑉〉 and 𝜎)! = 〈𝑉!〉 −24 

〈𝑉〉! is the variance of the cellular volume (the cell size fluctuations). Since 𝐸〈)〉 is 25 

independent of the CVT scale and 𝜎)! decreases with the CVT scale (i.e., as the tissue 26 

becomes more ordered) then the average elastic cell energy necessarily decreases as 27 

the CVT increases. In our simulations and experiments the cellular volume is computed 28 

by using the value of cell area sections 𝒜(𝑠) as a function of the surface ratio,	𝑠. 29 

Specifically, we used the trapezoidal rule, 𝑉(𝑠) = ∫ 𝒜(𝑧)	𝑑𝑧HG*
HG*"

≈ ∆*
!
[𝒜(𝑠$) +30 
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2𝒜(𝑠$ + ∆𝑠) + ⋯+ 2𝒜(𝑠$ + (𝑛 − 1)∆𝑠) +𝒜(𝑠$ + 𝑛∆𝑠)]. Where 𝑠$ + 𝑛∆𝑠 = 𝑠 1 

and ∆𝑠 = 0.25. Cell volumes where normalized considering Voronoi 1 tubes from CVT 2 

scale as reference, such its average cell volume will represent the unity 〈𝑉(𝑠% =3 

10)〉 = 1. Likewise, for estimating the surface lateral area we used the trapezoidal rule 4 

using the value of the cellular perimeter, 𝐿(𝑠), that is: 𝐴(𝑠) = ∫ 𝐿(𝑧)	𝑑𝑧HG*
HG*"

≈5 

∆*
!
[𝐿(𝑠$) + 2𝐿(𝑠$ + ∆𝑠) + ⋯+ 2𝐿(𝑠$ + (𝑛 − 1)∆𝑠) + 𝐿(𝑠$ + 𝑛∆𝑠)]. Besides, we 6 

normalized the lateral surface area following the same criterion than with volumes.  7 

Additionally, we proceed in a similar way to estimate the cellular lateral area and 8 

volume as a function of 𝑠 in salivary glands. 9 

 10 

Cross-correlation definition 11 

Dimensionless cross-correlation, 𝐶(𝑠), between 𝑋(𝑠) (e.g. 〈𝐸'(𝑠)〉)and 𝑌(𝑠) (e.g. 12 

𝑌(𝑠) = 〈𝑖(𝑠)〉) is defined as follows: 𝐶(𝑠) = 1
5
∑ 𝑋(𝑠′)𝑌(𝑠 + 𝑠′)*I  where 𝑁 =13 

(∑ 𝑋(𝑠′)!*I ∑ 𝑌(𝑠′′)!*II )1/! is a normalization constant such that the auto-correlation 14 

becomes one (at maximum) at zero lag. When required, spatial derivatives were 15 

estimated as 𝜕*𝐹(𝑠) =
K(*3∆*)+K(*)

∆*
. 16 

 17 

Relation between total accumulated 3D neighbors and the number of intercalation 18 

events 19 

Scutoids have a Euler characteristic 𝜒 = 2 such that 𝑉 − 𝐸 + 𝐹 = 2, where 𝑉, 𝐸, and 20 

𝐹 accounts for the number of vertexes, edges, and faces respectively. We assumed 21 

that the apical, 𝑎, and basal, 𝑏, faces of scutoids tessellating a cylindrical space have 22 

radial coordinates 𝑅$ and 𝑅% respectively. Then, for any value of the surface ratio 23 

expansion, 𝑠	 = 	𝑅/𝑅$, these solids can be mapped into a connected plane graph with 24 

the same Euler characteristic (a sort of projection of the vertexes and connectors into 25 

the plane, see Fig. S10. Thus, as a function of 𝑠, the accumulated number of 3D 26 

neighbors reads 𝑛#"(𝑠) = 𝐸(𝑠) − 𝑉(𝑠). Since in tubular geometries the radially 27 

projected seeds from the apical to the basal surface never come closer, as 𝑠 increases 28 

(i.e., apico-basal intercalations are not reversible). 29 
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𝑛#"(𝑠) = 𝑚𝑎𝑥({𝑉(𝑠)}) = 𝑚𝑖𝑛({𝑉(𝑠)}) + 𝑖(𝑠)   (3) 1 

where {𝑉(𝑠)} = {𝑉(1), 𝑉(1 + 𝑑𝑠),⋯ , 𝑉(𝑠%)} and 𝑖(𝑠) denotes the number of 2 

intercalation points in the interval 𝑠 ∈ [1, 𝑠%]. In the case of a 3D tessellation with 𝑁 3 

cells, where 𝑀 of them do not show any intercalation, the total number of 4 

accumulated neighbors reads, 5 

𝑛#"(𝑠) = ∑ 𝑛#"
(L)(𝑠)5

LG1 = ∑ 𝑉(L)(1)M
LG1 + ∑ 𝑚𝑎𝑥rs𝑉(L)(𝑠)tu5+M

LG1 =6 

∑ 𝑉(L)(1)M
LG1 + ∑ s𝑚𝑖𝑛rs𝑉(L)(𝑠)tu + 𝑖(L)(𝑠)t5+M

LG1    (4)                                   7 

Given that each intercalation point is shared by four cells, two of them necessarily 8 

increase their number of vertices in a given 𝑠-plane and two of them decrease their 9 

number of vertices. Thus, in the case of a decrease 𝑚𝑎𝑥rs𝑉(L)(𝑠)tu = 𝑉(L)(1) and in 10 

the case of an increase 𝑚𝑖𝑛rs𝑉(L)(𝑠)tu + 𝑖(L)(𝑠) = 𝑉(L)(1) + 𝑖(L)(𝑠). Consequently, 11 

𝑛#"(𝑠) = ∑ 𝑉(L)(1)5
LG1 + ∑ 𝑖(L)(𝑠)(5+M)/!

LG1 = ∑ 𝑉(L)(1)5
LG1 + 1

!
∑ 𝑖(L)(𝑠)5+M
LG1       (5) 12 

where we used the fact that for every intercalation event that increases by one the 13 

number of neighbors there is one that decreases the number of neighbors in the same 14 

amount; consequently, we can add up all intercalation events and divide by two. Hence 15 

the average number of accumulated 3D neighbors, 〈𝑛#"(𝑠)〉 = 𝑛#"(𝑠)/𝑁 reads 16 

〈𝑛#"(𝑠)〉 = 〈𝑉(1)〉 + 〈𝑖(𝑠)〉/2; 〈𝑖(𝑠)〉 being the average number of apico-basal 17 

intercalations per cell. Finally, by considering that any 𝑠-surface, and in particular the 18 

apical surface 𝑠 = 1, corresponds to a 2D tessellation of convex polygons, 〈𝑉(1)〉 = 6 19 

we conclude that, 20 

〈𝑛#"(𝑠)〉 = 6 + 1
!
〈𝑖(𝑠)〉     (6) 21 

 22 

The 3D neighbor’s accumulation in tubular epithelia follows a “poor get richer” 23 

principle 24 

In order to investigate additional phenomena that could help to understand how 25 

the 3D cellular connectivity is regulated, we computed the net gain of cellular 26 

neighbors in epithelial tubes as a function of the 2D polygonal cell class at the apical 27 

surface. We observed, both in the salivary glands and in the Voronoi model (in 28 

particular in the case V8 (𝑠% = 1.75) that compares the best with in vivo glands), that 29 
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the smaller the number of neighbors of a cell at the apical surface, the larger the net 1 

gain of 3D cellular contacts (Fig. S4). This behavior was also obtained with respect to 2 

the 2D polygonal cell class at the basal surface (Fig. S4). These results suggest that, in 3 

terms of the cellular packing, tubular epithelia follow a “poor get richer” principle: the 4 

less neighbors a cell has in a surface (apical or basal), the larger the net increase of 3D 5 

cellular contacts. 6 

 7 

In Voronoi tubes the net gain of 3D neighbors is bounded 8 

The “poor get richer” behavior can be justified by mathematical arguments that 9 

show that the probability to increase the cellular connectivity necessarily decreases 10 

with the number of current neighbors (Fig. S5). Assuming a cylindrical geometry (e.g., 11 

epithelial tubes), each point at a given radial surface can be represented into the 12 

Cartesian plane; where coordinate 𝑥 accounts for the cylindrical transversal coordinate 13 

and coordinate 𝑦 for the longitudinal one (see Fig. S5). Thus, if the coordinates of a 14 

point (e.g., a Voronoi seed) at the apical surface are given by (𝑥, 𝑦), the coordinates of 15 

that point at a surface with a value of the cylindrical radial expansion 𝑠 ∈ [1,∞) can 16 

be found by defining the function 𝑓*: ℝ! ⟶ℝ! 𝑓*(𝑥, 𝑦) = (𝑠𝑥, 𝑦). Under these 17 

conditions, we aim to characterize the seeds that generate scutoids (exchanges in the 18 

neighboring relations of seeds) as 𝑠 changes. 19 

Lemma 1.  Given three non–colinear points {𝐴, 𝐵, 𝐶} that define a circle (a nearest-20 

neighbors relation), and another exterior point 𝐷, if 𝑠 > 1	exists such that 𝑓*(𝐷) is 21 

interior to the circle defined by {𝑓*(𝐴), 𝑓*(𝐵), 𝑓*(𝐶)}, then 𝐷 is inside of the vertical 22 

parabola containing {𝐴, 𝐵, 𝐶} (Fig. S5).  23 

Remark. If two of the three points {𝐴, 𝐵, 𝐶} are on the same vertical line, then the 24 

parabola considered in Lemma 1 degenerates as a vertical strip. Even in this case, the 25 

thesis of the Lemma is true if we replace the interior of the parabola by the inside of 26 

the strip. 27 

Proof. Without loss of generality, we can suppose that {𝐴, 𝐵, 𝐶} are counterclockwise 28 

oriented and that they have Cartesian coordinates	(𝑎1, 𝑎!), 	(𝑏1, 𝑏!) and 	(𝑐1, 𝑐!) 29 

respectively. 30 
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Thus, the point 𝐷(𝑥, 𝑦) is outside the circle defined by {𝐴, 𝐵, 𝐶} if, and only if, the 1 

sign of the following determinant is negative:  2 

��

𝑎1 𝑎! 𝑎1! + 𝑎!! 1
𝑏1 𝑏! 𝑏1! + 𝑏!! 1
𝑐1 𝑐! 𝑐1! + 𝑐!! 1
𝑥 𝑦 𝑥! + 𝑦! 1

�� = ��

𝑎1 𝑎! 𝑎1! 1
𝑏1 𝑏! 𝑏1! 1
𝑐1 𝑐! 𝑐1! 1
𝑥 𝑦 𝑥! 1

�� + ��

𝑎1 𝑎! 𝑎!! 1
𝑏1 𝑏! 𝑏!! 1
𝑐1 𝑐! 𝑐!! 1
𝑥 𝑦 𝑦! 1

�� < 0   (7) 3 

For the sake of simplicity, we represent the previous equation as:  4 

𝑑𝑒𝑡(𝒜) = 𝑑𝑒𝑡(ℬ) + 𝑑𝑒𝑡(𝒞) < 0    (8) 5 

On the other hand, by considering 𝑥 and 𝑦 as variables, the equation 𝑑𝑒𝑡(𝒜) = 0 6 

corresponds to the circle defined by {𝐴, 𝐵, 𝐶}, and 𝑑𝑒𝑡(ℬ) = 0 corresponds to the 7 

vertical parabola defined by the same three points. Consequently, the inequality 8 

𝑑𝑒𝑡(ℬ) > 0 defines the locus of interior points to that parabola.  9 

Now, assuming that 𝑠 > 1 exists such that 𝑓*(𝐷) is interior to the circle defined by 10 

{𝑓*(𝐴), 𝑓*(𝐵), 𝑓*(𝐶)}. Then,  11 

 ��

𝑠𝑎1 𝑎! 𝑠!𝑎1! + 𝑎!! 1
𝑠𝑏1 𝑏! 𝑠!𝑏1! + 𝑏!! 1
𝑠𝑐1 𝑐! 𝑠!𝑐1! + 𝑐!! 1
𝑠𝑥 𝑦 𝑠!𝑥! + 𝑦! 1

�� = 𝑠# 𝑑𝑒𝑡(ℬ) + 𝑠 𝑑𝑒𝑡(𝒞) > 0 (9) 

Or, equivalently, 𝑠!	𝑑𝑒𝑡(ℬ) + 𝑑𝑒𝑡(𝒞) > 0, so, 𝑠!	𝑑𝑒𝑡(ℬ) > −𝑑𝑒𝑡(𝒞). If 𝑑𝑒𝑡(ℬ) <12 

0, then 1 < 𝑠! < − ,NO(𝒞)
,NO(ℬ)

 and therefore 𝑑𝑒𝑡(ℬ) > −𝑑𝑒𝑡(𝒞). The latter is in 13 

contradiction with 𝑑𝑒𝑡(ℬ) + 𝑑𝑒𝑡(𝒞) < 0. As a result, 𝑑𝑒𝑡(ℬ) > 0, and the following 14 

inequality holds,  15 

 𝑠! > −
𝑑𝑒𝑡(𝒞)
𝑑𝑒𝑡(ℬ) > 1 (10) 

Notice that if the circle defined by {𝐴, 𝐵, 𝐶} is surrounded by a set of points and we 16 

change continuously the parameter 𝑠 in the interval [1,∞), it is possible to detect the 17 

first point touching the circle defined by {𝑓*(𝐴), 𝑓*(𝐵), 𝑓*(𝐶)}. That point can be 18 

obtained by computing all the points at 𝑠 = �− ,NO(𝒞)
,NO(ℬ)

. Hence, the first point 19 

contacting the circle will be that with the minimum value of 𝑠. 20 
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As for proving that the average of the number of neighbors of a cell induced by a seed 1 

grows is bounded as a function of the surface ratio, we state the following proposition: 2 

Proposition 1.  Given a Voronoi seed representing a cell, if 𝑛#"(𝑠) is the total number 3 

of accumulated cell neighbors as 𝑠 increases from 𝑠 = 1 (apical surface) to a given 4 

value of 𝑠, then 〈𝑛#"(𝑠)〉 is a bounded function for a finite cylinder. 5 

 6 

Proof.  We model the apical surface as the cylinder 2𝜋𝑟 × ℎ, where 𝑟 representes the 7 

inner radius and ℎ the length of the cylinder. Given a seed 𝐴 in that surface, in the 8 

corresponding Delaunay triangulation it appears as a point surrounded by triangles 9 

defining the neighborhood of 𝐴. By Lemma 1, each triangle defines a vertical parabola 10 

and a circle. So, any other seed touching 𝐴 in other layer must be inside of one of the 11 

parabolas and outside of all circles (see Fig. S5). Let’s denote ℛ*,' the feasible region 12 

for a new neighbor of 𝐴 in the layer represented by 𝑠, i.e., all points inside one of the 13 

parabolas and outside all the circles. Thus, if #(ℛ*,') is the number of seeds in that 14 

region that are not neighbors of 𝐴 in the apical surface, obviously, an upper bound to 15 

the number of new neighbors to 𝐴 is given by #(ℛ*,') ≤ #(ℛ1,').  16 

 17 

On the other hand, that number of seeds is, in average, proportional to the density 18 

of seeds times the area of ℛ*,', therefore, the average number of accumulated 19 

neighbors of 𝐴, denoted as 〈𝑛#"(𝐴)〉, will be bounded by the change of the density of 20 

points when growing 𝑠, this is to say, 21 

 𝑑〈𝑛#"(𝐴)〉 ≤ 𝑀 ⋅ ℛ&,(
!S*T⋅V

	𝑑𝑠 (11) 22 

where 𝑀 represents the total number of seeds (i.e., the total number of cells that is 23 

a constant) and the quotient is the area of ℛ*,' divided by the area of a given radial 24 

layer. In general, it is not possible to integrate equation (4), since the area of ℛ*,' is 25 

known only in very few, particular, cases.  26 

In the case of a finite cylinder, 〈𝑛#"(𝐴)〉 ≤ #(ℛ*,') ≤ #(ℛ1,') leads, summing up to 27 

all the seeds and dividing by 𝑀, to the upper bound 28 

 〈𝑛#"(𝑠)〉 ≤
1
M
⋅ ∑' #(ℛ1,') (12) 29 

thus, 〈𝑛#"(𝑠)〉 is necessarily a bounded function. This expression indicates that the 30 

number of new neighbors when increasing 𝑠 exhausts since the number of cells is a 31 
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resource shared by all the layers. It is possible to obtain an upper bound to 𝑁0$8 =1 

lim
*→X

〈𝑛#"(𝑠)〉 since, after a flip in the Delaunay triangulation, the edge disappearing 2 

(i.e., a cell contact loss) can never be recovered in a cylindrical geometry. Thus, 𝑀 ∙3 

r𝑁0$8 − 𝑛#"(1)u is bounded by the number of edges that complement the original 4 

Delaunay triangulation on the apical surface, that is, 5 

 𝑁0$8 − 〈𝑛#"(1)〉 ≤
1
M
⋅ �M(M+1)

!
−𝑀 〈E)*(1)〉

!
� = M+1

!
− 〈E)*(1)〉

!
 (13) 6 

 leading to  7 

 𝑁0$8 ≤
M+1
!
+ 〈E)*(1)〉

!
≤ M+1

!
+ 3 = M3Y

!
 (14) 8 

Where we have assumed that 〈𝑛#"(1)〉 = 6. The simulations of the computational 9 

Voronoi model and the data of the salivary gland show that 𝑁0$8 is in fact much 10 

smaller that the theoretical bound M3Y
!

. 11 

 12 

A Kolmogorov rate equation for the 3D cellular connectivity 13 

The equation for how the probability, 𝑃0, of having 𝑚 accumulated 3D neighbors 14 

(i.e., 𝑚 = 𝑛#") changes as the surface ratio (apico-basal dimensionless radial 15 

coordinate) increases from 𝑠 to 𝑠 + 𝑑𝑠 can be described by the following Markov 16 

equation (Fig. 4A-B), 17 

𝑃0(𝑠 + 𝑑𝑠) = 𝑃0(𝑠)𝑇0,0 + 𝑃0+1(𝑠)𝑇0+1,0    (15) 18 

where 𝑇E,0 is the probability of changing the number of neighbors from 𝑛 to 𝑚 due to 19 

an apico-basal intercalation. Since ∑ 𝑇E,00 = 1 (normalization of the transition 20 

probabilities) and 𝑇E,0 = 𝑓(𝑛,𝑚)s𝛿E+1,0 + 𝛿E,031t (each intercalation can only 21 

possibly induce to win one neighbor) then 𝑇0,0 = 1 − 𝑇0,031 and the above Markov 22 

equation can be written as a Kolmogorov equation (a.k.a. Master equation): 23 

,-!(*)
,*

= 𝑃0+1(𝑠)𝑟0+1,0 − 𝑃0(𝑠)𝑟0,031    (16) 24 

where 𝑟E,0 accounts for the probability of apico-basal intercalations per unit of 25 

surface ratio, i.e., 𝑇E,0 = 𝑟E,0𝑑𝑠. We point out that our model accounts for apico-basal 26 

intercalations that occur due to curvature effects such that 𝑠 = 𝑅/𝑅$ changes along 27 

the apico-basal coordinate of cells (i.e., bending, folding). Thus, our model does not 28 
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capture the apico-basal intercalations that develop due to active cellular processes 1 

(e.g. cellular extrusion, cell divisions) either in bended tissues or in the case of tissue 2 

planar geometries. 3 

By following the Eyring model (Eyring, 1935), i.e., if we assume an Arrhenius-like 4 

kinetics such that to win neighbors there is an energy cost (see (Bi et al., 2014)) then 5 

𝑟0,031 = 𝛼�𝑒+∆7!, where 𝛼� is the so-called pre-exponential factor that modulates the 6 

“bare” frequency of intercalations (per unit of surface ratio expansion, 𝑠) and ∆𝐸0 is a 7 

dimensionless activation energy (in units of the effective thermal energy associated 8 

with membrane fluctuations 𝜉 (Marmottant et al., 2009). The observed “poor get 9 

richer” behavior suggests that the activation energy, ∆𝐸0, increases with 𝑚. This can 10 

be explained as a result of a cumulative process if we assume that each neighbor that 11 

is gained implies to overcome an energy barrier, 𝛽(𝑠), through an apico-basal 12 

intercalation. Consequently, 𝑒+∆7! = ∏ 𝑒+9(*)EG0
EG1 = 𝑒+0∙9(*). Thus, 𝛽(𝑠) represents 13 

the dimensionless activation energy of a cell per 3D neighbor or, in the context of the 14 

different energetic contributions reviewed in this manuscript, to the energy barrier 15 

required to perform a spatial T1-transition following a surface energy minimization 16 

process (Gómez-Gálvez et al., 2018; Mughal et al., 2018). As for the dependence of 𝛽 17 

on 𝑠, the simplest mathematical form that recapitulates the fact that the apical and 18 

basal surfaces accumulate more cell-cell adherent complexes (either in wt or mutant 19 

phenotypes) is quadratic (Fig. S7): 𝛽(𝑠) = 𝛽D �1 +
[
!
(𝑠 − 𝑠D)!�. The average, along 20 

the apico-basal coordinate, of the energy cost then reads 𝛽̅ = 1/(𝑠% − 1)∫ 𝛽(𝑠)*$
1 𝑑𝑠. 21 

On the other hand, the mathematical calculations indicate that the intercalation rate 22 

𝑟0,031 becomes null for a finite value of 𝑚 or, alternatively, that the activation energy 23 

becomes infinite for a finite value of 𝑚. Otherwise, the net gain of new neighbors is 24 

not bounded. This fact can be accounted for by assuming that the bare frequency is a 25 

function of the number of neighbors, 𝛼� = 𝛼�(𝑚), such that ,\]
,0

< 0 and becomes null 26 

for a finite value of 𝑚. For the sake of simplicity, we assume that up to first order in 𝑚: 27 

𝛼� = 𝛼(𝑁0$8 −𝑚), where 𝑁0$8 is the asymptotic, maximum, number of 3D neighbors 28 

a cell can possibly have. Summarizing, the apico-basal intercalation rate 𝑟0,031 reads, 29 

𝑟0,031 = 𝛼(𝑁0$8 −𝑚)𝑒+09(*)     (17) 30 
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Under these conditions, the Kolmogorov equation reads, 1 

,-!(*)
,*

= 𝛼r𝑁0$8 − (𝑚 − 1)u𝑒+9(*)(0+1)𝑃0+1(𝑠) − 𝛼(𝑁0$8 −𝑚)𝑒+9(*)0𝑃0(𝑠) 2 

(18) 3 

On the other hand, the equation satisfied by the average number of accumulated 3D 4 

neighbors, 〈𝑛#"〉 = 〈𝑚〉, reads, 5 

,〈0(*)〉
,*

= ∑ 𝑚 ,-!(*)
,*0 = ∑ 𝑟0,031𝑃0(𝑠)0 = 〈𝑟0,031〉   (19) 6 

We notice that this equation implies an important role of the disorder (i.e. the 7 

distribution 𝑃0): even in conditions under which the transition rate, 𝑟0,031, is “large”, 8 

the resulting growth of 3D neighbors, ,〈0(*)〉
,*

, and, consequently, the net accumulation 9 

of 3D neighbors, can be more prominent in conditions where the transition rate is 10 

“small”. To illustrate this effect, we consider the following example. For the sake of 11 

simplicity, we evaluate the initial growth of 3D neighbors starting from the apical 12 

surface, i.e. we particularize Eq. (19) to the case 𝑠 = 1 (and hence according to Euler's 13 

formula 〈𝑃0(1)〉 = ∑ 𝑚𝑃0(1) = 60 ) and consider two possible conditions: a fully 14 

ordered (𝑜) distribution with 𝑃0^ = 𝛿0,_ (i.e., all hexagons) and a disordered (𝑑) 15 

condition that combines with equal probability cells with 3, 6, and 9 sides in the apical 16 

surface, i.e. 𝑃0, =
1
#
r𝛿0,# + 𝛿0,_ + 𝛿0,`u. We also assume that 𝛽(𝑠) ≃ 𝛽̅ (i.e., we 17 

approximate the energy cost to gain new 3D neighbors by its average) and that 𝛽̅^ <18 

𝛽̅,, and also that 𝛼^ < 𝛼,  (Fig. S9). Under these conditions, for the same 𝑁0$8, the 19 

following holds, 𝑟0,031^ > 𝑟0,031, , that is, the transition rate to gain new 3D neighbors 20 

is larger in the ordered case than in the disorder case. This is in fact the situation that 21 

we observed in the Voronoi tubular model when we estimated the value of the energy 22 

barrier to gain new neighbors: 𝛼 and 𝛽(𝑠) decrease as the CVT scale increases even 23 

though the surface tension energy is independent of the CVT scale (see Fig. S9, Fig. 1, 24 

and Table S1).  However, it is possible to find large regions in terms of the values of 25 

𝛽̅^, 𝛽̅,, 𝛼^, and 𝛼,  where ,〈0(1)〉
,*

�
,
> ,〈0(1)〉

,*
�
^

 (Fig. S11). That is, the growth of 3D 26 

neighbors starting from the apical surface (i.e. 𝑠 = 1) in the disorder case can be 27 

actually larger than that of the order case despite the fact that the transition rate to 28 

gain new 3D neighbors is smaller in the former. 29 
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Also, from Eq. (19), it is possible to infer, approximately, the expected behavior of 1 

〈𝑚(𝑠)〉 = 〈𝑛#"(𝑠)〉 as follows. First, by performing a mean-field-like approximation, 2 

i.e., 〈𝐹(𝑚)〉 ≈ 𝐹(〈𝑚〉), 3 

,〈0〉
,*

≈ 𝛼(𝑁0$8 − 〈𝑚〉)𝑒+9(*)〈0〉     (20) 4 

Second, assuming that 𝛽(𝑠) < 1 (otherwise it is difficult to justify the observed 5 

presence of apico-basal intercalations), 6 

,〈0〉
,*

≈ 𝛼(𝑁0$8 − 〈𝑚〉)(1 − 𝛽(𝑠)〈𝑚〉) + 𝒪(𝛽!)   (21) 7 

Eq. (21) is formally a logistic-like growth equation that can solved subjected to the 8 

condition 〈𝑚(1)〉 = 6 (the average number of neighbors in the apical surface is 6). 9 

We notice that in this case, the disorder levels of the wt and the mutant glands are 10 

similar. Consequently, the accumulation of 3D neighbors only depends on the 11 

transition rates, 𝑟0,031, that in turn are larger in the mutant background since the 12 

energy barrier decreases. 13 

For finding the parameters of the Kolmogorov model, Eq. (19), that better fit in silico 14 

tubes and salivary glands we implemented an algorithm that solves, numerically, the 15 

set of equations defined by Eq. (19) and the normalization condition ∑ 𝑃0(𝑠)X
0G1 = 1 16 

to obtain 〈𝑚(𝑠)〉 = ∑ 𝑚𝑃0(𝑠)0 . Such algorithm minimizes the error between the 17 

curves 〈𝑚(𝑠)〉 obtained in the model and in experiments. 18 

The values of the parameters obtained were further used to compare the predicted 19 

probability distribution of having 𝑚 accumulated 3D neighbors for a given value of 𝑠: 20 

{𝑃0(𝑠)}. We evaluated the relative error of this prediction with respect to the actual 21 

distribution from data, 𝑃0$aOb$c(𝑠), by computing 𝜀! = 1
!
∑ �𝑃0$aOb$c(𝑠) − 𝑃0(𝑠)�

!
0 . 22 

This quantity is normalized such that in case of the following situation of full 23 

disagreement between the distributions, 𝑃0$aOb$c(𝑠) = 𝛿0,F  and 𝑃0(𝑠) = 𝛿0,L  with 𝑖 ≠24 

𝑗, provides 𝜀! = 1 (i.e., 100% error). 25 

 26 

Quantitative characterization of spreading in neighbor exchange distributions 27 

between apical and basal surfaces 28 
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In order to characterize the spreading away from the diagonal in the neighbor 1 

exchange distributions between apical and basal surfaces, e.g., Fig. 2A, we followed 2 

the same approach used to quantify intrinsic noise during gene expression processes, 3 

see (Elowitz, 2002). Thus, 𝜂! = 〈(E"+E$)+〉
!〈E"〉〈E$〉

 where 〈𝑧(𝑛$ , 𝑛%)〉 =4 

∑ 𝑧(𝑛$ , 𝑛%)𝑝(𝑛$ , 𝑛%)E",E$ ; 𝑧 representing any function of 𝑛$ and 𝑛% and 𝑝(𝑛$ , 𝑛%) 5 

being the probability of neighbor exchange events. We point out that bins in the 6 

diagonal do not correspond necessarily to prismatic cells since a fraction of cells can 7 

conserved the polygonal class in apical and basal surfaces and yet undergo apico-basal 8 

intercalations. 9 

 10 

QUANTIFICATION AND STATISTICAL ANALYSIS 11 

Quantification of fluorescence intensity 12 

The E-cadherin fluorescence intensity was measured in Fiji by using the Plot Profile 13 

tool. We used 3 wt and 3 ∆Ecad representative glands, taking 10 individual 14 

measurements for each sample (Fig. S7). We used rectangular ROIs to measure the 15 

intensity profiles of lateral cell membrane in the Z-depth where the lumen was visible. 16 

In this way, we were able to capture the whole lateral cell membranes from apical to 17 

basal. To ensure, a high-quality detection of the cell membrane we developed a 18 

maximum Z-projection of those Z-slices where the cell outline of interest and the 19 

lumen are clearly visible. Note that the output of the Plot Profile is a 2D plot that 20 

displays a “column average plot”, where the 𝑋 axis represents the horizontal distance 21 

through the selection (apico-basal cell outline) and the 𝑌 axis the vertically averaged 22 

pixel intensity.  23 

 24 

Salivary glands measurements 25 

We quantified the following geometrical and topological/connectivity descriptors of 26 

the segmented salivary glands using a custom-made Matlab code:  27 

- Surface ratio (𝑠): Assuming a cylindrical shape for glands, we estimated 𝑠 by 28 

measuring the minimum distance between each cell apical centroid and lumen 29 
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skeleton (𝑅$), and measuring ℎ, the distance between apical cell centroid and 1 

cell centroid of an outer cell layer (i.e., basal surface or a concentric layer 2 

between apical and basal). Being, the individual surface ratio of a cell, 𝑠aNcc =3 
d",-.. 	3	V,-..

d",-..
, we averaged all the individual cell measurements to calculate the 4 

representative 𝑠 value corresponding to a gland, 𝑠 = 〈𝑠aNcc〉. 5 

- Cell apical perimeter, lateral surface area, and the cellular volume. 6 

- Number of cell contacts: we measured the number of cell neighbors of each 7 

cell surface, that is, apical, basal or lateral. In order to remove artefacts, 2 cells 8 

must share at least 0.5% of their lateral surfaces area to enable them to be 9 

considered as neighbors. 𝑛$, 𝑛%, and 𝑛#" of each gland were calculated after 10 

averaging the number of cells neighbors along the gland.  11 

- Percentage of scutoids, average of apico-basal transitions. We quantify the 12 

percentage of scutoidal cells that conform the gland and the number of apico-13 

basal transitions in which each cell is involved. 14 

 15 

All the measurements were carried along different concentric radial sections of the 16 

glands. We captured the gland thicknesses starting at the apical surface (𝑠$ = 1) and 17 

increasing progressively the surface ratio by	∆𝑠 = 0.5, until reaching the basal surface 18 

(𝑠%). In this way, the number of the captured radial sections will depend on the 𝑠% value 19 

of each gland. To compare the glands of each phenotype (either wt or mutant) in terms 20 

of connectivity related with the surface ratio, we used a maximum radial section 21 

common to all the glands.  22 

In ∆Ecad mutant glands, due to their phenotype (cells bulge at the basal surface), we 23 

removed the bulging tips of cells to quantify the effective surface ratio 𝑠∗: the 24 

maximum value of the surface ratio up to which cells are contacting (that is, 25 

1 ≤ 𝑠 ≤ 𝑠∗ ≤ 𝑠%). We noticed that the 3D connectivity of cells is not modified by this 26 

approach. To remove the volume of cell tips, we captured all lateral and apical surfaces 27 

of cells and we filled each cell volume using the alphaShape Matlab function. 28 

 29 

Voronoi tubular model measurements. 30 
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We measured the following properties of cells in Voronoi tubular models: area, 1 

perimeter and number of sides of cells for a given radial section, and total number 2 

neighbors. Additionally, we computed the percentage of scutoids, the number of 3 

apico-basal transitions, the polygon distribution of every surface (radial sections). In 4 

these quantifications, we disregarded cells at the boundaries (tips of tubes) to avoid 5 

‘border effects’. 6 

 7 

Statistical comparisons 8 

The characteristics extracted from wildtype and mutant glands were compared by 9 

using a univariate statistical protocol (Table S1). This procedure allows to study if the 10 

data from two different groups of data follow a similar distribution: 1) we evaluated 11 

whether features values of these two kinds of glands presented normal distribution 12 

and similar variance using the Shapiro-wilk test and two-sample F-test respectively. 2) 13 

If data followed a normal distribution and had similar variance, we employed the two-14 

tailed Student’s t-test. 3) In case, data presented a normal distribution but not equal 15 

variance we employed the two-tailed Welch test to compare means from both groups. 16 

4) When data did not present normal distribution, we used the Wilcoxon test to 17 

compare medians from both groups. 18 

In a different statistical analysis, we tested polygon distribution similarity from apical 19 

and basal surfaces of wildtype and mutant glands and V8 at 𝑠$ = 1, 𝑠% = 1.75 and 20 

𝑠% = 10 (Table S1). Following the guidelines from (Sánchez-Gutiérrez et al., 2016), we 21 

implemented chi-squared tests across all samples, being corrected for multiple testing 22 

using the method of Benjamini and Hochberg. To develop a more robust analysis, we 23 

used the distribution of 5-, 6- and 7-sided polygons due to the low presence (or 24 

inexistence) of the other kind of polygons (3-, 4-, 8-, 9-sided cells). 25 

 26 

  27 
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